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1 Introduction

COMPUTER ARCHICTURE is a rapidly moving field yet a few things have
held good over the last three decades. Before the RISC movement of the
late 1970s, much computer architecture was based on gut feel, or poor

communication between the hardware and software sides of design teams. For
example, the hardware people may decide that setting up the call stack involves
tedious repetition and to be nice to the compiler people, they roll this all into one
instruction. Only, because they didn’t consult the compiler people, the instruction
they design isn’t useful and is never used. Then when they try to implement a more
aggressive version of the design, they find all the complicated instructions they
weren’t asked to design by the software people make it hard to produce a more
aggressive design. Related to this communication issue is a lack of standards for
quantifying improvements. In the 1970s, Gene Amdahl, a former IBM engineer
who split with IBM to form his own high performance computing company,
formulated a speedup limitation [Amdahl 1967] that became known as Amdahl’s
Law. In essence this says that to calculate the effect of a speed improvement, you
need to take into account the entire run time including parts that are not sped up.
An apparently obvious revelation, it’s a point often forgotten when extolling some
brilliant enhancement (not only to computer systems).

What created an impetus for improved standards in quantifying performance
was a dispute that arose between two schools of computer architecture, the high-
level-language oriented approach, and the simplicity-oriented approach. The latter
gained credibility as early as the 1960s, when Seymour Cray, at that time working
for a relatively small company called Control Data, produced a design that was
much faster than the best the market leader IBM could produce. However,
many designers still argued that a machine instruction set closer to high level
languages was more efficient because even though each instruction may be slower
than with a design closer to the hardware, you needed fewer instructions. This
argument carried some weight when memories were relatively small, and hardware
complexity could be replaced by microcode, a very low-level instruction set that
interpreted the actual machine instructions. Microcode was stored in a ROM that

1



2 CHAPTER 1. INTRODUCTION

was many times faster than DRAM, so frequent accesses of microstore as the
cost of fewer instruction fetches was a reasonable trade-off. However, as DRAM
speeds caught up with ROM speeds and it became viable to implement caches in
fast SRAM, the case was less clear. It took a landmark paper in 1980 [Patterson
and Ditzel 1980] to fire up a new movement inspired by Seymour Cray’s 1960s
designs [Thornton 1963] to push the case for simpler instruction sets, and that
push led to a more quantitative approach to architecture design and evaluation.
In particular, to win the case for simplified instruction sets, the RISC (reduced
instruction set computer) movement began a move to more scientific principles in
measuring alternative designs, with an emphasis on repeatable experiments that
were representative of real workloads.

In this course we learn about tools and techniques for measuring performance,
how architectures are designed and what factors are useful to consider when
comparing performance of alternative designs. We related these issues to a range
of different areas of architecture design: memory hierarchy, instruction set design,
input and output, and parallelism in various forms.

1.1 Measurement

Computer architecture measurement falls into two broad categories: evaluating
existing designs and implementations, and evaluating design alternatives. In
the first category, we can run standard benchmarks (software that represents a
workload of interest) and we can also use simulations so as to produce repeatable
run times. In the second category, we mainly rely on simulations because it is too
expensive (even using reconfigurable hardware, such as FPGAs) to create multiple
real variations in a design to check the effect of changes in design parameters.

Whichever approach we use, we try to adhere to a few essential principles of
the scientific method:

• repeatable – running the same experiment twice should give the same result
and we should report enough detail so others can redo the experiment

• separation of variables – where more than one factor can influence perfor-
mance in a way that cannot be separated out, only vary one such variable at
a time

• representativity – the experiment should represent something real to those
interested in the evaluation, not an artificial exercise that will not rank
alternative designs the same way as would real usage

While these principles seem obvious, the quantitative approach was novel enough
at the time that two senior academics, David Patterson at the University of
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California, Berkeley and John Hennessy at Stanford, felt the need to codify
the principles in an academic text in 1990 [Hennessy and Patterson 1990] that
has subsequently entered its fifth edition [Hennessy and Patterson 2012], and
these principles are now routinely observed in mainstream computer architecture
research, which was not the case when I first became interested in the field in 1980.

The fact that we now have well-established scientific principles of architecture
measurement doesn’t mean that the field is devoid of creativity or innovation.
However, that innovation now has to be based on reasonably sound principles.
Even so, some large mistakes are still possible, for example, the attempt by Intel to
break out of their IA32 architecture with the IA64 (Itanium) design, which failed
to achieve its performance goals or wide market acceptance.

A scientifically sound basis for measurement only allows us to be accurate
about making comparisons: it does not remove the requirement of thinking up
innovations, because someone has to derive the new ideas to compare with old.

1.2 Design Approaches

Given all that, how do we arrive at innovations?
Much of the early computer architecture work up to the 1970s set the scene

for widely accepted design alternatives today. A fair fraction of innovation today
involves rediscovering old ideas that worked well in a different form factor, and
finding that technology today makes those ideas work well once more. Much of
Seymour Cray’s work in the 1960s was in essence reinvented by RISC designers
in the 1970s through to around 2000, as it progressively became possible to fit
more of the features of his multichip designs onto a single-chip CPU. Remarkably,
very little in modern designs wasn’t found in his landmark CDC 6600 of 1962,
including hardware to support multiple instructions per clock cycle and out of order
execution.

Today, a good starting point for looking our for potential for innovation is
to examine various trend lines and work out when new design trade-offs become
possible. Possibly the most famous of these trends is Moore’s Law, an observation
that the number of transistors at a given price doubles about every 2 years [Moore
1965]. There are others, like the quartering of the cost of DRAM every 3
years, and the much slower speed improvement of DRAM. Understanding how
long these trends can persist and when a change in technology is predictable
opens up opportunities for architecture research. For example, in the 1990s, I
observed that the speed gap between DRAM and CPUs was heading for similar
numbers as measured by lost instruction execution opportunity to the speed gap
between CPUs and paging devices when virtual memory was first invented. That
led to the RAMpage project, of which I cite a fraction of the research outputs
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here [Machanick et al. 1998; Machanick 2000; Machanick and Salverda 1998;
Machanick 2004].

In another breakthrough, which led to a major change in the whole industry, a
Nigerian academic at Stanford University Kunle Olukotun [Olukotun et al. 1996]
made a case for replacing very aggressive single-core designs by what are now
known as multicore designs. In essence his argument (backed up by design
studies and simulations) is that the potential for speedup of a single core design is
limited by how much instruction-level parallelism is available, whereas a multicore
design can gain speed from several dimensions. A clever compiler can convert
instruction-level parallelism into threads, code already designed to run threads
or multiple processes can speed up, and multiprogramming workloads (as on a
typical operating system where there may be dozens of processes, many not visible
to the non-technical user) can also see a speed gain. Multicore designs have in
recent years also gained in utility because they create more options for scaling
both performance and energy use.

Yet another approach to looking for breakthroughs in architecture is studying
roadmaps of predicted future technology1. In one example, Trever Mudge at the
University of Michigan picked up the likelihood that vertical stacking of dies
(a die is a chip without the packaging) was on the horizon, and he explored
the implications of this technology for making a package tightly integrating
DRAM and a multicore CPU design. The resulting design has a number of
advantages. Because through-chip vias (conductors) can be as fast as within-chip
communications and wide buses are practical to construct in this form, the CPU-
DRAM speed gap can be considerably reduced. Since the CPU wastes less time
waiting for DRAM, a given level of performance can be achieved with a slower
clock, reducing he problem of heat dissipation out of a compact package. The
resulting PicoServer design [Kgil et al. 2006] and its successor Centip3De [Fick
et al. 2012] may at some stage emerge as a commercial product; even if it does
not, it is a good illustration of looking out for technologies that may later become
viable.

1.3 Performance Factors

When considering performance, we need to take into account several axes.
Depending on the target appllication or market, different axes may be more
important. The most significant ones are

1International Technology Roadmap for Semiconductors http://www.itrs.net/ is a good
example.

http://www.itrs.net/
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• cost – not only of one component such as the CPU, but overall packaging
and environment costs

• speed – again, not only one component contributes to speed (remember
Amdahl?)

• energy – in some applications like mobile computing, energy is a first-class
concern but even in large-scale computing, energy is a limiting factor

• scalability – a design that works at many scales means early expensive ver-
sions can be sold into high-margin markets like high-end servers, while older
designs can be sold into high-volume markets to maximise amortisation of
costs

• longevity – one of the most classic errors of hardware designers is to fail
to take into account the rate at which technology improves: too small
an address space is one of the most common reasons once-successful
architectures have had to be abandoned

Cutting across these axes are two approaches to performance that can be in conflict:

• latency – time to complete a specific operation or service

• throughput – average rate of work completion

Low latency is what the user desires; high throughput is what the accountants want.
Low latency means you have a responsive system, but that responsiveness can be
bought at the expense of lowering throughput, by ensuring that the system is not
busy when you want a response.

In this course I examine case studies of performance covering as many of these
axes as is practical, depending on the nature of student projects.

1.4 Architecture Areas

Computer architecture is broadly speaking design principles of any area of the
computer system including the hardware and any area where hardware and
software interface. It’s convenient to divide architecture down into different areas,
though these necessarily interact. For example, the memory hierarchy includes
components that use the IO system, and efficient implementation of IO requires
design with the memory hierarchy in mind. So as we divide the architecture world
for clarity, remember that the division is not absolute.
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1.4.1 Memory Hierarchy

The need for a memory hierarchy arises from the fact that memory components
fast enough to keep up with the CPU are many times more expensive than slower
memories. Fortunately, the principle of locality says that you a program uses a
relatively small part of its address space at a time. Locality is generally divided
into two types:

• temporal locality – a memory location that is referenced is likely to be
referenced again soon

• spatial – a memory location near a location that is referenced is likely to be
referenced soon

The definitions of “soon” and “near” depend on how big the speed gap is between
layers. If the speed gap is big, we stretch the definitions out to longer in time and
space, because we can less afford the penalty of accessing slower memory.

In an operating systems course, we focus on locality as it applies to virtual
memory; here we also consider hardware layers of the memory system, including
caches, the TLB (translation lookaside buffer: a small cache of recent page
translations) and registers.

1.4.2 Hardware Layers

It is useful to divide computer hardware into logical layers. As seen by the user
(or, in today’s world, the compiler and related tools like the linker), there is the
machine code layer. This layer cannot change much in basic functionality without
losing the user base. If you have to recompile or relink your code to run on a new
generation of a particular vendor’s design, that takes away a reason to stay loyal to
that vendor. The instruction set architecture or ISA is such an important part of a
designs identity and its ability to retain a user base that the ISA is often referred to
as the architecture (the IA32 architecture, the PowerPC architecture, etc.).

The ISA is not only characterised by a set of instructions but also by the
available machine registers, the memory bus size and instruction modes such as
supervisor and user mode that implement protection. The idea of an ISA essentially
developed with the IBM 360 series of the 1960s [Amdahl et al. 1964], which was
the first to feature a whole family of designs launched at once that could run the
same programs, subject only to resource limits not differences in the type of code
that could execute.

The ISA can be implemented many different ways and remains the same ISA
as long as the same programs can run (give or take constraints like memory size
and available peripherals).
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Some details that can vary include the pipeline, extra copies of the registers
to support implementation details like hardware multithreading support and out of
order execution, branch prediction and variations in the memory hierarchy. All
these variations are below the level of the ISA because they are hidden (other than
performance impacts) from anything assuming the ISA as a given.

One area that is not obvious to the user (even a compiler writer) that is hard
to change in practice is hardware support for VM. If this changes, unless the old
approach is maintained for backward compatibility, every operating system using
the new design will need to be modified, since hardware support for VM is tightly
integrated into the software side of VM implementation.

1.4.3 Hardware-Software Layers

The operating system provides a layer of abstraction that hides the bare metal
from the user, and some parts of the system architecture may involve hardware
and software components. The most obvious of these is the virtual memory system
that cannot be implemented effectively without hardware support (otherwise, every
memory reference would take several times as long as without VM, since it must
be looked up and translated, as well as checked for validity).

There are other aspects of the system where hardware and software play a
role. In some earlier microprocesor designs including some RISC designs and
some implementations of the Intel IA32, significant speed gains could be had from
reordering instructions. Such reordering required recompilation in most cases, and
was seldom done for the very good reason that the next generation had a different
optimal ordering of instructions.

In yet another area, IO involves hardware-software cooperation. IO is very
slow compared with the CPU and RAM and that speed gap has to be hidden. An
operating system typically schedules IO-bound processes with higher priority than
CPU-bound processes for two reasons. If CPU-bound processes run to completion
while there are still IO-bound processes in the system, there is no work to be done
while waiting for IO. Secondly, if IO-bound processes are able to use the CPU, it’s
best to give them more time than CPU-bound processes so they can make progress.
An operating system has a range of strategies to hide the latency of IO in addition
to scheduling policy. Here is a quick summary:

• scheduling – IO-bound processes have higher priority than CPU-bound
processes

• buffering – slightly different effects for input and output:

– input – read more than absolutely needed, relying on spatial locality
not to waste the extra IO because it’s usually more efficient to transfer
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in large blocks

– output – don’t wait for writes to complete: dump output to memory and
let the device empty the buffer in its own time

• cacheing – keep data (or code) in a faster layer of memory as long as
possible; buffering can be a form of cacheing if the contents are available
for repeated use

• spooling – for devices that have to accept a job to completion, spooling is a
specialist kind of buffering that stores the data until it’s that job’s turn (most
often used for printing)

• specialist IO hardware – in some systems IO is hived off to a separate
specialist CPU relieving the main CPU of the detail of IO

These represent some of the strategies used by an operating system; we do not
cover much detail here since an OS course has more space to do so.

1.4.4 Hardware-Software Interaction

Given overlaps in hardware and software, how important is it for software to be
aware of hardware, and vice-versa? In addition to the issues raised above of
communication between parts of the design team, users of a design can benefit
from knowing how their software interacts with hardware.

Some areas where this knowledge can apply include:

• memory-sensitive algorithms design – understanding of how the cache and
VM subsystems work can have a large effect on performance [Lam et al.
1991; Machanick 1996; Xiao et al. 2000; Rahman and Raman 2000]

• balancing VM use and IO – in an experiment, I ran quicksort on randomly
generated data varying the size until I ran out of RAM and paging occurred.
I rewrote the code so it sorted a section at a time, storing most of the data on
disk, using mergesort to merge only as much as would fit into RAM at one
time. This ran a lot faster than relying on VM. No big surprise. But what
was a bit surprising was that it was not significantly slower than quicksort on
data that did fit into RAM.

• efficient use of shared memory – with multithreaded code or processes with
shared memory, a clear understanding of cacheing makes a big difference to
performance [Machanick 1996]

• role of VM hardware support – understanding how VM is supported in
hardware can also make a big difference to performance [Machanick 1996]



Architecture Areas 9

In this course we explore some of the issues; since the 1990s when multiprocessor
systems were relatively expensive, some hardware-software interaction concerns
have found their way to the mass market because of the proliferation of multicore
designs.

1.4.5 Instruction Set Design

Instruction set design used to be a core area of computer architecture. It is less
so now that it’s clear that RISC is fundamentally a good idea, but the Intel IA32
architecture isn’t going to go away despite this.

Styles of Instruction Set

Prior to the RISC (reduced instruction set computer) movement, there were two
major schools of design:

• ad hoc – do something that feels right and hope for the best, making a few
trade-offs like make common instructions shorter than less common ones
to reduce memory footprint at the expense of making instruction fetch and
decoding harder

• high-level language oriented or HLL – design the instruction set to be easier
for compiler writers to generate code

In the first category, we have some of the most enduring designs. The Intel IA32
developed out of a processor with a 16-bit address space, the Intel 8086, which
was upgraded to a 32-bit address space with the 80386 in 1985 and now includes
64-bit implementations. The IA32 has endured because it was adopted for IBM’s
PC design, which developed a massive market, and also because Intel was able not
only to throw massive resources at improving its performance against the odds, but
had very skilled engineers working around the inherent flaws in the design. The
IBM 360 architecture [Amdahl et al. 1964; Gifford and Spector 1987] is another
that endured for decades despite clear flaws (in terms of subsequent knowledge on
how to design for performance). The 360 endured because IBM was one of the
first computer companies to sell on service rather than technology, and because the
design had a few key things right: it was designed for 32-bit addressing ahead of
much of the competition, and had an adequate number of registers, a critical feature
for achieving high performance. IBM, like Intel, had very skilled engineers able to
work around inherent flaws in the design.

In the second category, one of the more successful examples is the Burroughs
B5000 architecture [Mayer 1982], which used a stack-based instruction set and
had hardware support for arrays including bounds checking (a hardware data
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structure called a descriptor stored details of each dimension of the array). Memory
was tagged with extra bits representing the type of contents of a machine word,
further supporting error checking. Since the hardware could determine the type
from the tag bits, there was only one instruction for each basic operation like
addition (not a separate instruction for floating point, integer and various precision
alternatives). The instruction set was very compact, since stack instructions do
not need register names let alone memory addresses except to move data onto or
off the stack, and in an exception to common practice, the hardware and software
teams worked in close collaboration. Unusually for its time, the system software
was written in a high-level language (a version of Algol 60, a language with some
following in academia), and the operating system was distributed as source code.
The Burroughs machines were not particularly fast if you measured the run of
a single program but had a very efficient VM system, and easily outperformed
machines that were a lot faster on paper, with real workloads. Unfortunately,
Burroughs designed their array support assuming the Algol 60 approach of storing
multidimensional arrays in row major order, whereas the scientific community
mostly chose to use FORTRAN, which requires arrays to be stored in column major
order, causing significant complications in generating efficient FORTRAN code.

The Burroughs example illustrates one of the hazards of HLL-oriented design:
high-level languages differ enough that it’s hard to do a design that’s good for one
without serious compromises for implementing other languages.

One of the less successful examples of HLL designs is the Intel 432 [Organick
1983]. The 432 had very fine-grained protection, supposedly to support object-
oriented coding, but had very poor performance [Colwell et al. 1988], and didn’t
ever gain significant market share.

The IA432 illustrates another hazard of HLL-oriented design: it can result
in poor performance, especially when insufficient attention is paid to any of
practicalities of hardware implementation and usability of features in compilers.

More recently, hardware support for executing Java bytecode has emerged.
However, just in time (JIT) compilers reduce the advantage of a Java machine. One
implementation of partial hardware support for Java targets small devices with real-
time requirements [Schoeberl 2008]. Some niches may justify specialist designs
though on the whole it’s easier to use a language that’s a better fit to the problem
than to design hardware to work around limitations of a language (e.g., garbage
collection makes for unpredictable execution times, a problem for real time).

By contrast, the RISC movement specifies a very simple regular approach to
instruction set design:

• fixed instruction length – all instructions are the same length, making it easy
to fetch and decode multiple instructions in parallel
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• load-store architecture – all memory references are loads (copy to register)
or stores (copy from register); arithmetic and logic unit (ALU) operations
are always on registers

• standard operands – ALU operations always operate on 1 or 2 source
registers and one destination register

• bounded execution time – with the exception of excursions down the memory
hierarchy, instructions have clearly defined execution time

• simple control – the number and type of branch instructions is limited
(usually unconditional jump, and a few conditional branches)

• large general-purpose register file – a small number of registers, registers
with specific purposes or setting logic conditions in condition codes makes
it harder for compiler writers to generate code, and harder for hardware to
reorder instructions

Some RISC designs compromise on details, e.g., a number do use condition codes.
Nonetheless RISC architectures are generally very similar, unlike other classes of
ISA design that differ widely.

We see next why the RISC movement claims advantages over the other
approaches. At this point, note that even with the Burroughs design where the
hardware and software teams did work in close collaboration, the fact that their
pesky customers chose to use a different language for programming meant that
much of their good work was wasted.

Design for Performance

The RISC movement is based on a few key observations of how performance is
achieved. First, to make the overall system fast, you need to have the highest
possible clock speed and rate of instruction flow through the system. The latter
works best if you can implement an efficient pipeline. A pipeline is inherently
inefficient if the stages are not all the same length (the longer stages will force
the shorter ones to idle). To implement a fast clock speed, relatively short pipeline
stages help. If there are many variations in type and size of instruction, these things
become harder to achieve.

Second, an important principle is make the common case fast. This seems
contrary to the lesson of Amdahl’s Law that the best speed gains arise from making
everything faster. However if you calculate speed improvement based on accurate
performance measurement, you can quantify this effect. For example, having to
run 50% more instructions as the price for doubling clock speed is probably a
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win (though you need a comprehensive measurement that takes into account other
effects like changes in memory hierarchy use). By contrast, introducing a few
special-case instructions that are rarely used but make it hard to scale up the clock
speed is seldom a win. Again, quantifying makes the case, not gut feel or hand
waving.

To take an example, RISC architectures generally implement a call with several
(general-purpose) instructions, rather than using a special instruction to set up a
stack frame and store the return address. While this increases the instruction count,
the absence of special instructions makes it easier to implement an aggressive
pipeline. At the cost of of occasionally using more instructions, the overall system
is faster. We can quantify this effect if we know how much faster the clock speed
can be made, or how the pipeline can be improved in other ways by simplifying
the instruction set design, and calculate the net gain. The need to do this sort
of calculation to convince RISC sceptics was the start of the modern approach to
quantitative design.

1.4.6 Input and Output

IO is an important part of systems design because most IO devices are so much
slower than the rest of the system. A disk for example may take of the order of
10ms to do a seek (move the head to the right track). DRAM access is almost
a million times faster, and a 2GHz CPU if executing only one instruction per
clock takes 0.5ns per instruction peak is 20-million times faster. If you have an
aggressive pipeline executing several instructions per clock the speed gap is even
greater (before you consider keeping up with multiple cores).

In this course we do not study IO in detail; many of the performance issues
are better dealt with in an operating systems course. At the hardware level we
can consider various modes of interfacing, the relationship between latency and
throughput (or bandwidth in the IO context) and trends in device technology.

1.4.7 Parallelism

Every now and then when progress in a given approach to technology appears to be
heading for a dead end, parallelism appears as the solution. What usually happens
is a new approach to sequential programming appears, and all the complexities of
parallel programming lose their attraction. Over time many models of parallelism
have appeared, and some have proved enduring, while others keep resurfacing as
packaging trade-offs change, and the reason they were abandoned is forgotten.

As long as Moore’s Law was effectively delivering double the performance
every 2 years or so, there was little benefit in writing parallel code for performance
unless you could afford a large-scale system. Any system that achieved a speedup
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over a serial implementation (measured as timeserial/timeparallel) of less than 4
would be overtaken by faster hardware in a year or two, sometimes sooner than
the time it took to achieve an efficient parallelisation.

Instruction-Level Parallelism

Before the multicore era, the most common form of parallelism was instruction-
level parallelism (ILP), because it took no effort from the programmer. Provided
the hardware can find more than one instruction ready to run at the same time, ILP
provides speedup at the expense of hardware complexity, a trade-off increasingly
justifiable as the number of transistors per chip at a given price point increases.

ILP however has some inherent limits. There’s a limit to how much inherent
parallelism that exists at instruction level because of dependencies between
instructions [Wall 1991; Lam and Wilson 1992; Postiff et al. 1998], and there are
limits to the extent to which practical architectures can find available parallelism
(e.g., instructions with no dependency between them may be relatively far apart).
A problem that has arisen more recently is that the increasing complexity required
for more aggressive ILP has a high cost in energy use [Yeap 2002] and hence also
heat.

Another limitation to pursuing performance using more and more aggressive
ILP with higher and higher clock speeds is the growing gap between the speed of
CPUs and DRAM, resulting in limited gains as a higher fraction of the CPU’s time
is spent waiting for DRAM, a problem called the memory wall, predicted in 1995
[Wulf and McKee 1995].

Multiprocessor and Multicore

In the past multiprocessor architectures differed widely in characteristics. Some
emphasised data parallelism (the same instructions on several or many different
data items in registers or memory), others instruction parallelism (different
instruction streams on each ALU). Memory organization also varied. A distributed-
memory architecture had no shared memory and communication primitives like
messaging were used. A shared-memory architecture had one global memory
and required mechanisms to ensure consistency of caches. A distributed shared
memory system [Bennet et al. 1990; Dwarkadas et al. 1993; Bordawekar 2000]
is physically distributed but gives programmers as model that looks like shared
memory. There are also programming tools and libraries like MPI that hide some
of the detail of the memory model, but some understanding of the memory model
is essential to achieve performance.

More recently, as limits of ILP and scaling up the clock speed (in part because
of the memory wall but also because of limits to ILP and the increasing cost of



14 CHAPTER 1. INTRODUCTION

hot high-energy consumption designs), multicore designs have become popular,
and these generally are shared-memory designs, often with a shared lower-level
cache. Writing parallel code is now an option for the mass market, so the
specialist skills needed for programming big iron in the 1990s [Cheriton et al.
1991, 1993; Machanick 1996] now apply more widely, but the problems are no
easier. A good understanding of how the memory system works in shared-memory
multiprocessors is even more important to achieving good performance than with
a uniprocessor.

