
A TUPLE SPACE WEB SERVICE FOR DISTRIBUTED
PROGRAMMING

Simplifying Distributed Web Services Applications

George C. Wells, Barbara Mueller†, Loı̈c Schulé†
Department of Computer Science, Rhodes University, Grahamstown, South Africa

G.Wells@ru.ac.za, lapetiteb@gmail.com, lschule@gmail.com

†Swiss Institute of Technology (EPFL), Lausanne, Switzerland

Keywords: Tuple spaces, coordination languages, distributed processing, web services, associative matching.

Abstract: This paper describes a new tuple space web service for coordination and communication in distributed web
applications. This web service is based on the Linda programming model. Linda is a coordination lan-
guage for parallel and distributed processing, providing a communication mechanism based on a logically
shared memory space. The original Linda model has been extended through the provision of a programmable
mechanism, providing additional flexibility and improved performance. The implementation of the web ser-
vice is discussed, together with the details of the programmable matching mechanism. Some results from
the implementation of a location-based mobile application, using the tuple space web service are presented,
demonstrating the benefits of our system.

1 INTRODUCTION

The Linda coordination language for concurrent pro-
gramming was first proposed by David Gelernter at
Yale University (Gelernter, 1985). The small set of
operations, the associative data access/retrieval mech-
anism and the logically shared memory space all pro-
vide a very useful simplicity and flexibility for con-
structing concurrent applications. On the other hand,
a criticism of Linda has been that it is, at worst, in-
efficient, and, at best, subject to unpredictable per-
formance (Zenith, 1992), as the simplicity of the
model hides the underlying complexity of the data
sharing and communication required. Furthermore,
some applications may be very difficult to implement
efficiently using the standard Linda communication
mechanisms. Since the late 1990’s there has been
a resurgence of interest in the Linda coordination
model, particularly in the Java community. Notably,
Sun Microsystems developed the JavaSpaces specifi-
cation (Freeman et al., 1999). IBM have also pro-
duced a commercial Linda implementation in Java,
called TSpaces (Wyckoff et al., 1998). We believe
that the simplicity of the Linda model still has much
to offer, but that there are still challenges in overcom-
ing the performance issues inherent in this approach,

and extending the range of applications to which it
is suited. Our previous research led to the develop-
ment of a system (called eLinda) that provided exten-
sions to the original Linda model, addressing some of
these performance-related concerns, while attempting
to retain as much of the model’s simplicity as possible
(Wells et al., 2004).

This paper describes the implementation of a
Linda tuple space web service. This topic has also
been studied by a few other groups, notably Lucchi
and Zavattaro, who focused specifically on the secu-
rity of a tuple space web service (Lucchi and Zavat-
taro, 2004), and the Advanced Information Systems
Group at the Universidad de Zaragoza (Mata et al.,
2004). Our new tuple space service is called the Ex-
tended Linda Web Service (abbreviated eLindaWS).

The major extension present in eLindaWS is a
programmable matching mechanism designed to im-
prove the flexibility and the efficiency of the Linda
model. This is based on our previous research, but
the implementation as a web service in this case leads
to some unique features and potential security-related
problems. The product of this research project is a
simple, but highly effective coordination web service
that is applicable to a wide range of Internet applica-
tion areas.

To demonstrate the benefits of eLindaWS, we
have implemented a number of example applica-
tions. One of these is a bioinformatics application,
which shows very good performance characteristics
(Mueller et al., 2007). In this paper we discuss an-
other example application, a location-based mobile
web service, which specifically illustrates the use and
benefits of the programmable matching mechanisms.

2 THE LINDA PROGRAMMING
MODEL

The Linda programming model has a highly desir-
able simplicity for writing parallel or distributed ap-
plications. As a coordination language it is respon-
sible solely for the coordination and communication
requirements of an application, relying on a host lan-
guage (i.e. Java in this study) for expressing the com-
putational requirements of the application.

