New and Improved: Linda in Java

George C. Wells

Department of Computer Science, Rhodes University,

Grahamstown, 6140, South Africa
G.Wells@ru.ac.za

Abstract

This paper discusses the current resurgence of interest in the Linda coordina-
tion language for parallel and distributed programming. Particularly in the Java
field, there have been a number of developments over the past few years. These
developments are summarised together with the advantages of using Linda for
programming concurrent systems. Some problems with the basic Linda approach
are also discussed and a novel solution to these is presented.

1 Introduction

Linda was proposed and developed in the mid-1980’s by David Gelernter at Yale. There
was a fair amount of interest in it as a model for parallel and distributed programming,
but this waned through the early 1990’s. In recent years there has been a considerable
resurgence of interest in Linda, particularly in the Java community.

Linda is a language for distributed and parallel programming that has a very ap-
pealing simplicity. It is based on a simple shared-memory paradigm and has only a
handful of operations. While this simplicity introduces other problems, particularly
with regard to performance, these are not insurmountable and much research was done
in the early days of Linda to develop techniques to ameliorate these drawbacks.

The first section of this paper presents a brief overview of Linda. This is followed
by a survey of Java implementations of Linda, with an emphasis on the commercial
developments in this area. Some of the problems that are inherent in the Linda model
are then discussed, followed by the presentation of our solution.

2 Overview of Linda

Linda is a coordination language for parallel and distributed processing, providing a
communication mechanism based on a logically-shared memory space called tuple space.
Thus, the Linda model can be categorised as a form of virtual shared memory, in which
the actual memory system may be physically shared or distributed, but application
programmers are provided with a simple, shared-memory model.

Tuple Space

D >
> “point”, 12, 67 >

>

out (“point”,12,67) O O in(“point”, ?x,?y)

Figure 1: A Simple Communication Pattern

The tuple space is accessed using associative addressing to specify the required data
objects, stored as tuples. An example of a tuple with three fields is ("point", 12, 67),
where 12 and 67 are the x and y coordinates of the point represented by this tuple.

As a coordination language, Linda is designed to be coupled with a sequential
programming language (called the host language—in our case, Java). Linda provides
a programmer with a small set of operations. These operations may be categorised as
output and input operations. There is a single output operation, used to place tuples
into tuple space. This is called out, and is used as follows: out("point", 12, 67).
The input operations are used to retrieve tuples from tuple space. The basic forms are
in, which removes the tuple from tuple space, and rd, which returns a copy of the tuple.
The two input operations also have predicate forms (inp and rdp), which do not block
if the required tuple is not present. The specification of the tuple to be retrieved makes
use of an associative matching technique whereby a subset of the fields in the tuple
have their values specified and these are used to locate a matching tuple in the tuple
space. For example, the command in("point", ?7x, 7y) might be used to retrieve the
example tuple above (or any other tuple with a similar structure). The specification of
the tuple used in an input operation is called an antituple. On successful completion
of this input operation the variables x and y are bound to the values found in the
matching tuple. The resultant communication between two processes is illustrated in
Figure 1.

Further details of the Linda programming model may be found in [1].

3 Recent Linda Developments in Java

During the last few years a number of Linda implementations have been developed
by research groups and commercial companies using Java as the host language. This
paper considers the commercially-developed products, namely JavaSpaces, TSpaces,
GigaSpaces and AutevoSpaces.

3.1 JavaSpaces

JavaSpaces|2] is a complex product and relies heavily on a number of other technologies
developed by Sun Microsystems. As a result, configuring the JavaSpaces system and
its applications is a very complex process.

JavaSpaces supports the basic Linda operations, although with slightly different
names. Tuples (called entries in JavaSpaces) are created from classes that implement

the Jini Entry interface, and only public fields that refer to objects are considered.
Tuples are transmitted across the network using a non-standard form of serialisation.
Matching of tuples is performed using byte-level comparisons of the data, not the
conventional equals() method, and can make use of object-oriented polymorphism
for matching sub-types of a class. Tuple storage is centralised, and this may become a
performance bottleneck in large systems.

JavaSpaces provides some extended functionality, especially in areas such as support
for transactions and leases, which are important for commercial applications.

