
Extending the Matching Facilities of Linda

George Wells1, Alan Chalmers2, and Peter Clayton1

1 Department of Computer Science, Rhodes University,
Grahamstown, 6140, South Africa
{G.Wells, P.Clayton}@ru.ac.za

2 Department of Computer Science, University of Bristol,
Bristol BS8 1UB, U.K.

alan@compsci.bristol.ac.uk

Abstract. This paper discusses the associative matching mechanism
used in the Linda coordination language for the retrieval of data. There
are a number of problems with this mechanism which are discussed in
the light of the requirements of applications using Linda. A number of
solutions to these problems have been proposed. These are discussed and
compared with a new approach to solving these problems. The benefits
and the limitations of the new approach are considered, showing how it
provides a considerable improvement in this area.

1 Introduction

The Linda1 coordination language for distributed and parallel programming was
first proposed by David Gelernter in the mid-1980’s[1]. In recent years it has
become a popular approach for handling the coordination of distributed pro-
cesses in Java2 programs, with a number of commercial products and research
projects based on the Linda model[2–16]. Many of these systems have attempted
to address a number of problems arising from the simple associative matching
mechanism that is used by Linda for the retrieval of data.

The first section of this paper presents a brief discussion of the problems
related to the use of the associative matching mechanisms in Linda (full details of
the Linda programming model may be found in [17]). This is followed by a survey
of Java implementations of Linda which have embodied various solutions to the
matching problems. It then describes our work on an extended version of the
Linda model called eLinda. The eLinda system contains a number of extensions,
including the Programmable Matching Engine, intended to help overcome the
deficiencies of the conventional Linda associative matching technique.

2 Problems with the Associative Matching Mechanism

The associative matching mechanism used for the retrieval of tuples in Linda
works very well in many situations, such as simple one-to-one communication,
1 Linda is a registered trademark of Scientific Computing Associates.
2 Java is a registered trademark of Sun Microsystems, Inc.



2 George Wells et al.

one-to-many communication, implementing semaphores, barrier synchronisation,
etc. However there are situations where this simple matching is not adequate.

As a simple example, consider a set of tuples, where an application needs to
locate the tuple with the maximum value of some field. Using Linda to solve this
problem is possible, but is not efficient. The application would need to retrieve
all of the tuples, search through them for the one with the maximum value, and
then return the tuples to the tuple space. During this procedure the tuples are
not available for other processes to make use of, potentially restricting the degree
of parallelism possible. Furthermore, in a distributed implementation, there is a
large amount of unnecessary network traffic generated by this application.

While this is a simple example, it illustrates a general problem, namely that
applications may need a “global view” of the tuples in tuple space. Other ex-
amples include finding tuples with with values “close to” some specified value,
or lying within a specified range of values. These types of problems cannot be
solved efficiently using the standard associative matching technique.

3 Extended Linda Systems

In an attempt to address the problem described in the preceding section (and
others) a number of different extensions to the basic Linda approach have been
proposed. This section outlines some of these projects.

3.1 TSpaces

TSpaces is a Linda-like system developed by IBM’s alphaWorks research divi-
sion[2, 3]. It is considerably extended from the original Linda model, particularly
in terms of support for commercial applications. More importantly from our
perspective, it includes several new operations, and provides a mechanism that
allows applications to add new operations to the tuple space server dynamically.
Each of these aspects is relevant to our discussion and will be covered in more
detail in the following sections.

New Operations TSpaces provides new operations for the input and output
of multiple tuples, and a number of operations that specify tuples by means of
a “tuple ID” rather than the usual associative matching mechanisms. There is
also the rhonda operator, which performs an atomic synchronisation and data
exchange operation between two processes. Lastly, there is an “event registra-
tion” mechanism. This allows a process to request notification when a specified
tuple is written to the tuple space or deleted from it.

Matching tuples in TSpaces can be done using so-called “indexed tuples”. In
this case the fields of tuples may be named, ranges of values may be included
in the matching process, and AND and OR operations may be specified. These



Extending the Matching Facilities of Linda 3

features may all be used in combination. It is also possible to perform matching
on XML3 data contained in tuples.