The Linda model comprises a conceptually shared
memory store (called tuple space) in which data is
stored as records with typed fields (called tuples). The
tuple space is accessed using five simple operations1:

out Outputs a tuple from a process into tuple space

in Removes a tuple from the tuple space and returns
it to a process, blocking if a suitable tuple cannot
be found

rd Returns a copy of a tuple from the tuple space to
a process, blocking if a suitable tuple cannot be
found

inp Non-blocking form of in — returns an indica-
tion of failure, rather than blocking if no suitable
tuple can be found

rdp Non-blocking form of rd

Note that the names used for these operations here
are the names used in the original Linda system de-
veloped at Yale. Both TSpaces and JavaSpaces use
different names for the operations.

Input operations specify the tuple to be retrieved
from the tuple space using a form of associative ad-
dressing in which some of the fields in the tuple
(called an antituple, or template, in this context) have
their values defined. These are used to find a tuple
with matching values for those fields. The remainder
of the fields in the antituple are variables which are

1A sixth operation, eval , used to create an active tu-
ple, was proposed in the original Linda model as a process
creation mechanism, but can easily be synthesized from the
other operations, with some support from the compiler and
runtime system, and is not present in any of the commercial
Java implementations of the Linda model.

bound to the values in the retrieved tuple by the in-
put operation (these fields are sometimes referred to
as wildcards). In this way, information is transferred
between two (or more) processes.

A simple one-to-one message communication be-
tween two processes can be expressed using a com-
bination of out and in as shown in Figure 1. In
this case ("point", 12, 67) is the tuple being de-
posited in the tuple space by Process 1. The anti-
tuple, ("point", ?x, ?y) , consists of one defined
field (i.e. "point"), which will be used to locate a
matching tuple, and two wildcard fields, denoted by a
leading ? . The variables x and y will be bound to the
values 12 and 67 respectively, when the input opera-
tion succeeds, as shown in the diagram. If more than
one tuple in the tuple space is a match for an antituple,
then any one of the matching tuples may be returned
by the input operations.

Other forms of communication (such as one-
to-many broadcast operations, many-to- one aggre-
gation operations, etc.) and synchronization (e.g.
semaphores, barrier synchronization operations, etc.)
are easily synthesized from the five basic operations
of the Linda model. Carriero and Gelernter provide
further details of the Linda programming model (Car-
riero and Gelernter, 1990).

3 THE IMPLEMENTATION OF
ELINDAWS

The eLindaWS system is based on our previous ex-
tended Linda system, eLinda (Wells et al., 2004). A
prototype web service was developed without the ex-
tensions (Wells, 2006), which showed promise in this
approach, and served as the basis for the development
of the full eLindaWS system presented in this paper.
This system consists of two separate parts: a server-
side component, providing the web service itself, and
a small client library, abstracting some of the details
of the use of the web service. The server side of the
web service has been developed as a Java servlet, us-
ing the Apache Tomcat servlet container.

We have adopted the REST (Representational
State Transfer) approach to web services, proposed by
Roy Fielding as a reaction to the proliferation of web
services standards (Fielding and Taylor, 2002). The
REST approach essentially calls for the transmission
of simple XML messages across the Internet, using
HTTP. This approach is distinguished by its simplic-
ity, in comparison to more conventional approaches
to web service provision, such as the use of SOAP,
WSDL, etc.

Using XML to transport data has the advantage

Figure 1: A Simple One-to-One Communication Pattern.

that the client and the server can be written in al-
most any language (Java, Perl, etc.). In our imple-
mentation, the XML document received by the server
is converted into a Java data structure, which is used
with a Linda-style tuple space to carry out the relevant
input or output operation.

