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Abstract This paper describes an investigation
into the provision of grid computing facilities in a
typical university environment. In particular, it fo-
cuses on the use of the Java programming language
and the ProActive grid framework. The experience
of deploying ProActive in a heterogeneous environ-
ment (Windows and Linuz) is discussed. The re-
sults of the implementation of a bioinformatics ap-
plication using ProActive are presented and com-
pared with the results of a similar application using
a Linda-based approach.
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1 Introduction

Modern science is becoming increasingly dependent
on data reduction and modeling, and manipulation
of very large data sets—complex problems requir-
ing large amounts of computational time. Grid
computing provides a powerful tool that coordi-
nates the resources required to solve scientific prob-
lems in a cost-effective manner, while encouraging
the use of distributed resources and collaboration.
The term “grid computing” is interpreted dif-
ferently in various contexts. For our purposes we
adopt the following definition, proposed in [1]:

The term “the Grid” refers to a network-
based computing infrastructure provid-
ing security, resource access, information
and other non-trivial services that enable
the controlled and coordinated sharing of
resources among “virtual organisations”
formed dynamically by individuals and in-
stitutions with common interests.

We distinguish between a grid and a cluster, in
that the latter term is used for tightly-coupled, ded-
icated systems.

This research project involved a detailed inves-
tigation of frameworks and methods for developing

computing grids using networks of commodity com-
puters, such as those found in most academic insti-
tutions. Similar investigations have been performed
in [2, 3]. Due to the wide usage of the Java pro-
gramming language in universities we focused on
grid computing frameworks that supported Java,
and specifically on the ProActive framework[4], de-
veloped by the Active Objects, Semantics, Internet
and Security (OASIS) project team as a research
initiative of the French National Institute for Re-
search in Computer Science and Control (INRIA).
It inter-operates with and builds on several stan-
dards, such as HTTP, JINI, OGSi!, RMI, Sun Grid
Engine and Globus. The project has also had con-
tributions from a number of external developers,
enabled by the use of the GNU Lesser General Pub-
lic License (LGPL).

The next section of this paper gives further de-
tails of the ProActive framework and our experi-
ence of deploying it in a typical university setting.
This is followed by a description of a bioinformat-
ics application and its implementation using Pro-
Active. The performance results from testing this
application are then presented, and compared with
prior results obtained using a Linda system. The
final section of the paper presents some conclusions
and discusses areas for further investigation.

2 Overview of ProActive

ProActive is a middleware solution for grid comput-
ing. The ProActive manual[5] defines ProActive as
“a Grid Java library for parallel, distributed and
concurrent computing, also featuring mobility and
security in a uniform framework”, and asserts that
it “provides a comprehensive API allowing [the sim-
plification of programming applications| that are
distributed on Local Area Networks (LAN), on [a
cluster of workstations, P2P desktop Grids, or on
Internet Grids”.

ProActive can be deployed using either a clus-
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ter, where it is explicitly started on each cluster
node and the nodes are explicitly aware of the other
nodes in the cluster, or in a peer-to-peer (P2P) con-
figuration. The P2P infrastructure is built upon the
cluster mode infrastructure, but with extensions to
facilitate a significantly more dynamic grid. The
purpose of the P2P infrastructure is for maximum
utilisation of an institution’s spare CPU cycles[5].
Organisations may not have a dedicated cluster,
but most universities and research centres have a
large number of desktop computers that are very
seldom utilised for more than 60% of the day.

Peer nodes can dynamically join and leave the
grid, and are managed by the ProActive P2P in-
frastructure’s P2PService. The P2P infrastructure
is overlaid on a dynamic network of Java Virtual
Machines, where each peer executes the P2PService
and acts as a computational node. The P2PService
comprises a few Active Objects[5], that facilitate
the integration and management of the peers. Ac-
tive Objects are based on a concept called Trans-
parent Remote Objects (TROs)[6], which builds ex-
tensively upon Java’s Remote Method Invocation
(RMI) framework[7]. This approach allows a single
application to be deployed over multiple distributed
resources and is itself based on the Java// (pro-
nounced Java parallel) framework, which aims to
provide “seamless sequential, multi-threaded and
distributed programming”[6].

