
Extending Linda to Simplify Application Development

George Wells
Peter Clayton

Department of Computer Science
Rhodes University

Grahamstown, South Africa

Alan Chalmers
Department of Computer Science

University of Bristol
Bristol, U.K.

Abstract This paper describes a new imple-

mentation of Linda in Java, called eLinda.

This system includes extensions designed

to simplify the development of distributed

applications, and to enhance the efficiency

of communication in a distributed mem-

ory environment. These features are de-

scribed, and compared with the extended fea-

tures found in other Java implementations

of Linda (i.e. JavaSpaces and TSpaces),

highlighting the power and simplicity of the

extensions in eLinda. The application of

eLinda to various practical problems is also

discussed, and, in particular, the paper fo-

cusses on the use of eLinda for parsing vi-

sual languages as a specific case study.

Keywords: Linda, Java, tuple space, visual lan-
guage parsing

1 Introduction

This paper describes an extended version of
Linda, called eLinda, developed by the au-
thors using Java. This system is compared
with two other recent Linda implementations
in Java (JavaSpaces from Sun Microsystems[2],
and TSpaces from IBM[5]) and its applications
are discussed.

The Linda model was first proposed in the
1980’s by David Gelernter[3]. This approach to
distributed and parallel programming offers a
number of advantages as it is based on a shared
memory paradigm with a small set of simple
operations to access shared data.

The extensions introduced in eLinda have
been designed with a view to providing in-
creased flexibility for application development
and to making some of the underlying com-
munication issues more explicit, thus providing
the programmer with a greater level of con-
trol of the communication. JavaSpaces and
TSpaces also include some extensions and dif-
ferences to the original Linda model as pro-
posed by Gelernter. These are aimed mainly
at support for commercial applications, but
TSpaces does include some extra flexibility,
along similar lines to the unique features of
eLinda.

2 The Linda Programming
Model

Linda is a coordination language for parallel
and distributed processing, providing a com-
munication mechanism based on a logically
shared memory space called tuple space. The
tuple space is accessed using associative ad-
dressing to specify the required data objects,
stored as tuples. An example of a tuple with
three fields is ("point", 12, 67), where 12
and 67 are the x and y coordinates of the point
represented by this tuple.

As a coordination language, Linda is de-
signed to be coupled with a sequential pro-
gramming language (called the host language).
The host language used in this work is Java.
Linda effectively provides a programmer with
a small set of operations that may be used to
place tuples into tuple space (out) and to re-



trieve tuples from tuple space (in, which re-
moves the tuple, and rd which returns a copy
of the tuple). The latter two operations also
have predicate forms (inp and rdp) which do
not block if the required tuple is not present.
The specification of the tuple to be retrieved
makes use of an associative matching technique
whereby a subset of the fields in the tuple have
their values specified and these are used to lo-
cate a matching tuple in the tuple space.

Further details of the Linda model of dis-
tributed/parallel programming may be found
in [1].

3 The Extensions in eLinda

The extensions to the original Linda model in
the eLinda system take three forms. The first,
and most important, is a mechanism to allow
powerful, customised searching algorithms to
be integrated into the eLinda system efficiently.
The second is an additional form of output op-
eration, which provides the programmer with
a greater degree of control of the underlying
network communication. Lastly, support for
multimedia data types has been added.

3.1 The Programmable Matching
Engine

The first extension is to provide a Pro-
grammable Matching Engine (PME) for the re-
trieval of tuples, allowing the use of more flex-
ible criteria for the associative addressing of
tuples. For example, in dealing with numeric
data one might require a tuple which has a
value that is “close to” some specified value,
rather than strictly equal. Such queries can
usually be expressed using the standard Linda
associative matching methods, but will gener-
ally be quite inefficient. For example, the ap-
plication might have to retrieve all tuples of
the required type, select one of interest and
then return the rest to tuple space. If the tu-
ple space is distributed, searching for a tuple
may involve accessing the sections held on all
the processors in parallel. This problem is han-
dled efficiently in eLinda by distributing the

matching engine so that network traffic is min-
imised, and moving the necessary computation
out of the application and into a special form
of matcher. For example, in searching for the
“largest” tuple, each section of the tuple space
would be searched locally for the largest tuple
and that returned to the matcher running in
the originating process, which would then se-
lect the largest of all the replies received. This
process is completely transparent to the appli-
cation, which simply inputs a tuple, using a
specialised matcher. Matchers may also per-
form aggregated operations where a tuple is
returned that in some way summarises or ag-
gregates information from a number of tuples.
It is also possible to write matchers that return
multiple tuples.

