C and C++ 1n 5 days

Philip Machanick

Department of Computer Science

Rhodes University
Grahamstown 6140
South Africa
p-machanick@ru.ac.za

I have not updated these notes in a long time and would do
things differently today — and the C and C++ language
standards have moved on since then. So use these notes as a
quick guide, but look for other sources.

copyright © Philip Machanick 1994, 2003

contents

Preface......... i nnnnnnas 1
Part 1 —OVerVIEW.......coiiiiiiiiiiisissssssssssmmmssssss s s s s s s s s s s s s s s ssssssssssssssnns 2
fIl@ SITUCTUIE ... 2
SIMPIE PrOGIraAM ... e e e e e e e eeees 2
ATeW detalilS........oooiiieeeee 3
hands-on—enter the program on page 2.........cccccceemmrmmrrrmmnsnnnnnnnssnnnne. 4
part 2—Language Elements...........cccoiiiiiiniimmmmin s 5
FUNCHIONS. ... e e e e e e e e e eeeeenaans 5
107 01T TSP TR TUPPPN 6
STAIEIMENTS ..o 7
hands-on—a larger Programccccccciissssssssnssssmsmmssmssssr e 9
part 3—Style and IdiomS.......cciiiiiiiii e ——————— 10
51171 (o] ISR RUPPPPPPRTTRPPTN 10
[oT0] o1 TR RRRRRP 10
AIGUMENTS L.ttt e e e e e e e e e a e e e ena e eees 10
pointers and returning ValUEsS.........ccoooooieiiiiiiiiiiiiiie e 11
arrays, pointer arithmetic and array argumentsccccoeeeveeveeeennnns 11
hands-on—sorting StriNgs.......cccccuiiiiiiiiiinnse e ——————- 14
part 4 —Structured TYPesS.....ccceiiiiiiiimrrirnsreer s 15
SHIUCT e 15
BYPEAET ... e 15
Oputting it together: array of StructQ...........cccovevieeeeeeceeeee e, 17
hands-on—sorting employee records...........cccccmmmmmmmmmmmrmmnmmmnnn————" 18
part 5—Advanced TOPICSccrrrmmiinniiisissssssssnnnnnnnssnns e 19
PIrEPIOCESSON ...ttt ettt et e et e et e e e e e e a e e e e an e e e ernnans 19
fUNCHION POINTEIS. ..ot e e 20
traps and PItfallS............eeoiiiiii s 21
hands-on—generalizing @ SOrt..........ccciiiiriisnmmmmmmm - 23
part 6—Programming in the Largecccccoommmmmmmmmmnssnsssssssssssssssnnnes 24
file StrUCIUre reVISItedcoooi i 24
MaiNtaiNabIlityoooiiii 24
POMTADIITY ... 25
hiding the riSKY PartS........cooeeiiiiiii e 25
performance vs. maintainabilitycccooiiiiiiiiiiii 26
hands-on—porting a program from UNIXcccccmmmmmmmmmmmmmmmmnnnnmmmnmnn.. 27
part 7—Object-Oriented DesSign........cccceiriiiimmmrinninisenre s esssannns 28
Identifying ODJECES ... 28
object relatioNSNIPSuviiiiiii e 28
ENLILIES VS. ACHIONS....eiiiiiiiiiiiiiie e e e e e e e eeeeenes 29
Oexample: eventriven programQ............ccccceevevieeeeeeieeiesecr e 29
design task—simple event-driven user interfaceccccccueeeeiiiiiiiiiiiinnnns 31
part 8— 00D and C.........ccccimiririeerr s 32
[anguage ElemMENTS.........cooiiiiiiii e 32
EXAMPIE . 32
hands-on—implementationcccoiiiiiiiiins e ———— 35

part 9—Object-Oriented Desigh and C++.......mmmmmmmrnnninnsssssssssssssssssssnes 36

OOD SUMMEATY ...ttt e et e e e e e e e e e e e e eeenna e eeeas 36

0DJECES IN CHt e 36
SIrEAM 1/O .. 38
differences from C.....ooeeiiiee e 39
hands-on—simple example........cccooiiiiiiiinissees e —————— 41
part 10—Classes in More Detail........ccccceiiiiimmiiiniicinr s 42
CONSEructors and deStrUCIOIS.ooiv it 42
inheritance and virtual fuNCtioNS ..., 43
information NIidiNg.........coooiiiiiiii 43
Static MEMDEIS ... 43
hands-on—adding to a class...........cccciiiiiiisnnmmmm e ————— 45
part 11 —style and idioms........ccciiiiiiiiiiiiir e —————— 46
ACCESS TUNCHIONS ... e eeeeeees 46
Protected VS. PrIVALE........ooiiiiiiiiiiiiiieie e 46
USAQE Of CONSITUCTIONS.cieiiiiiiiiiiiie e 47
hands-on—implementing a simple designcccccceeiiiiiiiiriinniininniccnnnes 49
part 12—Advanced Features............ccceiiiiiiisnmmmmmmmmmrer s 50
MIXING C AN CHt e 50
OVErloading OPEIALOISuuuueeiiiiee ettt e e e e e e eeeeeeees 50
MEeMOrY MaNAGEMENT e 51
multiple INheritancCe ... 52
(o3 0] o1 oo TR PP 53
hands-on—3-D array Classccccuuiiiiiiisissssnnnneeeenn - 55
part 13—Design Trade-Offs..........ccooemmiiiniiinsmrr e 56
Case StUAYN VECIOF CIASSecvevveeeeieeieeceeeeeeee e ee s 56
defining operators Vs. fUNCHONSoooiiiiiiiiiiii e 56
WHNEN 1O ININE .. s 56
the temporary Problem..........oooo i 57
hands-on—vector class using operators...........cccccceeeerrrrrrrrnnnnn———" 58
part 14—More Advanced Features and Conceptsccccceeemmmrrinniiinnnns 59
TEMPIALES ... e 59
(23T =] o1 o] I TSR 60
Virtual Dase ClasSesccooooiiiiiiii 60
Ofuture feature: name SPacesQ..........cccvevevvevreeeeeeeeeieeie s e s 61
libraries vs. frameWOrKSuuuuuuiiiiiiiie e 61

Preface

C was developed in the 1970s to solve the problem of implementing the UNIX
operating system in a maintainable way. An unexpected consequence was that UNIX
also became relatively portable. Consequently, some think of UNIX the first computer
virus, but this is erroneous. There are major technical differences between UNIX and a
virus.

C was designed a time when computer memories were small, especially on the
low-end computers for which UNIX was originally designed. At the same time,
compiler-writing techniques were not as well developed as they are today. Most code
optimization tricks of the time was oriented towards making FORTRAN floating-point
programs as fast as possible, and tricks used in modern compilers to keep registers in
variables as long as possible, and to minimize the number of times an array index
must be computed —to give two examples—were still to be developed.

As a consequence, to make C viable for operating system development, the
language has many features which are unsafe, and with today’s compiler technology,
unnecessary. Even so, only the best compilers, typically found on UNIX systems,
implement really good code generation, and typical PC compilers are not as good.
Part of the reason is to be found in the instruction set of the Intel 80x86 processor
line, which has very few general-purpose registers, and a large range of equivalent
instructions to choose from in some circumstances.

These notes introduce C with a modern style of programming, emphasizing
avoidance of the most risky features, while explaining where their use may still be
appropriate. The intended audience is experienced programmers who may be used to
a more structured language; differences from such languages are noted where
appropriate or useful.

As a bridge to C++, object-oriented design is introduced with C as a vehicle. This
illustrates how object-oriented design is a separate concept from object-oriented
languages—even though an object-oriented language 1is clearly the better
implementation medium for an object-oriented design.

The notes are divided into 14 parts, each of which is followed by a hands-on or
discussion session. The first half is about C, concluding with object-oriented design
and how it relates to C. C++ is introduced as a better way of implementing object-
oriented designs.

Since this information was originally compiled in 1994, some details may be
dated. Watch for new versions, as errors and omissions are corrected. In the 2013
edition, I eliminate some of the obvious anachronisms, including references to
languages no longer in wide use.

The notes are intended to supply enough material to absorb in a week; some
sources of further information include:

Brian W Kernighan and Dennis M Richie. The C Programming Language (2nd edition), Prentice-Hall,
Englewood Cliffs, NJ, 1988. ISBN 0-13-110362-8.

Margaret A Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual, Addison-Wesley,
Reading, MA, 1990. ISBN 0-201-51459-1.

Stanley B Lippman. C++ Primer (2nd edition), Addison-Wesley, Reading, MA, 1989. ISBN 0-201-
17928-8.

Grady Booch. Object-Oriented Design with Applications, Addison-Wesley, Reading, MA, 1991. ISBN
0-201-56527-17.

acknowledgement

Andras Salamon proof read an early version and suggested some clarifications.

Part 1—Overview

file structure

C source files are organized as compilable files and headers. A header file contains
declarations; a compilable file imports these declarations, and contains definitions.

A definition tells the compiler what code to generate, or to allocate storage for a
variable whereas a declaration merely tells the compiler the type associated with a
name. Headers are generally used for publishing the interface of separately compiled
files.

In UNIX it’s usual to end compilable file names with “.c ” and headers with “.nh ”.

A compilable file imports a header by a line such as (usually for system headers):
#include <stdio.h>

or (usually for your own headers):
#include "em ployees.h"

The difference between the use of <> and ™ will be explained later.
When the header is imported, it’s as if the #include line had been replaced by the
contents of the named file.

caution—in C, this is only a conventionN but one that should not be
broken: the header could contain anything, but it should only contain
declarations and comments if your code is to be maintainable

simple program

Only a few more points are needed to write a program, so here’s an example:

#include <stdio.h >

void main(int argc, char *argv[])

{ inti;

for (i=0; i < argc; i++)
printf("command line argument [%d] = %s \'n", i, argv[i]);

}

The first line imports a system header, for standard input and output. The second
line is the standard way of declaring a main program. A main program can return a
result of type int , though this one doesn’t actually return a value, hence the void .

The main program has two arguments, the first of which is a count of command-
line arguments from the command that started the program. The second is a pointer to
an array of strings each of which is a separate command-line argument. By
convention, the first string is the name of the program. Note the syntax: a “*” is used
to declare a pointer, and an empty pair of square brackets is used to denote a variable-
sized array.

The next thing to notice is the use of curly brackets for a begin-end block.

The main program declares a variable i , and uses it as a loop control variable.

Note the convention of counting from zero, and using a < test to terminate the
loop. This convention is useful because C arrays are indexed from zero.

The for loop control actions must be in parentheses, and the initialization, test and
increment are separated by semicolons.

The body of the loop is a single statement in this case, so no {} are needed to
group statements into the body.

The body of the loop uses library function printf () to produce output. The first
string is used to format the arguments that follow. The %din the format string causes

the next argument to be printed as a decimal integer, and the %s causes the final
argument to be printed as a string. A “\ n” terminates a line of output.

what does the program do? No prizes for the answer.

a few details

In C, there is no distinction between functions that return a value and functions that
don’t (some languages call the latter “procedures”), other than that a function
returning a type void can’t be used where a value is expected. There is a distinction
between statements and expressions, but it is usually possible to use an expression as
a statement. For example, the following is legal C code (note use of /* E » for
comments):

void main(int argc, char *argv[])
{ inti;
i+1; /* this is an expression */

}
This is a silly example, but there are cases where the result of an expression is not
needed, just its side effect (i.e., what it changes in the global environment). Functions
that do not return a result are declared to return type void , which is a general non-type
also used to specify pointers that can’t be dereferenced, among other things.

A few examples of expressions that might be considered statements in other
languages:

e assignment—done with “=” in C—so for example, it’s possible to do a string of
initializations in one go (comparison for equality uses “=="):
intij;
i=j=0; /*j =0 is an expression: returns new value of j */

* procedure call—always a function call in C, even if no value is returned (on the
other hand a value-returning function can be called as if it were a procedure call,
in which case the value is thrown away)

* increment (var_name++) and decrement (var_name --): the exact behaviour of these
constructs is too complex for an introduction; they are explained more fully later

Unlike some languages (e.g., LISP, Algol-68) that treat everything as expressions,
most other statements in C cannot be used to return a value. These include selection
(if and switch), loops (while , for and doEwhile —the latter tests the condition at the
end, ensuring there is always at least one iteration) and {} blocks.

hands-on—enter the program on page 2

aims: learn to use the editor and compiler; get a feel for C syntax.

caution: C is case-sensitiveN be careful to observe capitalization (for
example: r and R are different variable namesN but someone
maintaining your code wonOt thank you if you exploit this feature)

part 2N Language Elements

functions

Functions in C do not have to have a return typecified: the default i&t . It is a
good convention however to put the type in even in this case. Functions that are called
as procedures (i.e., return no value) are declared as retusiaing

A functionN as we shall see latércan be stored as a vardabor passed as a
parameter, so a function has a type like any other value.