A method call on an Active Object returns im-
mediately and a Future object is returned in the
place of the result. When the method terminates,
the Active Object updates the Future it returned
with the actual result[8]. The calling thread contin-
ues execution and only blocks if (1) it requires the
returned object while it is still a Future, or (2) the
returned object is a primitive. This provides auto-
matic continuation[5] and wait-by-necessity, asyn-
chronous communication. Explicit synchronisation
can also be performed using the ProActive API, if
necessary.

ProActive also provides an exceptionally useful
utility called Interactive Control and Debugging of
Distribution (IC2D), which gives the user of the
Grid complete control and monitoring capabilities
over all deployed applications. An application can
be launched from within the IC2D interface or it
can be attached to an application that is already
executing. IC2D works by installing a SpyListener
Active Object on each node. The SpyListeners in-
tercept all messages passed to and from their re-
spective nodes and report this information, along
with the state of each Active Object, back to IC2D.
The user can then monitor and control the appli-
cation in real-time during its execution, with both

graphical and textual interfaces. IC2D also pro-
vides for dynamic change of deployment and drag-
and-drop migration of executing tasks. This is an
extremely useful and impressive feature of 1C2D:
using the graphical interface, Active Objects can
be dragged from one node and dropped onto an-
other, even while they are executing, without any
effect on the running application. This provides a
simple, manual mechanism for load balancing.

ProActive also provides fault tolerance, secu-
rity (based on the Java Cryptography Extension,
JCE), file transfer mechanisms (using any one of
several different protocols), and support for web
services[5].

2.1 Experience with ProActive De-
ployment

The deployment strategy was to first develop a test-
bed of virtual machines, that are easy to create and
recreate, to experimentally find a working solution
for deploying a ProActive grid. Once a working
solution had been developed the next phase was
to deploy in a laboratory of just over 90 worksta-
tions (identical Intel Pentium machines, running
both Fedora Core 4 Linux and Microsoft Windows
XP).

To best meet the requirements of the Grid and
best utilise the resources available, a number of de-
sign decisions were made, based on the needs of
the academic environment. Firstly, because the
workstations could arbitrarily be running in either
Linux or Windows at any time, both operating
systems needed to be configured as grid nodes as
similarly and as simply as possible (this was one
of the primary reasons for selecting ProActive—
its cross-platform portability). The highly dynamic
nature of these workstations led to the first design
decision—using the peer-to-peer infrastructure of
ProActive. The P2P infrastructure is completely
decentralised and consequently the grid would not
have to rely on any one node to function. It would
also allow for the workstations to join and leave
the grid as users made use of them or as they were
restarted into one of their two operating systems.

The second design decision was to disable and
enable each grid node on each workstation as users
logged in and out respectively. This policy would
maximise the use of free CPU cycles, without hin-
dering the productivity of any of the users of the
workstations. This idea, simple as it may seem,
proved to be significantly more difficult to imple-
ment than originally anticipated (see below).

Central storage of ProActive and its configura-



tion was considered a necessity and therefore the
third design decision. It would be incredibly te-
dious, if not almost impossible, to manually al-
ter each of ninety computers every time a change
needed to be made to the grid.

The ProActive P2P infrastructure is started as
a daemon service by a script provided with Pro-
Active. Using a simple telnet client, one can con-
nect to the P2P service and issue commands to
start, restart or stop the service, or to flush the
log file. This script also hides the complexity of the
command line options and environment settings re-
quired when starting a ProActive application. To
extend this functionality, a new Perl script was de-
veloped to provide the same set of commands, but
from the command line, and to provide additional
functionality (e.g. hostname and IP address check-
ing and execution priority selection).