There are some limitations to the kinds of
matching operations that are supported by the
PME. Notably, some matching operations may
require a complete global view of the tuple
space (a simple example is where a tuple is re-
quired that has the median value of some field).
In such situations the facilities offered by the
PME may not be ideal. However, it is impor-
tant to note that such problems are handled
no less efficiently than if the application were
to handle them directly, using a conventional
Linda dialect. Furthermore, there are often
possibilities for minimising the network band-
width requirements by using the PME. Lastly,
the use of the PME will usually simplify appli-
cation development, particularly where a pre-
written matcher is available.

Writing matchers is not a trivial operation.
As an indication of the complexity of writing
a customised matcher, a matcher to find the
total of numeric tuple fields, is written in 175
lines of Java code.

3.2 Explicit Broadcast Communica-
tion

Two types of output operation are provided
in eLinda to reflect explicitly a choice of op-
timised internal tuple space communication
strategies. The first is a “point-to-point”
mechanism (using non-replicated data) and the



second a “broadcast” mechanism (using repli-
cated data). This contrasts with previous
Linda systems where data is written to tu-
ple space using a single instruction (out), but
may then be read using one of two methods
(in or rd, or their equivalent predicate forms).
In effect, the use of in implies a form of ex-
clusive point-to-point communication, in that
one process places a tuple into tuple space,
which is then removed by another. Similarly,
the use of rd suggests a form of shared, or
broadcast (read-only), communication, as sev-
eral processes may obtain copies of the tuple.

To allow the programmer to take advantage
of this behaviour and the fact that the tuple
space may be distributed across many proces-
sors, a new output operation, wr, has been
added in eLinda. This operation broadcasts
copies of the tuple throughout the processor
network, whereas out simply places a single
tuple in the local tuple space. These mecha-
nisms provide the programmer with the neces-
sary facilities to express shared, read-only ac-
cess to data (using wr and rd), or exclusive,
delete/modify access (using out and in). It
should be noted that these forms of usage are
not enforced by the system, and, as a result,
the semantics of the wr operation are identi-
cal to those of out. The only difference is in
efficiency.

3.3 Support for Distributed Multi-
media Applications

The third distinctive feature of eLinda is its
support for multimedia data. Tuples in eLinda
may contain MultiMediaResource objects in
addition to any of the eight primitive data
types supported by Java and String objects1.
The MultiMediaResource class acts as a wrap-
per to the underlying Java Media Framework
(JMF) multimedia resource. In particular the
implementation of the MultiMediaResource
class provides support (transparent to the
application programmer) for any necessary

1Additionally, any serializable Java object may be
added to a tuple, although this limits the type checking
that can be performed by the eLinda system

buffering of data, fetching or streaming of mul-
timedia data across the network, etc. Multime-
dia applications will not be considered further
in this paper, but further details of this aspect
of eLinda may be found in [8].

4 Other Linda Implementa-
tions in Java

As has already been mentioned, both Sun
Microsystems and IBM have released Linda
implementations in Java. This section de-
scribes their features and compares them with
eLinda and the original Yale Linda model.
It is worth noting that both JavaSpaces and
TSpaces make use of the object-oriented fea-
tures of Java (i.e. inheritance, polymorphism
and interfaces) to circumvent the need for a
preprocessor.

4.1 JavaSpaces

JavaSpaces[2] is a complex product and relies
heavily on a number of other technologies de-
veloped by Sun Microsystems. As a result, con-
figuring the JavaSpaces system and its appli-
cations is a very complex process.