Extending the Server New commands can be added to the TSpaces system
relatively easily. The implementation of TSpaces makes use of a number of lay-
ers of software. At the lowest level the tuples themselves are stored in a form of
database. This may be an actual DBMS product, or a data structure in mem-
ory. Above this is the tuple management layer, which handles the retrieval of
tuples from the database. Above this layer, accessed through a well-defined pro-
gramming interface, is the operator management level. This is comprised of a
number of “factory” objects arranged in a list. The factories are responsible for
creating “tuple handlers” for each command that is passed to the tuple space.
If a factory does not recognise a particular command then it is passed down to
the next factory in the list.

Users with administrator permission levels can add new factories and han-
dlers to the system dynamically, providing a great deal of flexibility. However,
this is a complex process from a programmer’s perspective, as has also been
noted by Foster et al [13].

Application of the Extensions The extended features of TSpaces provide for
a somewhat better solution to the “maximum” matching problem outlined in
Section 2. In this case either the scan or the consumingScan operation provided
by TSpaces can be used to retrieve all of the tuples in one step. The application
can locate the required tuple, and then return the tuples to tuple space if nec-
essary. While the end effect is exactly the same as in the original Linda model,
the application is simplified through the use of these new operations.

The extended matching facilities in TSpaces (allowing ranges of values, XML-
matching, etc.) may be useful in that they cover a number of common situations.
However, they do not provide a general solution for the matching requirements of
all applications. Notably, they do not address the “maximum” problem described
in Section 2.

The possibility of extending the TSpaces server to include specialised match-
ing commands also exists. For our example problem, this would entail writing
a new command handler to search through the tuple space and return the one
with the maximum value. However, there are a number of drawbacks to this
approach:

– The users of applications requiring new matching operations will need to be
granted administrator rights (or the system administrator must install all
new matchers).

– From a system design perspective, modifying the server in order to support
specific applications may be undesirable. Ensuring that different new com-

3 Extensible Markup Language, a specification for structured documents produced by
the World Wide Web Consortium[18].



4 George Wells et al.

mands do not interfere with each other in unintended ways may also be
problematic.

– The new commands are awkward to use.
– As already noted, the process of adding new command handlers is not simple.

3.2 XMLSpaces

With the wide adoption of XML in the computer industry, it is increasingly
useful for XML support to be provided by a Linda system. XMLSpaces was
designed as an extension of TSpaces to address the limited facilities that it has
for matching XML-formatted data[4]. As such, XMLSpaces does not attempt to
provide a general solution to the matching problem, but one that is aimed at a
specific application area.

The XML support in XMLSpaces is provided through the object-oriented
features of the Java programming language. The Field class used by TSpaces
for the fields in tuples is subclassed to create a new class called XMLDocField.
This class overrides the matching method used by TSpaces to provide matching
on the basis of the XML content of the field. The matching is performed by a
method of the anti-tuple that can be provided by the application programmer.
This results in a great deal of flexibility for XML matching operations. A number
of matching operations are currently supported, including the use of XML query
languages, such as XPath[19].

3.3 The Work of the York Coordination Group

The coordination research group at the University of York has been actively re-
searching in the area of Linda systems for some time. One of their major projects
has been to extend the Linda operations with collect and copy-collect[5, 6].
These bulk operations may be used to move or copy multiple tuples from one tu-
ple space to another. This provides similar functionality to the scan and related
operations of TSpaces. While these do not directly affect the matching mecha-
nisms, they may be used to simplify applications that need a “global view” of
tuple space, such as the maximum example discussed above.

3.4 Liam

Liam is a Linda system, based on the Chemical Abstract Machine, or CHAM [7].
This is an unusual programming model, in which systems are expressed as “solu-
tions of molecules” (multisets, describing the state of the system), and subjected
to “chemical reactions” (rewriting of the multisets, subject to “reaction rules”).
Programs in this model consist of sets of reaction pairs, composed of a condition,
specifying when the rule may be applied, and an action, which is a function that
produces new molecules from the reactants. This model is ideally suited to par-
allel implementation, as independent reactions may take place simultaneously.