An additional benefit of using a servlet container
for eLindaWS is that debugging becomes very sim-
ple. In particular, a second servlet was developed that
obtains a listing of the contents of the tuple space and
returns this as a conventional HTML web page. View-
ing this page in a web browser produces a very use-
ful snapshot of the current state of the tuple space.
A third servlet was developed to reinitialize all tuple
spaces without having to restart the Apache server,
which is very helpful for testing.

The eLindaWS system has three extensions to the
original Linda programming model:

1. Multiple, named tuple spaces

2. Multi-tuple input and output operations

3. A programmable matching mechanism

These extensions are briefly explained below,
whereafter a more detailed description of the pro-
grammable matching mechanism is provided.

Multiple, named tuple spaces allow unrelated tu-
ples to be stored separately, and thus provide greater
efficiency.

The multi-tuple output operation, called outMany ,
is used to minimize network traffic and to accelerate
the execution time of applications. If a client appli-
cation wants to add several tuples to a tuple space
at the same time, the use of outMany allows a single
XML document to be sent, containing all the tuples.
Likewise, the multiple input operations, which have
corresponding names and functionalities to the sin-
gle input operations (inMany, inpMany, rdMany,
rdpMany), return all tuples that match the given an-
tituple. In the same way as the outMany operation,
this minimizes the network traffic.

The programmable matching mechanism allows
the use of more flexible criteria for locating tuples.
This is particularly useful in situations where a global
view of the tuples in a tuple space is required. The

programmable matching mechanism allows the nec-
essary computation to be moved out of the application
into a specialized matcher, which is executed on the
server, both minimizing the network traffic and maxi-
mizing the parallelism of a distributed application.

3.1 Programmable Matching

With the standard Linda associative matching meth-
ods, a tuple can only be retrieved if it corresponds
exactly to an antituple. Moreover, the matching pro-
cess can only be done with one tuple at a time. While
this basic matching mechanism is simple to imple-
ment and very useful in many cases, it is problematic
in certain situations, especially those where a global
view of all tuples in a tuple space is required. The pro-
grammable matching mechanism allows for the use
of very flexible criteria for matching tuples with an-
tituples and provides for a global view of the tuples
during the matching process.

For example, consider a scenario where a tuple is
required that has a numeric field, the value of which is
the closest to some specified value (i.e. not necessar-
ily equal to the given value). Such queries can be ex-
pressed using the standard Linda associative matching
methods, but will generally be very inefficient. In the
example above, the application would have to retrieve
all of the eligible tuples using the inMany operator,
work through them to locate the one with the required
closest value and then put all other tuples back in the
tuple space using the outMany operator. This will re-
sult in a large volume of network traffic (this aspect
is even worse if the additional multiple-tuple opera-
tions are not available, as our analysis has shown that
the network throughput is the main performance bot-
tleneck). Furthermore, the parallelism of the system
is reduced as the application keeps all tuples for the
period required to determine which one is required,
possibly blocking other clients.

Using the programmable matching mechanism,
this problem is handled efficiently by allowing a client
to install a new matcher on the server, thus defin-
ing its own tuple matching strategy. For example,
when searching for the closest tuple, a client can in-
stall a specialized matcher capable of performing this

matching operation, and then perform an input oper-
ation using the new matcher. Since the matching is
done on the server, the network traffic and the impact
on the parallelism of the system are minimized.

Specialized matchers may also perform aggregate
operations, where a tuple is returned that summarizes
or aggregates information from a number of tuples.
For example, a matcher could calculate the sum of
numeric fields.

In general, the use of the programmable matching
mechanism will simplify application development, in
addition to the performance benefits outlined above.
This is particularly true where a pre-written matcher
is available, as we envisage that any complete im-
plementation of our system would include a library
of common matching operations, providing a useful
set of generic matching facilities. More specialized
matchers would have to be written as part of the de-
velopment of the application for which they were re-
quired. Such matchers could then be added to the
library of existing matchers for future use, if appro-
priate. It is also conceivable that writing specialized
matchers could become a service provided by an en-
tity separate from the application development team,
possibly as a commercial service.