The Fedora Core 4 Linux image on the work-
stations was configured with an unprivileged user,
which provided a secure context for ProActive to
execute within. ProActive was integrated with the
Gnome Display Manager (GDM) that facilitates
user logins, and which has a number of customis-
able scripts. These scripts were customised as fol-
lows: on initialisation (i.e. when the GDM becomes
visible, before any user is logged in) ProActive is
synchronised from the central location, allowing
any configuration updates, and started; on post-
login (i.e. when a user has logged in) ProActive is
stopped. In this way, each node executes in a se-
cure context and joins or leaves the grid as users
make use of the workstations.

The Windows XP installation on each of the
workstations belonged to a domain, using Mi-
crosoft’s Active Directory. All user accounts were
registered on the domain and their home directo-
ries were centrally stored on a shared file system.
Therefore, it was simple to create a domain user
with a home directory to securely encapsulate Pro-
Active. A Windows service, GridService, was de-
veloped in C# to control the starting and stopping
of the P2P infrastructure. GridService executed
ProActive, via the Perl script, in the context of
another, local system user, further encapsulating
ProActive into a secure, read-only execution envi-
ronment. When the workstation booted, GridSer-
vice would start the P2P infrastructure and run it
with low priority at all times, as it was not possi-
ble to configure the Windows XP environment to
only execute ProActive when users were logged out.
Thus ProActive was made to function on the Win-
dows platform, but not to the full extent intended.
This was no fault of ProActive’s, which functioned
without fault, it was simply due to the inflexibility

of the Microsoft Windows platform and the lack of
true multi-user functionality.

Three strategies were attempted to circumvent
this limitation under Windows. Firstly, an Event
Handler Dynamically Linked Library (DLL) was
developed for integration with the Winlogon sub-
system. This DLL implemented an interface that
defined several functions which were called on sys-
tem startup and shutdown; user login and logout;
desktop lock and unlock; and screensaver start and
stop. The DLL functioned properly and was able to
correctly start ProActive on system startup or stop
it on system shutdown or user login, but as soon as
it started ProActive on user logout, the processes
were terminated by the desktop closing. Secondly, a
similar configuration was attempted using domain
group policy, and thirdly a Windows service was
developed using C#, but in each case the outcome
was the same—the logout procedure terminated the
grid processes.

Of course a solution to the problem does exist,
because a number of applications and even Java ap-
plications have the ability to run as Windows Ser-
vices, but the implementation became increasingly
convoluted and complex as each new possibility was
explored. Finally, a possible solution was found:
Java Service Wrapper|[9], a free, open-source tool
for creating Windows Services from Java applica-
tions. It recognises and claims to have overcome
the problem of process termination when desktops
close, and would be a likely solution. Unfortu-
nately, time did not permit any further investiga-
tion of this approach.

3 The Bioinformatics Appli-
cation

This application was designed to benchmark Pro-
Active and compare it with a Java implementation
of the Linda? coordination language (TSpaces from
IBM[10]). A Grid Parallel Motif Searching appli-
cation, GridPMS, was designed to be as similar as
possible to the original T'Spaces implementation of
the Parallel Motif Searching (PMS) application de-
veloped by Tim Akhurst[11, 12]. Similar work has
been reported in [13, 14]. The primary aim of our
experiment was to explore the feasibility of using
a high-level, abstract framework such as ProActive
by investigating its advantages and disadvantages
for grid computing in a typical academic environ-
ment.

2Linda is a registered trademark of Scientific Computing
Associates.



Th GridPMS application utilises the classic rep-
licated-worker (or master-worker) pattern to search
DNA sequences for subsequences corresponding to
specific proteins (or motifs). The motifs are ex-
pressed as regular expressions, which are then used
with the Java java.util.regex package in order
to locate the motifs within DNA sequences. More
details of the bioinformatics field and the molec-
ular biology underlying this problem domain may
be found in [12]. The dataset used by both ver-
sions of the application comprised one quarter of
the human genome, a 1GB text file. The Grid and
TSpaces nodes used a similar set of regular expres-
sions, on slightly overlapping segments of the DNA
sequence residing in each node’s memory.