3.2 GigaSpaces

GigaSpaces[3] was developed as a commercial implementation of the JavaSpaces spec-
ification. As such, it is compliant with the Sun specifications, while adding a number
of new features. These include operations on multiple tuples, updating, deleting and
counting tuples, and iterating over a set of tuples matching an antituple. There are
also distributed implementations of the Java Collections List, Set and Map interfaces,
and a message queuing mechanism.

Considerable attention has been paid to the efficient implementation of GigaSpaces.
This includes the provision of facilities such as buffered writes, and indexing of tuples.

There is also support for non-Java clients to access GigaSpaces through the use of
the SOAP protocol over HTTP. Lastly, there is support for web servers to make use of
GigaSpaces to share session information.

3.3 AutevoSpaces

Like GigaSpaces, AutevoSpaces is a commercial implementation of the JavaSpaces
specification. The focus of AutevoSpaces is on enterprise systems requiring high avail-
ability, including fail-over, recovery and load-balancing mechanisms. They claim that
their “High Availability solution is the only commercially available implementation
that provides semantic consistency with the JavaSpaces reference implementation. This
consistency is essential to ensuring the correctness and flexibility of large, distributed,
mission-critical applications” [4]. AutevoSpaces makes use of a distributed tuple space
implementation to provide scalability and the high availability features.

At the time of writing, AutevoSpaces had only just shipped and so no practical
evaluation of the system had been possible.

3.4 TSpaces

TSpaces is a Linda system developed by IBM’s alphaWorks research division[10]. It is
considerably extended from the original Linda model, particularly in terms of support
for commercial applications. The TSpaces implementation is simple in comparison
to JavaSpaces—all that is required is that a single server process be running on the
network.

TSpaces supports a large number of operations, including new operations for the
input and output of multiple tuples, and operations that specify tuples by means of a

“tuple ID” rather than the usual associative matching mechanisms. There is also the
rhonda operator, which performs an atomic synchronisation and data exchange opera-
tion between two processes. Lastly, there is an event mechanism providing notification
when a specified tuple is written to the tuple space or deleted from it.

In addition to the usual associate matching technique, tuple input in T'Spaces can
be done using so-called “indexed tuples”. In this case, fields may be named, ranges of
values may be used, and AND and OR operations may be specified. It is also possible
to perform matching on XML data contained in tuples.

Tuples may have an expiration time set, and there is also transaction support.
Furthermore, access control mechanisms are provided, similar to UNIX file permissions.

3.4.1 XMLSpaces

XMLSpaces is a research project, built on TSpaces to extend the limited facilities that
it has for matching XML data[5]. The XML support in XMLSpaces is provided by
subclassing the Field class used by TSpaces. The new XMLDocField class overrides
the matching method used by TSpaces to provide matching on the basis of the XML
content of the field. The matching method may be provided by the application pro-
grammer, providing a great deal of flexibility for XML matching operations. A number
of matching operations are supported, including the use of XML query languages.

4 Problems with Linda

The simple associative matching mechanism used for the retrieval of tuples in Linda
works very well in many situations. One-to-one and one-to-many communication pat-
terns are trivial, and implementing semaphores, barrier synchronisation, and other
coordination and interprocess communication models is simple. However, situations
do arise where the simple associative matching technique is not adequate.

As a simple example, consider a set of tuples, where an application needs to locate
the tuple with the minimum value of some field. Using Linda to solve this problem is
possible, but is not efficient. The application would need to retrieve all of the tuples
using repeated inp operations. These tuples would then need to be searched for the
one with the minimum value. The tuples would then be returned to the tuple space (in-
cluding the tuple with the minimum value, if the effect is to be that of a rd operation).
During this procedure the tuples are not accessible by other processes, potentially re-
stricting the degree of parallelism possible. Furthermore, in an implementation with
a distributed tuple space, there is a large volume of network traffic generated by this
solution.

While this is a simple example, it illustrates a general problem, namely that some
applications may need a “global view” of the tuples in tuple space. Other examples
include finding tuples with values “close to” some specified value, or lying within a
specified range of values. These types of problems cannot be solved efficiently using
the standard Linda associative matching technique. While some of the Linda systems
described above, notably T'Spaces, have provided extensions to the associative matching
mechanism, none has addressed these issues.