3.1.1 Design and Implementation of the
Programmable Matching Mechanism

The programmable matching mechanism is designed
to be simple and as easy as possible for a programmer
to master. To begin with, the process can be separated
into two sub-processes:

1. The installation of a new matcher in the server

2. The use of a specialized matcher by a client

Installation of a New Matcher There are two can-
didate approaches to installing a matcher on the
server. One solution is that a client compiles the code
and sends the executable code to the server. This solu-
tion is interesting but implies that the client must send
complex, binary objects through the network. This
complicates the system architecture and the XML
documents used. It potentially also increases the vol-
ume of network traffic (compiled code is generally
larger than source code, particularly when encoded
for transmission as text). For these reasons, this so-
lution was discarded.

The second possibility, and the one that we have
chosen, is to send the source code to the server and
to let the server perform the compilation. In this ap-
proach, the client sends a textual message containing
the matcher code to the server. The server then per-

forms the compilation and informs the client whether
the compilation was successful or not.

From the client’s perspective, installing a matcher
requires obtaining the source code for the matcher and
sending it to the server. From the perspective of the
programmer, writing matchers, while not a trivial op-
eration, is not overly complex. A library is provided
that allows the programmer to access the tuples in the
tuple space at a lower level of abstraction than usual,
and care needs to be taken to preserve the semantics
of the Linda tuple retrieval operations.

While lines of code are a notoriously poor indi-
cation of complexity, they can give an approximate
indication of the difficulty of writing a customized
matcher. For example a matcher to find the minimum
of a numeric field can be written in only 37 lines of
Java code.

To install a new matcher on the server, a client
simply sends the name and the source code for the
matcher, using an XML document with the following
format:

<eLinda>
<Matcher name="MyMatcher">

<Source type="string">
...

</Source>
</Matcher>

</eLinda>

The server parses the XML document and for-
wards the information to the Matcher Manager. The
Manager then compiles the matcher, and informs the
server whether the source code was compiled cor-
rectly or not. The server then encodes any error mes-
sages or an indication of success and finally sends this
information back to the client.

Using a Specialized Matcher Once a specialized
matcher is installed on the server, it becomes triv-
ial to use it. The client must simply specify which
matcher it wants to use by indicating the name of
the matcher. The XML schema used includes an at-
tribute, matcher , indicating the name of the matcher
that should be used. If no matcher name is specified
by the client application, the matcher attribute is set
to DefaultMatcher . The following XML document
gives an example of an input tuple sent together with
a matcher name:

<InputTuple oneResult="true"
matcher="MyMatcher"
tupleSpace="t1"
blocking="true"
destructive="true">

<TupleData>
<Field type="string">point</Field>
<Field type="int" />

<Field type="int" />
</TupleData>

</InputTuple>

Once the matcher is installed, the process of us-
ing a specialized matcher is almost completely trans-
parent to the client, which only needs to specify the
name of the matcher. This mechanism helps maintain
the simplicity of eLindaWS, while providing consid-
erable flexibility and enhanced performance.

Parameterization of Matchers Ideally, the number
of matchers installed should be minimized as far as
possible. For example, a client might want to retrieve
tuples containing a certain set of values, where the set
of values varies for each run. It would be impractical
and inefficient for the client to install a new matcher
each time with the actual set of values and it would
be resource consuming for the server. This observa-
tion leads to the conclusion that some matchers may
require parameterization. The eLindaWS system sup-
ports this mechanism through a simple extension to
the basic mechanism outlined above, whereby a list of
parameter values can be passed to the matcher, along
with the antituple specification, for input operations.
This greatly increases the flexibility of eLindaWS and
the reusability of specialized matchers.