The complete specification of the functionOs type is given Ipyottype
specifying the functionOs return type, name and argumentByisagpe signatured
for example:

void sort (int data[], int n);

It is permissible to leave out the names ofgghsmeters

void sort (int [], int);

This is not good practice: names make the purpose plifaenetersnore obvious.

Prototypes are usually used in headers, botlee used if the function is called
before itOs defined. As we shall see later, prototypes are also used in C++ class
declarations.

In C, parameter passing is lwalue values of arguments are copied to the
function. To pass by reference (Paseal paraneters), you create a pointer to the
parameter in the call. This is done using éhr@perator, which creates a pointer to its
operand. For example:

void swap (int *a, int *b)

{ inttemp;

temp = *a;
*a:*b;
*b = temp;

}

/* called somewhere: */
int first, second;
/* give them values, then: */
swap (&first, &second);

Inside the functiona andb arepointerstoint s (nt*). To access their values in
the function they must biereferencedThePascal dereference operatof j<COs is.
A notational convenience: you write a variable in a declaration the same way as you
write it when you dereference it. This makes it easy to remember where to put the

In the call, the variablesst andsecond are not of a pointer type, so a pointer to
the values they hold has to be created explicitly using tperator.

What would happen if the example changed as follows?

void swap (int a, int b)

{ inttemp;
temp = a;
a=Db;
b = temp;
}
/* called somewher e:*

int first, second;
/* give them values */
swap (first, second); /* what does this actually do? */

Terminology corner : the parameter where you declare or define a function is
technically a formal parameter and where you call it, the value supplied is an
actual paramter. In C, to be different, a formal parameter is just called a
parameter, and the value passed in is called an argument.

To return a value from a function:
return value; /* immediately exits function */

Functions returningoid can useeturn Wwith no valueto exit immediately (e.g. on
discovering an error conditiorffunctions can only be global, though their names can
be restricted to file scope by declaring themc (see Part 6 for more crtic).

types

A few C types have sneaked in without introducsorietOs remedy that now

WeOve already seen the types(integer) andint* (pointer to integer).

These types correspond to integer types in most other langudgmgyh it is
possible for different@mpilers on the same machine to have different conventions as
to the size of a given typéntegers are commonly 32 bite C it is often assumed
that anint is the size of a machine address, though when we reach the portability
section in Part 6 we shalke that this can be a problem.

Typechar is a single byte integer type.

Integer types can be qualified knort |, long Or unsigned (Or any combinations of
these that make sense and are supported by the cdih@itershort long doesnOt
make sense). Youao leave @ O out if a qualifier is used. The Standard is vague
about which must be supported and the sizes they may be. @fgelandint are the
same. (Originallyint was 16 bits an@ng 32 bits; when the transition to 32 bits was
made, many compitevriters leftiong as 32 bits.)

There is ndooleantype: any integer value other than zero tests as true.

exercise: look up the sizes for your compiler
even better exercise: use sizeof(typ e_name) to find out

note: sizeof has to have parentheses if called on a type name, but not if
called on an expressions, e.g., sizeof sortdata

Reals are represented by typat . Inconsistently, the type for a douipescision
float IS double (andnotiong float). Extended precision reals asey double

Write along integer constant by placing anat the end of the number (not
necessarily capital but a lowercasel looks too much like the digit to be good
idea); floatingpoint constants default to dble unless they end in arfor).

Interesting to the lovlevel hacker: constants in hexadecimal start with xero

0x8086
has the same value as the decimal constant

32902 (or 32902L , dor that matter
Variables may also be specified as eitlwetie or register . If a variable can be
seen by more than one process (e.g., part of memory used by a rmeappgd/O
device)or thread it can be declaregiatie to warn the compiler not to hold it in a
register. Specifying a variable asister (keep it in a register as much as possible)
is obsolete on better compilers: it just gets in the way of the code geferatrategy.
DonOt useragister variable unless you are really sure it enhances performance and
even then, think again: the same win may not apply if you move to another machine
or compiler.

Character values are given by a character in single quaes;an specify them
in octal or hexadecimal, as well as a limited number of special symbols) dikéor
new line.

If you ask me it makes more sense for variables to be case insensitive and to insist on a capital L in
this caseather than viceversa.

Strings are enclosed in double quotes, and are stored in an arrayr of
terminated by the null character (which you can specify\asN a zero after a
backslash). Example:

char name[100];
strcopy(name, "Fred"); /* library routine to copy a string */

Fred0 | /s,

caution: if you declare an array of char to store a string, make sure itOs
1 bigger than the longest string you need to store to allow for the
terminating null character

statements

C has the usual collection of assignments, selection, iteration and procedure call
statementsWe will not dwell on details of symtahere; more detail will be considered
in Part 3.

caution: itOs easy to writef (i=0) instead of if i==0) . WhatOs the
effect of this error? C has no boolean type. Ifi isanint (or almost
any other type) the compiler wonOt report an errort=0 is a valid int
expression. Good compilers issue a warning: send yours back if it
doesnOt

There are two selection statementsandswitch

if (n==0) /* note "()" but no "then" */

printf("no data \'n");

else /* else is optional */

{ /* use {} for more than one statement */
average = total / n;
printf("Average = %d \ n", average);

}
or the same thing with sitch

switch (n) /* again the () is needed */

{ /* the cases must be enclosed in {} */

case O: /* can be any constant int expre ssion */
printf("no data \'n");

break;

default: /* in effect case "anything" */
average = total / n; /* note no {} needed */
printf("Average = %d \ n", average);

break; /* not strictly necessary */

}

The switch IS quite complicated. Theeak is used to quj without it you fall
through to the nexdase . There can be more than ofaee, e.g.,
case 'a": case 'e": case 'i': case '0": case 'U"
printf("vowel \ n");
break;

This is a degenerate case of falling through witlareex .

A break after the lastase (default in the first example) isnOt needed, but ending
everycase With abreak makes it easier to be avoid errors and to modify the code
later.

caution: the rules of always putting in a break and never falling
through from one case to another derive from many years of
experience of maintaining code—don’t break them

Loops present slightly fewer possibilities for getting into trouble.

A while is reasonably straightforward:
while (i > 0)
i--; /* decrement i */

As is a do-while:
do

{ i--;

} while (i>0);

exercise: how does the behaviour of the above two loops differ?

The for loop is a touch more complicated. Its control consists of initialization, test
and increment:
for (i=first(); i<last() && i> cut_off(); i++)
; /* do something */
is one example (notice how parameterless functions are called with empty
parentheses).

aside: in C and is written &&; or is | |; “single” versions & and | are
bitwise operations; ! is not (1 if operand is @, @ otherwise)

All loops can be broken by break (exits the innermost loop enclosing the break) or
continue (goes to the control computation, skipping the rest of the innermost loop
body). These constructs are a bit better than unrestricted goto; see hints on usage
later.

hands-on—a larger program

Given the partially written program below, fix the indicated bug, and
add code to count the number of negative, zero and positive numbers
in the data read in. You should use switch , if and at least one loop
construct

#include <stdio.h>

/* bug: should check if s is zero */
int sign (int s)
{ return abs(s)/s;

}

main ()
{ intda ta[10],
i,n,
negatives, zeros, positives;
n = sizeof data / sizeof (int);
negatives = zeros = positives = 0;
printf("Enter %d numbers : ", n);
/* need loop onifromOton - 1 around this */

/* read in the data */
scanf("%d", &datali]);
/*n ow count negatives , zeros, positives */

printf("negatives=%d,zeros=%d,positives=%d \n",
negatives, zeros, positives);

part 3N Style and Idioms

switch

WeOve been through most of ithportant features of thavitch already. Perhaps the
most important point to emphasize is that this statement can easily become very large
and clumsy, and a disciplined approach is necessary.

If you find yourself programming with large complextch staements, itOs time
to clean up you design: look for a simpler way of expressing the problem.

When we look at objeatriented programming, we shall see an alternative: the
use ofdynamic dispatchin which the type of the object determines what kind of
action should be carried out. Remember this point for now: if you are using C++ and
end up with a lot of big clumsynitch statements, reconsider your design.

loops

When we look at arrays and pointers, some interesting strategies fogwoiijps to
go through an array quickly will come up. In this section weOll stick to variants on
loop behaviour different from languages such as Pascal.

In situations such as operating systems, eddaaén user interfaces and
simulations, where terminatiaa unusual (system shutdown, quitting application, or
special action to clean up the simulation) itOs useful to have a loop which goes on
forever, with termination almost an exception (error) condition.

C doesnOt have an explicit construct for this butyn@ programmers simply
write

while (1)

{ /*do all kinds of things */

if (good_reason_to_quit())
break ;

}

This kind of use obreak is acceptable programming style. However you should
take care not to abuse this feature, as loops wittipte exit points are hard to debug
and maintain. Ideally the loop should either have exactly one exit point, or any
additional exit points should only handle very rare conditions. Otherwise, you are
back to unstructured programming as if you had usethegstrictedjoto construct.

The continue statement is less commonly used, and on the whole it is probably
better to use am to skip over unwanted parts of a loop. | have never us@sle
and have never encountered a situation whée# it could be useful. If you find a
need for it, rethink the problem. 1tOs not good style to use a rarely used\fgaiure
will confuse maintainers.

arguments

Parametepassing in C seems superficially vesynple but there are some serious
traps and pitfalls. The worst of these is the way the pass by value rule interacts with
the way arrays are implemented.

In C, an array is in fact a pointer which (usually) happens to have had memory
allocated for it autontacally. Consequently, when an array is passed as a parameter,
what is actually copied on the function call is not the whole array but just a pointer to
its first element. This is very efficient compared with copying the whole array but it
also means it@ssy to write a function that alters an array, forgetting that the original
is being altered, and not a copy.

caution: thereOs no such thing in C as passing avhole array by value:
only a pointer is copied and the actual elements are overwritten if the
function changes them

double caution: | lied: if an array is a field in a struct (see Part 4), it
is copied when the struct is passed as a parameter

pointers and returning values

When you want to change the value of an actual parameter (the one in the call), you
must send a pointer to the parameter, rather than its value. This wouldnOt be a
problem if C had strict type checking, but since it doesnOt things can gp wron

If you are using an older C compiler that doesnOt conform to the ANSI standard, it
may take a very lax view of what is or isnOt a pointer, or of mixing different types of
pointers. Luckily recent compilers conforming to the ANSI standard of 1989 aw bett
type checking, and C++ is even more strict.

Even with newer compilers however, there are cases where type checking isnOt
done. The worst case is with functions designed to take a variable number of
arguments, such asanf() , which does formatted input. For example, in the code

inti;

scanf ("%d",i); /* should be &i */

scanf) Should read an integer in decimal format infoom standard input, but
should in fact bexi. As a result of this erroscanf) usesi as a pointer with
unimaginable consequences. A compiler cannot in general detect such errors. C++
has another 1/0 mechanism, so these routines donOt have to BéuwtsedC itOs
vital to check parameters in functions taking a variable numbergofrents very
carefully.

ItOs a good strategy to put all input (where this problem is worst) in one place to
make checking easier.

arrays, pointer arithmetic and array arguments
Brief mention hadeen made of how C treats arrays as pointers. The array definition
int a[100];

has almostthe same effect as defining a pointer and allocating space for 100
int S:
int *a = (int*) malloc(sizeof(int)*100);

A few points abouihalloc()

¥ it returnsvoid* , and so must be coerced to the correct pointeRtyyence the
(inty which converts the type of the expression to pointer to integer

¥ it must be given the correct size in bytes (remember: a string needxta byte
for the terminating null character)

¥ the resulting memory cannot be assumed to be initialized

¥ if memory cannot be allocated, theLL pointer is returned; in principle every call
tomalloc() should check for this. It may not always be sseey (e.g. if you have
carefully calculated how much free memory you hBMeit this is not something
to be casual about

The main difference: the arrayOs value, while a pointer, ish@laa (more ot-values in Part 13).

11

¥ memory allocated byalloc() can be deallocated ge(ptr_name) : be careful
to callfree() only on a véd pointer which has been allocatedwioc()

Back to arrays: an array accesgs is equivalent tgointer arithmetic C defines
addition of a pointer and am as returning an address that integral numbemas u
from the original address (the unit is the size of the object pointed to). For example:

int *a; /* discussion below assumes sizeof(int) == 4 */
double *d; /* and sizeof(double) == 8 */

a = (int*) malloc (sizeof(int)*100);

d = (double*) malloc (sizeof (double)*20);

a++; /*shortfora=a+1*

d+=2; /*shortford=d+2*/

results inaOs value changing by 4 (to point to the mex}, while dOs changes by
16 (2double s further on in memory).