Liam allows the matching algorithm for tuples to be provided in CHAM form.
This has the drawback that programmers must become familiar with the syntax



Extending the Matching Facilities of Linda 5

used by the Chemical Abstract Machine. This is not a simple notation for the
average application programmer to learn and use.

3.5 Objective Linda

Objective Linda is a model for object-oriented implementations of Linda[8, 9].
All aspects of an application (i.e. data, active agents and the tuple spaces) are
modelled as objects. Tuple spaces form a strongly encapsulated hierarchy of
objects, containing passive objects (i.e. tuples), active objects (i.e. agents) and
other tuple spaces.

Of particular iterest are the extensions to the usual Linda matching mecha-
nism. The objects that are to be used as tuples in Objective Linda are required
to provide a match method. This method is then called when performing an
input operation. This means that the programmer writing the classes to be used
as tuples in an application can define the precise meaning of a “match”.

This feature of Objective Linda provides a restricted form of extended match-
ing similar to that in the eLinda system. The strengths and weaknesses of this
approach will be discussed at the end of the next section.

3.6 CO3PS

CO3PS stands for “Computation, Coordination and Composition with Petri net
Specifications”[10, 11]. The coordination model used in CO3PS is based closely
on that of Objective Linda. The main application of extended matching in
CO3PS is to support the introduction of non-functional requirements into the
design of a system. Examples of such requirements are efficiency, load-balancing
and security.

In order to support this design technique, CO3PS makes use of a reflective
architecture. This is an architecture that permits the designer to reflect on the
behaviour of the system, and to adapt it, without affecting the interaction with
clients. The developers of CO3PS emphasize that this should be done without
impacting on the semantics of the coordination operations.

Discussion of Objective Linda and CO3PS Both Objective Linda and
CO3PS allow the matching method for tuples to be overridden. This is rather
counter-intuitive, in that the matching is effectively provided by the tuple, rather
than the anti-tuple. This has the implication that programmers writing classes
for tuples need to consider how they may be retrieved, while it is the anti-
tuples that are used for input operations in Linda. Furthermore, this makes it
extremely difficult to apply different matching criteria to a single type of tuple
at different times (or in different applications). Associating the matching logic
with the anti-tuples is thus a more natural approach.

Matching is also constrained to a one-to-one situation: the match method is
called to determine whether the tuple matches a single anti-tuple. Thus there is
no way of providing operations that aggregate tuples to form a result.



6 George Wells et al.

In CO3PS this approach has been adopted for the reflective architecture,
providing for the non-functional requirements of an application. The key to this
philosophy is that the semantics of the coordination operations may not be
altered by the imposition of non-functional requirements. However, in many
situations it is very useful to be able to relax or alter the semantics of the
matching operations (such as aggregating multiple tuples to form a result).

3.7 ELLIS

ELLIS (EuLisp LInda System) is a Linda system developed in EuLisp[12].
Of particular interest is that matching is performed by a method in the tuple
space class. This allows the matching method to be overridden, but the mecha-
nism seems clumsy: new classes of tuple spaces must be created to support new
matching algorithms. Few details of this process are given in the description of
ELLIS, but the programming interfaces for new matchers appear to be complex
and to involve dealing with the pool of tuples at a very low level of abstraction.

3.8 Summary

What all of these projects indicate is an underlying weakness of the basic Linda
associative matching technique. While each of these systems has addressed this
problem in one way or another, they each have their own deficiencies. The next
section presents the eLinda system and the extensions to the associative match-
ing procedure, which overcomes these problems.

4 eLinda

The eLinda system is based closely on the standard Linda model. It uses a fully-
distributed tuple space model where any tuple may reside on any node. This
poses particular problems for matching, in that many processing nodes may be
required to participate in a matching operation. Testing has shown that the
performance of eLinda is on a par with that of other Java Linda systems (such
as TSpaces and JavaSpaces[20]), but that Java is currently not a viable platform
for parallel processing applications[21].

The eLinda system contains three extensions to the Linda programming
model: a “broadcast” output operation, multimedia support and the Programm-
able Matching Engine. The focus of this paper is on the last of these. Further
details of the other features can be found in [22].