GPUs

The conversion of specialist processors designed for graphics to general-purpose
computing is not a new idea. The Intel i860, marketed as a general-purpose CPU
with graphics support [Grimes et al. 1989] was clearly designed more with graphics
support than general purpose use in mind. Among other things, it suffered very
high latency for context switches, and VM support is minimal. On a page fault, it
only reports that a fault occurred, not whether it’s a read, write or instruction fetch,
meaning the page fault handler has to reconstruct the cause, in effect interpreting
the instruction that caused the fault to work out what happened [Anderson et al.
1991]. The i860 was reasonably successful as a graphics processor in the days
when a high-end graphics system was a multichip design, with features presaging
vector extensions to the IA32 line. Overall the i860, despite being deployed on
some large-scale supercomputer designs [Berrendorf et al. 1994], was not a great
success as a high-performance CPU.

So is the general purpose GPU (CPGPU) concept reasonable, given that
specialist processors have not historically been a win? There are arguments for and
against. Against, Amdahl’s Law tells us that a 100× speedup of a small section of
our code will have a small overall effect on run time, and coding for these specialist
processors, even with high-level tools like Nvidia’s Cuda [Wynters 2011]2, is hard.
What’s more these toolkits tend to be vendor-specific. On the for side, the massive
market for GPUs means that there’s a lot more critical mass behind this movement
than other attempts at using specialist processors for more general purposes than
originally intended. Computers with powerful GPUs are increasingly ubiquitous in
the mass maket, making it at least possible that massive-scale computation using
such GPUs will continue into the future, whereas past specialist designs did not
have that critical mass.

2More at http://developer.nvidia.com/nvidia-gpu-computing-documentation.

http://developer.nvidia.com/nvidia-gpu-computing-documentation
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Warehouse-Scale Computing and the Cloud

One of the ongoing debates in computer architecture is whether large-scale
computing is best achieved with massive numbers of inexpensive boxes with
redundancy designed in, or dedicated highly-scalable designs. One of the earlier
ideas of this type is RAID, originally redundant array of inexpensive disks
[Patterson et al. 1988] (now usually “independent” instead if “inexpensive”,
possibly so manufacturers can claim their disks are “enterprise grade” and hence
not inexpensive).

Possibly the best-known example of the extension of this idea to a redundant
array of inexpensive computers (no one uses RAIC as a name for some reason) is
Google’s approach or warehouses full of inexpensive computers, with many fail-
safes to allow for hardware and software faults [Barroso et al. 2003]. This kind of
infrastructure is becoming increasingly important as the Internet expands to ever
new services including some that might for a brief period require hundreds or even
thousands of servers, then settle back to more modest requirements [Liu and Wee
2009]. How best to put these services together is still a work in progress, and there
is no doubt that expertise in this field will be useful for some time ahead.

The “cloud” term is somewhat vague in meaning, and is really marketing speak
for distributed services, sometimes storage, sometimes computation, sometimes
both. The key feature of a distributed system, as opposed to a networked system, is
naming or location transparency, i.e., you don’t know (or need to know) whether
data or a process is running locally, over a network or even over several computers
– that is a performance detail. By contrast, a networked service requires naming the
location where the service occurs. What really distinguishes the cloud from earlier
distributed services is that the infrastructure is provided on a closed proprietary
system, rather than as a file system or operating system that installs on your own
computer. While some such services like Google Drive or DropBox occupy file
space on a computer on which you use the service, they do not integrate cleanly.
Can you put a DrobBox folder into a Google Drive folder? If so, will this still work
next week? Can you mix any of these with Amazon’s AWS or Apple’s iCloud?

Large-scale cloud services are linked to warehouse-scale computing in that
they need large highly-scalable geographically dispersed implementations. That’s
not to say all implementations use the same infrastructure, or that someone won’t
find a better way. This is a relatively new area and one with a lot of potential for
innovation – even though the core concept of a distributed system is quite old, with
some of the theory dating back to the 1970s [Lamport 1978].
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1.5 The Other Edge

Much of the previous discussion assumes we want the fastest possible system,
constrained by cost, power consumption etc. However, Moore’s Law can be read
the other way. As hinted at by Gordon Bell, new classes of computer become viable
as a given level of functionality becomes available at a price point [Bell 2008].

In the 1970s, a personal computer capable of doing interesting work – including
the first spreadsheet, VisiCalc [Bricklin and Frankston 1979], became viable
because a single-chip microprocessor powerful enough to run an elementary
operating system and programming tools reached an affordable price point.

Since then, other breakthroughs have included:

• scalable PC – the original IBM PC was not a huge advance on the previous
generation but Intel’s ability to add enhancements like 32-bit addressing as
new thresholds in the number of affordable transistors were crossed meant
the CPU remained viable – even if major OS rewrites and recompiles were
needed in the transition to 32 bits (and less so to 64 bits)

• Linux – when the IA32 became powerful enough to support a UNIX-like
operating system it was only a matter of time before a free UNIX emerged;
Linux was the first (1991) but there are others like FreeBSD (which appeared
only two years later)

• RISC – the ability to implement a version of Seymour Cray’s 1960s ideas on
a single chip, starting from the 1980s, culminating in the collapse of most
medium to large-scale computing options that didn’t use microprocessors

• mobile devices – starting from increasingly sophisticated notebook comput-
ers, mobile devices today include smart phones and tablets. Each new form
factor derives from another step in the amount of functionality available at a
lower price point – and able to run longer between charges or on a smaller
and hence cheaper battery

• pico-PCs – a likely development out of smart phone parts is ultra-small PCs,
of which the Raspberry Pi is an example

In some ways the “other edge” space is even more exciting than the big iron end
of the design space because it creates the potential to transform the lives of many
people, always remembering that technology is only a tool, and a tool only works
if competently applied and to the right problem.



Structure 17

1.6 Structure

In the remainder of this course I examine the above topics in more detail. First, I
use memory hierarchy as a starting point for understanding quantitative principles
of system design and research, as well as trends and how to analyse their long-term
effects. Next I examine parallelism in its various forms, starting with instruction-
level parallelism. This is a large topic on its own encompassing pipelines, out
of order execution, minimizing delays from branches and the rationale behind the
multicore movement. Next I look at alternative models of parallelism including
data parallel architectures and more specifically GPUs. I examine thread-level
parallelism and how it relates to areas previously covered including memory
hierarchy and multicore designs in the multiprocessors chapter, and review features
of traditional vector machines as a contrast to multimedia extensions and GPUs.
Finally I look at the two ends of the scale: warehouse-scale computing and
emerging small-scale systems as representing two very different consequences of
technology trends, the smaller devices included in discussion of how to understand
and take advantage of trends.

The material covered is loosely based on Hennessy and Patterson [2012] with
additions based on my own experience and research.

Exercises

1. In terms of a programmer’s view, how do ILP and thread-level parallelism
differ?

2. How big is the gap between a RISC architecture and a typical high-level
language? Does an instruction set primarily composed of loads and stores,
ALU operations and branches fit a wide range of languages?

3. Is it possible to have a program with good temporal locality but poor spatial
locality? Is the opposite scenario, good spatial but poor temporal locality
possible? Explain.

4. Why do multicore designs still have relatively aggressive pipelines, with over
100 instructions in consideration at any one time, register renaming and out
of order execution?



2 Memory and Quantitative De-
sign

MEMORY HIERARCHY is a critical part of computer system design because
a memory large enough to contain a whole program and its data, and also
fast enough not to stall the CPU, in most cases would be prohibitively

expensive and almost certainly physically impossible to design. While we can
rely on the principle of locality as outlined in Chapter 1 in general terms, we
cannot set the size and organization of the various layers of the memory system
with reasonable precision (achieve a required cost-performance trade-off) without
measuring variations.

In this Chapter, I present a range of design alternatives and techniques for
measurement focused on evaluating the design alternatives for memory. These
same techniques can apply with differences in detail to measuring differences in
design alternatives in other areas of system design.

2.1 Memory Systems

Memory systems encompass the biggest range in performance difference of any
one logical component of a computer system. For this reason, there are different
organization details at each layer, though there are common principles. First I
present these common principles, then illustrate how they apply at each level.

2.1.1 Organization Principles

Aside from obvious classifications like speed, size and cost, memory systems are
generally organised by how they can be accessed and managed. The following in
general terms apply to all memory systems, with significant variations in the detail
(summarised in Table 2.1):

• naming – some kinds of memory have unique names (generally this applies
to registers), others use an addressing scheme where a location is identified

18
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term definition
block unit of storage or management

caches: also called line
VM: fixed-size page (older systems had variable-sized segments)

hit block is found at the requested level
miss block is not found at the requested level
replacement if there is no vacant block to place a miss another must be evicted
victim block to be replaced
dirty block modified with respect to one or more lower layers
write through writes reflected at next layer down
write back dirty block copied only on replacement
associativity measure of how many different locations a block can occupy:

direct-mapped: only 1 location for any block
n-way set associative: n different locations for a block
fully-associative: a block can be placed anywhere

Table 2.1: Common terminology. There is some variation across layers but

these terms generally apply.

by a numeric offset from the start

• accessible unit – some kinds of memory are accessible in fixed-size units
(again, mostly registers, though some have variants like single and double
precision) whereas others can be accessed at various granularities such as
a byte, two bytes, etc. The latter category may have alignment restrictions
(e.g., if memory addresses refer to bytes, a two-byte access must start at an
even address) and preferred sizes (a machine word is usually the width of the
data bus)

• transfer unit – some kinds of memory only transfer to the next layer up or
down in fixed size units (e.g., a cache typically has a block, sometimes called
a line of fixed size; a VM system has a usually fixed page size)

• management unit – some kinds of memory are managed in fixed size chunks,
including issues like protection, recording whether the contents is modified
(sometimes called dirty), valid meaning that the unit of memory can be used
without generating an interrupt, present meaning that the unit of memory is
available at that level of the hierarchy or shared, meaning that more than
one way exists to access that memory (usually a property of multiprocessor
systems)
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• replacement – how do we determine which unit to evict if we run out of
space? If we do so, what is the policy on writing dirty data to the level
below?

As we examine levels of the hierarchy we will see how these properties apply
and differ. Computer architects consider faster elements of the hierarchy to be
“higher” and if the same kind of memory is split into more layers, the highest level
is numbered 1.

2.1.2 Levels of the Hierarchy

In considering levels of the hierarchy, it is logical to start from the top and
work down. When a program starts executing, the first thing that happens is the
program counter (PC) register is loaded with the start address (actually the last
thing from the point of view of the software that loads the program). The ALU
then attempts to fetch the instruction from the next level down, the L1 cache –
but only after translating the address (on a VM machine) using the TLB, a level
above the L1 cache in terms of speed. Levels below these are only accessed if
the required data, page translation or instruction is not available at the topmost
level. For this reason I describe the hierarchy from the top (fastest) down, though
I defer discussion of some of the more complex strategies to the lower layers,
since the interface between the very slowest layers and the next level up justifies
sophisticated strategies to minimise access to the slowest levels of the hierarchy.

Registers

The top level of the hierarchy is registers. Registers are tightly integrated into the
ALU and pipeline, and can usually be accessed in a fraction of a clock cycle. In
terms of our universal principles:

• naming – register names are encoded into machine instructions, and gener-
ally can’t be computed at run time

• accessible unit – registers are a fixed size though they may sometimes
support precision variations (e.g., single, double)

• transfer unit – registers only transfer values in fixed sizes up to their widest
precision

• management unit – registers are sometimes collectively managed in hard-
ware, e.g., if there is hardware support for multithreading, each hardware
context has its own copy of the registers. More commonly detailed
management of registers is in software: the compiler manages what is within
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them within a single process, and the OS manages saving and restoring
registers between context switches (some older designs have hardware
support for context switches)

• replacement – deciding which register to spill is usually totally under
software (in practice, the compiler or on a context switch, the operating
system) control

TLB

The next level of the hierarchy is the translation lookaside buffer or TLB, which
contains recent page translations. The TLB is usually integrated into the pipeline
and can be accessed in a fraction of a clock cycle. A TLB is often organised as an
associative memory, in essence a hardware hash table that doesn’t have collisions.
The key being looked up is effectively the address: in this case, the virtual page
number. A TLB is in the critical path of logic: if a page translation can be found, it
is used immediately to check if the memory location is represented in the L1 cache.
In some architectures, virtually addressed caches [Inouye et al. 1992; Wheeler
and Bershad 1992] are used, making TLB speed less critical, possibly completely
eliminating the need for a TLB [chan Kang et al. 2011].

• naming – virtual page numbers identify entries

• accessible unit – each item in the table is a pair: a virtual page number (to
check compare against when indexing) and a physical page number

• transfer unit – the TLB is generally filled and replaced in units of 1 page
translation though it is possible to flush it (depending on the system, this
may be necessary on a context switch)

• management unit – as with transfers TLBs are usually managed per entry.
With a virtually-addressed cache, if a TLB is present, it will need to be
tagged with process IDs or be flushed on a context switch

• replacement – TLB replacement can in theory encompass the range of
possibilities used in page replacement polices (see below: least recently
used, first in first out, etc.) but in practice since the TLB is in the critical
path for performance, a strategy that is fast to implement such as random
replacement has some appeal

Any machine that is designed to achieve reasonable performance with VM needs
hardware support for page table lookups to speed up handling TLB misses [Jacob
and Mudge 1998]. For example, Intel’s IA32 architecture has a hardware page table
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walker that assumes a 2-level page table, reducing the time to handle a TLB miss
to data references and no code in routine cases. Hardware page table walkers limit
OS designers’ ability to experiment with new strategies for page table design. In
the worst case, a page table lookup, even with hardware support, can involve a trip
to backing store, since some systems allow parts of the page table to be swapped
out.

Minimising TLB misses is an aspect of performance tuning that is often
neglected, and the consequences can be high. Assume an average TLB miss adds
50 cycles execution time (miss penalty). That is not an unreasonable assumption
given the cost of accessing DRAM vs. CPU cycle time. Then if 1% of instructions
result in a TLB miss on a machine that would otherwise execute 1 instruction per
clock cycle, average execution time becomes

te = 1+0.01×50

or 1.5 cycles, a significant drop over 1 cycle per instruction.
How can a high TLB miss rate be avoided?
A TLB represents one page translation. If you have a memory access pattern

that spends very little time on one page, you will access many pages without
accessing a high fraction of total memory. For example, if a page is 4KiB (the
most common size), and you have a loop that looks like this:

for (i = 0; i < 1024 * 1024 * 1024; i+= 4 * 1024)

a[i] = 42;

each assignment is on a different page. This is of course a contrived example, but
it’s possible to write code that scatters data references around memory if not in
quite such an extreme way. For example, object-oriented code with many small
objects that are not referenced in the order they are placed in memory can exhibit
this problem [Machanick 1996].

Caches

The next level of the hierarchy is caches. A cache is usually made of static RAM
(SRAM), which uses transistors as its building blocks and hence draws on the same
technology advances as CPUs. SRAM does not have any significant delay for an
access over and above than the time to transfer its contents, so there is no special
advantage to doing access in large units. A wide bus will deliver contents faster
than a narrow bus because it can do so in fewer transactions, but there is no lengthy
setup time to amortize.

The top-level (level 1, or L1) cache is usually in recent designs tightly
integrated into the pipeline and can be accessed in one clock cycle. To continue
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with our logical progression down the hierarchy, I describe caches before virtual
memory, though VM is the natural place to describe some of the more complicated
strategies since VM is closer to the operating system and hence has a higher
software component.

• naming – cache contents is generally tagged with a value representing the
machine address of the cache block

• accessible unit – when accessing a cache, the CPU uses the same units of
addressing as apply to main memory

• transfer unit – caches contents are moved or copied in blocks (also called
lines) that are typically multiple machine words long. Typical values are 32
to 128 bytes. Some caches feature critical word first, in which the part of
the block that caused the miss is transferred first to reduce the time the CPU
is stalled [Zivkov et al. 1994; Moudgill et al. 1999; Aasaraai and Moshovos
2010]

• management unit – most caches have tags representing the address of the
contents and state (modified, valid, etc.) for each block

• replacement – cache replacement policy depends on how the cache is
organized:

– direct-mapped – a given address can only go into one location so if that
location is already occupied, whatever is there is replaced: very simple
to implement

– n-way set associative – a given address can go in one of n locations,
so if none of those is available, one has to be selected for replacement;
given the relatively high speeds involved cache replacement strategies
tend to be simple, though some have investigated software-based
approaches [Cheriton et al. 1986] that approach the sophistication
of virtual memory page replacement; for small n, hardware is still
reasonably simple

– fully associative – some have proposed making the lowest level of
cache look more like virtual memory, and hence advocate approaches
that approach the sophistication of virtual memory page replacement
[Machanick et al. 1998; Hallnor and Reinhardt 2000], including
allowing a cache block to be placed anywhere in the cache: to
implement full associativity purely in hardware is expensive and
impractical for a large cache since every location has to be searched
to compare the address tag with the request
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(a) Direct-mapped (b) 2-way associative

Figure 2.1: Cache addressing. The low-order bits of the address are used to

find the right byte or bytes within the cache block. The next-lower bits are used

as an index into the cache, and the high-order bits in excess of those needed

to identify a cache block are stored in the tag to identify which of the possible

blocks is actually in the cache. For higher associativity, cache indexing produces

more than one result and a hit is detected by checking if any of the stored tags

matches the required block.

In Figure 2.1 I illustrate how a machine address is broken up to check for a
hit in a cache. In the event a hit is found, the cache returns the required memory
items (or in the case of a write, overwrites the portion of the cache block pointed
at by the address). In the case of a miss, the cache controller must identify a
victim (in a direct-mapped cache (2.1(a)), that’s always the same location; in other
organisations (2-way associative, 2.1(b)), a victim may be picked at random since
time is short at this level of the hierarchy), and request the block from the next level
down. If the victim block is modified (or dirty), it must be written back to the next
level down (cleaned). Caches can have one of two write policies:

• write through – all writes immediately are reflected at the next level down:
seldom used because memory traffic is high

• write back – a dirty block is cleaned on replacement

In addition to the address tag, cache blocks have status bits. These can vary but
common examples include:

• modified – a bit indicating the block is dirty

• exclusive – a bit indicating the block is not shared with another CPU or core

• shared – a bit set if the block is shared across more than one CPU or core

• invalid – a bit set if the block does not have valid contents

A system with this exact set of states (not necessarily that number of bits) is
referred to as using the MESI protocol1. You may wonder why you need a
1A few other details, specifically restrictions on the allowed combinations, apply to the definition of
MESI.
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shared and an exclusive state. If a block is not initially shared, setting it exclusive
makes this clear. We go more into shared caches when considering multiprocessor
systems (Chapter 4).

In most systems currently available, there is more than one level of cache. The
L1 cache is relatively small and tightly integrated into the ALU so it can keep up
with the pipeline. The L2 cache is larger and not as fast; some systems have 3 or
even more levels of cache, on the principle that as much cache as possible is good
but a large one cannot be fast without high costs in energy, a significant factor in
design.

In aggressive ILP designs, a cache miss can cause a major slowdown. With
a clock speed of 2GHz, one cycle is 0.5µs. If you can execute 4 instructions on
one clock, the average time per instruction is 0.125µs so even if your second-level
cache is very fast with hits taking only 1µs, a miss costs a delay of 8 instructions.
To address this problem, non-blocking caches allow any instructions that are ready
to go to continue without waiting for a cache miss [Chen and Baer 1992; Belayneh
and Kaeli 1996; Aasaraai and Moshovos 2010]. If your ILP design already includes
out of order execution, likely with an aggressive design, support for non-blocking
caches is a relatively cheap addition.

For multicore systems, a common approach is to have an L1 cache that is
local to each core and a shared L2 cache. Shared caches is an idea explored in
research into high-end systems in the past [Cheriton et al. 1988, 1989; Nayfeh and
Olukotun 1994] – illustrating the value of a thorough understanding of technology
history as technology change makes it possible to package old high-end ideas at
new affordable price points.

Main Memory

The main memory in current systems is generally made of DRAM. DRAM
uses a capacitor as its storage element. Unlike SRAM, DRAM has to be
refreshed periodically because a capacitor’s charge drains. Because the underlying
technology is different, DRAM has its own price-performance trend, and that is
driven more by price per bit than by speed. Hence, DRAM speed improvement
lags CPU speed improvement (less so since the move from aggressive ILP and
higher clock speeds to multicore, but multicore designs still are growing faster than
DRAM speed, if you aggregate the rate at which memory requests occur across the
cores). Also unlike SRAM, there is a lengthy delay before the contents can be
accessed, so most current DRAMs have streaming modes where, once an access is
set up, further sequential accesses moving along from that location are a lot faster.
For this reason, moving to or from DRAM in large units is attractive if it does not
cause other delays.
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• naming – a memory address usually refers to a byte, numbered from the
start; many machines require aligned access for large units (e.g., to do a
2-byte access, you must start on an even address)

• accessible unit – most DRAM systems are accessible at the byte level though
in practice to handle cache misses, write-backs and write-throughs, a larger
unit is transferred

• transfer unit – the transfer unit is the same as the access unit in practice,
since most DRAM access are via the cache.

• management unit – at the low level, DRAM can be managed down to the
byte level but in practice, with a VM system, what is in the DRAM or not is
managed in pages

• replacement – replacement strategy in VM is complex and must take into
account the mix of processes, other IO (since paging uses an IO device) and
the extremely high latency of backing store. Some strategies include:

– least recently used or LRU – the page used longest ago is evicted

– first in first out or FIFO – the oldest page is evicted

– working set or WS – each process is limited to pages it used over some
fixed time period

– clock – a way of approximating LRU by systematically marking pages
as unused, working around the list of pages in the style of a clock hand,
and selecting a victim that is not marked as used (indicating the page
was not used since the clock hand last passed that page)

– page standby list – a list of pages recently target for eviction [Russi-
novich 2007]

In some systems there may be a mix of global and local policies: a global policy
balances DRAM use across processes, while a local policy attempts to ensure that
a given process has enough DRAM to make progress. A local policy generally
attempts to implement the working set principle: a process generally only access
a subset of its pages for a reasonably long time before shifting to another part
of its code or data address space. While the working set concept is quite old
[Denning 1968], the principle still applies and will as long as memory has a
hierarchy with several orders of magnitude difference in speed. A global policy
may sometimes simply shut down processes if there is insufficient RAM (in the
worst case, terminate them).
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A complete coverage of virtual memory properly belongs in an operating
systems course since it’s at the interface between hardware and software, and
software plays a much larger role than in higher levels of the hierarchy.

Paging Device

Paging devices historically have been mechanical magnetic storage devices of
various forms. Early paging devices were dedicated magnetic drums, conceptually
the same as a disk but with the recording surface on the outside of a cylinder. The
earliest commercial VM system, the British Ferranti Atlas [Lavington 1978], had
a drum memory with rotational time of 12ms (and thus an average rotational delay
of 6ms), and no seek time since the heads were fixed, making it competitive with
technology of 50 years later on speed if not capacity. The basic cycle time of the
CPU was 2µs, only about 103 faster, compared with today’s speed gap of a factor of
over 106. It is the observation that in the late 1990s the delay in handling a cache
miss to DRAM was approaching 3 orders of magnitude slower than CPU cycle
times that led me to starting the RAMpage project, in which I move the virtual
memory system up a layer to handle misses from SRAM to DRAM [Machanick
et al. 1998] – so knowing a bit of history is useful.

Today paging is usually on standard disks. There are two major variants: the
traditional UNIX approach of a swap partition, and using free space in the boot
partition. Mac OS X uses the latter; Linux can use either. On iOS devices, which
usually use flash instead of disk, paging is limited to evicting easily recreated
content such as code from RAM. There are two reasons for this strategy: flash is
small on these devices compared to a disk, and repeated modification of the same
bits in flash can wear them out. Programmers of iOS apps are advised by Apple
to accept low memory messages and reduce their memory footprint as required
[Apple 2012]. Other types of device (including Apple’s notebook line) use flash
instead of disk and do use flash for paging; reducing the tendency to wear out over-
used bits using wear levelling [Chang 2007] may be easier with Apple’s strategy
of sharing the file system with backing store rather than using a separate swap
partition.

• naming – a page on backing store can be anywhere on the device and is
identified by a page table, using the virtual address (or more properly the
virtual page number) as an index

• accessible unit – a VM system usually deals in whole pages

• transfer unit – pages may be transferred singly or the OS may move several
contiguous pages to reduce overall latency
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• management unit – pages are managed as a unit but also by process; if a
process completes or dies, all its pages are freed

• replacement – since this is the bottom of the hierarchy, there is no replace-
ment until a process exits the system; however, some systems do not keep
pages on backing store if they exist in RAM and in that sense pages may not
always exist on disk.

In a difference to cacheing terminology, a miss is called a page fault. In most real
systems, a page fault results in a context switch: there is no point stalling the CPU
for millions of cycles so despite the fact that a context switch has other significant
costs like losing contents of caches, it is faster overall to allow another process to
use the CPU while waiting for a page fault to be processed.