In terms of pointer arithmetic, since an arrayOsevad a pointer to its first
elementafi] is equivalent to

*(a+)

Because pointer arithmetic is commutative, the above can be rewritten as

*(i+a)

orN bizarrely:

i[a]

What ue is this? If you have a loop accessing successive array elements, such as

inti;

double data[1000];

for (i=0; i<1000; i++)

data[i] = 0.0;

an inefficient compiler generates an array index operation once every time
through the loop. An array index operaticequires multiplying the index by the size
of each element, and adding the result to the start address of the array.

Consider the following alternative code:

inti;

double data[1000], *copy, *end;

end = data+1000;

for (copy = data; copy < end; copy ++)
*copy = 0.0;

On one compiler | tried, the latter code executed 40% fewer instructions in the
loop, and did no multiplies, which it did to do array indexing. But this was with no
optimization. | turned optimization on, and the OarrayO version was twgtinss
shorter!

caution: this could lead you astray. Here’s a hacker version of the loop
(it has no body) for which my optimizing compiler generates exactly the
same number of instructions as the readable version:

/* declarations and end as before */

for (copy=data; copy<end; *(copy++)=0.0) ;

Why then does pointer arithmetic persist as a feature?

Sometimes itOs necessary for performance reasons to write your ovewdbw
code, for example, a memory manager. In such a situation, you may have to write
very general code in which the size of units you are dealing with is not known in
advance. In such cases the ability to do pointer arithmetic is very useful.

12

However if you find yourself doing pointer arithmetic because your compiler
doesn’t generate good code for array indexing, look for a better compiler.

This feature is in the language for reasons of efficiency that have been superseded
by better compiler technology, but there are still rare occasions where it is useful.

caution: pointer arithmetic is hard to debug and hard to maintain.
Make sure you really do have good reason to use it and there is no
alternative before committing to itN and once you have decided to use
it, isolate it to as small a part of your code as possible: preferably a
single file containing all your low-level hard-to-understand code

13

hands-onN sorting strings

Here is some code to sort integers. Modify it to sort strings. Use the
followin:
#include <string.h >
/* from which use

int strcmp(char* s, char* t) returns

<0ifs<t Oifs==t,>0ifs>t

you may also need

void strcpy(char* s, char* t) copie sttos
*/

declare your string array as follows:
char strings [10][255]; /* 10 strings of up to 255 chars each */
and read them in as follows

char strings [10][255]; /* NB not [10,255] */

inti;

printf("Enter 10 strings, max 255 chars each: \'n");
for (i=0; i<n;i+t)

scanf("%s", stringsli]);

#include <stdio.h>
void swap (int data[], int i, int j)
{ inttemp;

temp = datali];

data[i] = datalj];

data[j] = temp;

}

void sort (int data[], int n)

{ intij;

for(i=0;i<n -1 i++)
for(j=i+1;j>0 o)
if (data]j - 1] > data[j])
swap (data, j -1,));

}

void main()

{ intsort_data [10],
i, n;

n = sizeof(sort_data)/sizeof(int);
printf ("Enter %d integers to sort :", n);
for (i=0; i<n; i++)
scanf ("%d", &sort_datali]);
sort (sort_data, n);
printf ("Sorted data: \ n\ n");
for (i=0; i<n; i++)
printf("%d ",sort_datali]);
printf(". \n");
}

caution: this isnOt as easy as it [0okBl to do this as specified requires
a good understanding of the way 2-dimensional arrays are
implemented in C; itOs atually much easier if the strings are allocated
using pointers, so you can swap the pointers much as the int s are
swapped above. HereOs how to initialize the pointers:

char *strings [10];
inti, n =10, str_size = 255; /* in practice read n from file */
for(i=0;i<n;i++)

strings [i] = (char*) malloc (255);

14

part 4N Structured Types

struct

The Cstruct is essentially the same agexord type in languages like Pascal, but
thereare some syntactic oddities.
A struct is declared as in the following example:
struct Employee
{ char *name;
int employee_no;
float salary, tax_to_date;

h

Variables of this type can be defined as follows:
struct Employee secretar y, MD, software_engineer;

Note that the name of the typesisict Employee , NOt juStEmployee .

If you need to define a mutually recursive type (&wact s that refer to each
other), you can do a forward declaration leaving out the detail, as in a tndgchn
the root holds no data node, and each other node can find the root directly:

struct Tree;

struct Root
{ struct Tree *left, *right;

h

struct Tree

{ struct Tree *left, *right;
char *data;
struct Root *tree_root;

h

caution: the semicolon after the closing bracket of a struct is
essential even though it isnOt needed when similar brackets are used to
group statements

double caution: a O*O must be put in faach pointer variable or field;
if left out the variable is not a pointer (e.g., right in both cases above
must be written as *right if a pointer type is wanted)

typedef

C is not a strongly typed language. Aside from generous conversion rules between
various integer types, COs named fypdeclared bytypedet N are essentially
shorthand for the full description of the type. This is by contrast with more strongly
typed languages like Modi8 and Ada, where a new named type is a newiNype
even if it looks the same as an existing type.

This is also a useful opportunity to introduce themN roughly equivalent to
enumerated types of Pascal, Ada and Md@ldout with a looser distinction from
integer types.

A typedef is written in the same order as if a variable of that type were declared,

but with the variable name replaced by the new type name:
typedef int cents;

introduces a new type that is exactly equivalenthtq which for reasons of
maintainability has been given a new name.

Back toenums now that we have thgpedef mechanism. Arenum introduces a
symbolic name for an integer constant:

enum Boolean {FALSE, TRUE};

establishes symbolic names for the values @ and 1, which can give programmers
accustomed to typed languages a greater sense of security. Unfortunately this is not a
default in system headers, where #define is usually used to define TRUE and FALSE
(using the preprocessor). This can lead to a conflict of incompatible definitions. More
on the preprocessor in Part 5.

It is also possible to specify the values of the enum names, for example,

enum vowels {A="'a', E="e', I="1i"', O="0"', U="u'};

Once you have specified values for an initial group of names, if you stop
supplying names, the rest continue from the last one specified:
enum digit_enum {ZERO='Q',ONE,TWO,THREE/*etc.*/};

You can now make a variable of one of these types, or better still, make a type so
you don’t have to keep writing enum:

enum digit_enum number = TWO; /*initializer must be a constant*/

typedef enum digit_enum Digits;

Digits a_digit; /* look: no enum */

For a more complicated example of something we’ll look at in more detail later in
Part 5, here is how to declare a type for a function pointer:

typedef int (*Compare) (char*, char *);

This declares a type called Compare, which can be used to declare variables or
arguments which point to a function returning int, and taking two pointers to char
(probably strings) as arguments. More detail in Part 5.

Back to something more immediately useful: to reduce typing, it is common
practice to supply a struct with a type name so that instead of writing

struct Tree sort_data;

it’s possible to write
typedef Tree Sort_tree;
Sort_tree sort_data;

In fact, it is common practice when declaring a struct to give it a type name
immediately:

struct tree_struct;

typedef struct root_struct

{ struct tree_struct *left, *right;

} Root;

typedef struct tree_struct

{ struct Tree *left, *right;
char name[100];
Root *tree_root;

} Tree;

From here on, it’s possible to declare variables of type Root or Tree, without
having to put in the annoying extra word struct.
As we shall see, C++ classes are a much cleaner way of defining structured types.

Some notation for access fields of structs:

Root family_tree;

family_tree.left = (Tree*) malloc(sizeof(Tree));
strcpy(family_tree.left->name, "Mum");
(*family_tree.left).left = NULL; /* -> better */

Note the use of -> to dereference a pointer to a struct and access a field in one go
instead of the more cumbersome (*name).name.

16

putting it together: array of struct

Using structured types, pointers, and arrays, we can create data of arbitrary
complexity.

For example, we can malka miniemployee database using the Employe@ct
at the start of this Part. If we assume the number of employees is fixed at 10, we can
store the whole database in memory in an array.

Usingtypedefs to clean things up a bit:

typedef struct emp_struct
{ char *name;

int employee_no;

float salary, tax_to_date;
} Employee;

typedef Employee Database [10];
Database people = /*initializer: real DB would read from disk*/
{ {"Fred", 10, 10000, 3000%,
{"Jim", 9, 12000, 3100.5},
{"Fred", 13, 1000000, 30},
{"Mary", 11, 170000, 40000},
{"Judith", 45, 130000, 50000%,
{"Nigel", 10, 5000, 1200},
{"Trevor", 10, 20000, 6000},
{"Karen", 10, 120000, 34000%,
{"Marianne", 10, 50000, 12000},
{"Mildred", 10, 100000, 30000}
1
WeOIl now use this exampler fan exercise in putting together a more
complicated program.

17

hands-on—sorting employee records

Starting from the toy employee record database, rewrite the sorting

code from the string sort to sort database records instead, sorting in
ascending order on the employee name. If any employees have the
same name, sort in ascending order of employee number.

18

part S—Advanced Topics

preprocessor

It’s now time to look in more detail at what #include does, and introduce a few more
features of the C preprocessor. As mentioned before, the effect of #include is to
include the named file as if its text had appeared where the #include appears.

Two major questions remain to be answered:

* the difference between names enclosed in <> and "
* how to avoid including the same header twice if it’s used in another header

Usually, <> is for system or library includes, whereas ™ is for your own headers.
The reason for this is the order of searching for files: files in <> are searched for
among system or library headers first, before looking where the current source file
was found, whereas the opposite applies when ™ 1is used.

caution: the current source file may not be the one you think it is: itOs
the file containing the #include that brought this file in. If that file is a
header file that isnOt in the directory ofhe original compilable file, you
could end up bringing in a header with the right name but in the wrong
directory. In cases of mysterious or bizarre errors, check if your
compiler has the option of stopping after preprocessing, so you can
examine the preprocessor output

Avoiding including the same header twice is usually a matter of efficiency: since
headers shouldn’t cause memory to be allocated or code to be generated (declarations
not definitions), bringing them in more than once shouldn’t matter.

The mechanism for preventing the whole header being compiled a second time
requires introducing more features of the preprocessor.

Before the C compiler sees any compilable file, it’s passed through the
preprocessor. The preprocessor expands #include s and macios. Also, it decides
whether some parts of code should be compiled, and (usually) strips out comments.

Macros and conditional compilation are the key to achieving an include-once
effect.

A preprocessor macro is introduced by #define , which names it and associates
text with the name. If the name appears after that, it’s expanded by the preprocessor.
If the macro has parameters, they’re substituted in. This happens beforethe compiler
starts: the macro’s text is substituted in as if you replaced it using a text editor.

The next important idea is conditional compilation using #if or #ifdef ,as in

#define PC 1 /* PC, a preprocessor symbol, expands as 1 */
#if PC

#include <pc.h>

#else

#include <unix.h>

#endif

This sequence defines a preprocessor macro, PC, which expands to 1. Then, the
value of pPcC is tested to decide which header to use. You can usually specify
preprocessor symbols at compile time, and most compilers have built-in symbols
(specifying which compiler it is, whether it’s C or C++, etc.).

The usual way of doing this is to use #ifdef , which checks if a preprocessor
symbol is defined without using its value—or #ifndef , which does the opposite. This
is typically the way header files are set up so they are only compiled once, even if
(through being used in other headers) they may be included more than once:

/* File: employees.h */
#ifndef employees_h [* first thi ng in the file */
#define employees_h

/* declarations, includes etc. */

#endif /* last thing in the file */

The effect of this is to ensure that for any compilable file impo#iigpyees.h ,
it will only be compiled once. §ing the name of the file with the O.O replaced by an
underscore to make it a legal preprocessor name is a common convention, worth
adhering to so as to avoid name clashes.

This is not as good as one would like because the preprocessor must still read the
whole file to find thezendif , SO some compilers have mechanisms to specify that a
specific include file should only be looked at once.

caution: it seems a good idea to put the test for inclusion around the
instead of inside the header. This saves the preprocessor from having
to read the whole fileN but you end up with a big mess because you
must put the test around every #include

HereOs an example of the other use of macros, to define commonly used text:
#defin e times10(n) 10*n

As weOll see later, C++ largely does away with the need for preprocessor macros
of this kind by providing inline functions.

function pointers

Function pointes derive from the idea of functions a data type, with variables able to
refer to different functions, as long as argument atdrn types match. Moda

also has this feature; Pascal and Ada donOt (some extended Pascals do, and you can
pass procedures as parameters in Pascal, but not Ada). As weQll see later, C++ classes
are a cleaner way of achieving the generality offeredubgtion pointers, but they

are important to understand because theyOre often used in C library and system
routines.

To see why this is a useful feature, weQll look at how the sort routine we used in
the last two exercises could be generalized to handtedava types we used.

To do this, we need to reconstruct the array we used into an array of pointers, so
the sort routine can index the array without knowing the size of each element.

This introduces the need to dynamically allocate memory, which weGdiirtp
the system routinealloc() , which had a brief guest appearance in Part 3, where we
looked at arrays and pointer arithmetic.