The biggest difference between the TSpaces and
Grid applications was the method by which the
DNA sequence was divided and distributed. In
the original PMS application the complete sequence
was shared to each node via a network filesys-
tem, and each node received instructions regard-
ing which segment of the sequence to read into
memory and process. GridPMS was constructed in
a client-server fashion, where the master process,
with access to the dataset, spawned the workers
and passed to them the complete regular expres-
sion list together with their segment of the DNA
sequence.

4 Testing and Results

The computers used as Grid nodes were an homo-
geneous collection of Intel 3.0GHz Hyper-threading
Pentium 4’s with 1GB memory interconnected by
a 100Mbps switched Ethernet local area network,
each running Java 1.5.0 on Fedora Core 4 Linux and
Microsoft Windows XP. This differed slightly from
the Intel 2.4GHz Pentium 4’s with 512MB memory
running Java 1.4.2 on Red Hat Linux 3.1.10 inter-
connected by the same network, used in [12]. Al-
though this is a significant difference, compounded
by using multiple machines, the performance re-
sults may be compared by normalising the mea-
sured experimental times.

4.1 Results

The performance increase achieved by adding nodes
to the PMS is represented in Figure 1, which is a
plot of the speedup achieved. The execution time
for each test run was measured for the entire du-
ration of each run, including the time taken to dis-
tribute the dataset over the network and receive
the results. The execution time when 5 nodes were

used was of the order of 2.5 hours, but in each test
case approximately 5 minutes was spent distribut-
ing the dataset over the network, an effect that be-
came more apparent as more nodes were added and
the execution time shortened.

Due to the complexity of the application and the
large dataset, it was discovered that no less than
5 nodes could be used before the master process
exhausted its memory—a point in favour of distri-
bution over the grid. An option would have been
to compress the dataset, as the DNA data is essen-
tially 2-bit data (representing the four DNA bases)
and it is quite wasteful transferring it as 8-bit or
16-bit text.

Before the results could be normalised, the exe-
cution time for only one node needed to be calcu-
lated. This was achieved by fitting the data using
non-linear least-squares regression, giving Equa-
tion 1. The trend in Figure 1 appeared to be an
exponential increase tending to a constant value, or
simply a constant minus an exponential, which is
exactly what Equation 1 represents (the statistical
R-squared value, a measure of goodness of fit, was
calculated to be 99.87%, indicating a near perfect
fit). This equation allowed s'(n), the normalised
speedup, to be calculated and hence compared to
the results achieved in [12].

1
s'(n) = =" + ——aPF7 41 (1)

s(1)

where n = number of nodes; s = speedup
from n nodes; s’ = normalised speedup from
n nodes; a,  and 7y are parameters solved for
by the non-linear least-squares regression fit.

A byproduct of the curve-fitting to Equation 1
is the interpretation of the constant ﬁa‘r’ﬂ*'y +1,
which quantifies the maximum theoretical speedup
achievable with an infinite number of nodes. The
theoretical maximum was calculated to be 69.3
times (the maximum speedup measured was 50.5
times, using 90 nodes).

Figure 1 shows that the application continues to
benefit from speedup through adding more process-
ing nodes to the problem up to the limit tested
(90 computers). However, Figure 2 suggests that
once past a certain point very little additional ben-
efit is derived by adding more nodes. The optimal
number of nodes for an application is very much a
qualitative measure and depends entirely upon the
application, its parameters and its computation to
communication ratio. It can be judged from Fig-
ure 2 that using more than 50 nodes produces little
benefit in the case of GridPMS under our test con-
ditions.