Error Handling With the programmable matching
mechanism, any client can install its own matcher on
the server. This implies also that any client can in-
stall a badly designed matcher that compiles but that
doesn’t execute correctly, generating a run-time ex-
ception. This requires additional error detection and
transmission to the client application. Since eLin-
daWS may be used by people with widely varying
skill levels in many contexts, we implemented the
error-handling to be configurable, with a number of
different “levels”. For example, if the server is used
by developers who need detailed information in order
to debug their matchers, the server can be configured
appropriately. On the other hand, if the application is
to be used by non-technical users, the server can be
configured to return minimal information about any
errors. This is done by using the servlet deployment
descriptor mechanism.

Security Issues Security was not a major initial fo-
cus of this project, however, the problem of security
had to be considered. The eLindaWS system allows a
client to install a specialized matcher by sending the
matcher code to the server. If there is no compile-time
error, it installs the matcher and allows client applica-
tions to use it. This feature increases the flexibility of
the system, but also opens a major security loophole,

as a matcher may attempt to modify system variables,
or to write or read files that it should not access.

There are two possible solutions to this problem
that were considered. The first was the use of the
Java security package, java.security . This pack-
age provides classes that implement a configurable,
fine-grained access control security architecture. This
package also supports the generation and storage of
cryptographic public key pairs, as well as a num-
ber of exportable cryptographic operations includ-
ing those for message digest and signature genera-
tion. Finally, this package provides classes that sup-
port signed/guarded objects and secure random num-
ber generation.

The second possible solution involved the use of
a Security Manager. This is a single Java object
that performs runtime checks on potentially danger-
ous methods. Code in the Java library consults the
Security Manager whenever such an operation is at-
tempted. The Security Manager can veto the method
call by generating a SecurityException . Decisions
made by the Security Manager are defined in a pol-
icy file describing the rights of all packages. Each
virtual machine can have only one Security Man-
ager installed at a time, and once a Security Manager
has been installed it cannot be uninstalled (except by
restarting the virtual machine).

While the Java security package offers a highly
flexible, sophisticated and complete set of security
mechanisms, a light-weight solution was better suited
to our needs. As explained above, the only require-
ment was to make sure that the specialized matcher
could not write or read files on the server or access
system variables. Accordingly, we configured the Se-
curity Manager to give no rights to the package con-
taining the matchers but unlimited rights to the rest of
the server packages.

3.1.2 Applications of the Programmable
Matching Mechanism

The examples of new matchers given during the pre-
ceding discussion have been in the domain of numeric
applications. These are convenient for the purposes of
the discussion as they are simple, easily explained and
easily understood. However, it would be incorrect to
believe that the programmable matching mechanism
was only useful for numeric problems — it is just
as applicable to textual or other problems. Some ex-
amples that emphasize the generic nature of the pro-
grammable matching facilities are:

• A string matcher could match string fields using
some alphabetic measure of “closeness”, or even
approximate homophonic matching.

• A spatial matcher could compare coordinates to
locate a tuple corresponding to a point in some
area or space — see the example in Section 4.

• A matcher could be written to locate tuples with
fields corresponding to a date or time in some
range of temporal values.

4 THE MOBILE, LOCATION-
BASED APPLICATION

This application demonstrates the benefits of the pro-
grammable matching mechanism in eLindaWS. How-
ever, it also examines the suitability of using eLin-
daWS for location-based systems, and its applicabil-
ity to the field of mobile web applications. The appli-
cation is that of locating desired facilities close to the
user’s current position.

A midlet is a Java program for embedded devices,
which conforms to the Mobile Information Device
Profile (MIDP) standards (Sun Microsystems, 2007).
MIDP is a set of J2ME APIs that define how soft-
ware applications interface with mobile communi-
cation devices. Several different toolboxes for de-
veloping wireless applications are available, e.g. the
Sun Java Wireless Toolkit, and the NetBeans Mobil-
ity Pack. To write our midlet application, we used the
former toolkit.