To makemalloc() return a pointer of the correct type, a type cast (type name in
parentheses) of its result is needeglioc() has one argument: the number of bytes
required. Special operateteof (special because @perates on a type) is useful to
get the size. If you call it with an expression rather than a type, this expression isnOt
evaluated: the compiler determines its type and hence its size.

caution: be sure you are asking for sizeof() of the object being
pointed to, not the size of the pointer, which will usually be way too
small; one exception: sizeof an array type is the size of the whole
array even though an array is normally equivalent to a pointer

20

Back to the problem: we need a comgan function the sort can use to check the
order of two employee records, strings etc. The sort also needs to swap array
elements.

Prototypes for functions for this purpose look like this:

/* - 1if data[s]<data[t]; O if equal, else + 1%

int compare (int *data[], int s, int t);

/* swap two elements in the given array */

void swap (int *data[], int s, int t);

You have to supply functions conforming to the types of these prototypes for the
sort. Within the functions, the type afta can be cast to the required type. Here are
typedef S for the function pointers (type namesp_ptr andswap_ptr):

typedef int (*comp_ptr)(int *datal],int s,int t);

typedef void (*swap_ptr)(int *data(],int s,int t);

Parentheses around the type name are nded&dp the: from applying to the
return type (making ibt+).

The sort can then be defined by the prototype:

void sort (int *data[], int n, comp_ptr compare,
swap_ptr swap);

and can call the function pointers as follows:
if (compare(data, i, j) > 0)
swap(data, i, j);

Older compilers required dereferencing the function pointer, as in
if (*compare)(data, j -1,j)>0)
but newer ones allow the simpler call notation

To sort employee records, you have to supply swap and compare routines:
int comp_employee (int *database(], int i, int j);

void swap_employee (int *data[], int i, int j);

* names of arguments donOt have to be the same */

and call the sort as follows:

sort ((int**)my_data, no_employees, comp_employee,
swap_employee);
[*arrays are pointers: int **int*[] same type*/

traps and pitfalls

Something not fully explained in previous sections is the C increment and decrement
operators. These are in 2 forms:-paad postincrement (or decrement in both cases).

Preincremat is done before the variable is used: an expression+withn it uses
the value of+1 , andi is updated at the same time. An expression with postincrement
i++ uses the value ofbefore it changes, and afteardsi Os value is replaced iy .
Perfectly clear? No. The problem comes in expressions with more than one increment
on the same variable. Does OafterwardsO (or before in the case of prefix versions)
mean after that place in the expression, or aftewtise expression?

What is the result of the following, and what value dmd;j have at the end?

i=0;

j= i+l+ + i++;

Under one interpretatiom,is incremented immediately after its value is used, so
the expression fgr evaluates in the following seguce:

iOs value 0 used for j; i++ makes iOs value 1

21

iOs value 1 used for j: jOs final value is 1; i++ makes iOs value 2

Under another interpretation, i is incremented at the end of the statement:

iOs value 0 used for j; no i++ yet so iOs value stays on 0
iOs value 0 used for j: jOs final value is 0; both i++ push i to 2

caution: if you write code like this, immediately after you are fired the
person assigned to maintaining your code after you leave will resign

22

hands-onN generalizing a sort

HereOs a start towards the sort code, with a main program at the end:
[* file sort.h */

#ifndef sort_h

#define sort_h

typedef int (*comp_ptr) (int *data[], int s, int t);

typedef void (*swap_ptr) (int *data[], int s, int t);

void sort (int *data[], int n, comp_ptr compare, swap_ptr swap);

#endif /* sort_h */

/* file employee.h */
#ifndef employee_h
#define employee_h

typedef struct emp_struct
{ char name[100];

int employee_no;

float salary, tax_to_date;
} Employee;

typedef Employee *Database[10];

int comp_employee (int *database(], int i, int j);
void swap_employee (int *data[], int i, int j);

/* read in database (for this exercise fake it) */
void init_database (D atabase employees,

int no_employees);

/* print out the database */
void print_database (Database people, int no_employees);

#endif /* employee_h */

/* file main.c */
#include "sort.h"
#include "employee.h"

void main(int argc, char *argv([])

{ constin tno_employees = 10;
Database people;
init_database (people, no_employees);
print_database (people, no_employees);
sort((int**)people,no_employees, comp_employee, swap_employee);
print_database (people, no_employees);

23

part 6N Programming in the Large

The distinction between programming in the small and programming in the large
arises from a desire to avoid having implementation detail interfere with
understanding how various (possibly separately writieats of a program fit
together and interact.

file structure revisited

Having seen the way the preprocessor works we are now in a better position to look at
how multifile programs are put together.

Header files ar¢he glue used to tie independently compiled files together. These
files may be files you are responsible for, library files, or files other programmers are
responsible for on a large project.

Unlike some later languages such as Ad&odul&R, there is no mechanism in
C to enforce using equivalent interfaces for all separately compiled files. Also, there
iIs no mechanism in the language to ensure that separately compiled files are
recompiled if any header they import is recdlexh

There are tools external to the language to help overcome these limitations

In UNIX, the make program is usually used to rebuild a programmagefile
contains a specification of dependencies between the files that are compiled, headers,
libraries, etc. Writing anakefile is beyond the scope of thesetes. However it is
worth noting that there is a short cut in most versiondJ®eiX: the makedepend
program can be used to create most of the dependenciesniakéhie . Most PC
based interactive environments automate the OmakeO process, but eimemand
driven programming tools often still have this problem. A related problem is that C
does not require a tygensitive linker, so itOs possible (e.g. as a result of a bug in
your includes) to link files which have an erroneous expectation of function
arguments, or types of global data.

C++ goes a long way towards fixing the tygefelinkage problem, so there is a
case for using a C++ compiler even for plain C programs.

For large, multprogrammer projects, many diams have tools to manage
access to source files, so only one programmer has write permission on a file at a
time. Such tools are not part of C, and can usually be used with other languages and
tools available on the systetiNix Osnake is also genergburpose, not only for C and
C++.

maintainability

CN through its lax type checking, permissive file structure and support felelmsi
hackind\N has much potential for producing unmaintainable code.

If include files are used purelas module interfaces, with as few global
declarations as possible, module level maintainability can approach that of Ebdula
or Ada.

C allows variables to be declared global to a file, but not visible in other compiled
files. Such a variable is declaredtside functions, with the keywosektic . If global
state information is needed, it should ideally be restricted to a single file in this way.

For the opposite effelita globally visible variable leave outstatic ; to make it
visible elsewkre, declare it astern in a header imported by files that access it.

An extern is a declaration, not definition: it doesnOt cause memory allocation.

caution: global variables are reasonably safe within one file but
making them global to the entire program is bad for maintainability.

Preferably use access functions to read or update the variables from
another file if global state must be shared across files. You can enforce
this convention by always declaring a global using static . As noted in
part 2, functions can also be static

portability

Related to maintainability is portability

If machinespecific features of your program are isolated to one file, and that file
kept a small as possible, portabilig/not too difficult to achieve.

Some key problems:

¥ many C programmers assumes are the same size as pointers, and both are 32
bits or 4 bytes; this is causing problems for example in poding to new
processors with 68it addresses

¥ some operating systems have essasitive file namesTheUNIX file system is
case sensitive, while those of DOS, Windows kliadintosh arenOt; this can
cause problems if you are not careful about typing header file names using all
lower-case, and try to move a programJeix

¥ integer types, especialtyar andint , can be differensizes even across different
compilers on the same machine ; if you rely on their sizesiz¢se to check
they are what you expect (ideally embed this in your code to make it general)

¥ path name conventiomtifferN on UNix, the separator is a O/O, on DOSOa @
Macintoshes, a O:O; if portability across these operating systems is an issue, it may
be useful to separate aticlude s that must pick up files from a different

directory, and put them in a file of their own:
/* file data.h */

#ifndef data_h /* contraction of if !defined(data_h) */

#define data_h

ifdef UNIX /* whatever symbol predefined by your compiler */
include "../data.h"

elif defined(DOS) /* again */

include ".. \ data.h"

else /* fall through to M acintosh */

include "::data.h"

H

endif /* only one endif needed when elif used */

#endif /* data_h */

In general: creating one such file for each file that must be found in another
directory is a reasonable strategy if you expect to need to port yagynapr to other
operating systems. Note my indentation to highlight nesting ofitheN in general
itOs bad practice to deeply nest conditional compilation.

hiding the risky parts

Another important point related to bogortability and maintainability is avoiding
using risky features such as pointer arithmetic and type casts throughout your code.
Ideally, they should be isolated into one file as noted before.

As we shall see, C++ offers better mechanisms for hiding sldiail a disciplined
approach to C can pay off.

Putting together the strategies for portability and maintainability, putting
machinedependent or otherwise potentially troublesome code in only one place is a
good start. If this isaken a step further and global variables are never exported
(always usetatic), potential trouble can be isolated.

25

performance vs.maintainability

In a performanceritical program, it is tempting to ignoreetse rules and sprinkle the
code liberally with clever tricks to attempt to wring out every last bit of performance.

A good book on algorithm analysis will reveal that this is a futile effort: most
programs spend a very large proportion of their time irery ¥mall part of their
code. Finding a more efficient algorithm is usually much more worthwhile than
hacking at the code and making it unmaintainable.

example: the sort we have been using in our examples takes
approximately n2 operations to sort n data items. A more efficient
algorithm, such as quicksort, takes roughly n log, n operations. If
n=1000, nz = 1-million; n log, n is about 100 times less. The detail of
quicksort is more complex than our simple sort, so the actual speedup
is less than a factor of 100, but youOd do a lot better if you are sorting
1000 items to start with quicksort and optimize itN while still keeping it
maintainableN than use all kinds of tricks to speed up our original sort

Also recall the lesson of the optimizirgpmpiler: there are some very good
compilers around, and before you attempt to using some of COs less maintainable
programming idioms, try the optimi2é¢ror switch to a better compiler.

caution: if you must do strange, hard-to-understand things for good
performance, make sure that you really are attacking parts of the code
that contribute significantly to run timeN and preferably isolate that
code to one file, with good documentation to aid maintenance

26

hands-on—porting a program from UNIX

The following is a simple floating point benchmark written by a student
a few years ago for a UNIX platform. See how easily you can get it
working on your compiler

#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#tdefine N 1000

float first[N], second[N], result[N];
int i, j, interations = 1000;
clock_t start, end, elapsed;
void main O
{ for (i=0; i<N; i++) /* initialize */
{ first[i] = randomQ);
second[i] = random();
ks

start = clock (); /* start timer */
for (i=0; i<interations ; i++)

for (3=0; j < N; j++)

result[j] = first[j] * second[j];

end = clock Q;
printf ("Timing Ended.\n\n");
elapsed = end - start;
printf ("Time : %fs\n",(float)(elapsed)/CLOCKS_PER_SEC);

Alternatively, if you are working on a UNIX platform, try porting the
following which compiles and runs on a Macintosh compiler:

#include <time.h>
#include <stdio.h>
/* print current date and time */
void main O
{ clock_t now;
struct tm * mac_time;
char *time_str;
now = time (NULL); /* time now */
mac_time = localtime(&now);
time_str = asctime(mac_time);
printf ("Now : %s\n", time_str);

27

part 7—Object-Oriented Design

identifying objects

The most important element of design is abstraction. Most design methods in some or
other form include ways of layering detail, so as little as possible needs be dealt with
at a time.

A key aspect of achieving abstraction in an object-oriented design is
encapsulating detail in classes. The idea of encapsulation is that a unit of some sort
puts a wall around implementation detail, leaving only a public interface visible. This
is the general idea called information hiding Where classes are useful is in allowing
information hiding to be implemented in a hierarchical fashion, using inheritance
Inheritance is the mechanism by which objects are derived from others, sharing
attributes they have in common, while adding new ones, or overriding existing ones.

In the design phase, it is useful to try to find objects which can be related by
similarity —or differences. Inheritance makes it possible to start with a very general
class, and specialize it to specific purposes. If this kind of decomposition can be
found, an object-oriented program is relatively easy to construct, and even non-
object-oriented languages such as C can benefit from such a design. In particular, an
object-oriented design can guide in the use of header files in a disciplined way, as
well as discouraging the use of global variables.

For example, in a simulation of n bodies interacting through gravitational
attraction, it turns out that groups of bodies far away can be grouped together and
treated as a single body. Such a clustered body has most of the properties of a normal
body, except it contains a list of other bodies which have to be updated at each round
of the simulation. A possible decomposition: make a class for ordinary bodies, while
extending it for the clustered body.

object relationships

Once having identified the major objects and which ones can be described in terms of
specialization from a more general one, other relationships can be shown using a
suitable notation to distinguish them. Some objects are contained in composite
objects, or some are clients of others that provide a service. For example, as
illustrated below, a drawing object could provide a service to the bodies in the n-body
simulation.