JavaSpaces supports the basic Linda oper-
ations, although with slightly different names.
Tuples (called entries in JavaSpaces) are cre-
ated from classes that implement the Jini
Entry interface, and only public fields that
refer to objects are considered. Tuples are
transmitted across the network using a non-
standard form of serialisation. Matching of tu-
ples with antituples (called templates) is done
using byte-level comparisons of the data, not
the conventional equals() method. Matching
can make use of object-oriented polymorphism
for matching sub-types of a class. A centralised
tuple storage approach is used and this may
become a performance bottleneck in large sys-
tems.

JavaSpaces provides some extended func-
tionality, especially in areas such as support for
transactions and leases, which are important
for commercial applications. There are also a



few other minor differences from the original
Yale Linda model.

4.2 TSpaces

The TSpaces implementation is fairly simple
— all that is required is that a single server
process be running on the network. Again, this
centralised server model may become a perfor-
mance bottleneck.

TSpaces supports a large number of oper-
ations. The basic Linda operations are pro-
vided, again with slightly different names.
There are also a number of other operations
that allow for the deletion of tuples, the in-
put or output of multiple tuples, and opera-
tions that specify tuples by means of a “tuple
ID” rather than the usual associative matching
mechanisms.

Tuples in TSpaces are objects consisting
of a number of Field objects. The associa-
tive matching process then uses Field ob-
jects with a class type for a wildcard (e.g.
String.class). Matching can be done us-
ing so-called indexed tuples (fields are named;
ranges of values may be included; AND and
OR operations are supported), and queries us-
ing XML[10]. A further interesting feature is
the provision of an “event registration” mecha-
nism, whereby an application can be informed
when a certain tuple is written to the tuple
space. These features are all easily imple-
mented using the PME facilities in eLinda.

Tuples may have an expiration time set,
providing similar functionality to the lease
mechanism in JavaSpaces, and there is also
transaction support. Furthermore, access con-
trol mechanisms are provided, based on user
names, passwords and groups.

TSpaces also incorporates a feature allowing
new commands to be added to the system in a
way similar to the PME. However, the addition
of new commands is a more complex process
than adding a new matcher to an eLinda ap-
plication. On the other hand, the centralised
data storage model in TSpaces means that
writing new command handlers for TSpaces is
somewhat simpler than writing a customised

matcher for eLinda. There is no provision in
TSpaces for field values to effectively act as
“in/out” parameters, as is required for match-
ing operations such as finding the tuple with a
field value closest to some given (input) value.

4.3 Comparison of eLinda with
JavaSpaces and TSpaces

In essence, JavaSpaces is a relatively simple
implementation of Linda. The only major ex-
tensions are the provision of transaction sup-
port and leases for commercial applications.
TSpaces provides similar commercial features,
but extends the basic Linda model consider-
ably with its flexible and extensible matching
facilities. Similarly, eLinda provides consider-
ably extended matching functionality, but does
not include the support for business applica-
tions found in the two commercial implemen-
tations.

Some performance comparisons have also
been done, and are reported in [9]. Essentially
all three systems have similar performance,
with TSpaces slightly more efficient than the
other two. JavaSpaces has a particularly high
overhead for system initialisation.

5 The Application of eLinda

The eLinda system has been designed to sup-
port distributed processing applications on
networks of workstations. The PME allows
eLinda to be used efficiently in application ar-
eas where Linda may not otherwise be suited.
The discussion in section 3.1 shows this clearly,
where an application in a standard Linda sys-
tem would need to retrieve all the potential tu-
ples, compare the field values to locate the one
with the maximum value, and then return all
the other tuples to the tuple space. In eLinda,
this could be handled by a matcher where each
local portion of the tuple space is searched for
the local maximum, which is then returned to
the originating node to select the global max-
imum from the set of tuples received. In this
case the network traffic is decreased, and, more
importantly, the application itself is greatly



simplified. In this way eLinda provides pow-
erful, efficient support for complex tuple re-
trieval and tuple aggregation operations which
are useful for many applications.

5.1 Applications of the PME

A few simple, numeric examples of matchers
have already been given that may have hinted
at some possible applications. However, the
PME is far more flexible than these exam-
ples would suggest. For example, a matcher
could match string fields using some alphabetic
measure of “closeness”, or even approximate
homophonic matching. As another example,
matcher could make use of “fuzzy logic” to lo-
cate a tuple with some associated degree of cer-
tainty of its suitability.