4.1 Structure of the Application

Our example application enables a user to obtain in-
formation about facilities within a certain range of the
user. We restricted our prototype application to the
range of the town of Grahamstown, South Africa, but
it could be trivially extended to include other areas
by adding to the data set used. The user first spec-
ifies whether they are looking for information about
restaurants or other places of interest. In the former
case, they can enter the type of food and the price
range they are looking for, as well as the desired prox-
imity of the restaurant. If they are looking for other fa-
cilities, they can specify the type of facility, the qual-
ity of service, and the desired proximity. This infor-
mation is then used to construct an antituple, which
is sent to the eLindaWS server. The server then uses
a specialized matcher to perform the spatial matching
required to locate the desired facilities. A set of the
matching tuples is then returned to the mobile device.
This is used by the application to display all match-
ing facilities, and the user is then able to consult the
details of any of these facilities or to make another
request. This interaction is illustrated by the screen-
shots in Figure 2.

4.2 Development Tools and Issues

The Sun Java Wireless Toolkit (Sun Microsystems,
2006) is a state-of-the-art toolbox for developing
wireless applications that are based on the J2ME Con-
nected Limited Device Configuration (CLDC) and
Mobile Information Device Profile (MIDP), and is de-
signed to run on cell phones, personal digital assis-
tants and other small, mobile devices. The toolkit in-
cludes the emulation environments, performance op-
timization and tuning features, documentation, and
examples that developers need to bring efficient and
successful wireless applications to market quickly.

To implement the interface of our location-based
midlet application, we used the cellphone emulator
which is contained in the J2ME Wireless Toolkit. We
chose this toolkit because it supports HTTP commu-
nications as well as an XML parser. We had only a
few changes to make to adapt the Java client library
for this environment. The most significant change
was that the SAX XML API had to used, rather than
the StAX API, used in the rest of the system, but
which is not supported by the J2ME Wireless Toolkit.

4.3 Discussion

This application demonstrates several beneficial char-
acteristics of the eLindaWS. First, it shows that eLin-
daWS is suitable to be used for location-based ap-
plications. Each tuple corresponds to a facility at a
given location, and the coordinates are simply two
additional fields inside the tuple. The nature of the
standard associative matching mechanism simplifies
the construction of queries that take into account user-
specified criteria such as the type of food and price-
range.

Secondly, this example demonstrates the use of
a programmable matcher to implement the spatial
matching required by this web service, and the pa-
rameterization of the matcher in order to specify the
user’s location and desired proximity of the results.
The details of this mechanism are illustrated in the
XML fragment below. This shows the specification
of the specialized matcher (named LocationMatcher
in this application), and the parameters specifying the
radius of the search, and the user’s current location to
be used by the specialized matcher. A standard Linda
application would have to retrieve all the tuples cor-
responding to the desired facilities, and then perform
the spatial filtering itself in order to locate ones within
the required radius.

<InputTuple matcher="LocationMatcher"
tupleSpace="LocationTuple">

<Parameters>

Figure 2: Screen-Shots of the Mobile, Location-Based Application.

The top two screens show the input specifications entered by the user. The lower left screen shows the summary of the results
returned by the server, and the lower right screen shows the full details of the selected result.

<Field type=’double’>100</Field>
<Field type=’double’>500.0</Field>
<Field type=’double’>400.0</Field>

</Parameters>
<TupleData>

<Field type=’string’>Restaurant</Field>
<Field type=’string’/>
<Field type=’string’>French</Field>
<Field type=’string’>cheap</Field>

</TupleData>
</InputTuple>

Thirdly, while this is a simple demonstration, it
demonstrates the potential practical applicability of
eLindaWS. In particular, it would be a cost-effective
solution to this problem in the South African context,
where cellphone usage is far more widespread than
general Internet usage, and mobile data rates are con-
siderably cheaper than voice or SMS rates.