60

50/- X i
% X
XX
40 *X 1
X
=1
8 30 : XX : :
>
X §
g .000
20- : o O .
X ~ O ;
% O © | |
@ Grid PMS Trend
& X Grid PMS
o _ O Linda PMS
1 1 1 | 1 1 1 | |
0 10 20 30 40 50 ] 60 70 80 90 100
Number of Processing Nodes
Figure 1: Speedup achieved by GridPMS and the Linda-based PMS
1 T T T T T
ElINormalised Total Execution
0.9 [ INcrmalised Average Node Execution Time| _|
# Nodes GridPMS
g 08 1 10h56m45s |
= RS S R R S 5| 2n20m27s
g 10 1h14m24s
.‘g 06 .......................... 20 3()1-1-11()S ]
o 30 27m22s
05 il
wl 40 22m52s
o
3 0.4 50 19m46s |
= 60 16m21s
g 0.3 70 15m21s
202 : F PR PP PPPOT SO 80 14IT]O6S -
' 90 13m00s
01 —
0 10 20 30 40 50 60 70 80 80

Number of Processing Nodes

Figure 2: Normalised execution time achieved by GridPMS



The efficiency of a distributed application exe-
cuting in parallel, calculated as e = §'(n)/n, quan-
tifies how well the application utilises the distrib-
uted resources it has at its disposal. This perfor-
mance measure shows the most significant differ-
ence between the Grid and Linda implementations
of the PMS application. GridPMS is between 10%
and 30% more efficient than the Linda implementa-
tion in their use of between 5 and 45 computational
nodes, evident in Figure 3. The difference in effi-
ciency may be due to the difference in the data dis-
tribution approach, as discussed previously, rather
than any fundamental differences between ProAct-
ive and the Linda coordination language.

5 Conclusions

One major hurdle encountered during this research
and perhaps a drawback to the wide-spread use
of ProActive was its documentation and the avail-
ability of information and support. The ProActive
Manual[5] was used as far as possible, but unfortu-
nately the standard of the documentation was very
low and no supplementary online resources existed.
For example, the grammar in parts was so poor that
it made those sections incomprehensible, and cer-
tain sections referenced by the text, often source
code listings, were absent. On many occasions it
became necessary to resort to reading the actual
Java source code to understand its functionality
and requirements. At times this was frustrating,
but it is our only significant criticism of ProActive.
Bar this one criticism, developing applications
using the ProActive API was a pleasure. ProAct-
ive’s Active Object pattern, programming model
and API made for a simple approach to solution vi-
sualisation and application development. The com-
plete ProActive library is neatly packaged into Java
Archives (JARs) and therefore easily linked into an
application. ProActive provides instructions[5] for
using its API within the Eclipse Integrated Devel-
opment Environment, providing an excellent envi-
ronment for developing ProActive applications.
The GridPMS bioinformatics application has
demonstrated that both the Grid and the appli-
cation can scale up to 90 computers (the maximum
available to us) without a degradation in perfor-
mance. The results achieved were better than those
achieved previously when utilising the Linda coor-
dination language for a similar application. The
application required little modification to operate
over the Grid and considering the complex services
provided by ProActive for monitoring, administer-
ing and maintaining Grid applications, the results
are very pleasing. These findings suggest that Pro-

Active is an ideal grid framework for many aca-
demic and research centres, allowing networks of
commodity workstations to be fully utilized.

5.1 Future Work

ProActive provides greater functionality than was
utilised in this study, and a number of areas were
identified where further research could be con-
ducted. Of particular interest is developing Web
Services that provide an interface to the ProActive
Grid. Active Objects can be exported as a Web
Service[5, 8] and deployed onto a Jakarta Tomcat
web server. This mechanism could make the Grid
significantly more usable by providing the ability
to create client applications in any Web Service en-
abled programming language.

The Globus Toolkit is a widely-used infrastruc-
ture for grid computing[15], and would form the
basis of an excellent comparison to this research.
A Globus-based grid could be deployed and a sim-
ilar application could be developed for testing and
benchmarking against that presented in this paper.
Furthermore, the Commodity Grid (CoG) Kits,
that provide an interface for the Java[l6], Python
and Perl programming languages to the C/C++
based Globus infrastructure, could be investigated.
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