5.2 Visual Language Parsing

As a particular example, which highlights the
flexibility and power of the PME, we will con-
sider the problem of parsing visual languages in
a little more detail. Visual languages are used
in many areas to depict situations or activities
in a pictorial form which is often easier for hu-
man beings to comprehend than a textual for-
mat. Examples abound, not least in the field
of Computer Science where notations such as
flowcharts, state transition diagrams, etc. are
widely used. If such graphical models are to
be “understood” by a computer system there
is a requirement for parsing them in order to
analyse their structure. This is directly anal-
ogous to the parsing of textual computer pro-
gramming languages. What sets the parsing
of visual languages apart is the increased com-
plexity of the relationships between the compo-
nents. In a textual language there is a simple,
positional sequence relating the keywords and
other tokens of the language. In the case of
a visual language there is far more scope for
different relationships to exist between tokens
in two dimensions. For example, tokens may
be related by inclusion, by contact, by relative
position, and so on.

There are many different methods that may

be used for specifying and for parsing visual
languages. A classification of visual languages
that highlights some of these differences can
be found in [6]. The method that we will con-
sider here is the use of picture layout grammars
(a variation on attributed multiset grammars),
as developed by Eric Golin[4]. Picture layout
grammars provide a particularly flexible and
powerful way of expressing the syntax of visual
languages. Much of the following discussion is
based on [7].

5.2.1 Picture Layout Grammars

A visual program is represented as an at-
tributed multiset : an unordered collection of
attributed visual symbols. The class of a sym-
bol corresponds to its type (e.g. label, circle,
etc.), while the attributes of a symbol specify
its features (e.g. text value, location, etc.). Vi-
sual languages are then sets of attributed mul-
tisets.

The attributed multiset representation of a
picture is a flat structure. If we view the pic-
ture as an element of a visual language, then it
has a complex structure, described by the rela-
tionships between the symbols. This structure
is defined by the grammar productions of the
language. For example, one production from a
grammar for State Transition Diagrams might
be:

State → contains(circle, text)
The operator (contains in the example

above) specifies explicitly the kind of relation-
ship between the constituent elements. In cer-
tain situations it is necessary for a production
to include a symbol that is not part of the left
hand symbol, but which must be present as
part of the context in which the rule can be
applied.

While picture layout grammars are a power-
ful formalism for defining visual languages they
are difficult to parse efficiently. Golin reports
a worst case theoretical complexity result of
O(n9). The main cause of this complexity is
that the first stage of the parsing algorithm
produces multiple possible results: the fac-
tored multiple derivation (FMD) structure, es-



sentially a tree structure with cross-links, giv-
ing a directed acyclic graph (DAG). This data
structure must then be checked to remove in-
valid results, and then traversed again to pick a
unique valid result. As a result of this complex-
ity, parsers for picture layout grammars can
benefit from a concurrent implementation.

5.2.2 The Use of eLinda for Parsing
Picture Layout Grammars

The heart of the sequential visual parsing pro-
cess is the algorithm shown in Table 1. A repli-
cated worker pattern was used to parallelise
this, with the workers performing the main
loop of the program (lines 5–17). The sec-
ond phase of the parsing process (checking the
FMD structure) is also done in parallel. This
problem provided considerable scope for the
use of the PME facilities. Four new matchers
were written to support the application, two of
which are specific to the problem domain and
two of which are of general applicability:

RHSMatcher This matcher is the most com-
plex of those used in the visual language
parsing application. It is used to search
the tuple space containing the rules, look-
ing for a rule that could be applied. It
effectively replaces lines 7–10 of the pars-
ing algorithm in Table 1.

ConstraintMatcher This is used when ap-
plying rules, to check the constraints of
the attributes of the symbols. It effec-
tively implements lines 14 and 15 of the
parsing algorithm in Table 1. It returns
multiple matching tuples.

SetMatcher This matcher is used by the
workers to retrieve a symbol chosen from
a set of allowed symbols. This matcher
could be used by any application that
had a similar requirement to match tuples
where a field has one of a set of defined
values.