5 CONCLUSION

Our previous research has demonstrated both the de-
sirable simplicity and the improved performance that
can be obtained by extending traditional Linda sys-
tems with programmable matching facilities. The re-
search presented in this paper demonstrates that these
advantages can be extended to the field of distributed
web service applications.

The facility-locating midlet application demon-
strates that eLindaWS is suitable for use in mobile,
location-based applications, and illustrates the use of
a parameterized programmable matcher. While it
is only intended as a proof-of-concept prototype, it
functions in a realistic way, and could potentially be
the basis for a useful and cost-effective commercial
application, particularly in our South African context.

Future work to improve eLindaWS is likely to
concentrate on optimization, in particular:

• The optimization of the creation and parsing of
the XML documents (Ranganath et al., 2006)

• Improving the communication protocol used to
send the XML documents, especially for LAN
configurations

• Preprocessing the tuples before storing them in a
tuple space, e.g. indexing of the tuples, sorting of
the tuples, or other methods

ACKNOWLEDGEMENTS

This work was supported by the Distributed Multime-
dia Center of Excellence in the Department of Computer
Science at Rhodes University, funded by Telkom, Busi-
ness Connexion, Comverse, Verso Technologies, StorTech,

Tellabs, Amatole Telecommunication Services, Mars Tech-
nologies, Bright Ideas Projects 39 and THRIP. Financial
support was also received from the National Research Foun-
dation.

REFERENCES

Carriero, N. and Gelernter, D. (1990). How to Write Paral-
lel Programs: A First Course. The MIT Press.

Fielding, R. and Taylor, R. (2002). Principled design of
the modern web architecture. ACM Trans. Internet
Technology, 2(2):115–150.

Freeman, E., Hupfer, S., and Arnold, K. (1999). JavaSpaces
Principles, Patterns, and Practice. Addison-Wesley.

Gelernter, D. (1985). Generative communication in Linda.
ACM Trans. Program. Lang. Syst., 7(1):80–112.

Lucchi, R. and Zavattaro, G. (2004). WSSecSpaces: a se-
cure data-driven coordination service for web services
applications. In SAC ’04: Proc. 2004 ACM Sym-
posium on Applied Computing, pages 487–491, New
York, NY, USA. ACM Press.

Mata, E., Álvarez, P., Bañares, J., and Rubio, J. (2004). To-
wards an efficient rule-based coordination of web ser-
vices. In IBERAMIA 2004, volume 3315 of Lecture
Notes in Artificial Intelligence, pages 73–82. Springer
Verlag.

Mueller, B., Schulé, L., and Wells, G. (2007). Using a tuple
space web service for parallel processing in bioinfor-
matics. In Proc. First Southern African Bioinformatics
Workshop, pages 34–37. Wits University.

Ranganath, V., King, A., and Andresen, D. (2006). Auto-
matic code generation for LYE, a high-performance
caching SOAP implementation. International Confer-
ence on Semantic Web and Web Services, Las Vegas.

Sun Microsystems (2006). Sun Java Wireless Toolkit.
http://java.sun.com/products/sjwtoolkit .

Sun Microsystems (2007). Mobile Information Device Pro-
file (MIDP). http://java.sun.com/products/-
midp .

Wells, G. (2006). A tuple space web service for distributed
programming. In Arabnia, H., editor, Proc. Interna-
tional Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA’2006),
pages 444–450. CSREA Press.

Wells, G., Chalmers, A., and Clayton, P. (2004). Linda im-
plementations in Java for concurrent systems. Con-
currency and Computation: Practice and Experience,
16:1005–1022.

Wyckoff, P., McLaughry, S., Lehman, T., and Ford, D.
(1998). T Spaces. IBM Systems Journal, 37(3):454–
474.

Zenith, S. (1992). A rationale for programming with Ease.
In Banâtre, J. and Métayer, D. L., editors, Research
Directions in High-Level Parallel Programming Lan-
guages, volume 574 of Lecture Notes in Computer
Science, pages 147–156. Springer-Verlag.