4.1 The Programmable Matching Engine

The Programmable Matching Engine (or PME ) allows the use of more flexible
criteria for the associative addressing of tuples. This is useful in situations such
as that exemplified by finding the tuple with the maxiumum value for some



Extending the Matching Facilities of Linda 7

field. As has already been noted, such queries can be expressed using the stan-
dard Linda associative matching methods, but will generally be quite inefficient.
If the tuple space is distributed, searching for a tuple may involve accessing
the sections held on all the processors in parallel. This problem is handled ef-
ficiently in eLinda by distributing the matching engine so that network traffic
is minimised, and moving the necessary computation out of the application and
into the matcher. For example, in searching for the maximum tuple, each sec-
tion of the tuple space would be searched locally for the largest tuple and that
returned to the matcher running in the originating process, which would then
select the largest of all the replies received. This process is completely transpar-
ent to the application, which simply inputs a tuple, using a specialised matcher.
From the application programmer’s perspective this could be expressed simply
as in.maximum(?field1, ?=field2). The notation that is used is to follow the
Linda input operation with the name of the matcher to be used. The field (or
fields) to be used by the matcher is denoted by ?=.

In addition to this simple usage, matchers may also perform aggregated op-
erations where a tuple is returned that in some way summarises or aggregates
information from a number of tuples. For example, a matcher might calculate
the total of numeric fields in some subset of the tuples in tuple space. It is also
possible to write matchers that return multiple tuples, similar to the TSpaces
“scan” operations, or the York bulk operations.

New matchers are written as Java classes. They can make use of a simple li-
brary that provides controlled access to tuple space, communication mechanisms,
etc.

4.2 Limitations and Applications of the Programmable Matching
Engine

There are some limitations to the kinds of matching operations that are sup-
ported by the PME. Notably, some matching operations may require a complete
global view of the tuple space (e.g. where a tuple is required that has the median
value of some field). In such situations the use of the PME may not be ideal, as
all the tuples need to be gathered together in order to find the result. However,
it is important to note that such problems are handled no less efficiently than if
the application were to handle them directly, using a conventional Linda system.
Furthermore, the PME approach minimises the network traffic in such cases.

Most of the examples of matchers given above have been in the domain of
numeric applications. However, it would be incorrect to believe that the PME
is limited to these—it is just as applicable to textual, XML or other problem
domains.

5 Conclusions

The significant number of projects that have, in one way or another, extended
the functionality of the matching operations in Linda points to the weakness that



8 George Wells et al.

is embodied in the original programming model. The nature of the extensions
ranges from those exemplified by TSpaces, where the tuple space server itself
is reconfigured to support new operations, to systems like XMLSpaces, Objec-
tive Linda and Liam where the matching process is specified by overriding the
matching method used, in some cases for very specific purposes.

What is found in comparing these proposals with the eLinda PME is that
the PME proposal can emulate all of these alternative approaches. Furthermore,
the PME approach allows for a range of tuple space implementation techniques,
ranging from fully distributed to centralised, whereas most of the other systems
are implemented only for centralised configurations.

In many cases the PME approach is more intuitive and elegant than the
alternatives. The approach adopted in Objective Linda and CO3PS, where the
matching method in an object/tuple can be overridden, fits well with the object-
oriented philosophy of Java. However, it limits matching operations to one-to-
one situations, and fixes the matching possibilities at the time that the tuple
class is written. By providing the matcher as an independent object, the PME
approach opens up the possibilities of aggregating operations, and provides the
flexibility of being able to apply many matchers to a single type of tuple. The
approach used for adding new commands in TSpaces, while providing a high
degree of flexibility, effectively requires the reconfiguration of the tuple space
server to support new operations. This is complex and potentially dangerous in
a multiuser situation.

5.1 Future Work

A number of Linda systems have made extensions in the area of output and
update operations, similar in some respects to those described above for input
operations. [2, 13, 14]. This again points to a weakness in the Linda programming
model, and it appears that an approach analagous to that of the Programmable
Matching Engine may be beneficial in such situations too.