Once the first pass of decomposition is complete, the next step is to look in more
detail at each object. In terms of the design model, it’s necessary to identify State
(history, or data the object stores), and behavioursthe object is responsible for. By
contrast, most older design models treat procedural and data decomposition

draw_galaxy

separately.

A good strategy as each stage of the design is complete is to implement a toy
version of he program with as much detail as has been designed so far; this makes it
easier to be sure the design is correct. If any problems are found in implementation,
itOs possible to go back and correct them at an early stage. This kind of iterative
approach isiot unique to objeedriented design.

As with other design methodologies, itOs important not too fill in too much detail
at once: you should proceed from an overall design to designing individual
components, always keeping the level of detail under costrgiou can understand
everything you are working on.

entitiesvs.actions

Some other decomposition techniques emphasize either data or program
decomposition. In an objecriented design, depending on the context, egleating

with realworld entities or with actionscarried out by them, can be a natural
approach.

Then-body simulation is an example of an entigsed decomposition.

An example of an actiehased decomposition is a etelriven simulation. For
example, if a new computer architecture is being designed, it is common to run
extensive simulations of programs executing on a simulator of the new design. The
simulation is typically run by schedulirgyents each of which repsents an action
that would have taken place in a real execution on thetstié-built hardware.
Examples of events:

¥ amemory read
¥ aninstruction execution
¥ an interrupt

Also, such a simulation has a lot of globatstwhich is however only of interest
to specific events (e.g., the state of memory is interesting to a memory read).

An objectoriented design based on events helps to focus on the common features
across events, and which data is common to which eveatding to an effective
approach to decomposition and information hiding.

example: eventdriven program

A typical eventdriven user interface such as Microsoft Windowrs Macintosh
responds to events from the user.

Such events are conceptually very similar to events in an-dviesh simulation.

The typical style of program for such an interface consists of a loop containing a
call to a sygeem event manager to find out if there is an event to process. If there is an
event, itOs dispatched using a laageor switch statement (with a case for each type
of event the program handles).

In terms of objecbriented design, events which have @eas in common should
be grouped together and common parts used as a basis for designing deleher
abstraction. Specific events are then derived from these general ones. Attention can
also be paid to which events need which parts of the global $tateapplication. A
similar approach is needed to define entities, such as documents, fonts, etc. Finally,
interactions between different types of events must be defined, and related to entities.

An eventdriven application is interesting as an examplerehesisting on doing
the entire design using either emnditgsed or actiocihhased decomposition is not
helpful. Entities such as documents are useful to model as objects. In fact the

29

application can be though of as breaking down into two major comporws: and
manipulators. Views are such things as documents (in both their internal
representation and their display on the screen), and contents of clipboards and inter
application sharing mechanisms. On the other hand, as we have already seen,
event® which are a kind of actidv are also useful to model. A natural description

of the behaviour of the application is in terms of interaction between entities and
actions.

30

design tas\ simple eventdriven user interface

For purposes of this design we will restrict the problem to user events
consisting purely of mouse downs (only one button), keystrokes,
update and null events (sent at regular intervals if the user does
nothing).

Rather than look at a specific application, the design is for a generic
framework, in which the detail of each kind of event handler is left out.

The design should include: mouse down in a window (front most or
not), mouse down in a menu item, with consequences: printing the
front most document, saving the front most document, quitting or other
action added by the application.

An update event results in redrawing a window.

Think about the global state thatOs needed, which objects can be
related, and where to hide data.

An idea to consider: have an internal representation of the application
data, which can be displayed via various views: this is a useful
abstraction for sharing code between printing and drawing windows

31

part 8—OOD and C

language elements

We have already seen the features of C we need to translate an object-oriented design
to code. To encapsulate data, we can use a struct, though it does not enforce
information hiding. To include actions on the data, we can store function pointers in
the struct.

To implement inheritance is more of a problem, since there is no mechanism in C
to add new data fields to a struct. Nonetheless, we can get quite a fair part of the way
without this, since the ability to change function pointers at least allows behaviour to
be changed. To extend a data representation though there’s no mechanism in the
language: we can use an editor to duplicate common parts of structs, and use type
casts to allow pointers to point to more than one type of struct—at the risk of errors
not detectable by the compiler. Another option—not recommended—is to become a
preprocessor macro hacker.

One additional language feature can in principle be used as well: the ability to
define static data within a function. The effect of this is to preserve the value of the
data between function calls (this is really the same as a static variable at file scope,
except it’s only visible inside the function). This feature would allow us to store
information global to a “class” (not stored with each object). However, there is a
problem: since we can change any of the functions stored in the function pointers, we
would have to be careful to keep track of such global-to-the-class data as a static in a
function when we change a function pointer.

This last feature is not necessary in the example to follow.

example

The example follows from the design developed in Part 7.

Let’s consider the relationship between just two parts of the specification: printing
and redrawing windows.

These both involve essentially similar operations: iterating over the internal
representation and rendering a view. Therefore it makes sense to have a general
approach to rendering a view that can be extended to handle either case, with as much
re-use between the two cases as possible.

We can make a general View class which renders by iterating over a
representation. For our purposes, we will fake the rendering action to keep the
example simple. In C, this can all be implemented along the following lines:

#include <stdio.h>

typedef struct view_struct

{ char data[100]; /* real thing would have something useful */
} View;

/* function pointer type */
typedef void (*Renderer) (View current_view);

typedef struct render_struct
{ Renderer render_function;
} Render;

void Renderer_print (View current_view)
{ printf("printing\n");
ks

void Renderer_window (View current_view)
{ printf("redraw\n");

3

A Vview could call one of these as follows (highly simplified to illustrate the
principles):

Render *print_view = (Render*) malloc (sizeof(Render));

Render *window_view = (Render*) malloc (sizeof(Render));

View with_a_room;

print_view->render_function = Renderer_print;

window_view->render_function = Renderer_window;

print_view->render_function(with_a_room);

Of course the actual code would be much more complex, since the View would
have to contain a detailed representation of the objects to render, and the renderers
would have to have detailed code for drawing or printing.

33

group session: finalize the design

Having seen how part of the design could be implemented in C, refine
the design making sure you have a clean abstraction.

To avoid too many complications in implementation, make sure your
object hierarchy is not very deep, and try not to have too much
variation in data representation (state) between objects in the same
hierarchy. Also try to define a small subset of the design which you can
be reasonably sure of implementing in an afternoon

34

hands-on —implementation

Now implement the design in C. For simplicity, rather than the actual
event generation mechanism, whenever the program requires another
event, read a char from the keyboard:

char new_event;

new_event = getchar();

Take ‘q’ as quit, ‘p’ as print, ‘r’ as redraw, ‘k’ as keydown and ‘m’ as
mousedown.

Doing this will save the effort of implementing an event queue (needed
in the real thing since many events are generated as interrupts, outside
the control of the user program)—your toy program will consume the
event as soon as it’s generated

35

part 9—Object-Oriented Design and C++

OOD summary

Object-oriented design requires information hiding through encapsulation in objects
and sharing common features through inheritance.

In a language like C, some aspects of the design can be implemented directly,
while others can be implemented through programmer discipline.

Inheritance in particular would be useful to implement with compiler support.

objects in C++

In C++, a new concept is introduced: the class. For compatibility with C, a struct
can be used as a class, with some minor differences. From now on, however, we shall
use classes since the syntax is more convenient.

Classes support information hiding, and allow encapsulation of data with
functions that operate on the data. Inheritance is supported, as is redefining built-in
operators for new classes. Data and functions in classes are called members.
Functions—including member functions—can be overloaded, i.e., it’s possible to
have more than one function with the same name as long as the compiler can tell
them apart by the types of their arguments, or the class of which they are a member.
Overloaded functions may not be distinguished by the type they return.

A simple class declaration looks like this:

class Point

{public:
Point (int new_x, int new_y);
~Point);
void draw ();
private:
int x, y;
s

This defines a new type, class Point. Unlike with C structs, it isn’t necessary to
use the word class when declaring or defining a variable of the new type, so there’s
no need to do a typedef to give a class a single-word name. The keyword public:
means following members are visible outside the class. The member with the same
name as the class, Point(), is a constructor, which is called when a new variable is
created, by a definition, or after allocation through a pointer by the new operator.
~Point() is a destructor, which is automatically called when a variable goes out of
scope, or if allocated through a pointer, the delete operator is called on it.

Keyword private: is used to make following members invisible to the rest of the
program, even classes derived from Point. Parts of a class can be made accessible
only to other classes derived from it by preceding them with protected:.

Here is an example of two definitions of points, with their position:

Point origin(0,0), of_no_return(1000000,1000000);

When to use private:, public: and protected:? Only member functions that are
part of the external specification—or interface—of the class should be made public.
These usually include the constructor and destructor (which can be overloaded with
different arguments), access functions to allow setting the internal state or reading it,
without making the internal representation known, and operations on the class.

Private members should be anything else, except secrets of the class that are
shared with derived classes. When in doubt, use private—this isolates information to
one class, reducing possibilities for things to go wrong.

caution: C++ allows you to break the principle of encapsulation. Don’t
be tempted. Making data members public is a sure way of writing
unmaintainable code. Instead, use access functions if other classes
need to see the data; this can be done efficiently using inline s—see
“differences from C” below

The interaction between storage allocation and constructors is important to
understand. When a new instance of a class is created (either as a result of a definition
or of a new), initially all that is created is raw uninitialized memory. Then, the
constructor is called—and only after the constructor finishes executing can the object
properly be said to exist.

Another key feature of C++ classes is inheritance. A derived class is defined by
extension from a base class (in fact possibly more than one through multiple
inheritance).

The notation is illustrated with a simple example:

class Shape
{public:
Shape (Point new_origin);
~Shape ();
virtual void draw () = 0;
private:
Point origin;

h

class Circle : public Shape
{public:
Circle (Point n ew_origin, int new_radius);
~Circle ();
virtual void draw ();
private:
int radius, area;

g

A few points (we’ll save the detail for Part 10): class Circle is declared as a
public derived class of Shape: that means the public and protected members of Shape
are also public or protected respectively in Circle . In a private derived class, public
and protected members of its base class become private, i.e., they can’t be seen by
any derived class (unless given explicit permission with a friend declaration). A
virtual function is one that can be replaced dynamically if a pointer to a specific class
in fact points to one of its derived classes. If a class has virtual functions, it has a
virtual function table to look up the correct member function. The line

virtual void draw () = 0O;

in class Shape means Shape is a abstract class, and creating objects of that class is
an error that the compiler should trap. In such a case, the function is called a pure
virtual function. Only classes that are derived from it that define draw (or are derived
from others that define draw) may be instantiated. (This is a bit like having a function
pointer in a C struct , and setting it to the NULL pointer—but in such a case the C
compiler won’t detect the error of trying to call a function through a NULL pointer.)
Since Circle is not an abstract class, we can do the following:

Circle letter(origin, 100);
Shape *i_m_in = new Circle(of_no_return, 22);
i_m_in ->draw (); /*call s Circle::draw */

The double-colon is the C++ scope operator, is used to qualify a member
explicitly if it isn’t clear which class it belongs to, or to force it to belong to a specific

37

class. Notice how member function draw() is called through an object: in a member
function, the current object can be accessed through a pointer called this (you seldom
need to use this explicitly: a member function can use members of its class directly).
Note that the compiler should complain if you try something like:
Shape blob(origin);

with a message along the lines of
Error: cannot create instance of abstract class 'Shape'’

stream 1/0

One additional point is worth explaining now: input and output using the iostream
library. It defines three widely used standard streams: cout, cin and cerr, based on
the UNIX convention of standard out, standard in and standard error. Output to a
stream is strung together with the << operator, while input is strung together with >>
(also used—as in C—respectively, as left and right shift bit operators).

Use of the default streams (C++ has end-of-line comments, started by //):

#include <iostream.h>
void main O
{ cout << "Enter a number : "; // no line break
cin >> 1i;
cerr << "Number out of range" << endl; // endl ends line
} /* can also use C-style comment */

if you need to use files, use
#include <fstream.h>

A stream can be associated with a file for output (ios: :out is an enum value):
ofstream my_out ("file.txt", ios::out);

and used to write to the file:
my_out << "A line of text ended by a number : " << 100 << endl;

To read the file:
ifstream my_in ("file.txt", ios::in);
char data[100];
my_in >> data;

You can also explicitly open the file, if you didn’t connect the ifstream or

ofstream object to a file when you defined it:

#include <stdlib.h> /* for exit () */
ifstream my_in;
my_in.open ("file.txt", io0s::in);

if (Imy_in)
{ cerr << "open failed" << endl;
exit (-1); // kill program returning error code
3
// use the file ... then finally:

my_in.close Q);

If you need to do both input and output on a file, declare it as class fstream; open
with ios::inlios: :out which combines the two modes using a bitwise Or.

caution: I/O is one of the most system-dependent features of any
language. Streams should work on any C++ but file names are
system-specific (.e.g., DOS’s “\” path separator, vs. UNIX’s “/”)

38

differences from C

Classes, aside from supporting object-oriented programming, are a major step
towards taking types seriously. Some see C++ as a better C—if you use a C++
compiler on C code and fix everything it doesn’t like the chances are you will unearth
many bugs.