Having wended our way all the way down from the world of registers and
TLBs that are accessible in a fraction of a clock cycle to paging devices that area
accessible in millions of cycles, let’s see how we measure the effects of all of this.

2.2 Measurement

There are many levels at which we can measure computer systems performance.
We can measure individual components, we can measure times taken by small
blocks of code, we can time a whole program, and we can time a workload of
interest. Aside from timing overall, we can apportion costs, so as to work out what
to improve. Then in addition to timing, we can measure other attributes of interest
like energy use, memory requirements if we change some detail (e.g. simplify the
instruction set) and frequency of use of specific features.

2.2.1 Architecture-Oriented Measures

Depending on what we are measuring and how much detail we want, there are
many variations, including:

• logic-level simulation – useful for checking design details like timing and
energy use, but too slow to measure non-trivial program runs though work
on speeding up such simulations may make larger runs viable [Chatterjee
et al. 2009; Mironov et al. 2010]

• execution-driven simulation – a program runs on a simulator which can
measure at a particular (sometimes parameterizable) level of detail including

– cycle-accurate simulation – simulation run in software designed to give
an accurate representation of machine time or energy use [Simunic



Measurement 29

et al. 1999]; slow for large runs though recent enhanced techniques
make such methods more viable for whole workloads [Lee et al. 2008]

– whole-system simulation – while not necessarily cycle-accurate, these
simulators are fast enough to evualate whole workloads

• trace-driven simulation – a record of memory accesses (usually classified as
read, write or instruction fetch) is read by these simulators, allowing memory
system variation to be modelled (instruction variation can only be modelled
in a limited way since the actual instructions are not recorded, and changes
in execution order cannot easily be modelled)

• emulation – emulation differs from simulation in that it only aims to run a
non-native instruction set rather than to provide accurate performance data

• profiling – measurement of relative times spend on different parts of a
program; profiling can be implemented as a feature of a simulator [Cmelik
and Keppel 1994] but it is more commonly implemented by instrumenting
code [Reddi et al. 2004]

• back of the envelope – quick calculations that quantify relatively simple
effects; limited in applicability since a whole system includes complex
interactions between all influences on performance

From the difference in goals of emulation and simulation arises an interesting
question: is it possible for a simulation to be too good? While real systems
have variations in execution time that can’t be eliminated arising from interactions
between processes and interactions with external events, to produce repeatable
results for scientific investigations, you need repeatable measurement. For an
emulator, you care less about repeatable measurement and more about both
accurate implementation of the target system as well as speed and minimal resource
requirements. For a simulator, while those factors are important, it may be
reasonable to sacrifice a little accuracy or speed for repeatability. In a sense then it
is possible for a simulation to be too good.

2.2.2 Benchmarking

When we are really only concerned with comparing competing systems, rather
than pinning down where the time is spent, benchmarking – comparing standard
program runs against competing systems – is popular. Benchmarks fall into two
broad categories:

• kernels – useful for testing how some very specific feature compares across
architectures, e.g., floating point multiplication
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• full workloads – programs that exercise the whole system including the file
system, the memory hierarchy and even the network in ways representative
of one or more classes of real programs; some examples include

– SPEC – divided into integer and floating point scores [Henning 2006]
and widely used specially in the UNIX space to compare systems

– numerous other benchmark suites to evaluate web server performance
(e.g. SPECweb – discontinued in 2012), database scalability (e.g.
TPC bechnmarks [Nambiar et al. 2011]), energy [Poess et al. 2010],
embedded systems [Guthaus et al. 2001; Schoeberl et al. 2010] and
other specific kinds of workload

One of the hot issues in benchmarking is gaming the system. For example, creating
a compiler that recognises a specific benchmark and inserts hand-tuned code that
no compiler could generate, or including a special instruction that is hard to use in
general are tricks used in the past. Kernels have to some extent fallen into disuse
because they are so easy to hand-tune or otherwise arrive at fake results that do not
predict real system performance. Even with SPEC benchmarks, which are whole
programs of the size of a compiler run, I’ve had the experience of running my
own code on two machines one of which had double the SPEC rating of the other,
and my own code reversed this to the extent of the “slower” machine on published
SPEC results running in half the time of the “faster” machine.

In my experience the best benchmark is the workload of interest to you, run
under conditions representative of your usual work (e.g., running a canned installer,
or compiling it yourself, then running it with a system loaded the way you usually
run).

Since benchmarks are most useful for comparing competing machines rather
than elucidating performance details of system components, I do not include them
as an example for measuring memory systems.

2.3 Putting it All Together: Measuring Memory Systems
Performance

Since memory references occur at least once for each instruction (an instruction
must be fetched from memory and may also move data to or from main memory),
an accurate simulation of memory systems performance making it possible to
compare different options should really simulate most aspects of the pipeline. I
examine here the variations that can be useful, starting from those that simulate the
least detail.
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term definition
miss rate fraction of references at a level that miss
global miss rate miss rate over all references
local miss rate miss rate at a given level
miss penalty extra time arising from a miss
hit cost time for a hit

Table 2.2: Performance parameters. The most important thing is elapsed time;

minimising miss rate for example is not an end in itself.

Table 2.2 lists some terminology of use when evaluating memory performance.
At the top of the hierarchy, the cost of a hit is often absorbed into a pipeline stage
and hence not counted. At lower levels, we usually count the hit cost as part of the
miss penalty for the layer above. When evaluating memory system alternatives, we
care most about overall run time. Minimising miss rate for example may seem like
a good idea, especially if as big speed gap is involved, but if doing so slows down
the faster layer, there may not be an overall win.

2.3.1 Back of the Envelope Calculation

To get a quick feel for the effect of design parameters we can do simple calculations
of the likely effect, remembering always that such calculations can be misleading
because they do not take into account the full range of interactions of components.
For example, with an aggressive pipeline that allows instructions to continue
through the pipeline when others are stalled waiting for a cache miss, a simple
calculation of the effect of increasing or decreasing the miss rate is at best a crude
approximation.

Let’s nonetheless look at an example in detail and at the same time introduce
some terminology for speed comparison.

In Table 2.3 I list common measures of speed improvement. A speedup greater

measure definition

speedup
timeoriginal

timenew

improvement 1−
timeoriginal− timenew

timeoriginal

Table 2.3: Performance improvement measures. Improvement is often given

as a percentage. Dividing by tnew is very misleading and greatly exaggerates the

% improvement.
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level hit or miss penalty
1 h h h h m h h h h m 10
2 h m 100
3 m h

Figure 2.2: Example of miss rate calculation. We need to account for misses

to L2 and L3, since there are no misses from L3. Assume hits in level 1 take 1

time unit, and penalties are relative to that.

than 1 means you are doing better; a speed improvement greater than 0 means
you are doing better. Speed improvement is a risky measure to use because
“50% faster” doesn’t sound nearly as impressive as “150%” faster so many people
especially in marketing forget to subtract the 1. You also get a very different answer
if you look at improvement relative to the faster rather than the slower system.
When quantifying speed improvement, make sure you define your terms.

To calculate the effect of misses, we need an execution time formula, which I
generalize to allow more than one level of cache (and the main memory could also
simply be counted as another level; going to a paging device is more complicated
because the operating system is involved and hence a simple miss penalty does not
apply):

te = th1 +
n

∑
i=1

pmi× rmi (2.1)

where te is relative execution time, normalized to 1=no misses; actual execution
time is te× IC ×tclock, where pmi is the penalty of misses from level i and rmi is the
rate of misses from level i (we use a global miss rate here since we want to quantify
the effect on overall run time). It is useful to leave out the instruction count IC
because that way we can compare scenarios where we don’t vary the instruction
count without knowing exactly how many instructions were executed. We also
leave out the clock cycle time tclock since that allows us to compare scenarios
of similar clock speed without needing to fix the clock cycle time. This general
formula can be adapted to include other causes of stalls.

For example, in Figure 2.2, we have miss rates from L1 of 0.2 and from L1 of
0.1. Applying the formula with the penalties given results in:

te = 1+10×0.2+100×0.1

= 13

In a real system, you would expect much lower miss rates than this, especially to
the lower level (and slower) parts of the hierarchy.

For simplicity I assume that the L1 hit time accounts for all execution time,
which is true in the case of a pipelined architecture. There is the possibility of
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misses for both data and instruction references, and we also need to ensure that we
do not double-count hit time at level i+ 1 so we should not we treat an access at
that level as part of the miss penalty of level i if we count it as part of the hit time
at level i+ 1. However you do this make sure you make it completely clear what
you are including in the calculation and why.

Case Study

A simple example illustrates design trade-offs. Assume we have two ways of
designing a cache. A direct-mapped cache has very simple logic (a given address
can only map to one block in a cache) but has the drawback that it can have a high
miss rate, since some combination of addresses used repeated in close proximity
that possibly coincidentally map to the same block can evict each other when the
cache is nowhere near full. A 4-way associative cache (4 different ways you
can place any given address) can avoid this problem at the cost of slower cache
reference time. Assume:

• effect on hits – the 4-way associative hit time is 10% slower than the direct-
mapped hit time

• effect on miss rate – the 4-way associative cache has 20% fewer misses

• miss penalty – a miss from this level of cache costs 100× a hit in the direct-
mapped cache

Calculate the miss rate at which the two caches have the same performance, and
hence the point at which it becomes useful to use the 4-way cache.

Solution

We assume that the miss rate rm is relative to this level of cache since we don’t
know anything about the rest of the hierarchy. We don’t know absolute times so
make the direct-mapped hit time td and base everything on that:

• hit time at level i ≡ thi ; for this example:

– direct mapped hit time ≡ td

– 4-way associative hit time ≡ t4 = 1.1td

• miss rate at level i ≡ rmi ; for this example:

– direct mapped miss rate ≡ rd

– associative miss rate ≡ r4
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• miss penalty from level i ≡ pmi ; for this example, only one level with pm =

100td

To find the break-even point, we can adapt the execution time formula (2.1) to
make it easier to compare our two cache variants without excessive notation. For
this example I need only 1 level and drop the i subscript, and derive variants for
each case, which I need to set equal to find the break-even point:

ted = td + pm× rd (2.2)

te4 = t4 + pm× r4 (2.3)

We know that the 4-way associative cache has 20% fewer misses, and its hit time
is 10% slower than the direct-mapped cache, so we can rewrite Equation 2.3 as
follows:

te4 = td×1.1+ pm× rd×0.8 (2.4)

and the miss rate at which the two equations have the same execution time occurs
when Equation 2.4 = Equation 2.2. So we need to solve for rd in:

td + pm× rd = td×1.1+ pm× rd×0.8 (2.5)

Put all the rd terms on one side, and put everything in units of direct-mapped hit
time td , noting that pm = 100td :

pm× rd− pm× rd×0.8 = td×1.1− td

and simplify:
100td× rd(1−0.8) = td(1.1−1)

0.2×100td× rd = 0.1td

20td× rd = 0.1td

So the break-even point is where

rd = 0.005 (2.6)

To put the answer in English, in this scenario, we need at least 0.5% of the hits
in the direct-mapped cache to be misses before changing the design to a 4-way
associative cache is a win.

Is this result surprising?
Having done a calculation like this, look back at the numbers to see if the

answer makes sense. A miss penalty of 100 is pretty big in relation to the penalty
of 10% slower hits for the 4-way associative cache so it shouldn’t take a high
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number of misses for a reduction of 20% to be a win even given a small increase in
hit time. The answer therefore looks plausible. Now go back to Equation 2.5 and
check that rd = 0.005 does indeed make the two sides equal and that a larger value
of rd does make the direct-mapped formula (Equation 2.2) for run time bigger than
the 4-way associative formula (Equation 2.3).

Another way to check this sort of calculation is to see if you end up with the
right units. We want a number expressed as a fraction without units like seconds or
number of instructions executed, since a miss rate is just a dimensionless fraction.
If you end up with something that has the wrong units, you’ve probably forgotten
to cancel something out or made a mistake in moving terms around.

In practice, most CPUs have two or more levels of cache to reduce the need for
this sort of design trade-off. The L1 cache can be as fast as possible, and the L2
cache can be designed with a few compromises on raw speed to reduce miss rate.

2.3.2 Profiling

Profiling is most useful to ascertain where time is spent on an existing architecture
for a given workload, and is most often used as a tool to tune performance of a given
program or set of programs rather than as an architecture design tool. The reason
for this is that profiling does not allow the option of varying design parameters on
a real system, and there is little point in doing profiling at the application level on
a simulator, since you can instrument the simulator.

That said an understanding of architecture can inform your approach to
profiling. If you understand the role of various system components like caches and
the TLB, you are in a better position to understand where to look for improvements.

2.3.3 Trace-Driven Simulation

A trace-drive simulation takes as input a trace file, containing addresses tagged as
one of a read, write or instruction fetch. It is possible to simulate multitasking
workloads by interleaving traces, including traces simulating operating system
functions, though the OS component necessarily must be an approximation.

Given speed improvements in direct execution simulation, trace-driven sim-
ulation is not as popular as it used to be [Borg et al. 1990; Uhlig and Mudge
1997; Engblom and Ermedahl 1999], though there is still a fair amount of research
conducted using traces. It is nonetheless a useful tool for testing new ideas
independently of CPU details. It is not very hard to create a simple trace-driven
simulation, and there are tools to generate traces (e.g., PIN [Reddi et al. 2004]).

To measure memory system variation, the same trace file can be run through
different models of the memory hierarchy (e.g., different sizes, organisations and
speeds of caches). A simulation may also be sped up by starting the trace at a
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point of interest in the code (e.g., skipping initialization). Although there is some
inaccuracy, you aim to make than inaccuracy minimal as a fraction of the total run.
With the aid of profiling it may be possible to isolate out parts of a program that
contribute most to run time and focus on those, not forgetting that effects of the
parts of the program not measured can perturb the results.

2.3.4 Whole-System Simulation

Since performance of direct-execution simulations improved so that they run at
a reasonably small slowdown over running on real hardware, it has become in-
creasingly common for such simulators to support running a full system including
an operating system, making for higher accuracy in measuring inter-process and
system influences on performance. A good example of an academic project for
full-systems simulation is M5 [Binkert et al. 2003] from University of Michigan
and its successor gem5 [Binkert et al. 2011]. Gem5 has full-system support for
the Alpha, ARM, SPARC and Intel x86 instructions sets. Alpha historically was
a popular architecture for research because it is one of the cleaner RISC designs,
though it is no longer in production.

A full-system simulation allows not only detailed variation of the cache
architecture but also parameterization of memory system performance down to
disk and even network layer, and potentially changing the page table structure, if
you have the fortitude to rewrite the operating system interface to the hardware.

A factor that mitigates against the slowdown of full-system simulation is
ubiquitous PCs capable of running Linux. Rather than run one simulation faster
(as you can do with a less detailed model), you can run many instances of the
simulation with different parameters if you are lucky enough to be in a university
with large numbers of PCs in student labs that researchers can take over at off-peak
times.

2.3.5 More Detailed Approaches

It is seldom that low-level cycle-accurate simulation is necessary for evaluating
memory system variations. The biggest performance effects are excursions down
the hierarchy, rather than at the level of registers or the pipeline, so small
inaccuracies in timing at those levels have an insignificant effect compared with
a small change in miss rate. If you are checking a design for correctness, that’s a
different matter and cycle-accurate simulation as well as mathematical approaches
to formal verification play a significant role.
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2.3.6 Summary

For most research today, a full system simulation is the approach of choice. For
classroom examples, we do paper exercises. For small-scale design studies, trace-
driven simulation still has a lot to recommend it. We seldom need more detailed
simulations purely to evaluate overall system performance but if producing a new
design, we may want to do cycle-accurate simulation to check design assumptions,
e.g., for the time a specific implementation should take for given operations (as
well as to validate the design, as I describe above). For example, you need to at
least work through the timing of the extra logic needed for a 4-way associative
cache to know what percentage slower it is than a direct-mapped cache (the 10%
number in the case study is not based on a real example).

Learning about a few publically available research tools is useful: do a web
search to build on the examples listed here. Also practice at examples of back of the
envelope calculation. These are useful to build an appreciation of how performance
trade-offs work, even if they are poor indicators of overall system performance.

Exercises

1. Assume in the absence of misses a machine executes on average 1 instruction
per clock. You are investigating a new page table organization that reduces
page faults by 1%; to implement this you will lose hardware support for
TLB misses. Assume a page fault takes 1-million cycles to handle, and a
TLB miss without this improvement takes 50 cycles with hardware support.
Without hardware support, a TLB miss takes 100 cycles. Apply the general
multilevel miss formula (Equation 2.1) here with the TLB as level 1 and the
page fault as level 2:

(a) What is the net speed gain (or loss) of the improvement if 0.1% of TLB
references are misses?

(b) Is this a useful calculation for a real system? Consider what a real
system does on a page fault.

2. Assume we have a machine that in the absence of misses executes on
average 2 instructions per cycle. Such a machine would have a higher peak
throughput but would be limited by other limits on ILP such as branches.

(a) Redo the calculation of the case study (p 33, section 2.3.1) under this
assumption.

(b) Now allow for a non-blocking cache that can avoid a stall on average
for 5 instructions before having to stall.
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(c) Is a non-blocking cache a useful improvement given the miss cost of
this example? When might your answer change?

3. We are considering splitting the cache of the case study of page 33 into two
levels as alternative to the 4-way associative cache. The miss penalty from
L1 to L2 in this new alternative is 10 times L1 direct-mapped hit time (td in
the case study), and the miss penalty to DRAM is unchanged. In this new
scenario:

(a) Work out the miss rate from L2 required to break even with the single-
level 4-way associative cache cache.

(b) Comment in general on the value or otherwise of an L2 cache as
opposed to fine-tuning the parameters of L1.

4. Blocking is a programming technique (not to be confused with cache blocks,
or non-blocking caches) where a fraction of the total data structure to be
processed in an algorithm is used as much as possible before moving on to
another part of the data structure [Lam et al. 1991]. Discuss how blocking
can aid performance.



3 Pipelines and ILP

PIPELINES ARE AT THE CORE of instruction-level parallelism so I discuss the
two together. A pipeline, sometimes pipe for short, is based on the same
principle as assembly-line mass production. If you break a task down into

smaller tasks, each requiring the same time to complete, you can dramatically
speed up overall operation, even if completing one task is not sped up, because
you overlap multiple tasks each at a different stage of the pipeline (or production
line).

The key to pipeline performance is balanced stages. If one stage takes a lot
longer than the others, that stage determines performance. Another consideration
is overheads in moving from one stage to the next, which limits how deep a pipeline
is practical. Another limitation on how deep a pipeline is practical is the cost of
flushing the pipeline when instructions at various stages turn out not to be needed,
usually on a branch instruction.

Instruction-level parallelism builds on pipelining by adding options of out-
of-order execution and more than one instruction per clock. These additions, as
noted in Chapter 1, go back to the early work of Seymour Cray in the 1960s.
Because RISC architectures lend themselves naturally to aggressive pipelines,
some commentators erroneously label such features as “RISC-like”, including in
versions of the Intel IA32 (and of course IA32-64) architecture, which clearly does
not have the attributes of typical RISC ISA. A RISC architecture makes aggressive
ILP easier to design, but there is no reason in principle that any other ISA should
not also feature an aggressive ILP implementation.

In this chapter, I review basics of pipelining and go on to show how ILP
can be added onto a basic design. Much of the discussion is based on pipelines
that complete at most a single instruction per cycle, and that have the same total
execution time. Pipelines that allow multiple instructions per cycle (superscalar
pipelines), and floating-point pipelines with instructions that have multiple execute
cycles considerably increase complexity.

39
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3.1 Simple Pipelines

Pipelines can be organized with many variations on the number and type of stages.
To keep things simple, I start out with a 5-stage pipeline that is relatively easy
to implement for integer instructions using a RISC ISA. The stages are (in some
cases, allowing for variations in instruction types):

1. instruction fetch (IF) – use the program counter register (PC) to load the next
instruction and increment the PC

2. instruction decode (ID) – decode the instruction and also read register
values from source operands; compute the branch target address; sign-extend
immediate operand values

3. execution (EX) – complete ALU operations using previously prepared
operands including:

(a) memory reference – add the offset to the base address

(b) branch – determine branch outcome

(c) register-register ALU operation

(d) register-immediate ALU operation

4. memory access (MEM) – for a load instruction, fetch the data from memory;
for a store, send the data to memory from the register whose value is to be
stored

5. write-back (WB) – for ALU operations and memory loads, copy the result to
the destination register

In a RISC ISA, much of this is radically simplified. For example, in IF, we can do
all the possible options simultaneously and drop any not needed, because register
operands are always in the same place in an instruction. We need sign extension
on immediate operands because a negative value has all 1s in the most significant
bits if we extend the precision. An immediate operand is built into the instruction
and is therefore smaller than a machine word.

We see the value of the load-store architecture of a RISC ISA here. Because
no instruction does both a memory reference and an ALU operation, a single pipe
stage can do any part of either kind of operation.

This design does not complete all instructions in uniform time. A branch can
complete in the second stage, a store in the fourth and all other instructions need
all five stages. Nonetheless it is a simple design and easy to pipeline simply by
starting an IF on every clock.



Simple Pipelines 41

clock number
instruction no. 1 2 3 4 5 6 7 8 9

i IF ID EX MEM WB
i+1 IF ID EX MEM WB
i+2 IF ID EX MEM WB
i+3 IF ID EX MEM WB
i+4 IF ID EX MEM WB

Figure 3.1: Progress through a 5-stage pipeline.

In Figure 3.1, I illustrate progress through a pipeline, assuming each instruction
can start without delay. This is a common notation for illustrating progress through
a pipeline and counting up total elapsed clock cycles. In this example, each
instruction can start immediately and continues for all five stages without a break.
In real examples, instructions my stall for various reasons, adding a bubble to the
pipeline. A more realistic example should take into account dependences between
instructions, e.g., if one instruction creates a value, a following instruction cannot
enter the pipe stage where it needs that value until it’s ready.

Another notation used to illustrate a pipeline uses a picture of a datapath,
repeated starting once for each stage, showing the components active at each
stage. The advantage of this notation is that it’s easy to visualise dependences
between stages. Figure 3.2 based on the style used by Hennessy and Patterson
[2012] illustrates how the datapath can be visualised in this time-shifted way. The
grey boxes between stages represent pipeline registers, which pass values between

Figure 3.2: Pipeline progress with datapaths. The register file is repeated: the

first time it appears where it’s read, the second time where it’s written. The grey

boxes represent inter-stage registers. Instruction (IM) and data (DM) memory

are represented separately though they are logically in the same address space,

capturing the property of most L1 caches that are divided between instruction

(I) and data (D) caches.
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stages. Because the register file is accessed at two different stages, it appears twice,
with a broken line on the left if it’s being read and on the right if it’s being written.
You can clearly see with this notation if a dependency may exist because the pipe
stages where registers are accessed. The notation for the register file is useful
because it contains a hint that a modification to a register and a read may be possible
on the same cycle if the modification happens in the first half of the cycle and the
read in the second half.

3.1.1 Pipeline Limitations

Our 5-stage pipeline isn’t the only organisation possible. Some designs have fewer
stages and the later versions of the Pentium 4 architecture had as many as 31
[Zukowski et al. 2006]. Very deeply pipelined machines are sometimes referred to
as superpipelined. The theoretical gain from a deeper pipeline – more instructions
in parallel hence theoretically greater speedup – is offset by various costs. These
include:

• clock skew – longest delay between the clock arriving at any pair of registers

• propagation delay – the pipeline registers are fast but each new stage adds
delay

• cost of pipeline flushes – the deeper the pipeline the more instructions are
lost when the wrong instructions are in the pipeline; this adds not only to the
cost of branches but also of context switches

In general super-deep pipelines have been explored and not had big enough
performance wins to remain in the mainstream.

Another complication in pipeline design is floating-point instructions. For
practical purposes, it is not possible to complete some of the more complex
operations like floating point divide in one cycle, meaning that the clean simplicity
of a RISC pipeline with uniform instruction handling is broken.