5 The eLinda System

In an attempt to address the problem described in the preceding section, an alternative,
flexible matching mechanism is proposed. We call this the Programmable Matching
Engine (PME), and our Linda implementation eLinda.

The eLinda system is based closely on the standard Linda model. We have a number
of implementations. The most complex of these uses a fully-distributed tuple space
model where any tuple may reside on any processor/node. The others use a centralised
tuple storage system, with optional local caching of certain tuples. The fully-distributed
model poses particular problems for matching, in that many processing nodes may be
required to participate in a matching operation. Further details of the eLinda system
and its other features can be found in [6].

5.1 The Programmable Matching Engine

The Programmable Matching Engine allows the use of more flexible criteria for the
associative addressing of tuples. This is useful in situations such as that exemplified
above (finding the tuple with the minimum value for some field). As has already been
noted, such queries can be expressed using the standard Linda associative matching
methods, but will generally be quite inefficient. If the tuple space is distributed, search-
ing for a tuple may involve accessing the sections held on all the processors. Ideally, this
should be done in parallel. This problem is handled efficiently in eLinda by distributing
the matching engine so that network traffic is minimised, and moving the necessary
computation out of the application and into the matcher. For example, in searching
for the minimum tuple, each section of the tuple space would be searched locally for
the smallest tuple, which would then be returned to the matcher that originated the
operation. The originating matcher would then select the smallest of all the replies re-
ceived. This process is completely transparent to the application, which simply inputs
a tuple, using a specialised matcher. From an application programmer’s perspective
this could be expressed simply as in.minimum(?fieldl, ?=field2). The notation
that is used is to follow the Linda input operation with the name of the matcher to be
used!. The field (or fields) to be used by the matcher is denoted by ?=.

In addition to this simple usage, matchers may also perform aggregated operations
where a tuple is returned that in some way summarises or aggregates information from
a number of tuples. For example, a matcher might calculate the total of numeric fields
in some subset of the tuples in tuple space. It is also possible to write matchers that
return multiple tuples, similar to the T'Spaces “scan” operations.

New matchers are written as Java classes that implement a specific interface. This
requires the implementation of two methods. One of these is used when checking all
the tuples that are already in tuple space for a possible match. The other is used
when the input operation has blocked and individual tuples need to be checked as
they are added to the tuple space. These matching methods can make use of a simple

INote that this is an idealised syntax, such as might be supported by a Linda preprocessor. In
practice the usual style of Java method calls is used.

Server out Tuple Spaces Client
videos
t
in B requests
out L, supplied |

Figure 2: Control Flow in the Video Server Application

library that provides controlled access to tuple space and communication between the
distributed matchers.

5.1.1 An Example Application: Video-on-Demand

As a simple illustration of the use of the PME (and also the multimedia support
provided by eLinda) a demonstration video-on-demand system was developed. This
consists of a server application that is used by the supplier of video resources, and a
client application that is used by a customer wishing to view this material. A number
of practical issues such as security, payment verification, etc. are omitted from this
application for simplicity.

The Video Server Application This program initially places the details of the
available videos into a tuple space called “videos”. The server then waits for a tuple to
be placed into a tuple space called “requests” with a matching supplier name. These
request tuples specify a unique access key for the video required, and also contain
payment details. The payment details are verified, and, if successful, a tuple is placed
into a third tuple space, called “supplied”. This tuple contains the unique key and
a MultiMediaResource object that the client can retrieve in order to view the video.
This process is shown diagrammatically in Figure 2.

The Video Client Application The outline of the client program is shown in
Program Segment 1 (this has been expressed using a simple, procedural pseudocode
notation for simplicity). This program is a GUI, event-driven Java application that
allows a user to select a video and then view it. The user enters the title of a video, and
the “videos” tuple space is then searched for a tuple with a matching title. This makes
use of a PME matcher that retrieves the tuple with the minimum value in the cost
field. Alternative matchers might also be provided for this purpose, which could take
into account other issues, such as the quality of the video and the network capacity. If
a matching tuple is found, the details are presented to the user and they are asked if
they wish to view the video.