AllMatcher This matcher can be used to re-
trieve all the tuples matching a given anti-
tuple. It is used during the checking phase

of the visual parsing application. Again,
this matcher could be used by any applica-
tion that needed to retrieve all the tuples
meeting some criterion.

Preliminary testing indicates that the paral-
lel algorithm shows speedup as the number of
processing nodes increases. Initial indications
are that a serial version may be more efficient,
particularly for the first phase of the algorithm
(i.e. building the FMD), however further test-
ing and development remains to be done. By
the time of the conference the testing process
should be completed and detailed results will
be presented.

6 Conclusions

The Linda model for parallel and distributed
programming has always held much promise
due to its inherent simplicity. Until recently
this promise has not been realised to any great
extent. It now seems that two major compa-
nies in the computer industry (Sun Microsys-
tems and IBM) are adding momentum to the
adoption of Linda as a viable mechanism for
coordinating distributed systems, particularly
in Java, to take advantage of its portability.

The work described in this paper builds on
the underlying strengths of the Linda approach
while adding to its functionality in ways that
address the weaknesses of the original model.
In addition, the eLinda project has extended
the categories of applications to which Linda
may be suited through the provision of flexible
matching facilities. This is illustrated by the
application of eLinda to the complex problem
of parsing visual languages using picture layout
grammars.

Acknowledgments

This work was supported by the Distributed Mul-
timedia Centre of Excellence in the Department of
Computer Science at Rhodes University, with fund-
ing from Telkom SA, Lucent Technologies, Dimen-
sion Data and THRIP.



Table 1: The Visual Parsing Algorithm
1 Build(M , P ):
2 for each b ∈ M do
3 add a terminal node for b to todo and FMD
4 while todo 6= ∅ do
5 next := some element of todo
6 X := symbol(next)
7 for each p ∈ P such that X ∈ RHS (p) do
8 if p = A → {X} then
9 if constraints satisfied then

10 add a new node for p to todo and FMD
11 else
12 for each occurrence of X in RHS (p) do
13 let Y be the other symbol in RHS (p)
14 for each old ∈ done such that symbol(old) = Y do
15 if constraints satisfied then
16 add a new node for p to todo and FMD
17 move next from todo to done
18 return FMD

M is the set of input symbols, P is the set of production rules

References

[1] N. Carriero and D. Gelernter. How to
Write Parallel Programs: A First Course.
The MIT Press, 1990.

[2] E. Freeman, S. Hupfer, and K. Arnold.
JavaSpaces Principles, Patterns, and
Practice. Addison-Wesley, 1999.

[3] D. Gelernter. Generative communication
in Linda. ACM Transactions on Program-
ming Languages and Systems, 7(1):80–
112, Jan. 1985.

[4] E. J. Golin. A Method for the Specification
and Parsing of Visual Languages. PhD
thesis, Brown University, 1991.

[5] IBM. TSpaces. URL: http://-
www.almaden.ibm.com/cs/TSpaces/-
index.html.

[6] K. Marriott and B. Meyer. The classifica-
tion of visual languages by grammar hier-
archies. Journal of Visual Languages and
Computing, 8(4):375–402, Aug. 1997.

[7] J. Rekers. A course on visual lan-
guages, 1995. URL: http://-
www.wi.leidenuniv.nl/CS/SEIS/-
vislang/VLcourse.html.

[8] G. Wells, A. Chalmers, and P. Clay-
ton. An extended version of Linda
for distributed multimedia applica-
tions. SAICSIT ’99, Nov. 1999.
URL: http://www.cs.wits.ac.za/-
~philip/SAICSIT/SAICSIT-99/-
papers ideas.html.

[9] G. Wells, A. Chalmers, and P. Clayton.
A comparison of Linda implementations
in Java. In P. Welch and A. Bakkers,
editors, Communicating Process Archi-
tectures 2000, volume 58 of Concurrent
Systems Engineering Series, pages 63–75.
IOS Press, 2000.

[10] World Wide Web Consortium. Exten-
sible markup language (XML). URL:
http://www.w3.org/XML.