3.1.2 Pipeline Performance

Once we’ve worked out the number of stages and any delays between stages, we
can work out a theoretical peak execution rate, which is just the clock rate. The
clock rate is limited by the time of the longest pipe stage plus overhead. A 5-stage
pipeline can at most result in a speed up of 5 over a non-pipelined machine. A real
machine though will have bubbles in the pipeline induced by stalls, and therefore
not achieve its theoretical peak throughput.
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Case Study

Let’s look at an example. The timing for each stage has to be worked out by doing
a proper logic design, and working out the longest logic path at that stage. Here,
I use invented numbers to illustrate the principle. Assume inter-stage logic has an
overhead of 0.1ns, and the following times for each stage:

1. IF – 0.5ns

2. ID – 0.4ns

3. EX – 0.3ns

4. MEM – 0.5ns

5. WB – 0.2ns

The longest stage takes 0.5ns, and overhead is 0.1ns, so this sets cycle time at 0.6ns
(1.67GHz; to convert between Ghz and ns: GHz = 1

ns ). How much speedup is this
over a non-pipelined implementation? Superficially, we can add the cycle times
of the nonpipelined machine, but we should also take into account the fact that
some instructions don’t use all stages and in a nonpipelined implementation could
therefore finish faster. In our 5-stage pipeline, only memory operations need all 5
stages (other instructions are idle in the MEM stage). To work out what average
instruction execution time a non-pipelined machine takes, we need an instruction
mix. Assume instructions break down as follows (as a fraction of all instructions
executed in a particular workload):

• load – 20%

• store – 10%

• branch – 20%

• ALU operation – 50%

We can now work out an average for a non-pipelined instruction, in which 30%
(loads plus stores) use all 5 stages, and the rest skip the MEM stage:

tnopipe = 0.7× (0.5+0.4+0.3+0.2)+0.3× (0.5+0.4+0.3+0.5+0.2)

= 0.7×1.4+0.3×1.9

= 0.98+0.57

= 1.55ns

So our actual speedup is 1.55
0.6 = 2.58, significantly less than a speedup of 5 that you

would predict from a superficial understanding of pipelining.
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It is tempting given the numbers in our example to split the pipeline stages.
Assuming we can split each longer stage into two stages, each half the size of the
original (of course with overhead as before, but now for more stages), can we do
better? Let’s work the numbers, aiming for a new maximum stage of 0.25ns:

1. IF1 – 0.25ns

2. IF2 – 0.25ns

3. ID1 – 0.2ns

4. ID2 – 0.2ns

5. EX1 – 0.15ns

6. EX2 – 0.15ns

7. MEM1 – 0.25ns

8. MEM2 – 0.25ns

9. WB – 0.2ns

We how have 9 stages, and the longest is 0.25ns, so our cycle time is 0.35ns with
overheads, a speedup of 4.4 over the non-pipelined design, and 1.7 over the 5-
stage pipeline. That looks worthwhile but as we will see later, this is not the whole
pipeline story, and we need to take into account pipeline stalls before declaring a
clear win.

What if we take this to the limit, and make each stage 0.1ns, the same as the
overhead? In this case, we have 19 stages and the cycle time is 0.2ns, a speedup
of 3 over the 5-stage pipeline, and 7.8 over the non-pipelined design. However,
we have thrown a lot more hardware at the problem and we incur other significant
costs, e.g., as we see when we deal with branches, we have significant costs of
having the wrong instructions in the pipeline. With these numbers, it should be
clear that further reducing the stage size has little benefit.

Hazards

Now we hit the hard part of pipelining, quantifying the costs when we have bubbles
in the pipeline. A pipeline has an empty time slot when it can’t proceed because of
a dependency or resource constraint, generally called a hazard. Hazards fall into
three categories:

• data hazards – data dependences prevent progress, divided into:
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– read after write or (RAW) – any use of a data value after its changed
including registers and memory locations, though mostly registers in
our examples: the main challenge is ensuring the updated value is read

– write after write or (WAW) – any attempt to change a data value
after another change: making sure the last change sticks is the main
challenge

– write after read or (WAR) – this hazard in less aggressive designs can be
avoided by writing to registers and memory in a late stage; see Figure
3.2 for example where the “DM” box representing the MEM pipeline
stage where movement of data between memory and registers happens,
and the second “Reg” box representing the WB pipeline stage are the
two latest pipeline stages

• control hazards – a change (or possible change) in order of execution
prevents progress

• structural hazards – a limit on hardware resources prevents progress (e.g., a
functional unit is not available to two instructions that need it on the same
cycle, something not a problem with our simple pipeline)

To quantify simple examples, we need a machine code instruction set. We base
ours on a generic RISC architecture, with ALU operations that either take two
register source operands and one destination, or the source operands can include an
immediate operand, a value encoded into the instruction. Memory data references
are all either loads (copy from memory to register) or stores (copy from register to
memory). We assume 32 registers (named R0. . .R31, with R0 always the value 0),
and a 32-bit instruction word.

A few things to note:

• operand widths are specified in the instruction as “l” for a long word of 8
bytes, “w” for a 4-byte word, “s” for a 2-byte short and “b” for a single-byte
operand at the end of the operation name

• unsigned operands are specified in the instruction as “u” after the operand
name

• immediate operands are encoded into the instruction and limited to 16 bits
so, to extend the range of possible values, when they are used as address
offsets for aligned access, the low bits are not present (which is why the “<<

2” calculation is used before adding them to a word address); immediate
operand instructions are written with a “.i” suffix
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instruction effect
loadw Rd,[Ra+Rb] Rd ← mem[Ra+Rb]
loadw.i Rd,[Ra+offset] Rd ← mem[Rb+offset << 2]
storew [Rd1+Rd2],Rs mem[Rd1 +Rd2 ]← Rs

storew.i [Rd+offset<< 2],Rs mem[Rd+offset<< 2]← Rs

addw Rd,Ra,Rb Rd ← Ra +Rb

addw.i Rd,Ra,value Rd ← Ra+ value
subw Rd,Ra,Rb Rd ← Ra−Rb

subw.i Rd,Ra,value Rd ← Ra− value
multw Rd,Ra,Rb Rd ← Ra×Rb

multw.i Rd,Ra,value Rd ← Ra× value
divw Rd,Ra,Rb Rd ← Ra÷Rb

divw.i Rd,Ra,value Rd ← Ra÷ value
andw Rd,Ra,Rb Rd ← Ra ∧Rb

orw Rd,Ra,Rb Rd ← Ra ∨Rb

xorw Rd,Ra,Rb Rd ← Ra⊕Rb

lshiftw Rd,Ra,Rb Rd ← Ra << Rb

rshiftw Rd,Ra,Rb Rd ← Ra >> Rb

cmpeqw Rd,Ra,Rb Rd ← Ra = Rb

cmpnew Rd,Ra,Rb Rd ← Ra 6= Rb

cmpltw Rd,Ra,Rb Rd ← Ra < Rb

breqw.i Ra,Rb,offset Ra = Rb ? PC← PC+ offset << 2
brnew.i Ra,Rb,offset Ra 6= Rb ? PC← PC+ offset << 2
j Ra,Rb PC← Ra +Rb

j.i address PC← address << 2
save Rd,Ra Rd ← PC+Ra

save.i Rd,offset Rd ← PC+ offset << 2

Table 3.1: Simple instruction set for examples. Both offset and value are

signed 16-bit values. Instructions ending in “w” operate on a 32-bit integer word,

and a “.i” suffix implies an immediate operand. We don’t need both < and >

because we can reverse the operands. You can obtain a logical negation by using

xorw Rd,Ra,R0. You can check for negative values by cmpltw Rd,Ra,R0. To

keep the notation consistent with an assignment, the destination operand is

always written first.

• register operands are 32 bits wide and can potentially generate unaligned
accesses, which are trapped by hardware since these are errors for this
architecture

• branch instructions generally are relative to the current program counter
(PC); in assembly language for convenience we use symbolic labels to
indicate the branch target but, in machine code, the target is a signed offset

• jump instructions are unconditional and usually allow longer addresses than
the short offsets allowed in branches; the j.i instruction uses all the bits not
required for an opcode as a word-aligned address

• you can get the effect of a jump instruction to an offset by using a condition
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on a branch that’s always true

• a return address is usually stored using a variant on a branch or jump; in our
simple instruction set, we instead have a save or save.i instruction that
allows us to store a location some offset from the PC

I only include word-length instructions with signed operations in the Table 3.1; an
example of another variation, an unsigned add of 1 half-word (“s” for “short”) is:

addsu R6,R5,R4

This is a very simple instruction set; simpler in some ways even than the MIPS
instruction set, one of the more regular RISC examples1.

Let’s look at a simple code snippet, translated to assembly language in our
notation, and see how it proceeds through the pipeline:

for (int i = 0; i < N; i++) {

a[i] += b[i] - 42;

}

To translate to our machine instruction is reasonably straightforward. We need to
note a few things:

• word size is 4 bytes so we need to go up in steps of 4 to iterate through an
array

• the variable i is local to the loop and only used in array references, so we
can replace it by an offset incrementing in steps of 4

• we need to test the stop condition before the first iteration to be consistent
with the definition of a C-style for loop

In assembly language it looks something like this, with the original code inter-
leaved as comments:

# assume the value of N is in R1, the base address of a is in R2,

# the base address of b is in R3

multw.i R7,R1,4 # loop end point (N scaled by 4)

# for (int i = 0; i < N; i++) {

addw.i R4,R0,0 # initial array offset (i scaled by 4)

test: cmplt R8,R4,R7 # < end of loop test?

breqw.i R8,R0,end # < test false? get out

1See http://www.mrc.uidaho.edu/mrc/people/jff/digital/MIPSir.html for some de-
tails of the MIPS instruction set.

http://www.mrc.uidaho.edu/mrc/people/jff/digital/MIPSir.html
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clock number
instruction 1 2 3 4 5 6 7 8 9 10
loadw R6,R2,R4 F D X M W
loadw R5,R3,R4 F D X M W
addw R6,R6,R5 F D X M W
subw.i R6,R6,42 F D X M W
storew R2,R4,R6 F D X M W
addw.i R4,R4,4 F D X M W

Figure 3.3: Our code without pipeline bubbles. I mark registers modified in

previous steps in red. We now have to work out where stalls should occur. For

brevity I shorten the stage names to 1 letter.

# a[i] += b[i] - 42;

loadw R6,R2,R4

loadw R5,R3,R4

addw R6,R6,R5

subw.i R6,R6,42

storew R2,R4,R6

addw.i R4,R4,4 # advance by 4 because word = 4 bytes

breqw.i R0,R0,test

# }

end: # next instruction after loop

This code could be more efficient (e.g., branching to the test is less efficient than
doing the test at the end, and our last branch is in effect unconditional and a jump
would be more efficient – since it’s a short distance away, j.i test would work)
but it serves to illustrate progress of code through a pipeline, and gives us a simple
example to explore control hazards. To start with, we will only look at the body of
the loop without conditional code, to see how data hazards arise. The body of the
loop on its own is as follows:

loadw R6,R2,R4

loadw R5,R3,R4

addw R6,R6,R5

subw.i R6,R6,42

storew R2,R4,R6

addw.i R4,R4,4 # advance by 4 because word = 4 bytes

To see what dependences there are, let’s write out a timing diagram then refer
back to our definition of timing in the pipeline. In Figure 3.3, I list the instructions
without bubbles in the pipeline but instructions that depend on previous instructions
highlighted. The first addw instruction depends on the previous two loads, but only
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clock number
instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
loadw R6,R2,R4 F D X M W
loadw R5,R3,R4 F D X M W
addw R6,R6,R5 F – – – D X M W
subw.i R6,R6,42 F – – – D X M W
storew R2,R4,R6 F – – – D X M W
addw.i R4,R4,4 F D X M W

Figure 3.4: Our code with stalls (marked as “–”) causing pipeline bubbles.

the delay caused by the second load matters, since any delay added there will be at
least 1 cycle longer than needed for the first delay. In our simple pipeline, a load
and ALU result is available in the target register at the end of the WB cycle and
an ALU operation needs a register value in the ID stage. That means we must stall
the pipeline for three cycles in each case where an ALU or store operation follows
another instruction that changes a register it needs.

The result as illustrated in Figure 3.4 is an increase from 10 to 19 cycles to
complete the sequence of code.

That’s a rather large slowdown2: 10
19 = 0.53. Can we do better? Waiting for the

end of a cycle when a result is written to in a register is not really necessary if we
can write a register in the first half of a cycle and read it in the second half. Also, we
can go a step further add hardware resources to determine that a value is needed,
we can bypass the register file, an approach also called forwarding. By making the
first improvement, we can reduce each stall by 1 cycle. If we introduce forwarding
hardware, we can use each result as soon as it’s ready rather than routing it via the
register file. In the case of an ALU operation, it is ready the cycle after EX. In
the case of a load, it is ready after the MEM stage. Also, we can route the result

2Technically, this is a “speedup” though the word looks wrong applied to a case where we’ve lost
speed.

clock number
instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
loadw R6,R2,R4 F D X M W
loadw R5,R3,R4 F D X M W
addw R6,R6,R5 F – – D X M W
subw.i R6,R6,42 F – – D X M W
storew R2,R4,R6 F – – D X M W
addw.i R4,R4,4 F D X M W
loadw R6,R2,R4 F D X M W
loadw R5,R3,R4 F D X M W
addw R6,R6,R5 F – D X M W
subw.i R6,R6,42 F D X M W
storew R2,R4,R6 F D X M W
addw.i R4,R4,4 F D X M W

Figure 3.5: Approaches to reducing stalls. The example above the horizontal

line illustrates the effect of being allowed to read a register in the second half

of the cycle when it’s written. The version below the line illustrates the benefit

of forwarding.
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Figure 3.6: Limits of forwarding. The grey lines show how values can be

forwarded; the ragged star shows where forwarding would require sending a

value back in time, since the load result is not ready in time for the following

ALU operation.

at the cycle it’s needed rather than the cycle before, e.g., for an ALU operation, if
the result is ready before EX, forwarding can make it available at the start of EX
even if it’s not available at the start of ID. A store instruction only needs its value
at the start of MEM. I illustrate a minimal version of stall reduction in the top half
of Figure 3.5, and a more aggressive version using forwarding in the lower half.

In this example, we are able to eliminate all but one stall by aggressive use
of forwarding. The cost of forwarding is a more complex decode stage, which
must determine if any needed registers are pending results and if so set up bypass
logic, which can include receiving values from the ALU or from a memory read.
It is this kind of detail that illustrates the benefit of the extremely regular design
of a RISC architecture. Register operands are always encoded the same way, so
relatively little effort is required to determine which registers need values in the
decode stage. In Figure 3.6, I illustrate why all stalls can be eliminated except for
the add immediately following a load.

What of the branches? We have only so far considered data hazards. There
are two places where control hazards occur: the test at the top of the loop and
the branch at the end. We consider only the second example. The first is useful
as an exercise for later. In this case (Figure 3.7) it is not strictly necessary to
stall since the ID phase doesn’t do anything that can’t be undone. However with
aggressive forwarding there is a fair amount of logic that would be wastefully
exercised, a consideration for low-energy design. In this case, the branch is mostly
not taken, i.e., the branch condition is false. So eliminating the stall would be a
win. Alternatively if a branch is mostly taken, starting to load the target instruction
immediately that the branch target is known (in our architecture, at the end of ID)
rather than wait for the outcome to be known, would be a win.
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clock number
instruction 1 2 3 4 5 6 7 8 9 10
multw.i R7,R1,4 F D X M W
addw.i R4,R0,0 F D X M W
cmplt R8,R4,R7 F D X M W
breqw.i R8,R0,end F D X M W
loadw R6,R2,R4 F – D X M W

Figure 3.7: Branch-induced stalls. After fetching the last instruction, we know

the previous instruction is a branch, and stall until the outcome is known.

Clearly, the loop control branch instruction will most often go the same way.
We know here that the breqw.i instruction controls a loop, but that’s because
we have the source code. How do we know in general when a branch is less or
more likely to be taken? Many recent designs have hardware branch predictors.
We can see from this example that a branch predictor will not be a huge win. If
we predict the branch as not taken, that eliminates 1 stall (the only stall in the
example), provided the prediction is correct. If the prediction is incorrect, we lose
the opportunity to load the target instruction as early as possible, and lose 1 cycle.

The simplest approach to branch prediction is static prediction, based on the
observation that loops repeat by branching backwards. If you predict all forward
branches as not taken and all backward branches as taken, you capture a large
fraction of easily-predicted branch behaviour [Piguet 2006]. Our example may not
be typical of machine code: would this branch predictor work?

A simple approach to dynamic branch prediction is to use 1 bit to record
whether a branch is taken or not. In a case like a loop, 1 bit of prediction is
potentially useful; in a case where prediction depends on the outcome of other
branches a more complex strategy may be better. A simple way of storing state is
in a branch history table, indexed by low-order bits of the instruction address. The
more address bits used, the less chance two branches’ predictions are confused
with each other. A table of 4Ki entries suffices for smaller programs; current
architectures may use bigger tables and more sophisticated schemes. There was
a lot of research into branch prediction in the 1990s, when aggressive ILP was
a major design goal [Yeh and Patt 1992, 1993; Kaeli and Emma 1997; Young
and Smith 1999; Skadron et al. 1999]. If a branch is taken, the bit is set to 1,
otherwise 0, and whatever was previously set is used to predict the branch outcome.
A 1-bit scheme has the drawback that, since it changes every time the direction
of the branch changes, if a branch mostly goes the same way, it mispredicts not
only on the rare occasion when it goes the other way, but the next time when the
direction reverts to the usual way (taken or not). A simple solution is to use 2 bits,
in a scheme that requires the branch go twice in a different direction before the
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bits prediction event new bits
00

not taken

not taken 00
00 taken 01
01 not taken 00
01 taken 11
10

taken

not taken 00
10 taken 11
11 not taken 10
11 taken 11

Figure 3.8: Two-bit branch predictor state transitions. Each predictor is stored

in a table indexed by low address bits of branch instructions.

prediction changes.

Figure 3.8 illustrates state transitions of a 2-bit predictor. Each state is
identified by two bits. If both bits are zeroes, that represents a prediction that the
branch is not taken, which requires two successive instances of the branch being
taken to flip the prediction. Both bits being ones means it takes two successive
instances of the branch to not be taken to flip the prediction. The other two states
each require only 1 disagreeing branch direction to change the next prediction, and
can be pushed back to the “00” or “11” state in a single step. The scheme used
here is a 2-bit saturating up and down counter. It is “saturating” because it stops
when it hits an end point, and “up and down” because it has two end points, one for
counting up, the other for counting down. A branch predictor, like many simple
hardware constructs, can be described as a finite state machine (FSM), which I
represent here as a table. You can also represent an FSM as a diagram with one
node per state, and arrows labeled with events indicating state transitions.

Figure 3.9: Finding a branch prediction. Low bits of a branch instruction

address are used to index a single global pattern table. In this toy example

(table size only 8), 3 bits are needed. Instructions are word-aligned, so the low

2 bits of the instruction address are always 0 and not used in the index.
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I illustrate how a branch instruction’s address is used to look up a prediction in
Figure 3.9. In this case the branch table only has 8 entries, not big enough to be
useful, but we can see the whole example in one picture.

Branch prediction becomes a much more significant issue with superscalar
pipelines, where deciding early to flush the pipeline and go on a new path makes a
big difference, if you mostly choose the right option.

When we consider more exotic pipelines the benefits of branch prediction and
other approaches to reduce branch latency become clearer.

3.2 More Exotic Pipelines

Three variations on pipelines add complication (assuming we are starting with a
simple, regular instruction set: the IA32 is pretty complicated even in a simple
implementation, for example):

• deeper pipelines – hazards have a higher cost the deeper the pipeline because
there are more instructions in flight

• multi-cycle instructions – even in a simple RISC architecture, floating-point
instructions cannot all be implemented in one execute cycle (particularly
divide)

• multiple instructions per clock – a superscalar pipeline multiplies the
opportunities for hazards

Aside from the standard kinds of hazards, handling interrupts becomes more
complex the more complicated the pipeline. Ideally, you want your architecture
to maintain precise exceptions: any instruction that entered the pipeline before that
causing the exception should finish, and any instruction that enters the pipeline
later should not finish, and should not have any effect on the machine state.

There is considerable complexity in handling floating point because some
instructions take multiple cycles and hence make it hard to maintain precise excep-
tions (e.g. a divide overflow exception may take a few cycles to become apparent,
implying that other logically later instructions that subsequently completed should
be rolled back). Long instruction completions also make it possible even with our
simple pipeline model to have WAR hazards.

Timing of deeper pipelines depends exactly how the stages are split.
Here I only consider multiple instructions per clock. Since this technique is

in competition with multiple cores, it is useful to understand the basic concepts
and how far they can go. I also examine tactics that can reduce dependences or
pull them further apart. These techniques include instruction reordering, register
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renaming and loop unrolling. You can reduce stalls either by static or dynamic
scheduling:

• static scheduling – the compiler (or a fanatical human who goes down to
the machine code layer) can optimize ordering of instructions for a given
pipeline

• dynamic scheduling (also dynamic dispatch) – the hardware determines the
order of instructions at run time

A pipeline that can start more than one instruction per clock (more correctly, have
more than one instruction start the EX stage per clock, sometimes called issue) is
called superscalar. In the simplest scheme, the next k instructions are fetched
and if there are no dependences between them limiting parallel execution, all
are dispatched or issued simultaneously. A limitation of this scheme is that it’s
not necessarily a given that adjacent instructions have no dependences but other
instructions further apart may be free to go. Another limitation of a simple scheme
is that branches limit simple ILP. I a typical MIPS integer workload, between
15 and 25% of instructions (counted dynamically, i.e., as fraction of instructions
executed) are branches, meaning you can typically expect 3–6 instructions between
branches [Hennessy and Patterson 2012, p 149]. While floating point code often
has longer sequences of instructions between branches, working around branches
is a key aspect of achieving significant ILP.

In some schemes, dispatch and issue are treated as separate steps3:

• dispatch – queue the instruction for execution

• issue – allocate a functional unit to the instruction and start its execute step

it is useful to split dispatch and issue in out of order machines; in machines that
start instructions strictly in order, there is no need to separate out these steps.

A superscalar pipeline requires duplicated resources for any pair of operations
that could occur in parallel. Typically, the ALU is divided into functional units,
a major grouping of related instructions, such as integer or floating point, and the
number of each type of functional unit limits the number of that type of instruction
that can simultaneously be dispatched.

Before we go on, we need a little more terminology. We already know about
data, control and structural hazards. Another type is a name hazard, a situation
where instructions share the same data resource, usually a register, but do not
actually interchange data. Name dependences usually arise because a machine

3Mark Smotherman has a nice summary of the terminology here: http://www.cs.clemson.edu/

~mark/464/dynsched.txt

http://www.cs.clemson.edu/~mark/464/dynsched.txt
http://www.cs.clemson.edu/~mark/464/dynsched.txt
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Figure 3.10: Dependences in one iteration of the loop. To reduce clutter I do

not depict dependences between the initialization code and loop body. Clearly

all instances of R4 in the loop body depend on the initialization step in the

second instruction, and the loop test depends on the value of R7.

does not have a limitless register set, so registers have to be recycled. Another
example is the call stack, which is recycled between calls, and limits any hardware
attempt to convert function or method calls into threads [Postiff et al. 1998].

Static scheduling

Let us now return to our simple example, and see what happens if we attempt to
execute two instructions per clock. To start with, I look at reordering instructions
and other changes that could be done at compile time.

In Figure 3.10, I illustrate data dependences using an arrow from the place
the data is updated to the place it’s used. To avoid cluttering the picture, I leave
out dependences between the loop initialization and the body; of more interest is
what happens when we repeat the loop. A question we need to ask is if these
are true dependences, or name dependences. In one iteration of the loop, they are
true dependences, limiting ILP. In a two-instruction per clock pipeline, we cannot
dispatch two successive instructions if the second depends on the first. In the body
of the loop, the only cases where pairs of instructions do not have a dependence
are the two loads and the last three instructions. Provided the store can access R4
before the add modifies that register, those two instructions can proceed in parallel.

Using the same subset of the program as in Figure 3.5, let us see how much
parallelism we can extract in a simple scheme that fetches two instructions at a time
and if there is no dependence, dispatches both at once. If there is a dependence, the
second waits until the dependence is cleared. Figure 3.11 illustrates the outcome.

If we compare the result against eliminating stalls using forwarding but in a
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clock number
instruction 1 2 3 4 5 6 7 8 9 10
loadw R6,R2,R4 F D X M W
loadw R5,R3,R4 F D X M W
addw R6,R6,R5 F – D X M W
subw.i R6,R6,42 F – D – X M W
storew R2,R4,R6 F D X M W
addw.i R4,R4,4 F D X M W

Figure 3.11: Simple two-instruction dispatch schedule. If two instructions can

execute on the same cycle they do, otherwise the second stalls. We fetch two

instructions every cycle where there isn’t a pending stall. Assume forwarding

makes it possible to use a result at the end of the stage when it is created.

scalar pipeline in Figure 3.5, we’ve reduced total cycles from 11 to 10, not a huge
win for significantly greater hardware resources.

Can we do better? So far, we have fudged the issue of multiple iterations of the
loop. If we return to the original C-style code:

for (int i = 0; i < N; i++) {

a[i] += b[i] - 42;

}

a simple observation is that the calculation for each value of i is independent so
this code has more natural parallelism than is at first apparent. There’s no reason
if our hardware isn’t clever enough that we shouldn’t be able to do as many loop
bodies as we have hardware resources for in parallel. The reuse of the variable i is
an example of a name dependence, which we can break by systematically renaming
i each iteration of the loop. The only real dependence is that we need to conpute
each new value of i based on the last one, but that’s only one dependence rather
than a long chain that imposes a strict ordering on our code.