While this is a simple illustration of the principles involved in such an application,
and particularly of the use of the PME and the multimedia features present in eLinda,

Get videoName from user
if videos.rdp.minimum/(?supplier, videoName, ?key, ?7=cost) then
Display video information
if video is requested then
requests.out(supplier, videoName, key, paymentDetails)
supplied.in(supplier, videoName, key, Tvideo)
video.play ()
else
Display “Video is not available”

Program Segment 1: The Video Client Application

it does provide a convincing demonstration of these facilities. In particular, it shows
how the unique features of eLinda can simplify the development of such applications.

5.2 Limitations and Applications of the Programmable Match-
ing Engine

There are some limitations to the kinds of matching operations that are supported by
the PME. Notably, some matching operations may require a complete global view of
the tuple space (e.g. where a tuple is required that has the median value of some field).
In such situations the use of the PME may not be ideal, as all the tuples involved
must be examined in order to find the result. However, it is important to note that
such problems are handled no less efficiently than if the application were to handle
them directly, using a conventional Linda system. Furthermore, the PME approach
minimises the network traffic in such cases.

Most of the examples of matchers given above have been in the domain of numeric
applications as these are simple to explain. However, the PME is not limited to numeric
problems—it is just as applicable to textual, XML or other problem domains. One of
the larger applications that was developed to test the PME concept is a graphical
parser that utilised four specialised matchers. These performed tasks such as selecting
a tuple where a field had a value that was a member of a specified set of values, and
checking spatial relationships between coordinates stored as fields of tuples. Further
details of this application of the PME are available in [9].

6 Results and Conclusions

Testing has shown that the performance of eLinda is on a par with that of other Java
Linda systems[7], but that Java is currently not a viable platform for fine-grained paral-
lel processing applications[8]. For coarser-grained distributed programming problems,
the inherent simplicity of the Linda programming model is highly desirable and has
led to the increasing interest in this approach, particularly in the Java community.
One of the weaknesses of the simple associative matching mechanism used in Linda
is that it is limited for some applications. The Programmable Matching Engine devel-
oped for eLinda offers a solution that is itself simple and elegant, and caters for a range

of different implementation strategies. The benefits of the PME have been confirmed
through its use in a number of different application areas, with both distributed and
centralised tuple space implementations.

Acknowledgments This work was supported by the Distributed Multimedia Centre of
Excellence in the Department of Computer Science at Rhodes University, South Africa, with
funding from Telkom SA, Comparex Africa, Letlapa Mobile Solutions and THRIP. The author
also wishes to acknowledge the advice and support of Alan Chalmers (University of Bristol)

and Peter Clayton (Rhodes University), and the helpful comments of the anonymous referees.

References

1]

2]

[10]

N. Carriero and D. Gelernter. How to Write Parallel Programs: A First Course.
The MIT Press, 1990.

E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces Principles, Patterns, and
Practice. Addison-Wesley, 1999.

GigaSpaces Technologies Ltd. GigaSpaces. URL: http://www.gigaspaces.com/-
index.htm, 2001.

Intamission Ltd. AutevoSpaces: Product overview. URL: http://-
www.intamission.com/downloads/datasheets/AutevoSpaces-0Overview.pdf,
2003.

R. Tolksdorf and D. Glaubitz. Coordinating web-based systems with docu-
ments in XMLSpaces. URL: http://flp.cs.tu-berlin.de/ " tolk/xmlspaces/-
webxmlspaces.pdf, 2001.

G.C. Wells. A Programmable Matching Engine for Application Development in
Linda. PhD thesis, University of Bristol, U.K., 2001.

G.C. Wells, A.G. Chalmers, and P.G. Clayton. Linda implementations in Java for
concurrent systems. Concurrency and Computation: Practice and Ezrperience. In
press.

G.C. Wells, A.G. Chalmers, and P.G. Clayton. A comparison of Linda imple-
mentations in Java. In P.H. Welch and A.W.P. Bakkers, editors, Communicating
Process Architectures 2000, volume 58 of Concurrent Systems Engineering Series,
pages 63-75. 1I0S Press, September 2000.

G.C. Wells, A.G. Chalmers, and P.G. Clayton. Extending Linda to simplify appli-
cation development. In H.R. Arabnia, editor, Proc. International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA’2001),
pages 108-114. CSREA Press, June 2001.

P. Wyckoft, S. W. McLaughry, T. J. Lehman, and D. A. Ford. T Spaces. IBM
Systems Journal, 37(3):454-474, 1998.