Classes bring C++ much closer to having types as in a modern language such as
Ada or Modula-2, while adding features such as inheritance that both languages lack.

Classes, templates (done briefly in Part 14) and inline functions reduce the need to
define arcane code using the preprocessor. Here’s an example of an inline function:

inline int timesl1@® (int n)
{ return 10 * n;

3

The inline directive asks the compiler to attempt to substitute the function in
directly, rather than to generate all the overhead of a procedure call. The following
two lines should cause the same code to be generated:

a = timesl1l0 (b);

a =10 * b;

It’s particularly useful to use an inline as an access function (e.g. for private
members of a class). Compilers don’t always honour an inline: it’s only a directive.
Early compilers didn’t inline complex functions where the procedure call overhead
was minor compared with the function; this is less common now.

Since an inline doesn’t generate code unless (and wherever) it’s used, it should
be in a header file. I prefer to keep inlines separate from the .h file, since they are
implementation detail rather than part of the interface of a class. My file structure is

File part_of_program.h: contains classes, ends with

#include "part_of_program.inl"

File part_of_program.inl: contains inlines
File part_of_program. c++: starts with
#include "part_of_program.h"

Make sure the compiler has seen the inline directive before you call the function.
This can be a problem if an inline calls another, if you use my file strategy. One fix is
to put a prototype of the problem function at the top of the file, with an inline
directive. Another is to put the inline directive into the class declaration, but this is
bad practice. Inlining is implementation detail, better not made into part of the class’s
interface.

Another bad practice: you can put the body of a member function in the class
declaration, in which case it’s assumed to be inlined. This again puts part of the
implementation into the publicly advertised interface of the class.

caution: if an inline is called before the compiler sees it’s an inline, it
generates a normal call. This causes an error when the compiler sees
the inline directive, or later when the linker tries to find non-existent
code (the compiler doesn’t generate code for an inline, but substitutes
it in directly). If you get link errors, this is one thing to check

C++ requires type-safe linking. This isn’t as good as it could be since it assumes a
UNIX-style linker, with no type information from the compiler. Instead, name
mangling is implemented by most C++ compilers: argument types of functions and
their class are added to the name, so overloaded versions of the function can be
distinguished, and only functions with correct argument types are linked. This is not

39

guaranteed to find all errors; you still need to be sure to use consistent header files,
and to use a mechanism such as make to force recompilation when necessary.

One other significant addition to C is the reference type, typename&. This differs
from a pointer in that you don’t have to explicitly dereference it—the compiler
generates pointer manipulation for you. Reference types can be used as arguments in
function calls, with the same effect as Pascal var parameters:

void swap (int &a, int &b)

{ int temp;
temp = a;
a = b;
b = temp;
}

//usage (correct, unlike Part 2 example):
swap (first, second);

In UNIX, C++ compilable files usually end in .C or . c++. PC compilers
use .cpp more often. Headers usually end in .h, though .hpp is
sometimes used on PCs

40

hands-onN simple example

DonOt worry too much about the detail of the below codBl weOll look at
detail in the Part 10. For now, concentrate on how classes are used: fill
in the main program as suggested, and see what output results

#include <iostream.h>
#include <string.h>

class View
{public:
View (const char new_name[]);
~View ();
private:
char name[100]; /* real thing would have something useful */

h

class Render
{public:
virtual void draw (View *to_draw) = 0;

h

class Print : public Render
{public:
virtual void draw (View *to_draw);

h

class Update : public Render
{public:
virtual void draw (View *to_draw);

2

void Print::draw (View *to_dra w)
{ cout << "Print" << endl;

}

void Update::draw (View *to_draw)
{ cout << "Update" << endl;

}

View::View (const char new_name[])
{ strncpy(name, new_name, sizeof(name) - 1); /] copy max. 99 chars

}

void main()
{ View *window = new View ("window");
Render *renderer;
renderer = new Print;
renderer - >draw (window);
/I based on the above, create an object of class Update
/I by replacing the Word Print by Update in the last 3
/l'lines - now try to relate this to the object - oriented design
/I exercise

41

part 10N Classes in More Detail

constructors and destructors

A constructoris a special function that is called automatically. As defined, it does n
return a value (i.e., doesnOt contain a statement expression;). Its effect is to

turn uninitialized memory into an object through a combination of compiler
generated code and the code you write if you supply your own constructor. If you
donOt sypy a constructor, compiler supplies &ha default constructor with no
arguments. The additional code the compiler generates for your own constructor is
calls to default constructors for objects within the object which dav®ttheir own
constructor, and code to set up the virtual function table (if necessary).

Here is an example of a constructor:

Shape::Shape (Point new_origin) : origin(new_origin)

{

}

The first thing thatOs interesting is tis® wf the scope operator to tell the
compiler that this is a member of the classpe (through writingshape::). Then
thereOs the initializer foigin ~ after the colon. Why could we not do the following?

Shape::Shape (Point new_origin)

{ origin = new_origin;

}

This is not allowed becausegin hasnOt had a constructor called on it. Look
back at classoint . The only constructor defined fawint has to take twant
arguments. Once we define a constructor, the default pardesst constructor is no
longer available (unless we explicitly put one in). However there is another cempiler
supplied constructor, theopy constructoy which allows you to initialize an object
from another. ThatOs whagin(n ew_originy does. Initializers for contained classes
follow a colon after the arguments, separated by comshase is very simple, so
thereOs very little for the constructor to do, so hereOs a more interesting example:

Circle::Circle (Point new_origin, int new_radius) :
Shape (new_origin), radius (new_radius)
{ area = Pl*radius *radius; /I Pl usually in <math.h>

}

area could also be initialized in the header, but itOs easier to read if initialization
that doesnOt require its owonstructor is in the body of the constructor. | would
usually write the above as follows, with only the base class initialized in the heading:
Circle::Circle (Point new_origin, int new_radius) :
Shape (new_origin)
{ radius = new_radius;
area = Pl*radius *radius;

}

Any base classes that have a default constructor need not have the constructor
explicitly called, but if you want to pass parameters to the constructor of a base class,
it must be done using this mechanism.

Another thing to notice: once you(passed the scope operatoriftle: , you
can refer to class members without further qualification.

A destructorns only needed if some kind of global state needs to be undone. For
example, if an object contains pointers, the consirueiil probably allocate memory
for them (though this could happen later, e.g., if the object is the root of a tree or node
of a list), and the destructor should see to it that it is dealldéaitftbrwise the
memory is not reclaimed, resulting imeemoryleak (In general a memory leak is a

gradual disappearance of available memory through failing to reclaim memory from
pointers that are either no longer active, or have had their value changed.)
Destructors are automatically callediv@ correct order if an object is of a derived
class. The destructor farcle is empty and could have been left out, but since itOs in
the class specification we must define it:
Circle::~Circle ()

{
}

inheritance and virtual functions
Consider the following:

void Circle::draw ()

{
}

/I call some system routine to draw a circle

Shape *i_m_in = new Circle(of_no_return, 22);

i_m_in ->draw ();

Wheredraw() is called,the compiler generates code to find the correct function in
thevirtual function tablestored with object_m_in , and callCircle::draw()

What happens to virtual functiotalls in a constructor®ntil all constructors
terminate (the current one may have been called by another constructor), the virtual
function table may not be set up. To be safe, the virtual function is called like a
regular member functidibased on the class currently under carsion.

On the other hand, destructoran both be virtual and can call virtual functions
with the expected semantics: the compiler ensures that the virtual function table is
valid.

information hiding

Classes are a much more robust way of hiding information than COs limited
capabilities of hiding local variables inside functions and hiding names at file scope
by making themstatic . These mechanisms are still available in C++, but with the
additional macimery of the class mechanism, names visible to a whole file are
seldom necessary.

Furthermore, lowevel detail can be hidden by putting it in a base class. The
machinespecific parts of the class can be made private, preventing direct access to
them by een classes derived from them.

We shall now look at a more robust mechanism for hiding global state than COs
file-scopestatic S.

static members

If a member of a class has the wetdc before itin the class declaration, it means
there is only one instance of it for the whole class in the case of a data member, or in
the case of a function, that it can be called without having to go through an object.

For example, to extend the class for shapespuld be useful to have a global
count of all shapes that have been created. To do this, we need a count that is stored
only once, not for every shape, and a function to look up the count (because we donOt

make data members public):
/l'in the header file:
class Shape
{public:
Shape (Point new_origin);

43

~Shape ();

virtual void draw () = 0O;

static int get_count ();
private:

Point origin;

static int count;

h

/I in the compilable file:
int Shape::count(0); /l could also use "count = 0"

int Shape::get_count ()
{ return count;

}

The line int Shape::count(0); is needed because a static member must be
defined. A class declaration is like t@edef in the sense that it doesnOt cause
memoy to be allocated. Nestatic members have memory allocated for them when a
variable of the class is defined, or operator is used, but static data members must
be explicitly defined in this way. We must also change the constructor and destructor
to kee the count (sinceount is private, this can only be done by Shape):

Shape::Shape (Point new_origin) : origin(new_origin)

{ count++;

}
Shape::~Shape ()
{ count -- ;

}

Now, whenever a new object of any class derived fsospe is createdgount is
incremengéd, and decremented whenever an object of such a class ceases to exist.
You can look up the count as follows:

#include <iostream.h>
/I assume the above classes etc.
/I can leave out arguments to main if not used
void main()
{ Circle letter(origin, 100), ro und(letter);
Shape *i_m_in = new Circle(of_no_return, 22);
cout << "Number of shapes is " << Shape::get_count () << endl;

}

which results in the output
Number of shapes is 2

44

hands-onN adding to a class

Define a class Double_circle ~ which contains an offset and its draw()
calls Circle::draw() twiceN once with the radius increased by the
offsetN and use it in a simple test program (you may fake drawing by
writing out the radius). Use the Circle class defined in this section,
adding the missing part of draw()

Hint: set the radius to its new value before calling Circle::draw() the
second time, and reset it afterwards

45

part 11N style and idioms

access functions

ItOs generally bad style to put data members into the public interface of a class. To do
so is bad for maintenance, and is not much better than unrestricted use of global
variables.

ItOs much better practice, if parts of the data of a class neexd @ocessed
elsewhere, to use access funcsiotf the representation is changed later, only the
access functions need change, not every place in the code where the data is accessed.
Also, the places where values change are easiéind, which makes for better
maintainability. For example:

/I shapes.h
#ifndef shapes_h
#define shapes_h

class Circle : public Shape /I class Shape as before
{public:

Circle (Point new_origin, int new_radius);

~Circle ();

virtual void draw ();
intge t_radius ();
int get_area ();
void put_radius (int new_radius);
private:
int radius, area;
I3
#include "shapes.inl"
#endif /* shapes_h */

/I shapes.inl
inline int Circle::get_radius ()
{ return radius;
}
inline int Circle::get_area ()
{ return area;
}
inline void Circle::put_radius (int new_radius)
{ radius = new_radius;
area = PI*radius*radius;

}

/I file main.c++

#include "shapes.h"

void main()

{ Circle letter(origin, 100);
letter.put_radius (200);

}

protected vs.private

This has been mentioned before but is worth repeatisgnuch of a class as possible
should be private. Private members are hidden even from derived classageBnst
better than public, but derived classes can still see protected members.

This relationship applies if a derived class is derived publicly, as in our examples.

If a class is derived privately, no names are visible in the derived class, for example:
class Circle : private Shape /I etc.

usage of constructors

Constructors are mostly automatically invoked. There are a few points about
constructors that are important to undiensl, aside from those mentioned already.

An array of objects can only be defined using default (parameterless)
constructors. If you have an array declaration, youOll get a compiler error if you
defined constructors with arguments, and havenOt suppléddudt donstructor (only
if you supply no constructor is a default constructor supplied by the compiler).

If you have common code across several constructors, or wantritiakze an
object, can you call a constructexplicitly? No. You have to separate out the
initialization code you want to yese into an ordinary member function.