So back to the machine code version: if we write out two iterations of the
loop, leaving out the condition and branch, we have dependences between R4, the
index variable, across iterations, but are these true data dependences? Not really,
because we can replace R4 by a different register. In Figure 3.12, I illustrate how
two instances of the loop have minimal dependences between them – though the
new register, R9, has many dependences to successor instructions (as does R4 in
the original code, had I shown them). I then go on to show that I can increase the
gap between dependences by increasingly aggressive renaming.

What’s the win here? The dependence between R9 and successor instructions
need not be as close to them as in Figure 3.12(a). We can move the initialization
of R9 to the top, and we can get further gains by interleaving the code for the two
instances of the loop, with further renaming of registers. We now have the potential
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(a) Rename R4. (b) More renaming. (c) Even more renaming.

Figure 3.12: Dependences in two instances of the loop. To reduce clutter I do

not show dependences more than 3 instructions apart. I rename R4 as R9, then

show with more aggressive renaming dependences can be moved further apart.

if we generalise to more than one instance of the loop to achieve a respectable level
of ILP.

So far, I’ve assumed that we can have two instances of a loop. That is not in
general true: if the loop executes an even number of times, we can do this, and
adjust the stopping condition. What I’ve presented here is an example of loop
unrolling. A compiler can generate code using the principles I illustrate here, but
only for a loop where the stopping condition is a limit on a counter as in a typcial
for loop. In that case, the compiler can generate two instances of the loop: one
that runs for N%k times, the other for N÷ k times. In this case, where k = 2, the
compiler would generate code equivalent to

int i = 0;

int k = 2;

// a N%2 == 1 or 0; could use an if statement

// but the following generalises to k > 2

for (int j = 0; j < N%k; j++) {

a[i] += b[i] - 42;

i++;

}

for (int j = 0; j < N/k; j++) {

a[i] += b[i] - 42;

a[i+1] += b[i+1] - 42;

i+=2;

}
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We can potentially improve our unrolled code even further by using two registers
for the different instances of the loop index from the start, and incrementing each
separately. However we have enough detail at this point to see how unrolling works
in general, and how if can be extended to multiple instances of the loop body. What
we do not have is a way to do loop unrolling when the stopping condition is more
complicated, i.e., we don’t know even at run time (by the first iteration of the loop).

Dynamic scheduling and better branch prediction

There are two big downsides to static scheduling: an ideal schedule for one pipeline
may not be ideal for another, and some limits on parallelism may only be possible
to resolve at run time. The Control Data CDC 6600 was the first machine to tackle
the concepts of out of order execution. It had 10 functional units [Thornton 1963],
and had a hardware structure called a scoreboard that kept track of dependences
and identified which instructions could issue [Thornton 1980]. Recompiling code
may be an option for software created in-house or on frequent release cycles, but
maintaining versions of code for multiple pipelines is impractical for most software
in common use.

Once it became possible to add the equivalent in logic to another functional unit
to implement a scoreboard-like feature, commodity processors switched to out of
order execution.

Another part of the picture, for a change not originally designed by Seymour
Cray, is hardware loop unrolling. Robert Tomasulo, an IBM engineer, developed a
hardware algorithm [Tomasulo 1967] that bears his name that was the first example
of register renaming. The keys to the algorithm is reservation stations that hold an
instruction until all its operands are available, and internal register renaming. In
an example like our unrolled loop, it would not be necessary to find new registers
for the second (or subsequent) instances of the loop; the hardware would allocate
virtual registers to the successive instances of the loop.

The important thing about both a scoreboard and Tomasulo’s algorithm is that
they make it possible to issue out of order, even though aggressively superscalar
architectures were not feasible in the 1960s. A scoreboard makes it possible to
issue instructions when data dependences are met; Tomasulo goes one step further
and makes it possible to eliminate name dependences (at least between registers:
name dependences as relate to memory addresses are another whole problem).

The major thing that these innovations add is that the sort of scheduling
exercise illustrated in Figure 3.12 can work as well as the hardware available:
provided there is a sufficiently large hardware instruction window, dependences
can be limited to real dependences, and as many functional units as are available
can be kept busy, up to the limit imposed by true dependences. That leaves us with
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Figure 3.13: Possible branch table buffer organization. The instruction would

of course be represented in binary rather than a human-readable form. Some

BTBs only represent the target address, and others also include the branch

prediction. Note that in a word-aligned machine with 32-bit instructions, it

isn’t necessary to store the low 2 bits of the instruction or use them in the

index. In this example, the index uses 6 bits, leading to a 64-entry table.

one major cause of stalls we need to reduce: branches.

So far the best we have is a 2-bit branch predictor, that can capture up of the
order of 93% of branch behaviour. The remaining 7% is significant if the penalties
are high. If for example we have a very aggressive design capable of issuing up to
8 instructions per clock and we mispredict a branch, we not only have to flush up
to 7 instructions from the pipeline, but we could have started 7 instructions in the
correct path of the branch.

Before going to a more sophisticated branch prediction strategy, I introduce
one more improvement in branching: a branch target buffer (or BTB). The win
from a BTB, which stores the target instruction of the branch, is that as soon
as the branch is resolved as taken, the target instruction can be inserted into the
pipeline. In some schemes, a BTB may include branch prediction [Perleberg and
Smith 1993], but I prefer to keep the terms separate. A BTB may store varying
degrees of information from a prediction of the branch target address through to
the target address and the actual instruction. Unlike a branch predictor, a BTB
needs an accurate representation of the target instruction since it would be useless
to start executing a completely wrong instruction, so a BTB typically includes
a tag that allows the address of the source branch to be reconstructed. In other
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words, similarly to a cache, a BTB is indexed by part of the address of the branch
being predicted, and the rest of the branch address is used in a tag to check that
the right target has been found. This scheme can obviously only work if branch
instructions cannot vary the target address, i.e., it’s always based on an immediate
operand, not a register. Figure 3.13 illustrates a possible BTB organization. If the
top branch instruction in the illustrated snippet of code is about to be executed, the
BTB logic looks up the target instruction. If the branch is predicted as taken, it
can be fetched immediately. In an aggressive scheme, the BTB can be looked up
before the instruction is decoded, since the tag ensures that a lookup will miss if
the current instruction turns out not to be a branch.

A BTB, much like a cache, can experience misses. In the event that the branch
is predicted as taken, a miss requires waiting for the target instruction but the BTB
is updated for next time. If the branch is predicted as not taken, the BTB can be
ignored.

On now to more sophisticated branch schemes. There are many of these [Yeh
and Patt 1993; Skadron et al. 1999; Tyson 1994; Kaeli and Emma 1997] and there
was considerable research on these in the 1990s at the height of ILP research, and
I only consider one in depth, and adaptive two-level predictor [Yeh and Patt 1991].
With the shift to multicore designs, branch prediction is unlikely to need more
sophisticated schemes in the near future than the schemes of the 1990s. In this
scheme, there is a predictor for each branch. Each predictor maintains a k bits
of history of a branch. These k bits are used as an index into a pattern table that
predicts what the next branch should do. The entry for each pattern is a saturating
counter, much as for our single-level 2-bit predictor. The main difference is that a
previous pattern of branches like taken, taken, taken, not taken, taken, of it’s the
same as the current pattern (for k = 5 in this example) selects the prediction, rather
than the address of the branch. We still use the branch address as an index into the
branch history, but use a global pattern table. Figure 3.14 illustrates the basic idea
of the scheme. This scheme with a 512-entry 4-way associative history table was
shown to have 97% accuracy in predicting branches in the original Yeh and Patt
[1991] study.

A final wrinkle on branch prediction is speculative execution. If a branch
outcome cannot be determined in time to keep the pipeline busy, in a speculative
machine, instructions that may have to be discarded are executed, with results
in shadow registers, that are copied to the real registers when the instructions
are committed. If the branch prediction is incorrect, the speculated instructions
are discarded [Lee et al. 1995; Hiraki et al. 1998; Krishnan and Torrellas 1999].
Speculative execution can include speculative loads [Rogers and Li 1992] and
even to threads [Martı́nez and Torrellas 2002; Ceze et al. 2006]. Any memory
access that’s speculative should not cause a page fault, as that’s a huge overhead
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Figure 3.14: Two-level predictive branch. After each branch, the pattern

history for that branch is shifted left and the latest actual outcome becomes

the low-order bit. The individual branch histories may be stored in various ways

including a structure indexed and tagged like a cache.

compared with a pipeline stall, so implementation of speculation is very complex,
yet it made it to commodity designs like the Pentium 4. The Pentium 4 could issue
3 instructions per clock but could have up to 60 pending issue at any one time [Sohi
2001].

With all of this out of the way it now becomes possible to explore a reasonable
level of ILP in a superscalar architecture. Paper exercises similar to that of 3.12 are
instructive, though real design studies showing the effects of cache misses, TLB
misses and unavoidable stalls for dependences show that in practice, it is hard to
achieve much more than two instructions per clock on average.

Compiler-Exposed ILP

One more idea is to have the compiler expose ILP. A pioneering approach to this
is packing multiple instructions in one long machine word. This idea, called very
long insrtuction word (VLIW) was used in the Multiflow machines of the late 1980s.
The intial design had 256-bit instructions containing 7 operations, followed by a
more ambitious design with double the instruction width and 14 operations per
instruction word. The idea was that a compiler technique called trace scheduling
would expose enough ILP to fill a high fraction of the operations with useful work
(otherwise a null operation or NOOP had to be inserted) [Colwell et al. 1990].

The Intel IA64 was designed based on similar principles. Despite considerable
money being thrown at the project not only by Intel but partners like HP,
performance was disappointing. One of the lead architects on the Multiflow
project, Bob Colwell, on joining Intel, led the design of the Pentium Pro and
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successors [Colwell and Steck 1995], possibly an indication that he’d learnt his
lesson at Multiflow. That lesson is that if compiler technology cannot deliver for
an exotic architecture that very smart people are working on, the chances are it will
not deliver for anyone else.

The supposed gain of VLIW is to remove the hardware complexity of dynamic
scheduling by having a smart compiler that can expose ILP. So why did VLIW
fail? You could argue that Multiflow failed because it was a startup, and that what
startups do: so why couldn’t Intel and HP get it right? Mainly because ILP is not
only dependent on statically-determined dependences. Memory delays are also a
factor, and in the area where the IA64 was competing, cache misses are a significant
factor. If any instruction in your long word has to stall for any reason, all the rest
must stall, unless you go back to where you started, hardware to support dynamic
scheduling. Multiflow avoided that particular problem by not using caches, not a
practical approach for a general-purpose architecture. The IA64 included a few
other innovations like bits that the compiler could set as hints to the hardware
on available parallelism, and predicated instructions [Tyson 1994]. A predicated
instruction is tagged with a condition that must be true otherwise the instruction
is not executed. Predicated instructions are intended to avoid the overheads of
branches in short sequences of conditional code.

3.3 Summary

Increasing ILP was the key focus of computer architecture in the 1990s. Much of
what I describe here was implemented in increasingly aggressive forms. By 2000,
it was starting to become apparent that aggressive ILP was hitting limits, and any
new attempts at increasing ILP would have limited gains and significant costs in
energy and heat, and clocks become increasingly hard to scale as the total wiring
on the chip increases [Agarwal et al. 2000]. IBM’s Power5 CPU pretty much
did everything: it had 8 execution units, with a peak issue rate of 8 instructions
per cycle (one per unit), hardware multithreading and speculative out of order
execution and two cores [Kalla et al. 2004]. Unlike its predecessor the Power4
[Tendler et al. 2002], Power5 did not lead to mass-market designs, as IBM and
Motorola lost the Apple account, the one major market for PC-scale CPUs outside
the Intel camp. At that point, it seemed that RISC had lost to CISC, though a better
explanation is that aggressive ILP had peaked.
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Exercises

1. Rework the pipeline timing diagram of our simple loop example under the
following assumptions:

(a) We can issue any pair of instructions, subject only to dependences;
assume the most aggressive achievable model of forwarding.

(b) Add now the ability to do register renaming; assume the hardware is
smart enough to rename any register after a write to it and no limit to
the number of virtual registers (do you run out of paper?).

2. Now go back to the simpler dual-issue pipeline without register renaming
and evaluate the effect of a simple 2-bit branch predictor.

(a) Will a more sophisticated scheme like a 2-level adaptive scheme make
a difference here? Explain.

(b) Now assume we have an if statement in the loop that only does the
assignment on odd values of i. Write out the assembly language for
this case (you may fudge some details as long as the branches are
plausible). Will a more sophisticated branch predictor help in this case?
Explain.

3. Assume we have a floating-point pipeline in which a multiply takes 2 cycles
and a divide 4 cycles (both in the execution stage; other stages are the same as
for integer instructions). Explain how these instructions introduce new types
of hazard not present in the integer pipeline and why they present problems
for interrupts.

4. Look up how precise exceptions or precise interrupts are handled in multiple-
issue implementations.

5. VLIW was based on the premise that a compiler technique, trace scheduling,
could expose significant ILP. Look up trace scheduling and analyse its
strengths and weaknesses.



4 Multiprocessors

MULTIPROCESSOR SYSTEMS ARE NOT A NEW CONCEPT – what is compar-
atively new is multicore designs. Multicore systems are not funda-
mentally different from older multiprocessor systems. They have two

major advantages: lower cost, and lower latency interprocessor communication.
Otherwise they present many of the same performance and software challenges.

In the days of big iron multiprocessor systems, many models of parallelism
were explored, and the winner was shared-memory multiprocessors. I review here
are few of the other variations, then focus on shared-memory systems and relate
the general field to current multicore designs. I save other models of parallelism
currently in use, vector instruction sets and GPUs, for the next chapter, since they
are significantly different in implementation and efficiency issues, and only briefly
review them here..

4.1 Multiprocessor Models

Models of multiprocessor classically have been defined by whether they have more
than one instruction stream, more than one data stream, or both:

• SISD – single instruction single data stream: a uniprocessor

• SIMD – single instruction multiple data stream: vector architectures for
example, but there are other types

• MIMD – multiple instruction multiple data stream: more general types
of multiprocessor, which run multiple threads or processes each relatively
independent of each other

It’s not clear that MISD – multiple instruction single data stream – makes sense.
Another classification that cuts across these to some extent is memory organization:

• shared memory – all processes can access a single global memory

64
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• distributed memory – processes have local memories that cannot be directly
accessed; there are two models for distributed memory programming:

– message passing – all communication is by messages similar to those
you’d send over a network

– distributed shared memory – the effect of a single global memory is
faked using software, often using a combination of the virtual memory
system and networking

The shared-memory model MIMD proved to be most popular because it most
easily adapts to a variety of workloads, including multitasking a large number
of single-threaded processes. It’s possible to program in a message-passing style
on a shared-memory machine, while distributed shared memory needs operating
systems support for efficient implementation. In that sense a shared-memory
machine is more general than a distributed-memory machine. MPI, now in
common use as OpenMPI [Gabriel et al. 2004]1, is a message-passing API that
can work efficiently on a variety of architectures, including networked systems and
shared-memory systems.

Examples of vector additions to standard instruction sets include

• MMX [Peleg et al. 1997], SSE (Streaming SIMD Extension) extensions to
the IA32 instruction set, and successors (SSE1, 2, etc.) and AVX [Firasta
et al. 2008]

• AltiVec extensions to the PowerPC [Diefendorff et al. 2000]

In one of the more extreme examples that has made it to a commodity product, the
Cell processor designed by IBM, Toshiba and Sony has 8 vector units, each with
a local memory. The Cell seems to be an attempt at recreating all the hardware
design errors of the past. Vector instruction sets only work well on specialised
workloads, local memories put a lot of load on the programmer to get the right
data in the right place at the rights time and combining vector units with another
model of parallelism (multiple cores) is an untried programming model. The Cell
was designed with two purposes in mind: developing HDTV codecs, and the
Playstation 3. For the former, it was likely a success because computation is highly
regular. Despite exaggerated expectations [Macedonia 2004], a handful of games
developed specifically for the Playstation 3 was available at launch, and it was
notoriously difficult to program.

SIMD systems include vector architectures, that take two forms: applying the
same operations to multiple memory locations, and applying the same operation

1See also http://www.open-mpi.org.

http://www.open-mpi.org
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to multiple registers grouped together as a vector register. Traditional large-
scale supercomputers such as those made by Cray were vector machines, and had
refinements like applying the same operation to sequential addresses, or locations
with a fixed distance apart. Vector registers are common in GPU and similar
instruction sets, such as the vector extensions of the Intel and PowerPC instruction
sets. Vector instruction sets save a lot of time in avoiding the need to process
instructions through a pipeline, and take advantage of high bandwidth of sequential
or other regular memory access patterns – or the speed of registers. However, they
rely on problems that are well suited to highly regular computation on sequences
of data.

In the past, there was another class of SIMD machines that were described
as “massively parallel”, exemplified by the Thinking Machines CM-1 and CM-
2 (“CM” for “connection machine”) that had up to 64Ki relatively simple 1-bit
processors, that could work simultaneously on the same instruction on different
data; the effect was of 2048 parallel floating point processors. These machines
seldom came close to their peak throughput, and were notoriously hard to program.
The nodes were arranged in a hypercube [Womble et al. 1999], a structured
designed to minimise distances between nodes while also minimising the total
number of interconnections.

Since GPUs have taken on a new life as an alternative to conventional
performance-oriented architectures, I consider them separately. SIMD and vector
architectures feed into the design of GPUs, so I add a little more detail as applies
to GPUs in the next chapter.

4.2 Shared Memory Principles

Shared-memory systems have significant performance advantages over distributed
memory systems up to the point where they run into scalability issues (though
you can argue that distributed memory systems only appear more scalable because
they are unsuited to problems with a large amount of interprocess communication,
IPC). Nonetheless shared memory can cause significant performance penalties if
not well understood. Those issues start with performance problems generic to
memory hierarchies, and extend to those specific to shared memory.

In what follows, I talk about a “CPU” as synonymous with a core, since there
is no logical difference.

First, let’s review some memory hierarchy basics. At the top level registers are
specific to a CPU and not an issue for sharing. The TLB too tends to be specific
to a CPU, and isn’t specific to multiprocessing2, though failure to understand the

2This is not strictly accurate since shared memory involves sharing a page table, but the performance
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TLB can cause major performance problems. Once we get to caches, we start to
run into significant performance problems. Even though the L1 cache may be local
to a CPU, we need to take into account shared memory and ensure that the caches
remain consistent. Despite all these innovations, the IA64 was a market failure,
and the time when Intel was focused on that approach allowed AMD to dictate the
design of 64-bit extensions to the IA32 architecture [Keltcher et al. 2003].

Maintaining cache coherence is one of the bigger problems of shared-memory
multiprocessors. In addition to the usual cache tag scheme where we need a
sufficient portion of the address to determine what memory locations a block
represents, and status bits to indicate validity and whether the block is dirty, we
also need to know if a block is shared. The simplest way to do this would be
to add a shared bit. However, keeping track of whether the block is shared is a
useful addition, because a non-shared block can immediately change to modified
(or dirty) without waiting for any other caches to report back. One of the most
common cache protocols is called MESI for having 4 states, modified, exclusive,
shared and invalid. MESI is specifically well suited to a write back cache, i.e.,
one where blocks can be dirty. If a block is written through, i.e., all modifications
immediately go to the next level down, a different protocol is needed. However,
write-through caches are not in wide use, and have seldom been used in real
systems [Archibald and Baer 1986]. Early designs with relatively slow CPUs used
write-through caches (e.g. some early Sequent systems – a company with a brief
period of success mainly in the database server market) but they do not scale to
faster designs, as the number of writes saturates the bus.

• multilevel inclusion – bigger low-level components of the memory hierarchy
include everything in the smaller higher levels (especially caches): this
makes coherence a lot easier to manage as absence in a lower level
automatically means absence in a higher level; caches without inclusion have
the subset property

• snooping – each cache controller watches the shared bus for transactions
that relate to its content; snooping doesn’t scale to very large systems,
and various directory schemes have been developed for very large shared-
memory systems.

There are several variations on how cache coherence is implemented in practice.
Using snooping, each CPU’s cache controller watches for activity on a shared bus,
and either intervenes in other caches, or modifies the state of its own if necessary.
The MESI protocol is designed to reduce the need for snooping, because once a
block is marked exclusive in a cache, the owner need not broadcast any actions on

issues of a TLB tend not to be significantly exacerbated but this effect.
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that block. It must however react if any other cache broadcasts an action. Let’s
examine in detail how the MESI protocol works in a variety of scenarios. In each
case, assume that a miss results in initiating a read from main memory, and this is
aborted if another cache has a copy. If 1 other cache has a copy, it puts it on the
bus for the requester; if it’s shared, the owners race to put a copy on the bus.

• read

– hit – no action

– miss – state currently I

∗ no copy – state→ E

∗ another cache S – state→ S

∗ another cache E – state→ S; snoop makes owner set its state→ S

∗ another cache EM – state → S; snoop makes owner set its state
→ S; write back to main memory

• write

– hit

∗ state EM – no action

∗ state E – state→ EM

∗ state S – invalidate signal sent on bus; state→ EM

– miss

∗ no copy – state→ EM

∗ another cache E or S – state→ EM; invalidate signal sent on bus

∗ another cache EM – state→ EM; snoop makes owner set its state
→ I; write back to main memory

• replacement – what we do to a block we evict from the cache (on a read or
write)

– state EM – write to main memory, continue as for miss

– state E or S – no action, continue as for miss; if state is S and only 1
other cache holds the block, it will still hold it in state S

The protocol doesn’t have a way of turning a block that’s shared back to exclusive
if all other processors lose theirs. To do so, we would have to broadcast on the
bus every time a shared block was evicted, and keep a count of sharers. Note also
that “main memory” really means the next level down, and in current multicore
designs is usually a shared L2 or L3 cache. This version minimises copying from
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main memory; more conservative designs copy to main memory whenever a copy
is requested from another cache.

The Intel Nehalem architecture (launched with the Core i7, late 2008), with
the major functions illustrated in Figure 4.1 and the die layout in Figure 4.2, is
an example of a recent design with shared caches, in this case, L3. The version
illustrated is from the first series with 8MiB of L3 cache; in more recent designs
with 12MiB of L3 cache, caches would take up more than half the real eastate of
the die. In the Nehalem design, the MESI protocol routes most requests via the L3
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Figure 4.2: The Intel Nehalem die showing major

components. Source: http: // arstechnica. com/ uncategorized/ 2008/ 11/

intels-3-2ghz-monster-nehalem-roars-onto-the-scene/ .

cache rather than having direct transactions between L2 caches, but is extended to
something closer to the above, with an extra feature confusing called forwarding,
making it a MESIF protocol, implementing the scheme I describe where caches
forward a value to another that requests it rather than going via main memory (or
in this case the L3 cache). The forwarding feature is limited to processors outside
a single multicore unit. In local core-core cache transactions, the L3 cache acts as
a central repository for transactions with tag bits indicating the state of blocks in
the individual cores, reducing the need for snooping [Molka et al. 2009].

4.3 Shared Memory Performance

There are many performance factors in a shared-memory system. The less sharing
there is, the fewer problems there are with scaling. Some problems are avoidable
with careful programming, but any workload with a high rate of communication
between components will not achieve a good speedup on any multiprocessor
system.

Here are a few key factors in performance of shared-memory multiprocessors,
that apply (almost) equally to multicore systems:

• high rate of sharing – as you should be able to see from the MESI protocol,
modifying a variable in one CPU (or core) then reading it in another creates

http://arstechnica.com/uncategorized/2008/11/intels-3-2ghz-monster-nehalem-roars-onto-the-scene/
http://arstechnica.com/uncategorized/2008/11/intels-3-2ghz-monster-nehalem-roars-onto-the-scene/
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significant bus traffic. Even if you don’t need to wait for the write to the
lower level to complete, you need to wait for the other cache to broadcast on
the bus. That, in some systems, may not be a huge penalty compared with
waiting for the lower level of memory. Still, if it happens a lot the bus can
saturate.

• false sharing – if two or more variables that are actually not shared are in
the same cache block, the coherence protocol doesn’t know that: it only sees
whole cache blocks; in this scenario a lot of unnecessary delay and bus traffic
can result

• contention for locks – if a lock is implemented as a simple spinlock relying
on the cache coherence scheme to ensure that updates are propagated, the
amount of us traffic when a lock is released and set by one of several
contending processes can be very high

These factors are in addition to the usual problems of scaling up a multiprocessor
workload: load balance (ensuring the work is evenly split) and ensuring program
correctness.

False Sharing

Let’s use numbers from a real system, an Intel Nehalem design. I list some key
numbers in Table 4.1. A few things need explanation: snoop latency is the extra
time L3 must take before responding to a miss if a block is exclusive in a higher-
level cache, since it must also check if the block has been modified. If a block
is shared, L3 can immediately provide the block to the missing cache with the
shared access latency. In this scheme, misses in L1 or L2 are handled out of L3,
rather than the more aggressive scheme suggested in my definition of MESI. The
reason for this is to relieve the high-level caches of the need to service requests
from other caches. Since L3 is relatively fast compared with DRAM, this is a
reasonable trade-off to avoid either the complication of another port on the L2
caches or forcing them to stall if they have a competing request from another core
as well as servicing their own L1 misses. The Nehalem architecture includes other
features we do not explore here including a fast interconnect for building multi-
chip multiprocessor systems.