Acknowledgments

This work was supported by the Distributed Multimedia Centre of Excellence in the

Department of Computer Science at Rhodes University, with funding from Telkom SA,

Lucent Technologies, Dimension Data and THRIP.

References

1. Gelernter, D.: Generative communication in Linda. ACM Trans. Programming
Languages and Systems 7 (1985) 80–112

2. IBM: TSpaces. (URL: http://www.almaden.ibm.com/cs/TSpaces/index.html)

3. Wyckoff, P., McLaughry, S.W., Lehman, T.J., Ford, D.A.: T Spaces. IBM Systems
Journal 37 (1998) 454–474



Extending the Matching Facilities of Linda 9

4. Tolksdorf, R., Glaubitz, D.: Coordinating web-based systems with docu-
ments in XMLSpaces. URL: http://flp.cs.tu-berlin.de/~tolk/xmlspaces/-
webxmlspaces.pdf (2001)

5. Butcher, P., Wood, A., Atkins, M.: Global synchronisation in Linda. Concurrency:
Practice and Experience 6 (1994) 505–516

6. Rowstron, A., Wood, A.: Solving the Linda multiple rd problem. In Ciancarini,
P., Hankin, C., eds.: Coordination Languages and Models, Proc. Coordination ’96.
Volume 1061 of Lecture Notes in Computer Science., Springer-Verlag (1996) 357–
367

7. Campbell., D.: Constraint matching retrieval in Linda: extending retrieval func-
tionality and distributing query processing. Technical Report YCS 285, University
of York (1997)

8. Kielmann, T.: Objective Linda: A Coordination Model for Object-Oriented Parallel
Programming. PhD thesis, University of Siegen, Germany (1997)

9. Kielmann, T.: Object-Oriented Distributed Programming with Objective Linda.
In: First International Workshop on High Speed Networks and Open Distributed
Platforms, St. Petersburg, Russia (1995)

10. Holvoet, T., Berbers, Y.: Reflective programmable coordination media. [23] 1236–
1242

11. Holvoet, T.: An Approach for Open Concurrent Software Development. PhD
thesis, Department of Computer Science, K.U.Leuven (1997)

12. Broadbery, P., Playford, K.: Using object-oriented mechanisms to describe Linda.
In Wilson, G., ed.: Linda-Like Systems and Their Implementation. Technical Re-
port 91-13. Edinburgh Parallel Computing Centre (1991) 14–26

13. Foster, M., Matloff, N., Pandey, R., Standring, D., Sweeney, R.: I-Tuples: A
programmer-controllable performance enhancement for the Linda environment.
[23] 357–361

14. Rowstron, A.: Mobile co-ordination: Providing fault tolerance in tuple space based
co-ordination languages. URL: http://www.research.microsoft.com/~antr/-

papers/mobile.ps.gz (1999)
15. Sudell, A.: Design and implementation of a tuple-space server for Java. URL:

http://www.op.net/~asudell/is/linda/linda.html (1998)
16. Smith, A.: Towards wide-area network Piranha: Implementing Java-Linda. (URL:

http://www.cs.yale.edu/homes/asmith/cs690/cs690.html)
17. Carriero, N., Gelernter, D.: How to Write Parallel Programs: A First Course. The

MIT Press (1990)
18. World Wide Web Consortium: Extensible markup language (XML). (URL:

http://www.w3.org/XML)
19. World Wide Web Consortium: XML Path language (XPath) version 1.0. W3C

Recommendation, URL: http://www.w3.org/TR/xpath.html (1999)
20. Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces Principles, Patterns, and Practice.

Addison-Wesley (1999)
21. Wells, G., Chalmers, A., Clayton, P.: A comparison of Linda implementations in

Java. In Welch, P., Bakkers, A., eds.: Communicating Process Architectures 2000.
Volume 58 of Concurrent Systems Engineering Series. IOS Press (2000) 63–75

22. Wells, G.: A Programmable Matching Engine for Application Development in
Linda. PhD thesis, University of Bristol, U.K. (2001)

23. Arabnia, H., ed.: Proc. International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA’2001). CSREA Press (2001)