In C, a type cast looks like this:

(int*) string_var; /* turn array of char into pointer to int */

In C++, you can do the same thing. But you can also define type conversions by
defining a constructor taking a given type as an argument:

#include <string.h>
class P_string
{public:
P_string ();
P_string (const char * c_string);
private:
char p_string[256];
I3
P_string::P_string ()
{
}
P_string::P_string (const char *c_string)
{ intlength = strlen(c_string);

char *start = &p_string[1]; /I &p_string[1] is its address
if (lengt h >= 256)
p_string[0] = 255; /I need 1 byte for length
else
p_string[0] = length;
strncpy(start, c_string, 255); /I copy at most 255 chars
}
P_string dialog_name = P_string ("Save File"); /I for example
Constructorp_string("Save File") does typeconversion from null character

terminated C string to Pascal string (first byte is the Idwgthmmon on Mac and
PC).
A very useful property of a destructor: itOs automatically called fopaioter
variables, even if yoteturn from a function, obreak from a loop Ogwitch
The following is useful to ensure that bracketing operations are properly paired
(e.q., set the graphics state, do something, restore it to its previous state):
class State
{public:
State ();
~State ();
private:
State_data state_info;
|3
State::State ()
{ I/l save previous state, then set new state

}
State::~State ()

{ [Ilreset to stored state

}

void update_window ()

a7

{ State graphics_state;
/I do stuff to the window
if (some_condition)
ret urn;

}

The destructor is called two places: before theturn , and before the final. If
you used explicit calls to save and restore state, it would be easy to forget the restore
in one of these cases.

48

hands-onN implementing a simple design

Choose a manageable part of your event-driven interface design, and
implement it in C++, using classes. You should find it a lot easier than
trying to implement an object-oriented design in C. In particular, a deep
hierarchy with many additions to the state at each level should no
longer present a big problem

49

part 12N Advanced Features

mixing C and C++

Sometimes itOs useful to link separately compiled C code with a C++ program. You
are likely to run into problems if the main program is not written in C++, because
maost C++ compilers insert initialization code into the main program. Otherwise, the
major problem to overcome is the expectation of the C++ compiler thats#&fpe
linking is used. Thextern"c* mechanism is supplied to solve this problem:

extern "C"
{ I/ {} needed only if more than 1 declaration
#include "sort.h"

}

Everything bracketed this way is exempt from tgade linkage (i.e., names
arenOt manglBdhe mechanism for typgafe linking). The C++ compiler generates
calls to the functions declaredssit.h without mangling names.

overloading operators

One of the more advanced features of C++, also found in a few tangnages such
as Ada (and some older ones like AlgE8), is the ability to define new behaviours
for built-in operators.

In C++, aside from obvious operator symbols such, asetc., some ther things
are operators, including assignme)trew, delete , and array indexingj().

For example, if you do not like the limitations of bartarray indexing and want
to define your own, you can create a class containing the array data and indexing
operations of your own design. One reason to do this: as with many other languages,
C++ is limited as to its support for freely specifying all dimensions of a multi
dimensional array at rutime. The reason for this is that the conventional array
indexing operation needs to multiply by all but the last dimension to find the actual
place in memory that an array element occupies.

With COs capability of using pointers and arrays interchangeably, this problem can
usually be worked around by implementing mdithensional arrays as arrays of
pointers. C++QOs class mechanism provides a cleaner way of hiding the detail of this,
allowing you to use code that looks like an ordinary array indexing operation once
you have worked out the detail of your array classOs opkation.

Here is how you could declare such an indexing operation (we shall extend this to
a 3dimensional array class in the next handssession):

class ArraylD
{public:
Array1D (int new_max);
~ArraylD ();
int& operator [] (int ind);
private:
in t *data;
int max;
|3
Note theg: it specifies that the return type of the operator isfarenceto int ,
which means that it is effectively a pointr the actual data item. However the
compiler automatically dereferences the pointer as necessary. The reason for doing
this is to make it possible to use the index operator on théndattside of an
assignment, as in

Array1D scores(100); /Inot]: 100 i s constructor arg
inti;

for (i = 0; i < 100; i++)
scoresl[i] = 0;
Here is howoperator] could be defined:

int& ArraylD::operator [] (int ind)

{
#ifdef BOUNDS_CHECK

if ((ind<0)||(ind>=max))
/I insert error m essage
else
#endif /* BOUNDS_CHECK */
return data[ind];

}

The constructor has to allocatea . IOve put in an option of checking the index
against the array bounds, which usually isnOt available in C or C++ (an array is a
pointer, so the compiler maynknow the bounds: the OarrayO could be an arbitrary
piece of memory). If you donOt want bounds checking you can compile without
defining BouNDs_CHECKTO improve performance, you can inline the opekhiar
which case itOs no less efficient than the usueakory , but with the option of
bounds checking.

memory management

ItOs also possible to redefine the Huoilbperatorsnew and delete . This is useful
because the standard strategy for memory allocation may not alwagfident
enough for every application.

For example, | once encountered a situation where someone adasgra large
amount of data off disk, sorting it in memory then writing it back. The data was too
large to fit in memory, but he relied on the operating systemOs virtual memory to
allow him to get away with this. While the sort was running, he noticediskevas
constantly busy, indicating that there was a very high number of page faults. He re

examined his sorting strategy, which should have been very efficient:
1. divide the possible keys on which the sort is being done into a
number of buckets
2. read the data sequentially, putting each item directly into the
right bucket (quick if you know the range of key values)
3. write out the buckets sequentially to disk

What was happening was his memory allocator was allocating data in the order it
was read frondisk, so by step 3, data in each bucket was scattered all over memory.
The figure below illustrates the problem.

Once he realized this was the problem, he whideown memory allocator that
allocated a large chunk of memory for each bucket, and when a new data item was
added to a bucket, it was given memory allocated for the bucket.

The result? A 100
fold speedup.

Here is how you

N SY SY mm D ®Zz W can wite your own
.] versions of new and
E FH =H XN Im =27 = ...
H]ﬂ]]m]ﬂ]]ﬂ]] % % % l:l #include
g] <stddef.h > /*

sometimes needed

= = to overload new
*/

big boxes are buckets; smaller boxes are shaded to show order of #include <new.h > /* usually ne

arrival of bucket contents

51

class Bucket_data; /I can now use Bucket_data*
class Bucket
{public:
void add_data (Bucket_data *new_data);
Bucket_data *get_new ();
void recycle_old (Bucket_data *old_data);
private:
Data_list data, free_list; /l some detail to work out
2
class Bucket_data
{public:
Bucket_data (Bucket *new_owner);
static void* operator new (size_t size, Bucket &owner);
static void operator delete (void *old_data, size_t size);
private:
Bucket *owner;

2
An implementation could look like this:

void* Bucket_data :: operator new (size_t size, Bucket &owner)
{ return owner.get_new ();

}

void Bucket_data::operator delete (void *old_data, size_t size)
{ ((Bucket_data*) old_data) - >owner - >
recycle_old((Bucket_data*)old_data);
old_data = NULL;

}

Usage:
Bucket_data *new_data = new (pail) Bucket_data (&pail);

The first(pail) IS the last argument to operatew (the compiler automatically
puts in the size), and the lat@pail) N the & makes a pointer teail N is passed to
the constructomBucket_data (Buc ket *new_owner)

Exercise: fill in the detalil. Bucket::get_new () should use ::new to grab
a large chunk of memory when it runs out, otherwise just return the
next piece of whatOs left of the chunk

multiple inheritance

Sametimes itOs useful to base a class on more than one other class. For example, we
would like to add a capability of printing error messages to our buckets, with a default
message for each bucket. This is a useful capability to add to other things, so letOs
create a separat@or class and make a new class built up out of iteiakkt :

class Error
{public:

Error (const char* new_message);

void print_err (const char* message = "none");
private:

char *default_message;

h

cla ss Error_bucket : public Bucket, public Error
{public:
Error_bucket (const char* new_default = "Hole in bucket");

5
Note the default argument in tle@or_bucket constructor: if arerror_bucket IS

created with no argument for the constructor, itOstlas #rgument had actually been
"Hole in bucket" . The constructors and implementation are straightforward:

52

Error::Error (const char* new_message)
{ default_message = (char*)new_message;

}

/I no constructor call for Bucket: has default constructor

Error_buc ket::Error_bucket (const char* new_default) :
Error (new_default)

{

}

void Error::print_err (const char* message)
{ if (strcmp(message,"none") == 0)
cerr << default_message << endl;
else
cerr << message << endl;

}

The following:

Error_bucket beyond _pale, holy_bucket ("Leaky");
beyond_pale.print_err ();

holy_bucket.print_err ();

holy_bucket.print_err ("Fixed");

results in this output:

Hole in bucket
Leaky
Fixed

Lisp programmers call little classes designed to be added to new clagses

cloning

Sometimes itOs useful to be able to make a new object based on an existing one,
without knowing what class the original is.

One way of doing this is to definesiane() member function:
class Bucket
{ public:
void add_data (Bucket_data *new_data);
Bucket_data *get_new ();
void recycle_old (Bucket_data *old_data);
virtual Bucket* clone ();
private:
Data_list data, free_list;
I3
class Error_bucket : public Bucket, public Error
{public:
Error_bucket (const char* new_default = "Hole in bucket");
virtual Bucket* clone ();

h
The two versions of clone look like this:

Bucket* Bucket :: clone ()
{ return new Bucket(*this); /I note use of copy constructor

}

Bucket* Error_bucket :: clone ()
{ return (Bucke t*) new Error_bucket(*this);

}
And a call like this:

Bucket *kicked = new Error_bucket("kicked over"), *spilt;
spilt = kicked - >clone ();

53

would result in a new the creation of a new object of dassbucket , copied
from the object pointed to byeked .

There are variations on cloningeep cloning doesnOt copy any pointers, but
always makes a completely new object, including allocating new memory and
copying any contained objects; shallow cloning only copies the outermost level,
which may mean more thame pointer is pointing to the same piece of memory
(called aralias).

caution: thereOs no direct way in C++ to force a member function to be
redefined for every derived class. ItOs easy to forget to redefine the
clone() virtual function in a class and clone the wrong type of object.
Use cloning with care, and not for deep class hierarchies

double caution: an alias is bad newsN one thing it can result in for
example is calling delete more than once on the same piece of
memory with probably disastrous consequences on the internal state of
memory allocation/deallocation

54

hands-onN 3-D array class

LetOs put some of these ideas together now, and define a 3
dimensional array class, capable of storing objects of any class in a
hierarchy that has a clone member function. The following is a start:

/I 3 - dimensional array - size set at allocation, check bounds

/I #ifdef BOUNDS_CHECK, each dimension indexed O..initial_max -1
/I supply example of object to clone for elements if all the

/I same class, otherwise the elements initialized as NULL

class Array2D;
class Array3D;

class ArraylD
{public:

Array1D (int new_max, Buck et *example);

~Array1D ();

Bucket*& operator [] (int ind);

friend class Array2D; /l'let 2D see 1D's private members
private:

Bucket **data;

int max;

h

class Array2D
{public:
Array2D (int new_max_y, int new_max_z, Bucket *example);
~Array2D ();
Array1D& operator [] (int ind);
friend class Array3D;

private:
int get_z (); /I 3D can't see Array1D's max
ArraylD **rows;
int max;

I3

class Array3D

{public:
/I supply example to clone from if all to be same type and
/l allocated when array is allocated

Array3D (int new_max_x, int new_max_y, int new_max_z,
Bucket *example = NULL);

~Array3D ();

Array2D& operator [] (int ind);

int get_max_x ();

int get_max_y ();

int get_max_z ();

private:
Array2D **planes;
int max;

I3

55

part 13N Design TradeOffs

case study vector class

Another useful class in many applications is one for vectors, including vector
arithmetic, such as addition. To keep things simple,|v8&Ck to a vector of three
dimensions, and only look at a small number of possible operations.

defining operatorsvs.functions

The ability to define your own overloaded versions of Builbperations in C+
makes it tempting to always use them when the possibility arises. However, this can
sometimes lead to complications, especially the temporary problem described below.
However, before going into problems, here is an example of defining a simple vector
opaation, - = as both a function and an operator. The operator negates its argument
and returns a reference to it, so the expression could appear on-thent&fide of

an assignment.

constintn_dim = 3;

class Vector

{public: /I constructor sets all to ze ro if no args
Vector (float first=0.0, float second=0.0, float third=0.0);
Vector& operator - =(float scalar);
void decrement (float scalar);

private:

float data[n_dim];

h

Vector::Vector(float first,float second,float third)
{ data[0] = first;
data[1] = second;

data[2] = third;
}
Vector& Vector::operator - =(float scalar)
{ inti;
for (i=0; i< n_dim; i++)
datali] - = scalar;

return *this;

}

void Vector::decrement (float scalar)
{ inti;
for (i=0; i< n_dim; i++)
datali] - = scalar;

}

An example of usage

Vector velocity (100.0, 37.0, 500.6);
velocity -=25;
velocity.decrement (20);

illustrates how notationally convenient overloading operators can be.

when to inline

Overloading operators is a good topic enavhich to discuss the issue of when to
inline more thoroughly.