Given the Nehalem numbers, let’s consider costs of cache misses and perfor-
mance bugs such as false sharing. Suppose we have two sequences of code on two
cores that each modify a separate variable that’s in the same cache block. Let’s
take a short sequence of code in a loop as our example (using our simple RISC
instruction set but with the Nehalem latencies):
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level
latency

cycles ns
L1 4 1.4
L2 10 3.4
L3 38 13
DRAM 191 65
multiprocessor overheads

shared access 38 13
snoop latency 27 9.2

Table 4.1: Intel Nehalem latencies. These are for a specific model, an Intel

Xeon X5570 with core frerquency 2.933 GHz (cycle time hence 0.34ns), as

determined by Molka et al. [2009]: at a different clock speed latencies will vary.

# core 0 core 1
1 loadw.i R6,R2,0 loadw.i R6,R2,4

2 addw R6,R6,R5 addw R6,R6,R5

3 storew.i R6,0,R2 storew.i R6,4,R2

4 addw.i R4,R4,4 addw.i R4,R4,4

5 cmplt R8,R4,R7 cmplt R8,R4,R7

6 brnew.i R8,R0,-20 brnew.i R8,R0,-20

These two examples pretty much do the same thing, except one has a variable
at offset 0 from the address pointed to by R2, and the other a variable at offset 4
from the address in R2. The two cores’ registers are independent, though I assume
here that R2 has the same value in both cores. Unless we are extremely lucky and
R2 is pointing at the last 4 bytes of a cache block, we will get false sharing here
(assuming blocks are more than 4 bytes).

At the start of the loop, to keep things simple, neither core has a copy of the
cache block and it is in the shared L3 cache, and that they are running in lock-
step until one has a cache miss. At instruction number 1, both processors have a
miss, and whichever acquires the bus first issues a miss to L3. We must add the
latencies for L3, L2 and L1; once the block is copied from L3 to L2, the shared
bus is released and the other core can access the block from L3. Since the outcome
doesn’t differ, let’s assume core 0 wins the race. The sequence of events starts out
as in Figure 4.3, and goes downhill from there. After the illustrated steps, the bus
protocol should allow core 1 to acquire the block (forcing core 0 to write it back
so the state can be S again) to complete the load and it can then do the add (#2),
since that only involves registers, even if core 0 invalidates core 1’s copy of the
block again. The chances are core 1 will have another miss when it tries to write
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the block at which point it retaliates by forcing core 0 to give up the block (writing
it back as well, as part of the write miss from core 1). It’s a useful exercise to
calculate in this scenario how long it takes for both loops to complete as few as 10
iterations.

So how can we avoid this scenario?
One approach is to use processes rather than threads, with explicitly allocated

shared memory, and take care that you manage how data structures are used
between cores or CPUs. While processes are heavier-weight entities than threads,
it doesn’t take a lot of inadvertent false sharing to cancel out the gains. Another
approach is to pad all variables to a size that’s a multiple of the cache block size,
making sure that all variables start on a cache block boundary. To do this, you may
need your own memory allocator.

Locks

For multithreaded and multi-process programming, we need mutual exclusion to
ensure predictable behaviour of updating shared variables. For example, if we have
a global counter and two threads update it, we don’t want a scenario where one
thread loads it into a register, another thread also loads it into a register, then each
increment the variable and store it back in memory, resulting in the counter only
increasing by 1. A result that depends purely on the order competing processes or
threads complete an action is called a race condition, and is usually a programming
error. Since synchronization is critical to parallel program correctness, we need
efficient implementations so synchronization doesn’t become a bottleneck.

Figure 4.3: False sharing example. Core 0 wins the race to acquire the block,

and reaches instruction #3 before core 1 completes handling its miss to L2. L3

maintains global state of shared blocks, and issues a snoop on the bus to inform

core 0 that its copy of the block is changed to state S before if can supply the

block to core 1. Core 0 is stalled on cycle 4 of its store (#3) because it can only

invalidate a block once the bus is free, before it can modify it. Latencies are

drawn to scale; shading representing the memory hierarchy (darker ≡ slower).
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A simple lock structure, a spinlock, is based on an atomic memory operation.
There are several that can work. Earlier architectures used test and set, that tested
a value for a specific condition and set it based on the outcome, and the instruction
was guaranteed to complete without interruption (or to have that effect). A more
recent variant is atomic swap, which allows swapping contents of a memory
location with a register. Again, the operation is guaranteed to complete without
being interrupted. A spinlock using an atomic swap operation could look like this
(assuming there is a location in memory we can refer pointed at by register R5
that’s initially 0, and R6 is initialised with 1):

lock: swapw.i R6,R5,0

bnew.i R6,R0,lock

If our swap operation gets back a 0, that means the lock wasn’t previously held,
and we’ve now set it. If it’s not a 0, we have to try again. For either outcome, we
set the value of the lock to 1. If someone else held it already, we don’t effectively
change it, since it would be 1 already. This tight little loop continues until whoever
else got in first releases the lock, which is done like this:

storew.i R5,0,R0

We rely on cache coherence to ensure that locking an unlocking is serialised, and
updated to each processor or core when the lock variable’s value changes.

This looks nice and simple; the bad stuff happens when a lot of processes or
threads are trying to acquire the lock. Each time one of them tries to acquire the
lock, since the swap instruction is a memory write, it must be invalidated out of
any cache that holds it. The first core or CPU that tries to issue a swap instruction
will cause an invalidate, forcing a write back, then get a copy in its cache, where it
will immediately write to it (even if the effect of the write is to overwrite the lock
variable with the exact same value as it had before, it’s still a write). Every other
process trying to acquire the lock will experience a cache miss, and queue up on
the bus. If the process that holds the lock meanwhile has a cache miss for any other
purpose, it will also have to wait its turn for the bus, further slowing things down.
When finally the holder of the lock releases it, it will also have a miss, invalidate
the lock variable from any other cache that has a copy, and modify it, causing a
flurry of invalidates as each contender races to be the next one to acquire the lock.

If you think this sounds pretty bad, you’d be right. That’s why there has been
considerable research into more scalable locking strategies. One example of this
is a ticket lock. There are various ways of implementing ticket locks (and some
that are inconsistent with the basic definition, suggesting that the name sounds
appealing and has been appropriated by anyone wanting to claim they have a
scalable lock design). The key idea is that each contender for the lock picks up
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(a) Just before swap. (b) After swap.

Figure 4.4: Simple ticket lock. Contention for updates is reduced to grabbing

the address of the next available “ticket”.

one ticket that corresponds to their place in the queue, and they can either spin on
that ticket, which is a variable only shared between that thread or process and the
one immediately ahead of it in the queue, or suspend pending the release of that
specific ticket. Compared with a spinlock, a ticket lock has these benefits:

• minimal multiprocessor contention – there’s a race to acquire the next ticket
but from there on no spinning on a single shared variable

• fairness – the first contender to win a specific ticket will be serviced in the
order of winning the ticket so starvation cannot occur

A simple implementation of a ticket lock is as follows. Each contending thread or
process has to have a unique variable in shared memory, the address of which we
store in register R6. We start out with the address of the global ticket in register
R5. Initially, the global ticket pointer (the address contained in R5) must point to a
location containing the value 0, so the first contender to win will find the lock not
set. To lock:

addw.i R4,R0,1

storew.i R6,0,R4

addw.i R7,R6,0 # save for next time

swapw.i R6,R5,0 # find out who beat us

test: loadw.i R8,R6,0

bnew.i R8,R0,test # wait for the winner if any

addw.i R6,R7,0 # restore the address of our lock

We release the lock as follows:

storew.i R6,0,R0 # release our lock
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What we have done here is to set up our own lock variable with the value 1, and
swap its address with whatever address is already stored in the global ticket pointer.
We now spin on the value at the address previously pointed at by the ticket pointer.
The global ticket pointer has to be initialised to point to a memory location with
the lock value set at 0 so the first contender can get in. The effect of this approach
is that each contender is spinning on a different lock variable that will be released
only when the process or thread that was immediately ahead of it in attempting
to acquire the lock releases it. While there will be contention for swapping the
address of our local lock with that stored in the global ticket pointer location, that
only happens once for each attempt at acquiring the lock. Subsequent spinning
is on a memory location only known by the current stalled thread and the owner
of that location. Of course we need to ensure there is no false sharing though
even this is not that important because we are spinning on a memory read rather
than a write; if more than one core experiences an invalidation there will not be
consequential series of follow-on invalidations. I illustrate the two crucial steps
of the lock: initializing and the swap instruction in Figure 4.4. In Figure 4.4(a), I
illustrate the way state is set up in a scenario where the initial ticket is still zero,
representing the case where the lock is not held. In Figure 4.4(b), I show how the
state changes when the current contender has acquired the lock.

Ticket locks are but one of many approaches to scalable synchronization
primitives [Mellor-Crummey and Scott 1991]. Parallel programs use a range of
primitives including barriers: a barrier with parameter N causes N− 1 thread or
processes to stall and when the Nth arrives at the barrier, all proceed. Implementing
a barrier using spinlocks is very inefficient, even on a small number of processors,
and threads packages such as Pthreads implement barriers by queueing waiting
threads and putting them to sleep. Even so the underlying implementation will
be unscalable if it’s based on spinlocks as a basic building block. One approach
to implementing scalable barriers uses a tree structure [Markatos et al. 1991];
another is to synchronize with nearest neighbours, limiting global communication
[Machanick 1996].

4.4 Summary

Although there are many multiprocessor architectures, I focus here on shared
memory MIMD architectures since they represent the mainstream of conventional
computing. SIMD architectures in various forms have come and gone, and remain
persistent mainly because GPUs are such a large share of the market.

Shared-memory architectures will likely be with us for some time given that
they are a natural organization for multi-core devices, because they accommodate
so many different types of workloads, including parallel applications and multi-
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tasking. The performance issues covered here, before the multicore era, were
primarily the concern of relatively high-end systems. Given that multiple cores
are commonplace, understanding the performance problems and avoiding them is
increasingly important both in user-level vode and system code.

Exercises

1. Use the latencies in Table 4.1, and the timing illustrated in Figure 4.3. You
can assume every instruction can complete in one clock if fully pipelined, a
store modifies memory in the MEM stage (4th stage of the pipeline), and an
invalidate takes 2 cycles for the invalidating core if the bus is not occupied.

(a) Calculate the total time it takes before core 0 manages to complete the
illustrated store instruction.

(b) Now assume that core 1 acquires the block as soon as possible after
core 0’s store completes. Calculate the total time from the start of
Figure 4.3 until core 1 completes its first store, assuming that core 0
continues with the loop with minimal stalls.

(c) Calculate the total time it takes for 10 iterations of the loop for both
cores, stating assumptions about timing of competing events.

(d) Why is it a reasonable assumption that an invalidate requires a rela-
tively short stall (here, 2 cycles), not a longer delay, e.g., the 27-cycle
delay required for a snoop?

2. Will the ticket lock as described here work as you expect if N threads enter
it and leave it, then try to re-enter at a later stage? Hint: what will the global
pointer have as its value, and what will be stored at that location?

3. Spinlocks are often used as a core primitive to implement more complex,
scalable synchronization techniques like semaphores that put a process or
thread to sleep and wake it when it reaches the head of a queue. Are
spinlocks a reasonable choice in that scenario, or would you still look for
a more scalable option like a ticket lock?

4. Is a test and set instruction superior or inferior to an atomic swap? Explain,
considering the design philosophy of a RISC ISA.



5 GPUs

GPUS HAVE BEEN AROUND FOR A LONG TIME and represent an untidy mix
of architectural ideas – so why are they worth considering separately? First,
because they are a mix of architectural styles, they represent a case study in

comparing the benefits and weaknesses of various models of parallelism. Secondly,
because they are so widely available, there is more chance that, despite any
difficulties in programming them, they may become established as an alternative
platform for high-speed computation. It is that market, rather than the obvious one
(given that the name means “graphics processing unit”), that hold some interest,
because there are limits to how much further graphics performance needs to be
taken. Once you can do realistic three-dimensional imaging in real time, where
else can you go?

The idea of adapting a part designed for graphics processing to general purpose
computation is not new; as I describe on page 14, the Intel i860 featured as a
component in large-scale supercomputers in the 1990s. I also note there that
it was not a great success. Will GPUs be more successful as high-performance
computation engines? If only because they are deployed on a vast scale whether
used in that mode or not, there is a lot of ongoing investment in pursuing
this question. Since the primary market for GPUs remains graphics, design
compromises will tend to favour that application. Early attempts at using GPUs as
compute engines ran into the problem that design compromises favouring speed in
graphics rendering meant that CPUs could not in general be expected to implement
the IEEE floating point standard as strictly as a general-purpose floating-point unit
[Chinchilla et al. 2004; Meredith et al. 2009] (the odd wrong pixel is less noticeable
than failing to render the next frame in time). Given the growth in the market
for general-purpose use of GPUs (GPGPU), manufacturers have started to pay
attention to quality of their floating-point implementation [Krakiwsky et al. 2004;
Whitehead and Fit-Florea 2011].

In this chapter, I briefly survey some of the architectures that contribute to the
design of GPUs, adding to the discussion of Chapter 4.

78
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5.1 Vector Processing

Vector processors fall into two broad categories: vector register architectures, and
memory-based vector machines. The latter generally require vector registers to
perform at a reasonable level, so I start with vector registers. Vector machines of
the class of the designs created by Seymour Cray generally have very aggressive
memory architectures. I briefly describe how these work; in the heyday of this class
of machine, there was considerable research into designing memories for them
[Cheung and Smith 1986; Weiss 1989; Valero et al. 1992; Seznec and Lenfant
1992], possibly a pointer to difficulties with vector register machines with no
special memory architecture. Vector instructions sets as found in multimedia
extensions to standard ISA generally lack some of the more sophisticated models
for copying between registers and memory that are found on big vector machines.

A vector machine has registers that replicate a specific data type, and in some
cases can be reconfigured as more lower-precision (narrower) or fewer higher-
precision (wider) registers. For simplicity, I assume a vector register is comprised
of a fixed number of scalar registers of a fixed size. To make the discussion
concrete, I assume a vector register has length 64 (i.e., it can contain 64 distinct
values). Vector architectures can generally either operate on a pair of vectors
producing a vector result, or a vector and a scalar producing a vector result. In the
latter case, the same scalar is an operand for each operation on the source vector.
For example, you may want to multiple each vector element by a constant.

In a case where the available vector length (here 64) is sufficient, you can
use a single instruction to do the main work (e.g. multiplying all 64 elements by
a constant, or adding all 4 elements to the equivalent entries of another vector).
This single instruction has a latency dependent on how long the hardware can
perform 64 operations. By contrast, if you use a scalar architecture, you will do
the same 64 operations but need to wrap a loop around them, and add ancillary
code for array indexing. The saving in number of instructions executed in this
case should be about a factor of 100. That is not as big a saving as it sounds,
since the vector unit still has to do 64 operations, and those cannot happen
instantaneously. However contrast the requirements of speeding up the vector
operations by adding more parallel hardware with doing the same for the scalar
code. The scalar code has a loop, so you will need to unroll the loop, either
by a coding technique (compiler optimisation or hand-unrolling it), or hardware
support such as Tomasulo’s algorithm. If you go the first route, you need to know
in advance how many times it’s worth unrolling the loop; in the latter case, you add
significant hardware complexity including register renaming. On the other hand,
to speed up the register code in hardware is relatively simple. You can add more
functional units and provided there are no dependences between computing vector
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elements, as many calculations as there are available functional units can start at
once.

You can apply the same trick as with a scalar pipeline to reduce inter-
calculation delays, forwarding a result to the input of a functional unit rather than
going via the register file. In a vector architecture, forwarding is called chaining.

In a simple implementation of a vector machine, each ALU operation takes as
long as in a single-issue scalar machine. The major saving is in fewer instruction
issues and removing branches for loops. In the case of a simple loop with two
ALU operations, in a typical RISC instruction set the loop body and condition
would add up to about 10 instructions. For a 64-long register vector machine
(without for now going into how the operands find their way to registers), the
equivalent code would be about half the number of instructions and also would
not require repetition. The scalar code would therefore require about 128 times
the number of instructions, though the number of ALU operations would be the
same, meaning that the practical speed gain would be relatively modest, especially
if the ALU operations are multi-cycle floating point operations. The big gain from
vector instructions comes from the extremely regular nature of the parallelism,
which makes it possible to split the work across multiple functional units without
complications such as data and control hazards.

In big-iron vector machines such as those designed by Cray, vector ALU
operations are accompanied by vector memory operations, which is where things
start to get more interesting. In a simple example where the data size exactly
matches the register length, a vector load instruction that fetches the next N (64
in our example) elements of an array, sequentially from a given base address, is a
good fit to the problem. There is a range of scenarios that cover cases where the
data size is not an exact fit:

• data shorter than the vector size – one approach is to have a vector length
register (VLR) that can be any value up to the hardware vector length; vector
instructions’ length is controlled by the VLR’s value. Some machines also
have a maximum vector length set in the hardware. The MVL can change
in new hardware, avoiding the need to change the instruction set when the
vector length changes

• data longer than the vector size – use the MVL value to create an outer loop
that splits the problem of size N into the portion that is an exact multiple of
MVL, repeated b N

MV Lc times, and the remainder (done once). This technique
is called strip mining

• elements not adjacent in memory – we need a way to specify a stride, a
distance apart of memory locations. Big-iron vector machines have this
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(a) Simple vector load (b) Vector load stride 3

(c) Vector load gather.

Figure 5.1: Variations on vector loads. Stores have similar variations; the store

version of a gather is a scatter. In stride mode, the load fetches data stride S
apart. In gather mode, an index vector is used to find the offset from the start

of the main array in memory.

capability (e.g., a stride register could set the distance apart of successive
elements for vector load or store)

• sparse vectors – in a case where a data structure has a lot of zeros (or other
elements not of interest), it may be stored using indirect indices, e.g., element
i is found at A[index[i]]. To handle this scenario, vector architectures
may use gather-scatter:

– gather – use an index vector to add to a base address to do loads

– scatter – use an index vector to add to a base address to do stores

Gather-scatter can be used to save memory, if the index array is a smaller data size
than the actual data, and also as a way of accessing memory in different orders
without having to sort the original data each time a different ordering is needed.
To implement all of these operations with an aggressive vector CPU that can do
multiple ALU operations per cycle requires high memory bandwidth. To get some
idea how much, if we consider a clock cycle time of the order of 2ns (500MHz:
fast at the time of the later Cray vector machines), with main memory SRAMs
with a cycle time of 15ns (available at the time), one vector load would saturate the
memory system. If we start going more aggressive and allow more than one load or
store per cycle, or add processors, the system is going to be memory-bound despite
the fast SRAM main memory. The solution is to multi-bank the main memory. A
bank is a division of memory that can be separately addressed. While one bank
can’t supply results as fast as the clock speed, pipelining access to multiple banks
can. Supercomputers of that era could have of the order of 1024 banks. A similar



82 CHAPTER 5. GPUS

Figure 5.2: The principle of multiple memory banks. An access is started

on each bank in each successive cycle. Although there may be a sizeable delay

before each bank responds, each bank will deliver its request in successive cycles

after that delay.

effect can be achieve with multi-banked DRAM, though the startup delay is much
higher. Modern architectures tend to reduce the need for memory banks by using
very fast caches that can keep up with the CPU. DRAM chips may have internal
banks, and DRAM may be arranged in banks (typically one per DIMM), but all of
this is to improved latency for the sort of contiguous access required for caches,
rather than to support concurrent access to very different regions of the address
space.

In Figure 5.2 I illustrate the general principle of multiple banks. In this case,
there are four, and the total latency of a memory operation is 8 cycles. By starting
bank requests on successive cycles, the total latency for 4 accesses is 11 cycles,
rather than 32 cycles, as would be the case if each access had to be strictly
sequential. In the illustrated scenario (where each bus transaction takes only 1
cycle), there is no contention for the interconnect (a hexagon in a timing diagram
as seen here represents a state where values could be 1 or 0, and we don’t care
which, only that a transition occurred), so data and addresses could use a common
bus, even though I illustrate the separately. In high-end systems of the Cray era, a
more complex interconnect was required.

Another inhibition on vector mode is conditional code. If you have a program
that for example should only do an ALU operation if a vector operand is non-
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zero, you want your vector code to apply the operation to every element except
those that are zero. A common approach is to use a vector mask, a special register
with 1 bit per element of a vector register. If the bit is 1, the operation is wanted.
If not, it isn’t. To implement vector masks, you need an instruction that resets the
mask to all 1s (the default, meaning all operations are wanted), and vector compare
instructions that set the corresponding bit of a vector mask based on whether the
compare is true (1) or false (0). The mask then applies to whether the outcome of
the ALU operation is stored on not; the time for the ALU operation is unchanged.
The mask in effect only says whether it’s written to the destination vector register
element or not. While time and resources are wasted for results that aren’t needed,
the overall effect in most cases is still faster than executing the ALU operations in
scalar mode with a loop.

Why aren’t vector machines mainstream? Cray’s machines peaked in the
1990s. Seymour Cray split from his company Cray Research in 1990 when the
Cray 3 project was put on the back burner, and his new company, Cray Computers,
failed to sell more than one of its first model, the Cray 3, and folded before it
could deliver its successor, the Cray 4. Cray Research continued for a while but
with the end of the cold war, generous funding for high-speed computers of limited
applicability faded and at around that time, RISC architectures started to deliver a
significant fraction of the performance of specialist architectures at a fraction of the
price. In the mass market, large SRAM memories with a thousand or more banks
are not practical (not until someone finds a way to package them cheaply anyway).

The big question that all of this leads to is whether vector architectures
embedded in GPUs and multimedia media extensions to instruction sets make any
sense without the massive memory bandwidth available to a machine of the old
Cray type. The Cray X1, for example, a successor to the T90, has 16 memory
controllers per node supplying 204 Gibytes/s to each 4-core vector unit [Dunigan
et al. 2005] – and this is an architecture with caches, unlike earlier Cray designs.

5.2 SIMD Extensions to Instruction Sets

Many media applications need relatively short data types, e.g. 8 bits per colour,
and it’s relatively easy to partition an arithmetic unit so that instead of 32 or 64-
bit arithmetic, it can do multiple instances of a narrower unit like 8 bits. In the
Intel IA32, multimedia extensions were added by a relatively modest extension of
the existing ALU based on this principle. Where Cray vector registers were in the
range of 64-128 long supporting full-size floating point, the data types arising from
such modest extensions are limited to what can fit into a double-precision (64-bit)
register. Intel’s original MMX additions were based on that simple model. Later
extensions, Streaming SIMD Extensions (SSE) double the register width to 128,
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and the latest iteration, Advanced Vector Extensions, increased register width to
258, allowing up to 32 8-bit operations per register.

Because these are ad-hoc extensions with big jumps from each design, and
without the advantage of the older vector architectures of hardware support for
varying the vector length, the number of new instructions is large, several hundred
counted across all Intel’s variations [Firasta et al. 2008]. There are about 90 AVX
instructions, if you do not count all variants of the same basic instruction separately,
and the AVX reference runs to 750 pages [Intel 2009].

While compiler support for these instructions is improving, it is not nearly
as easy for a compiler to spot opportunities to use them automatically as with a
traditional vector architecture. They tend to be used more commonly in hand-coded
drivers or plug-ins for programs with intensive graphics requirements. Despite
these problems, this form of limited SIMD does have some advantages. Unlike
vector machines, a page fault across a load or store boundary can’t happen – or
at least it couldn’t until Intel allowed loads to be explicitly unaligned with SSE
[Lomont 2011], and relaxed the requirement for loads to be aligned in most cases
with the AVX design [Intel 2009]. Also, the limited vector size is a better match
to commodity memory systems that would battle to keep up with the demands of a
full vector instruction set, with 64 or more double-precision floating point numbers
per vector register.

Overall, while SIMD extension instruction sets initially set out to be simple,
avoid the complications that attend traditional vector designs, hundreds of instruc-
tions requiring a good fraction of 1,000 pages to document suggests something not
quite right.

5.3 GPUs

Graphics processing units are increasingly migrating to the general purpose space
(hence GPGPU: general-purpose use of GPUs). As with SIMD extensions to
instruction sets, they suffer ad hoc design and repeated changes. That style of
change has a venerable history. Silicon Graphics, the pioneer of high-speed 3D
graphics, went through architecture iterations that reprised a good fraction of the
major models of parallelism:

• pipeline – early versions of the SGI Geometry Engine were deeply pipelined,
with some SIMD aspects [Harrell and Fouladi 1993]

• heteorgenous architecture – the Reality Engine used a small number of
relatively non-exotic Intel i860 processors with hundreds of specialised cores
[Akeley 1993]
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• SIMD – the InfiniteReality system of the late 1990s uses a SIMD architecture
[Montrym et al. 1997]

SGI early on realised the need for a high-level programming interface that hid the
hardware, and developed GL, the basis for OpenGL, as an abstraction layer. That
approach made it possible to change the underlying implementation radically as
design trade-offs changed.

However, SGI did not ever envisage their graphics hardware being used for
high-speed computation: they had a different department covering that, and they
had very competitive machines in the 1990s, that were part of the reason that
traditional supercomputer makers like Cray ran into trouble.

In more recent times, the underlying reason for rapid change in graphics
hardware has not changed. As hardware becomes cheaper, approaches to graphics
processing that previously were impractical become viable. Unlike with the history
of SGI though, those changes are accompanied by an increasing demand to make
it possible to run non-graphics applications on GPUs.

NVIDIA has addressed the problem of rapid hardware change providing C and
C++ extensions called CUDA (Compute Unified Device Architecture) that allow
programming that divides code between the host CPU and the graphics system.
OpenCL (Open Computing Language) is a more generic alternative (extending C)
that aims to be portable across a wider range of hardware, not only GPUs [Stone
et al. 2010]. Aside from the usual portability concern (ideally, a recompiled should
be sufficient to run on a different CPU), performance portability is a hard problem
[Du et al. 2012] even within one manufacturer’s line: assumptions underlying your
coding strategy may not apply on a different model.

A few basics apply to current designs. First, streaming access to memory hides
latency. As with multiple banks in older designs, in current DRAM designs, every
access after the first has no additional delay (up to the limit of a column access).

I examine briefly some of the features of a typical GPU from NVIDIA, and the
performance portability problems that can arise.

First, the memory hierarchy of a GPU is complicated. In recent designs that
support multiple SIMD threads to hide memory latency, there is a small cache
for local variables that don’t fit the streaming model. There may also be a local
memory that is used for synchronization between threads (e.g. NVIDIA has a
hardware barrier instruction [NVIDIA 2011]). Then there is a global memory that
is separate from the main CPU’s main memory. Second, NVIDIA hides frequent
changes in the hardware by using an abstraction layer in the form of the PTX
(Parallel Thread Execution) instruction set, that has to be translated at load time to
the actual underlying machine instruction set.
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PTX has about 40 basic instructions that Hennessy and Patterson [2012] use
in examples. There are many other specialist instructions and when you add in all
the available variations, the number blows out to hundreds, though the reference
manual only runs to about 200 pages [NVIDIA 2011], potentially an improvement
on Intel’s AVX design at least in that respect. PTX hides some of the complexity
of identifying threads and branching, allowing these to vary from implementation
to implementation.

Here is a contrast between traditional vector and PTX code, implementing the
following function (DAXPY stands for double precision a times x plus y, and is
part of the popular Linpack benchmark suite):

void daxpy (int n, double a, double *x, double *y) {

for (int i = 0; i < n; i++)

y[i] = a * x[i] + y[i];

}

First, let’s look at how a typical old-school vector instruction set would implement
this. In pseudocode, it would be something like this for the body of the loop:

Vload Rx, x[i] # get VL items starting at i

Vload Ry, y[i] # get VL items starting at i

VSmuld Rx, a, Rx # do the vector*scalar multiply

VVaddd Ry, Ry, Rx # do the vector add

Vstore y[i],Ry # vector store result

In a strip-mining solution, we need to take care of details like how often to repeat
the loop and a fragment where the full vector length isn’t needed.

A PTX version is significantly more complicated though superficially it looks
similar. Part of the reason for that is that memory access always uses gather-scatter.
Also, in creating SIMD code, you create a large number of threads, as part of
the strategy of hiding memory latency by using threads. Rather than use vector
registers, you allocate a block of threads, then do a calculation simultaneously with
each thread doing a different part of the calculation. This would appear to throw
away the performance advantage of sequential memory access, but if a program
is written so adjacent threads access adjacent memory, the memory subsystem
coalesces memory references. The basic steps in pseudocode are:

use thread id to create offset in array

load x[i+offset]

load y[i+offset]

do x*a multiplication

add to y

store y[i+offset]



Review 87

This code is replicated across threads, each with a different id and hence offset in
the array.

An important difference between GPU threads in the NVIDIA world and
threads in a general CPU is that all threads are either executing the same instruction
or are idle. A combination of mechanisms makes this possible, including masks
similar to those in vector machines and predicates, similar to those in VLIW
machines. Branches allow threads to diverge, with hardware support to handle
managing this. The unwary programmer can create code where most threads are
idle.

Although CUDA and OpenCL provide an even higher-level abstraction than
PTX, some basic understanding of the underlying hardware is necessary to
program efficiently.

5.4 Review

Let’s compare GPUs and multimedia extensions with what we generally know
about instruction set design. Here are some core principles derived from the RISC
movement and experience with supercomputers:

• Amdahl’s Law – speedup depends on the whole workload, not only the subset
that can be improved

• make the common case fast – a large instruction set with rarely-used
instructions makes it harder to achieve overall speed improvement

• minimise instruction format variation – keep fetch and decode simple to
make aggressive pipelines easier to implement

• optimize for average throughput not peak throughput – as Cray demonstrated
in the days of big iron vector machines, a high peak throughput is meaning-
less if the average case isn’t close to the peak

• simple memory model for programming – even if there’s a complex memory
hierarchy that varies from generation to generation of the hardware, a simple
uniform model for programmers ensures code longevity and performance
portability over time

Why then do multimedia extensions (Intel is not the only guilty party: the AltiVec
extensions to PowerPC are also large and complicated, with a reference manual
running to over 260 pages1, if more regular in design than Intel’s efforts [Freescale
1999]) and GPU instruction sets violate these principles?
1You can find a summary on Apple’s developer web site – https://developer.apple.com/

hardwaredrivers/ve/instruction_crossref.html – a legacy of when Apple used PowerPC.

https://developer.apple.com/hardwaredrivers/ve/instruction_crossref.html
https://developer.apple.com/hardwaredrivers/ve/instruction_crossref.html
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A key consideration is the real time argument. In hard real time, if a deadline
is not met, the system is broken; in soft real time, failing to meet a deadline is a
performance bug but tolerable (e.g., if the picture pixelates but no so often as to be
annoying, you keep watching your digital TV). While graphics is not strictly a hard
real time application, the faster the graphics system, the better the quality picture.
In graphics-intensive applications like a photo editor, implementing a filter fast
enough to be usable adds value, even if the careful hand-coding necessary doesn’t
speed up the overall application, a very different consideration than applying
Amdahl’s Law. If the system is fast enough, expectations expand, but there is
a limit to human perception. At some point, perception saturates and there is no
point making graphics any faster. Once we approach that point, selling faster GPUs
requires another market, hence the interest of GPU makers in selling to a broader
base.

However, once we exceed the limit of human perception, a model of GPU
that has lower peak throughput but a much simpler instruction set that can be
used effectively by compilers has a lot to recommend it. If such an instruction
set had 80% of the peak throughput of a much more complex design, either it
would be sufficient when the more complex design was sufficiently ahead of human
perception, or it could be implemented as two independent cores with at least the
same performance as the more complex design, with the option to use one of the
other cores for non-graphics tasks. If the ISA were general enough to apply to
ordinary workloads, instead of a separate GPU, a multicore design could have some
cores used exclusively for graphics and others for computation, with the option to
choose dynamically which to use. Another design challenge is how to organize
memory so that both graphics and ordinary usage would be satisfied; high-end
graphics systems generally avoid this problem with dedicated memory. A cost of
dedicated memory in graphics systems is a memory hierarchy that’s difficult for
programmers.

A detailed design is necessary to evaluate these ideas, as was the case with the
original argument for multiple cores (then called a chip multiprocessor [Olukotun
et al. 1996]). A useful starting point would be a minimal RISC instruction set,
with design studies to determine extra styles of instruction that add the maximum
value for parallel execution modes. We can safely avoid ideas that failed in the
past like VLIW, be cautious about adopting ideas that are hard to program like
SIMD, give careful consideration to ideas that work well in limited cases like vector
instructions, and shun ideas that make life for programmers hard, like local scratch
memories under programmer control.
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Exercises

1. You can find some specifications of the Cray T-90 here (Table 1): ftp:

//ftp.cs.ucsd.edu/pub/faculty/carter/cug.html. Based on num-
bers you find:

(a) What is the maximum number of loads and stores possible in one clock
cycle?

(b) In an 8-processor configuration, with the maximum possible numbers
of loads and stores, how many banks of 15ns RAM are required to
keep up with demand? Assume each load or store can be divided into
as many banks as are needed.

(c) The top model of this range, the T932, had up to 32 processors and a
slightly faster clock speed than that in the above reference (2.167ns).
It had 1024 banks of RAM, and the RAM was upgraded from a 15ns
cycle time to twice as fast. Was this upgrade necessary?

2. Look up details of the AltiVec instruction set. How does it compare with the
other architecture styles we’ve examined? Is it a reasonable fit to the RISC
philosophy?

3. Find a detailed example of NVIDIA PTX code. Explain how parallelism is
achieved in the example.

4. If you were designing the Intel AVX instructions from scratch, rather than as
an extension of previous designs, how different would your approach be?

ftp://ftp.cs.ucsd.edu/pub/faculty/carter/cug.html
ftp://ftp.cs.ucsd.edu/pub/faculty/carter/cug.html


6 Warehouse-Scale Computing

MASSIVE-SCALE COMPUTING in the 1990s was the province of high-
performance computing (HPC), mainly a concern for computational
sciences and large-scale engineering projects (e.g. simulating wind

tunnels). Much of that market has disappeared into various models of scaling
up commodity parts, e.g. clusters. In some cases, these designs use extra-fast
interconnects, but many use commodity networks. A big change since the 1990s is
the emergence of massive-scale computing mainly targeting ordinary consumers,
not large commercial or research enterprises.

A key difference in the new kind of large-scale computing is economy of scale.
Large service providers like Google and Amazon deal in customer bases in many
millions, and achieve economy of scale on three fronts:

• mass-market commodity hardware – whereas supercomputer makers like
Cray and Thinking Machines designed their own parts for a very limited
market, this new category of computing draws on the low cost inherent in
massive markets

• purchasing at scale – even given that these operations use commodity
hardware, they score by being able to buy in massive quantities, and hence
achieving a much lower price point per unit of work than even a home
PC; this large scale also makes it possible for them to design custom
configurations of commodity hardware and still arrive at a reasonable cost
[Barroso et al. 2003]

• massive user base – unlike past HPC-oriented large-scale computing, the
new services spread their costs over an enormous user base

All this being the case, some of the complexities of scaling up to extremely large
systems remain. Google, Amazon, et al. to some extent have the luxury of
choosing the services they offer, since many are offered at no charge, and as a
way of building advertising revenue or directing users to for-money services (like
buying books or apps).

90
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As a generic term for such large-scale services, we use the term warehouse-
scale computer (WSC). Google famously uses relatively entry-level computers,
and lots of them. In an operation on this scale with over 50,000 computers,
managing individual computers is not possible. A WSC operation has to have
considerable support for automated managing of configurations, detecting errors
and moving calculations when a computer fails. The range of applications run
on these systems is highly variable, and that variation to some extent makes them
viable. For example, a large part of Google’s operation is web crawling to build
search indexing. That kind of workload is both highly parallel and not interactive,
and can soak up any available computational resources and network capacity.
Multiplexing that kind of workload with requirements for more rapid response
time is a good mix, as temporary demand for interactive response time can easily
be accommodated by reducing resources for the other type of workload. Contrast
this with an electricity grid where instant responsiveness requires not only a lot of
spare capacity, but generators capable of rapid cycling up. In one such system for
example (the Australian state of Queensland where I used to live), the last 1% of
demand costs 100 times base load per kilowatt hour. Power utilities could learn a
thing or too about load and demand balancing from WSC operators.

All of this is not however without significant challenges. Users of interactive
services, especially those where they care about losing data and want access when
they need it, expect a highly dependable service. Downtime of 1 day a year requires
99.7% availability and downtime of at most an hour requires 99.99% availability.

6.1 Fault tolerance and dependability

A key aspect of large-scale systems built out of reasonably reliable components
is that the probability of failure increases as you scale up, because there are more
parts to fail. First I start with some terminology in Table 6.1 and the following
definition:

Availability =
MT BF

MT BF +MT T R
(6.1)

or alternatively,

Availability =
ttotal− tdown

ttotal
(6.2)

A key thing to understand is the difference between dependability and reliability.
Something that’s reliable has a low chance of failing. Something that’s dependable
has a low chance of not being usable despite failures. A way of ensuring that
dependability is higher than reliability is by fault tolerance. Fault tolerance is often
achieved using redundancy along with error checking and correction. For example,
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term definition
MT BF mean time between failures: expected time before a module fails
MT T R mean time to repair: expected time to fix a faulty module
reliability measure of probability of no failures
dependability measure of likelihood of being useful
fault tolerance ability to work despite failures
availability fraction of time a system is able to do work
durability total time a system is useful
nines availability of 99.9% is 3 nines for example

Table 6.1: Dependability terminology.

probability / year failure type
0.02 disk failure
0.01 uncorrectable DRAM failure
0.3 bad software configuration

Table 6.2: Dependability example. There are many other sources of failure

like software crashes and uncorrected power glitches (assuming use of backup

power).

a RAID disk system may be configured so that if one drive fails, its content may
be recreated. Although the disk subsystem has had a failure, it still works and is
therefore dependable, even if it’s not reliable.

Similar considerations apply to WSC with tens of thousands of computers.
Not only the computers themselves, but networking, building power supplies and
software can all fail. To make this concrete, let’s take a centre with 2,500 computers
and apply the failure rates in Table 6.3. Assume a hardware fault takes 1 hour
to repair, and reboot takes 60s. With the figures in Table 6.3, in an average
year with 2,500 computers we get the expected number of failures in Table 6.3.
Optimistically assume we can fix a bad software configuration with a reboot, and
the others require a hardware repair taking an hour. Then the total time systems are

expected failures / year failure type
50 disk failure
25 uncorrectable DRAM failure
750 bad software configuration

Table 6.3: Expected number of failures for 2,500 computers.
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out of action is

hoursoutage = (50+25)×1+750× 1
60

= 87.5

Applying Equation 6.2, and noting there are 8766 hours in an average 365.25 day
year:

availability =
8766−87.5

8766
= 0.99

So any service requiring continuous use of all 2,500 computers would experience
two nines of availability. A real system would have more modes of failure than
those listed here, so availability without error correcting and fault tolerance would
be considerably lower in practice.

A system like Google’s relies on a combination of features to ensure depend-
ability. First, there is considerable checking for potential faults. Second, when a
highly distributed computation has a few outstanding results, rather than wait for
them, they are farmed out again to the network. Third, there is a high degree of
replication of data, to ensure that a hard failure can be recovered. This replication is
also required for performance, so fault tolerance falls out of the basic design, rather
than being an expensive add-on [Barroso et al. 2003]. In general ensuring high
availability in such a large-scale system is a complex task, and the ability of large
operations like Google and Amazon to maintain services with high dependability,
especially as Google has history of rapid evolution of their user-level software
offerings, is a considerable achievement.

Fault tolerance is a large and complex topic; whole courses are given on the
subject. I leave it here with a few of the key concepts, rather than an in-depth
coverage.

6.2 Programming model

WSC provides parallelism on an unprecedented scale. Given that ordinary-scale
parallelism can be hard to use, as we’ve seen in preceding chapters, does WSC
provide a model for large-scale parallelism, or is it only good for thousands of
uniprocessor workloads (in itself a useful feature)?

A lot hinges on the programming model and the nature of parallel workloads.
Google uses an approach derived from two LISP programming constructs, map
and reduce. In LISP (a predecessor of modern functional languages), map is a
family of functions that apply another function to each element of a data structure,
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producing another data structure usually of similar size. The LISP reduce function
applies a function pairwise to elements of a data structure to produce a single value.
An example of application of a LISP-style map operation would be to take a list of
words and return a list of the length of each. An example of a LISP-style reduce
operation would be to take a list of numbers and return their sum (here, the applied
function would be “+”).

Google’s MapReduce1 and the free equivalent, Hadoop MapReduce (Hadoop
is an Apache project, including a distributed file system with related tools and
services2), are based on the LISP map and reduce concepts. In Common LISP, a
map operation looks like this:

(map ’list ’length ’("fred" "jim" "james"))

=> (4 3 5)

and a reduce operation looks like this:

(reduce ’+ ’(4 3 5))

=> 12

with a lot of variations possible3. The single-quote symbol in LISP forces the next
item to be passed to the calling function without evaluation.

In a MapReduce implementation, a map operation takes as input a function and
a list of values. The function produces an intermediate value in the form of a list
of keys and values, and a reduce operation applies another function to the result of
map. In a typical application, the items in the list of values would be large enough
to schedule as work units on separate machines, so the map and reduce stages
provide a model of parallelism. Part of the fault tolerance in the design is periodic
checks on whether the sub-tasks have completed. If they don’t after a timeout, the
master process restarts them on another node. Coordination and synchronization
occurs in effect by a combination of the reduce tasks waiting for map outputs, and
the master process waiting for the reduce tasks to complete. Scalability depends on
reasonably large chunks of work in each of the map and reduce list elements, and
on a reasonable load balance. The overall approach appears to be very successful,
given the scale of Google’s operation. Within 5 years of the development of the
initial implementation in 2003, Google had more than 10,000 internal MapReduce
programs, and each day 100,000 MapReduce programs processed about twenty
petabytes (PB = 1015B) of data [Dean and Ghemawat 2008].
1You can find a MapReduce tutorial here: http://code.google.com/edu/parallel/

mapreduce-tutorial.html.
2http://hadoop.apache.org/
3More on map here: http://www.lispworks.com/documentation/HyperSpec/Body/f_map.
htm and on reduce here: http://www.lispworks.com/documentation/HyperSpec/Body/

f_reduce.htm.

http://code.google.com/edu/parallel/mapreduce-tutorial.html
http://code.google.com/edu/parallel/mapreduce-tutorial.html
http://hadoop.apache.org/
http://www.lispworks.com/documentation/HyperSpec/Body/f_map.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_map.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_reduce.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_reduce.htm
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MapReduce is of course not the only programming model possible for large-
scale distributed computing; a comprehensive study of the options is worthy of a
whole course. Whatever approach is used has to observe a few key principles to
achieve scale:

• minimum communication – each scheduled unit of work should be reason-
ably large and able to complete without sharing data with other work units

• coordination – there should be a strategy to ensure that outstanding work is
completed and there is a reasonable balance between waiting for uncomplete
work and scheduling new work; coordination decouples communication and
cooperation from computation [Gelernter and Carriero 1992; Tanenbaum
and van Steen 2002, p 700]

• load balance – work should be spread reasonably evenly over available
resources; while rebalancing load by migrating workloads is theoretically
possible, the costs in time lost to communication seldom make the move
worthwhile

• fault tolerance – there should be a fallback strategy to cope with parts of the
workload failing to complete

The programming model is interesting to the computer architect because there has
to be one for an architecture to be usable (hence the drive to find usable models for
GPUs that can use a reasonable fraction of their theoretical throughput, rather than
hand-tuning assembly language). MapReduce is successful and therefore validates
the broad concept of WSC; that doesn’t mean a better model can’t be found, but it
is not a problem for the computer architect.

MapReduce has another aspect of interest to a computer architect: it is
similar in some ways to a dataflow architecture, in which operations are fired by
availability of operands, rather than being driven by order of the code. Dataflow
was a style of architecture that attracted some research interest in the 1990s
[Ghosal and Bhuyan 1990; Arvind and Nikhil 1990; Lieverse et al. 1999]. Despite
some attempts to revive the concept [Swanson et al. 2006; Petersen et al. 2006],
dataflow has not been widely adopted because it’s too hard to build hardware that
fully exploits theoretically available parallelism in the model without changes to
programming languages. Though dataflow languages were also an area of active
research for two decades [Traub 1986; Johnston et al. 2004], in practice it is
hard to sell a new architecture without the option of (mostly) running existing
code. Some versions of Intel’s IA32 pipelines use dataflow [Papworth 1996],
though the parallelism in that case is relatively local (instruction or micro-op
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operation latency
network switch 10µs
local RAM access 100ns = 0.1µs
disk latency 12ms

Table 6.4: Performance parameters for scalability. Disk latency is based on

half a rotation for a 7,200rpm disk (4ms) plus a conservative 8ms average seek

time, assuming a cheaper design than a fast enterprise drive. Local RAM access

assumes a miss to DRAM.

reordering). In the case of MapReduce, dataflow is more a coordination (large-
scale parallelism) concept than a highly local form of parallelism, and seems to
work well at that scale; use of dataflow languages for coordination is an idea
developed independently of MapReduce [Lombide Carreton and D’Hondt 2010].
Dataflow architectures today survive in specialist domains [Vo 2011] and in FPGA-
based designs, where the programming model is nonstandard anyway [Silva and
Lopes 2010; Voigt et al. 2010; Ferlin et al. 2011].

6.3 Hardware Design

One of the most important considerations of a system on this scale is cost per
unit of work. In the early 1990s, when the RISC revolution was at its height,
I made the observation that a high-end box was seldom worth the extra cost
because the maximum performance was had from a machine a step or two down
from that with as much RAM and disk as you could afford. Any machine that
you could not afford to populate to the maximum with RAM would no longer
be worth the cost of upgrades in a year or two. Google has made a similar
discovery: they generally use components typical of a mid-range rather than top
of the line PC. An important consideration in their design is overall cost, including
power consumption and heat. Another important consideration in design for scale
is network bandwidth and latency. If the network within a building has high
bandwidth and low latency, workloads that require some communication can be
accommodated within a building or if the requirements for communication are
higher, within a single rack with a single fast ethernet switch.

To get some idea of how things scale, let’s take some numbers. Actual
latency of ethernet depends on how loaded the network is as well as how many
switches there are between the nodes sharing information and an accurate model
of performance should be based on real workloads [Jin and Caesar 2010]; network
latency in Table 6.4 is a little on the optimistic side. On the other hand, disk
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latencies and memory are on the high side: I assume that as with the Google
philosophy, we are aiming for a midrange PC configuration, rather than enterprise-
grade drives, and that all memory access are misses to DRAM. This combination
of assumptions reduces the penalties for remote access, and puts an upper bound
on scalability estimates.

Taking all this into account, let’s estimate the fraction of memory accesses that
can be remote without doubling average memory access time. That is a break-even
point of a fashion: with that amount of overhead, it would be better if we could
make the work go to the remote node rather than access its data. Let’s go back to
our relative execution time formula (Equation 2.1), remembering that we are not
really calculating execution time. In this case, we are not even calculating relative
execution time as before, just comparing local and remote memory accesses.
Assume that the basic latency numbers are a close enough approximation to overall
transaction time, which is true of relatively small accesses, and we have a workload
where we only have local and remote memory accesses, and no disk accesses. Then
our average memory access time is:

tMEM = tlocal + tremote (6.3)

I define local access time tlocal using the fraction of memory references that are
local memlocal and time to access RAM tRAM

tlocal = memlocal× tRAM (6.4)

and remote access time tlocal using the fraction of memory references that are
remote memlocal and time to access the network tNW (using the above assumptions,
as defined in Table 6.4):

tremote = memremote× tNW (6.5)

We want to find the point where tMEM = 2×tlocal , which leads to

2×tlocal = tlocal + tremote

tlocal = tremote

memlocal× tRAM = memremote× tNW

0.1memlocal = 10memremote
memlocal

memremote
= 100 (6.6)

In other words, if more than 1% of memory references are remote, we are going
to see a slowdown of at least 2 versus purely local computation, and we need to
rethink our programming strategy.
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The calculation I present here is very optimistic: in a real machine in which
most memory references are cached, going over the network is a much larger
performance hit, even if we don’t add all the components of network latency I’ve
missed here. What I have not gone into is how memory is accessed over a network.
In most cases, there will be more to it than putting a packet on a network: a process
at the other node will have to interpret the packet and send a response.

Let’s now consider a simple memory hierarchy in which latency for a cache hit
is hidden by the pipeline and so is effectively the same as the clock speed. Let’s
set the clock speed to 2GHz, or 0.5ns. Let’s conservatively allow 10% of memory
references to miss to DRAM (a high miss rate in most practical systems, e.g. recent
Intel designs with 8-12MiB of L3 cache; here I only consider 1 level of cache for
simplicity). Then applying Equation 2.1, the average local memory access time is

te = th1 +
n

∑
i=1

pmi× rmi

= 0.5ns+100ns×0.1

= 10.5ns

In the units used to derive Equation 6.3, 10.5ns = 0.015µs. So rewriting the local
memory term:

0.015memlocal = 10memremote
memlocal

memremote
= 666.7 (6.7)

These numbers should give some indication, without working through in full
detail, that a model like MapReduce has to distribute relatively large chunks
of work that can be computed independently, only communicating results after
reasonably long computation.