Although inlining generally gives a performance advantage, it has some
drawbacks. Unless the function (or operator) is smaller than the overheatingf set

up a conventional call, the overall size of the program is bigger, since the code is
duplicated. Also, the compiler has to process the inlineOs source code more often: it
has to berinclude d into every file that uses it, instead of compiled once, tien

seen again until link time. This is slows compilation. If you inline often, youQll
frequently run into the problem mentioned in Part 9 (confusing link errors). Finally,
many debuggers lose track of where you are in the source if you inline a lothand

tools such as profilers have less information at run time.

ThatOs not to say you should never use inlines. Once you have written your
program and are starting to tune it for performance, you can start to work out which
function calls are too expensivand try inlining them. Remember the lesson of the
sorting algorithm: optimizing only makes sense once you know you have the most
efficient design.

the temporary problem

An additional problem with operators is that maequire returning a value to be
consistent with the bu#in operator. In a case where the value has to bdevalue
(capable of appearing on the lefindside of an assignment), itOs possible to return a
reference tanis , as in the = example.

However if the value returned is meant to be a completely new value, as in the
result of an addition, it must be stored somewhere. In the case einboderators,
that somewhere is generated by the compiler (a temporary space in memorye or mo
likely, a registefl and merged into the target of the assignment if possible. If you
write your own operator, the compiler canOt manage temporary values as efficiently,
resulting in unnecessary construction of a new object, copying and deletion of the
temporary.

By contrast, if you use a function for operations such as addition, you can use a
technigue such as making the current object the destination for the result.

We can add addition to the vector class, to illustrate the alternative styles:

Vector Ve ctor::operator +(Vector other)
{ Vector result; /I no constructor: default is all zeroes
for (inti=0;i<n_dim; i++)
result.data[i] += data[i] + other.datali];
return result;

}

void Vector::add (Vector first, Vector second)
{ for(inti=0;i<n _dim; i++)
data[i] += first.data[i] + second.datali];

}

which could be used as follows:

Vector velocity (100.0, 37.0, 500.6), accel (-1.0, 1.0, 0.0),
final_velocity;

final_velocity = velocity + accel;

final_velocity.add (velocity, accel);

accel -=10;

final_velocity.add (final_velocity, accel);

57

hands-onN vector class using operators

Extend the vector class to include a few common operations, like
multiply by scalar (operator *=), inner product (operat or*) and
indexing (operator[]).

Experiment with both implementing and using these operations as
operators, as well as functions

58

part 14N More Advanced Features and Concepts

templates

Templates are a relatively late addition to the language and do not work properly on
all compilers. Nonetheless they are a useful concept and worth explaining.

A templateis a parametrized type. The sorts of Parts 3 to Testas a sort for
strings, which became a sort for employee records, and finally a more general one
with function pointers. Imagine how much better it would be if we could define a
genericsort, which would work on any data type we could compare and exehan
C++ has templates for this purpose. Ada has a similar feature called generics. To do
this in Pascal or Moduk®, you have to use a text editor to create multiple versions of
a routine such as a sort, whereas in Ada or C++, the compiler can do tas for

In C++ you can define a generic sastfollows:

template<class T> void sort (T data[], int n)

{ intij;
for(i=0;i<n -1 i++)
for(j=i+1;j>0;]j -)
if (compare(data, j -1, >0
swap(data, j -1,j);
}

/I assume operator== and operaror< defined on T
template<class T> int compare(T data[], int i, int j)
{ if (data[i] < data[j])

return -1;
else if (data[i] == data[j])
return O;
else
return 1;
}
template<class T> vo id swap(T data[], int i, int j)

{ T temp = data]i];
data[i] = datalj];
data[j] = temp;

}

Some examples of usage:

int data[] = {0,1,4,3,45,2,1,4,6,89};

float money[] = {1.20,1.50,0.59,500.55,89,5};

sort (data, int(sizeof data / sizeof(int)));

sort (money, int(sizeof money / sizeof(float)));

The compiler automatically generates versionso@j for int andfloat arrays
when it sees the two calls.
ItOs also possible to parametrize a class. For example, the vector class of Part 13
could be generalized to keavectors of general objects (some detail left out):
template<class T> class Vector
{public:
T& operator [](int ind);
void add (Vector<T> first, Vector<T> second);

private:
T data[n_dim];

3

template<class T>T& Vector<T>::0 perator[](int ind)
{ return data[ind];

}

template<class T>void Vector<T>::add(Vector<T>first,
Vector<T> second)
{ for(inti=0;i<n_dim;i++)
data[i] += first.data[i]+second.datali];

}

Here are some examples of usage:

Vector<int> pos, offset;

Vector <float> vel, acc;

for (inti=0;i<n_dim; i++)

{ pos[i] =10 -0 /I use operator(]
offset[i] = -1;

}
pos.add(pos,offset);

vel.add(vel,acc);

exceptions

Exceptions are another late addition to the language. Since they are got full
implemented in all compilers, 10Il give a quick overview rather than detail.

The essential idea is that yay to execute a piece of code. If it fails (either
through a builin exceptionlike floating-point overflow or one yothrow), you fall
through to aatch which handles the exception:

class Overflow
{/l whatever state you want to store about overflows

h

try
{ Overflow status;
/I code that causes an exception results in:
throw status;
}
catch (Overflow &overflow_info)
{ [/luse overflow_info to handle the exception

}

virtual base classes

With multiple inheritance, if the same base class appears more than once in the
hierarchy, it is duplicated. If you only want it to appear once, you decla® at
virtual base classFor example:

class Error
{public:
Error (const char* new_message);
void print_err (const char* message = "none");

private:
char *default_ message;
I3
class Error_bucket : public Bucket, public Error
{public:
Error_bucket (const char* new_default = "Hole in bucket");
I3
class Error_spade : public Spade, public Error
{public:
Error_spade (const char* new_default = "Hole in bucket");
I3

class Error_beach : public Error_spade, public Error_bucket;

will result in an object of class Error_beach having two places to store errors. If

this is not desired, the following will fix the problem:
class Error_bucket : public Bucket, virtual public Error Il etc.
class Error_spade : public Spade, virtual public Error /I etc.

60

future feature: name spaceA big problem with mixing class libraries from various
sources is that OnaturalO choices of names tend to ivatewdp!

For example, itOs very common to have class hierarchies descended from a
common ancestor with a name likgect , Or T_object . Also, conventions for making
symbolic names for ObooleanO values are not standardized. Most use the C

convention:
#ifndef TRUE
define TRUE 1
define FALSE O
#endif

or something along those lines, but some define a Oboelgan@nd libraries
that do this may be hard to mix with others that use a slightly different strategy.

A proposal which is likely to be added to theguage is a way of giving a name
to a collection of naméa name spaceOther languages like Ada and Modifta
have module or package mechanisms which are slightly more robust than C++Os
naming conventions, but the problem of name rganeent in large programs exists
even with these languages.

Look out for name spaces in future C++ compilers.

libraries vs frameworks

Reusabilityis one of the selling points of objeatiented pogramming.

Libraries are a traditional way of making code reusable. A library is a collection
of type, class and procedure definitions, designed for greater generality than code
written for a special purpose. Examples of libraries incled®@TRAN floating-point
libraries like IMSL, the Smalltalk80 class library, and linkable libraries typically
distributed with compilers to handle routitaesks like 1/0.

Some advocate going a step further, anewpiBng a large part of an application,
trying to keep the code as general as possible. Functionality like updating windows
and printing is supplied in very general form, and you fill in theildetia make a real
application.

This application frameworkapproach has advantages and disadvantages. The
biggest drawback is you have to understand the prognagnstyle of the framework
designer. This can be a major task. Some have claimed it takes about 3 months to feel
at home with MacApp for example (one of the earlier frameworks, for writing
Macintoshapplications). On thether hand once youOve understood the framework,
you donOt have to worry about many details that donOt change across most
applications.

My view is that a compromise is the best strategy. A good library that you can use
whatever the style of program candesigned around a relatively simple application
framework. This framework should be designed so it can be learnt quickly, and only
implements very common functionality, or features which are tricky to get right.
When you start to use it, you will tend tmostly use it as a library, gradually
graduating to using it more like a framewirgarticularly once you start enhancing
the framework with your own tricks.

61

index

2-dimensional array, 13
3-dimensional array, 49
abstract class34
access function, 22, 42
actions, 27
Ada, 22
enumerated type, 14
no function pointer, 19
type-safe separate compilation, 22
alias (caution), 48
and, 8
application framework
MacApp, 55
vs. library, 55
array
2-dimensional, 13
3-dimensional, 49
argument, 10
as pointer, 10, 11
baseclass, 34
virtual, 54
bitwise operations, 8
boolean 6
break ,7,8,10
C
implementing object-oriented design,
31
mixing with C++, 45
C++
implementing object-oriented design,
44
case-sensitive, 4
case-sensitive file names, 23
cerr, 35
cin, 35
class ,33
abstract, 34
base, 34
derived, 34
private derived, 34
public derived, 34
virtual base class, 54
cloning, 48
compilable file endings, 36
constructor 33, 38
copy, 38
default, 38
no explicit call, 43
safe bracketing, 43
storage allocation, 34
type conversion, 43
virtual function call, 39
continue 8,10
copyconstructor, 38
cout, 35
defaultconstructor, 38
array, 43
delete (operator), 46
derivedclass, 34
private, 34
destrudor, 33, 38, 39

automatic call, 43
double, 6
do- while ,7
encapsulation, 26
endif (preprocessor), 18
entities, 27
enum, 14
event-driven
simulation, 27
user interface, 27
design, 28
exception, 54
exit, 35
expressions, 3
extern ,22
extern "C", 45
files
compilable endings, 36
stream, 35
float, 6
for, 7
format, 2
FORTRAN, 1, 55
framework
MacApp, 55
vs. library, 55
free(), 11
friend, 34, 49
fstream, 35
fstream.h, 35
function pointer, 19
header, 2
fstream.h, 35
iostream.h, 35
new.h, 46
stddef.h, 46
stdio.h, 2
stdlib.h, 35
string.h, 13
hexadecimal constant, 6
hiding details, 23
if ,7
if (preprocessor), 18
ifdef (preprocessor), 18
ifndef (preprocessor), 18
IMSL, 55
include
search paths, 18
include (preprocessor), 2, 18

include once ,19
inlines, 36
portability ,23

indexing operator [], 45
information hiding 26
C++, 39
C++ mechanisms, 42
inheritance 26, 34
inline function (C++), 35
file strategy, 36
strategy, 50
Vs. preprocessor macro, 19

int, 6
char size, 23
pointer size, 23
iostream , 34
iostream.h, 35

library vs. aplication framework, 55

long, 6
L-value, 51
and arrays, 11
return using reference (&), 45
MacApp, 55
Macintosh, 27
Macintosh, 55
macro (preprocessor), 18
vs. C++ inline function, 19
make, 22
malloc() , 19
memory
C
free(), 11
malloc(), 19
C++
delete, 46
new,46
leak, 38
mixin, 48
ModulaER, 22
enumerated type, 14
function pointer, 19

type-safe separate compilation, 22

multiple inheritance34, 47
name spaceb5
new (operator), 46
overloading, 46
new.h, 46
objectoriented design, 26
C, 29
limitations, 31
C++, 3B
implementation, 44
open
fstream, 35
operator
delete, 46
indexing [], 45
new, 46
overloading, 45
or, 8
overloading 33
new, 46
operators, 45
parameter, 10
parameter passing, 11
pointer., 5
Pascal
enumerated type, 14
function pointer, 19
record, 14
path nane conventions, 23
pointer
arithmetic, 11

array indexing, 12
performance, 12
parameter, 5
portability, 22
postincrement, 20
preincrement, 20
preprocessor, 18
printf 2
private , 33
derived class, 34
vs. protected, 42
protected , 33
vs. private, 42
prototype 5
public , 33
derived class, 34
quicksort 23
reference type
&, 36
parameter, 36
returning L-value, 45
register, 6
return ,5
reusability, 55
scanf (risk), 11
scopeoperator
;, 34,38
short, 6
sizeof , 19
Smalltalk80, 55
sort
employees, 17
generic, 19, 21
template, 53
int, 13
string, 13
statements, 7
static , 5, 22
class member, 39
defining, 39
stddef.h, 46
stdio.h, 2
stdlib.h, 35
streams, 35
files, 35
fstream, 35
string.h, 13
strings, 6

strong typing (other languages), 14

struct , 14
switch , 7
template, 53
class, 53
generic sort, 53
typedef , 14
types, 6
cast, 19
conversion (constructor), 43
float, 6
int, 6
string, 6

type-safe separate compilation, 22, 36
C vs. Ada and Modula-2, 22
extern "C", 45

UNIX, 22

unsigned, 6

var parameter (reference types), 36

virtual base class54

virtual function, 39

virtual function table39

volatile, 6

ways to loose your job, 2,4,7,20, 33,48

while,7

Windows, 27

(37}