To make things worse, the minimal network latency only applies if you stay
within one network switch. Typically a network switch will cover one rack; there
may be several switches covering a full warehouse, and once you go out to the
wider Internet, latency quickly mount up. 4000 km, about the distance across
continental United States, is about 0.01 light seconds, so the shortest time (unless
you can find a way to work around relativity) that you can access information over
that distance is about 20ms, 2,000 times our extremely optimistic network access
time, though to be fair, this time I’m counting the round trip, so let’s call it at least
a factor of 1,000.

Note in all this I didn’t mention disks. Clearly, a delay of the order of 1000
times the minimum delay on a network is also a big factor in performance, but that’s
a factor without highly distributed systems. Disk latency can to some extent be
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hidden by accessing large units, and by cacheing disk contents in RAM. Accessing
a disk over a network doesn’t significantly increase the latency, but disk bandwidth
tends to be higher than network bandwidth, and less subject to contention. In
that sense there is a mismatch between the two technologies. A disk works best
streaming large quantities of data, but a network works best with smallish packets,
not bigger than a few thousand bytes.

6.4 Warehouse Design

Although WSC uses commodity parts, these will generally be packaged into
rack-mount systems for ease of maintenance. A rack can be design to use a
single network switch, and packaging can be optimized to fit requirements like
minimising network cabling, even distribution of power, quick identification of
faulty systems and selectively replacing obsolete models.

A critical aspect of the overall design is heat dissipation. Even if the Google
approach of using mid-range systems is followed, a few thousand PCs in a
warehouse add up to significant heat to extract. A midrange CPU is likely to
generate about 100W of heat. To allow for all components, let’s take a ballpark
figure of 300W (Google reports CPU use as about a third of the total energy budget
[Barroso and Hölzle 2009, p 10]). If we have a warehouse of 2,500 computers,
that adds up to 750kW of heat (to a good approximation; some of the electricity
actually does get used for useful work). Large computer installations may use water
as a heat exchange medium, potentially a significant factor in their environmental
footprint. As WSC becomes an increasing component of computer services,
environmental footprint will become an increasingly important issue, including
energy consumption and lifecycle costs [Chang et al. 2012]. By contrast, if you
have a single PC in an office or in your home, the impact of its heat dissipation on
heating and air conditioning is negligible.

A typical warehouse-scale system will include a large diesel backup power
supply, as well as more instantaneous backup UPS power [Barroso and Hölzle
2009].

The overall design of cooling, power supply and component positioning is very
complex, and can make a big difference to life cycle costs.

6.5 Historical Perspective

It is interesting to contrast the new world of large-scale computing with previous
generations. At a very early stage of the computer industry, it was a widely-
held perception that computing would evolve to one giant computer meeting the
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entire world’s needs. As a play on the name of one of the first commercial
computers, Univac I, one science fiction author (Isaac Asimov4) called the single
world computer Multivac. In 1943, IBM CEO Thomas J Watson is alleged to
have predicted a world market for about 5 computers. More recently, large-
scale computing used a small-number of high-spec machines, with high power
consumption, tight packaging to minimize latencies and advanced cooling needed
with a machine like an early Cray drawing 130kW [Kolodzey 1981]. Fast forward
to today’s world, and the number of discrete computers is in the hundreds of
millions, billions if you count mobile and embedded devices, but a small number
of players is trying to pull large-scale computation back to central large-scale
installations.

The new big in computing may be composed out of consumer parts, but it
involves engineering challenges every bit as complex as those faced by architects
like Seymour Cray. Energy and heat are huge problems on the scale at which they
operate, and reliability is a major issue the more complex the combination of parts
and the number of parts. While it doesn’t appear that we are headed for something
exactly like Asimov’s vision of Multivac, a small number of very large players with
tens of thousands of computers functioning as a single system is not as far off from
that concept as where the industry was previously headed.

Why does it make sense to build systems on this scale? After all if the
individual servers are essentially mid-range PCs with large disks, plus a lot of
expensive infrastructure to provide them with stable power, remove heat from the
building and to scale the network up to tens of thousands of nodes, why is the
service superior to just running something on your own PC, which you don’t
need to share with anyone else, and which doesn’t tax the power and thermal
requirements of a home or office?

There are two major motivations for a return to highly-central services (even if
the implementation is geographically distributed):

• management – many of the more complex management issues of running in-
dividual computers are taken over by the central service, including backups,
installing new releases and managing user credentials

• instantaneous scalability – using services of this type makes it possible to
adjust the scale of installation based on demand; you cannot realistically buy
10,000 computers for a need that happens once a year

Another major factor in the early viability of these services is that they ride on
the back of requirements of their creators. Amazon has a massive requirement for
highly-responsive services for their retail operations. A cost of high responsiveness

4http://en.wikipedia.org/wiki/The_Last_Question

http://en.wikipedia.org/wiki/The_Last_Question
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is a lot of idle time, and selling that idle time is a way of recouping the cost (though
naturally highly responsive reactions to a customer buying something from the
Amazon store is still top priority). Google has the opposite scenario: a massive
requirement for batch processing for their web crawlers that build their search
indexes. This batch processing can fill the gaps between the demand for more
interactive services that Google can make available as another way of using their
massive infrastructure.

The combined effect of current trends is likely to be massive growth in WSC,
with an increasing range of cloud services, because a wide range of services with
different requirements allow load to be balanced. What is an interesting question is
what happens when external clients’ requirements exceed internal requirements in
operations like Amazon and Google. Whichever WSC-based provider adjust first
to the reality of putting their computation customers first is likely to dominate, just
as IBM dominated the early decades of the computer industry by being the first to
place a high priority on customer relations.

Exercises

Note that the standard abbreviation for byte is “B” and for bit is “b”. Recall that
binary prefixes have an ”i” added to differentiate them from decimal multiples (e.g.,
Ki means 210, whereas G means 109).

1. With an average year of 8766 hours, how many hours of downtime does four
nines of availability represent?

2. You would like to offer four nines of availability on a 2,500 server config-
uration. Which of the following gets you closest to this goal (starting from
the base of the figures in Table 6.3, which gave us 2 nines of availability):

(a) replacing the hard drives by solid-state drives (SSDs), reducing the
expected number of failures to 10 a year

(b) replacing the RAM with DRAMs with error checking and correction
(ECC), reducing the number of uncorrectable failures to 20 per year

(c) running a more robust operating system that reduces failure to 250 per
year

Given the above, comment on Google’s actual approach, which is to tolerate
failures.

3. Google is a significant investor in clean energy technologies, and Apple has
reportedly commissioned one of the largest solar energy facilities no owned
by a power utility. Discuss why this may be the case.
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4. Use the Intel Nehalem latencies from Table 4.1, with network latency in this
chapter (Table 6.4):

(a) Assume a uniprocessor task running on a local CPU, and redo the
calculation for the fraction of remote accesses that double the average
memory access time, assuming global miss rates from L1 or 10%, from
L2 of 1% and from L3 of 0.1%.

(b) Now redo the calculation assuming 10% of L2 misses incur snoop
latency (implying a multiprocessor task). How does this change your
answer?

(c) Adjust your answers by doubling network latency to allow for the
round trip, and adding 10% to allow for network congestion. How
much of a difference does this adjustment make?

(d) Assume network latency adds for each switch. How much difference
will it make if you have to go through 3 switches to obtain a data item?

(e) In general terms, discuss the performance hit going to a remote ma-
chine rather than local accesses, even with multiprocessor overheads.

5. Gbit ethernet switches are commodity technology. Let’s consider whether
10Gbit switches are worth considering for WSC. Assume switching latency
is the same, and the only change is the transfer rate.

(a) Ignoring switching latency and packet overheads, how long does it take
to move a packet of 4KiB at 1Gb/s?

(b) Ignoring switching latency and packet overheads, how long does it take
to move a packet of 4KiB at 10Gb/s?

(c) How big a difference is there in these two numbers if we add 10µs
switching latency?

(d) MapReduce operates on relatively large chunks of data. Relate
switching latency to transfer time in this example, and explain why
MapReduce is generally used that way.

(e) If you were designing a new WSC facility would you consider 10Gb
ethernet switches? Explain.

6. Look up the services that Apple, Amazon, Google and DropBox offer.

(a) What are similarities and differences in implementation technologies,
offerings to customers and their revenue models?

(b) Have any of these taken the critical step of placing customer needs
ahead of their own internal strategy?
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7. Assume it takes 12ms to start to access data off your local disk, and a remote
site with a network latency of 10ms has the data you request in memory.
Your disk can transfer data at 1Gb/s, and the remote location 5Mb/s. Take
into account in network accesses that you need to request the data (with
a packet small enough to neglect transmission time) as well as receive the
data, and assume that no packets are lost. Compare in each question the time
for local and remote access.

(a) If you want one data item 1kB in size, which is faster to access?

(b) If you want to access 10 items, each 1kB in size, each of which is on
a different location on your local disk, but in RAM on the other node,
which is faster, assuming you can request all 10 items in one network
packet?

(c) Now repeat the previous two calculations for data items 1MB in size.
Assume you only need to take into account network latency once, even
if in practice the multiple packets will be sent.



7 Predicting Breakthroughs

PREDICTING TECHNOLOGY BREAKTHROUGHS is an inexact science. If you
project a trend like Moore’s Law, you can make fairly obvious predictions.
However, predicting a major change in packaging is more difficult. Major

changes since the first computers include the development of mid-sized computers,
around the size of a filing cabinet, called minicomputers, the appearance of the
home PC, the acceptance of the PC in business, the RISC revolution, the switch
from desktop to notebook computers and the explosion of mobile devices. Buried
in amongst all this is the less visible development of computers in embedded
systems.

In Figure 7.1, the first part (7.1(a)) illustrates a conventional view of Moore’s
Law: if you hold dollars constant, how much more can you buy in the future? The
second part of the figure (7.1(b)) illustrates keeping functionality constant, and
predicting when it will cross a price point that makes a new form factor or market
niche viable.

home computers viable

IBM PC

Apple Macintosh

32-bit-addressed PCs

ascent of RISC (no examples shown)

multicore starts

(a) Constant dollars. (b) Constant Transistors.

Figure 7.1: Two views of Moore’s Law.
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7.1 Predicting the Past is Easy

Figure 7.1(b) is of course easy to construct with hindsight. Applying a theory to
test whether something in the past is predicted is called hindcasting; forecasting is
a rather more difficult proposition. For example, at the time when home PCs first
appeared, there were many hobbyist kits around but not many people would have
predicted that someone would package that technology as something appealing
for the average household. The development of the first spreadsheet, VisiCalc,
propelled the Apple II from a slicker than average hobbyists’ toy to a useful
home computer. If we look at today’s world, something similar appears to be
happening again. There are many inexpensive kit computers based on cell phone
parts, often for $100 or less. One of these, the Raspberry Pi [RaspberryPi 2012],
illustrated in Figure 7.2, captured the public imagination on its launch, and has
sold in large numbers. Compared with the computer that was most successful in
the original home PC market, the Raspberry Pi is a very capable system, capable
of booting Linux and running a full range of programming languages. What no
one can reasonably predict at this stage is whether these cell phone technology-
based ultra-cheap computers represent a new general platform, or a sophisticated
toy. As with the Apple II, the key is software. If someone develops a killer app
for this class of computer, it will take off as a mass-market niche. At launch,
there is nothing obvious. Many standard applications like Open Office are too
large for the available memory for this class of computer, and slightly less complex
applications like web browsers barely run on it. Bet that as it may, it’s early days
and something may yet emerge. A machine of this class with 256MiB-1GiB of
RAM, 1GB or more of flash, ethernet and a 700MHz-1GHz ARM processor is
certainly fast enough to run software that was commonplace 20 years ago.

On the other hand, sometimes it’s easier to predict where a breakthrough is
going. In the early 1990s, I told a computer centre manager that mainframes were
in trouble because RISC processors were improving so much faster. He didn’t see
how this could be possible, and even after IBM made a record loss [Burgess 1993],
it took him a few years to switch to RISC-based servers. At that time, prediction
was easy because RISC processors ran versions of UNIX, and hence could perform
functions traditionally associated with HPC machines. There was no question of a
“killer app” to change the game space.

7.2 Limits to Trends

There’s a limit to how far it’s reasonable to extrapolate trends across major
technology changes. For example, in the era of the CDC6600 design [Thornton
1963], memory was relatively fast compared with CPUs, so large caches weren’t
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Figure 7.2: Raspberry Pi. Based on cell phone parts, it has a 700MHz ARM

processor, 256MiB of RAM, boots off SD flash and has ethernet, USB and

several lower-level interfaces.

necessary. Since the 1990s, the CPU-DRAM speed gap has increasingly become
a factor [Wulf and McKee 1995], meaning the number of transistors in aggressive
designs increasingly goes into caches. More recently, the difficulties in scaling
up superscalar pipeline performance has led to multicore designs [Olukotun et al.
1996; Geer 2005] becoming mainstream.

How much longer will Moore’s Law hold good? One 1997 paper has the
Law as ending as early as 2003, with estimates of the end point varying up
to 2010 [Schaller 1997]. A 2002 physics paper indicates that features of less
than 40nm should run in to problems no later than 2012 [Kish 2002]. A more
recent paper [Thompson and Parthasarathy 2006] projects another 30 years of
advances. Obviously the earlier predictions are not correct; there is active research
on technologies to design for lower feature sizes so [Lin 2012] we still have a few
generations to go.

More critical than limits on how much we can shrink components is how we
can use more components. In the 1990s the mainstream approach was to increase
instruction-level parallelism, but there are limits to ILP [Wall 1991; Lam and
Wilson 1992; Postiff et al. 1998] as well as to the complexity that is reasonable
to implement as a single logical device. As the circuit complexity grows, wiring
effects like capacitance and wiring delays dominate [Agarwal et al. 2000]. Some
of these limitations inspired the move to multicore (originally chip multiprocessor
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[Olukotun et al. 1996]).

Another limitation on trends is the fact that components do not all improve at
the same rate. Historically, DRAM has improved in density by a factor of 4 every
3 years; selling more DRAM for the same money has been the focus, not speed
improvement. As a result, the CPU-DRAM speed gap has been growing, also
limiting the value of not only more ILP but faster clock speeds. To some extent
this effect is countered by going to multicore designs with slower individual cores,
though the aggregate effect of memory demand for a dual-core 2GHz design is not
necessarily less than a single-core 4GHz design, depending on the nature of the
workload. Disk latency too has not scaled as fast as CPU speed.

Looking at a single trend in isolation therefore is risky: you need to look at all
factors playing into overall system performance (remember Amdahl?).

7.3 Really New Stuff

How do you find out about potential technologies that are not simple extrapolations
from existing designs? One good place to look is the The International Technology
Roadmap for Semiconductors (ITRS1). ITRS is a very comprehensive survey of
technologies including those still in the lab and far from ready for production.

That’s not to say that predictions will happen: for a long time, gallium arsenide
was predicted to be the successor to silicon for semiconductors, but, other than
some exotic designs at the high end of the market, that never happened [Spinardi
2012].

Nonetheless looking at trends and where they break is useful. In the late 1990s,
when predicting the memory wall was big, I looked to the past and that led to my
RAMpage project (see p 3).

It’s also useful to examine future technologies from sources like ITRS: that’s
where the University of Michigan Picoserver (see p 4) originated [Kgil et al. 2006].

One thing always to keep in mind is that the latest fast, hot technology often
gets all the PR, while something small and apparently insignificant lurking behind
the scenes is more likely to be the future trendsetter. The PC started out with
very modest technology, that was not initially even intended for making a whole
computer. RISC designs started out as a better way of making a UNIX workstation,
and all-but wiped out the venerable mainframe market.

Understand history, and you have some chance of being among the leaders in
designing or adopting a new technology.

1http://www.itrs.net

http://www.itrs.net
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Exercises

1. Pick a technology that’s commonplace now but expensive, and a price point
at which you think it could define a new market. If Moore’s Law continues
unabated, when will your technology hit the target price point? If you pick
a technology that doesn’t rely on Moore’s Law, which relates to transistors,
can you find another trend to use?

2. Assume the more optimistic estimates are correct, and Moore’s Law contin-
ues for 30 years. That implies an improvement in the number of transistors
you can buy of a factor of 215 = 32768. What class of device really needs
that level of improvement? Consider both buying more speed at today’s
price, and dropping the price of a fixed number of transistors.

3. Assume Moore’s Law no longer holds, and we cannot make single chips
any faster (or cheaper by making a new version with a smaller die and fixed
functionality).

(a) How would you go about building a faster computer than a current
model?

(b) What would you have to do to build a computer with the same functions
as an existing model but at lower cost?

4. What would have to change before a Raspberry Pi-type machine became
a mainstream home or work computer (aside from cosmetic improvements
like a nice case)?

5. Look up ITRS and see if you can pick any exciting new technology that
could be a game changer.

6. Look up why gallium arsenide didn’t make it to the mainstream.
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A Minimal Instruction Set

FORE PURPOSE OF EXAMPLES, we use a minimal RISC instruction set. This
instruction set has sufficient operations to do examples of interest, and
could be used in a general-purpose computer, though sometimes with more

instructions than even a relatively clean RISC design like MIPS or Alpha. In
this appendix, I illustrate how one can go about deriving an encoding for an
instructions set. The design compromises we need to consider include placing
register operands in a consistent place to simplify the ID stage of our simple 5-
stage pipeline, maximising the bits available for immediate operands especially an
jump instruction and in general making it easy to decide early in the pipeline how
to handle all the variations in what functional units an instruction may require.

With approximately 20 basic instructions it is possible to implement a good
fraction of common functionality. I add to these a few system functions: a syscall
goes to one of a limited range of fixed locations in the operating system, and
switches out of user space. For this instruction, the next instruction’s location is
stored in a special register, the exception program counter (EPC) that is also used
to record the faulting instruction on any kind of interrupt. It is up to the operating
system to save the exception PC and any other registers it may clobber (usually all
of them). To return to user space, the OS must reset internal pointers to the page
table, and execute a sysret instruction to return from system mode to user mode.
The sysret instruction should go to the saved value of the EPC, after restoring the
saved registers. I also add an atomic swap operation, one of several primitives that
can be used to implement synchronization.

An approach to designing a real architecture is to start with such a basic
instruction set and run simulations or other design studies to determine which
combinations are common enough to consider introducing specialist instructions.
In Figure A.1, we do not for example have inverses of comparison because these
can be achieved by inverting a logical result. The 20 instructions illustrated here do
not include other variations like variations on operand size. In a reasonable design
for today’s requirements, you would want arithmetic and logic on at least byte, 16-
bit, 32-bit and 64-bit operands. For some computational requirements, you might
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want 128-bit operands, and floating-point variants on arithmetic operations.
What encoding scheme could apply to this instruction set?
An important thing we need to fix is register count. Most early RISC

designs had around 32 registers, though a few had significantly more. The main
concern with bits allocated to registers is reducing the bits available for immediate
operands, since it’s unlikely that any number of bits we allocate for registers and
opcode encoding will use up all 32. For example, if we increase the register count
to 128, we need 7 bits per register, totalling 21 out of 32 bits, leaving 11 bits
for opcodes. Given that we are starting out with 20 instructions before adding
operand variations, it seems unlikely that we will need as many as 11 bits to encode

class type instruction description

ALU

arithmetic

add Rd ← Ra +Rb

subtr Rd ← Ra−Rd

mult Rd ← Ra×Rd

div Rd ← Ra÷Rd

bitwise logical

lshift Rd ← Ra << Rd

rshift Rd ← Ra >> Rd

lshifta Rd ← Ra << Rd with carry
rshifta Rd ← Ra >> Rd with carry
and Rd ← Ra ∧Rd

or Rd ← Ra ∨Rd

xor Rd ← Ra⊕Rd

comparison
cmpeq Rd ← Ra = Rd

cmplt Rd ← Ra < Rd

control

branch breq Ra = Rb ? PC← PC+ offset << 2

unconditional
j PC← Ra +Rb

syscall trap to value
sysret switch out of user mode and jump

save PC save Rd ← PC+Ra

save exception PC saveep Rd ← PCold +Ra

memory
load Rd ← mem[Ra+Rb]
store mem[Rd1 +Rd2 ]← Rs

swap swap values of mem[Ra+Rb], Rd

general nop do nothing

Figure A.1: Minimal RISC instruction set. Details such as operand size and

variations like immediate operands are omitted for clarity. I also trim the

options to the minimum, e.g., ne variations are not included for comparisons

and branches. A syscall instruction only has 1 form, a trap to an immediate

value. The saveep instruction is used to save the PC at the point where an

exception occurred so the instruction can be restarted. A sysret instruction

allows a return to user space, and usually is followed by a jump to the saved

PC (this works because the PC for the next instruction is set up before the

change of state back to user space). A swap is an atomic swap of a memory

location’s contents and a register value, useful for implementing synchronization

primitives.
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Figure A.2: Possible instruction encoding. Opcodes always take up 6 bits,

labeled with “x”. Registers take up 5 bits each, labeled as “d” for a destination

register, and “a” or “b” for a source register. An immediate operand is labeled

according to how it’s used: a signed data value with “D”, an absolute address

with “A” and a signed offset with “o”. Unused bits are marked with “-”.

instructions (that allows 211 = 2048 variations).
Going the other way, if we generously allow ourselves 256 (=28) opcode

encodings, we leave ourselves 24 bits for registers, meaning we could have 256
registers.

Since running out of registers is one of the key challenges of compiler writing,
why not just allow for a large number of general-purpose registers like 128 or 256?
There is another cost to a high register count: whenever there’s a context switch, the
operating system must save registers and restore those of the a restarting process.
There are other considerations including the extra cost of support for hardware
threads if the register file is bigger, energy use of a larger register file and the size
of logic for accessing registers. A designer must balance all these issues in deciding
how many registers to design into an architecture.

For purpose of simple exercises, we fix register count at 32, requiring 15 bits
to encode three registers, and opcode size at 6 bits, allowing 64 different opcodes.
That leaves 26 bits for an immediate address for a j instruction, and 16 bits for
an immediate operand in an ALU operation with one source and one destination
register. Figure A.2 illustrates some examples of this scheme.

Will this scheme work in practice?
Since encoding is tight, we can use a few tricks like encoding the nop (in less

terse assembly languages, sometimes called “noop” for no operation) instruction
using a bit pattern that is another instruction that has no effect (e.g., something
in which all operands are register 0 – a trick used in the MIPS instruction set).
Also note that in Figure A.1 we have 13 ALU operations, even trimming a few
(such as only comparing for equal). If we allow each to have an immediate variant,
that doubles the number. Adding in each of a byte, short, word and long size
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multiplies the total by 4 again, making a total of 13×8 = 104 variants. However,
these variations only apply to ALU operations and loads and stores, none of which
need the entire instruction word. We can therefore use a basic opcode size of 6
giving us 64 instructions and encode the operand type separately. Doing this allows
us to reserve as many bits as possible for instructions where a large immediate
operand is desirable, particularly jumps. Another useful gain from this is that the
decode stage can tell easily what the operand size is, since we are encoding that in
a standard way. The final principle we need to observe is placing register operands
in a consistent place so we can simplify the decode stage, where register operands
are set up in our simple 5-stage pipeline. We have the following variations:

• three registers – destination (Rd), and two source registers (Ra and Rb); a
store instruction is a bit different in that we have two registers to calculate
an effective address (Rd1 and Rd2) and a register holding the source value to
store to memory (Rs); in this case, we can treat the two address operands as
Ra and Rb, since they are needed in the EX stage, and as a special case use the
register usually used as a destination as Rs, since there’s time to reconfigure
the logic to move the value of Rs to the memory system rather than set that
register up to receive an ALU result

• single source, single destination register – as in ALU immediate operations:
Ra and Rd respectively; a save instruction also has this format but doesn’t
need the bits for an immediate operand

• two source registers – as in a branch, where we have Ra and Rb used to
compute the effective address

• no registers – a j.i and a syscall instruction uses all the available bits for
an immediate address

If we want register operands to appear in consistent places, we need to place them
so we can include them with immediate operands (where one or more registers
sometimes are not needed) in a consistent way, while maximising the bits available
for immediates.

All this leads to the scheme illustrated in Figure A.3. I still have a basic 6-bit
opcode, but use a bit to encode whether an instruction is immediate or not, and 2
bits to encode the word size: bits that are not needed for a j.i instruction, so it can
use all 26 bits left over from the opcode. Have I left enough bits to add floating-
point instructions? If so, how would you add them? If not, what would you have
to change?



128 APPENDIX A. MINIMAL INSTRUCTION SET

Figure A.3: Refined instruction encoding. Opcodes still take up 6 bits with

the following changes in labelling compare with Figure A.2. ALU operations

use two bits labeled with “tt” to represent the operand type (byte, short, word

or long). A store.i instruction uses one register for the destination address

labeled as “d” though it’s actually the register usually labeled as “a”, and a

store instruction uses two registers for the destination address labeled with

“1” and “2”. The source register for a store is encoded in the position usually

used for a destination (labeled “s”)
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