
Principles of
Computer

Architecture
The RISC-V approach

Philip Machanick

Principles of Computer Architecture: The RISC-V approach
First edition, 2018
Copyright © Philip Machanick 2018

Published by Philip Machanick in the RAMpage Research imprint
under an Attribution-NonCommercial 4.0 International (CC BY-NC
4.0) licence:
http://creativecommons.org/licenses/by-nc/4.0/
The quick summary: free to use however you like but not for
commercial purposes.

Picture credits: all illustrations are either by the author or from
public domain sources, as acknowledged in the text.

Author: Machanick, Philip, 1957-

Title: RISC Revisited: the RISC-V approach / Philip Machanick

Edition: 1st ed.

Publisher: Grahamstown, South Africa : RAMpage Research, 2015.

ISBN: XXX-X-XXXXXXX-X-X (pbk.)

LoC classification : QA76

Last typeset 27 June 2018

http://creativecommons.org/licenses/by-nc/4.0/

Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Measurement . 3
1.2 Design Approaches . 4
1.3 Performance Factors . 6
1.4 Architecture Areas . 7

1.4.1 Memory Hierarchy . 7
1.4.2 Hardware Layers . 8
1.4.3 Hardware-Software Layers 9
1.4.4 Hardware-Software Interaction 10
1.4.5 Instruction Set Design 11

Styles of Instruction Set 11
Design for Performance 14

1.4.6 Input and Output . 15
1.4.7 Parallelism . 15

Instruction-Level Parallelism 16
Multiprocessor and Multicore 16
GPUs . 17
Warehouse-Scale Computing and the Cloud 18

1.5 The Other Edge . 19
1.6 Structure and further reading . 20

2 Principles of Instruction Set Design 22
2.1 Scalability . 22
2.2 Hardware Simplicity . 23

ii

CONTENTS iii

2.2.1 Condition Codes . 23
2.2.2 Big Gains from Minor Complications 25
2.2.3 Summary . 27

3 Memory and Quantitative Design 29
3.1 Memory Systems . 29

3.1.1 Organization Principles 29
3.1.2 Levels of the Hierarchy 31

Registers . 31
TLB . 32
Caches . 34
Main Memory . 37
Paging Device . 38

3.2 Measurement . 40
3.2.1 Architecture-Oriented Measures 40
3.2.2 Benchmarking . 41

3.3 Putting it All Together: Measuring Memory Systems Performance 42
3.3.1 Back of the Envelope Calculation 43
3.3.2 Profiling . 47
3.3.3 Trace-Driven Simulation 48
3.3.4 Whole-System Simulation 48
3.3.5 More Detailed Approaches 49
3.3.6 Summary . 49

4 Pipelines and ILP 51
4.1 Simple Pipelines . 52

4.1.1 Pipeline Limitations . 54
4.1.2 Pipeline Performance . 55

Case Study . 55
Hazards . 57

4.2 More Exotic Pipelines . 66
Static scheduling . 68
Dynamic scheduling and better branch prediction 71
Compiler-Exposed ILP 75

4.3 Summary . 76

iv CONTENTS

5 Multiprocessors 79
5.1 Multiprocessor Models . 79
5.2 Shared Memory Principles . 81
5.3 Shared Memory Performance . 86

False Sharing . 87
Locks . 89

5.4 Summary . 93

6 GPUs 95
6.1 Vector Processing . 96
6.2 SIMD Extensions to Instruction Sets 101
6.3 GPUs . 102
6.4 Review . 104

7 Warehouse-Scale Computing 108
7.1 Fault tolerance and dependability 109
7.2 Programming model . 112
7.3 Hardware Design . 114
7.4 Warehouse Design . 117

8 New Developments 121
8.1 Three Dimensions . 122
8.2 Nonvolatile RAM . 123
8.3 Deep Learning Architectures . 124
8.4 FPGAs and the SKA . 127
8.5 Summary . 128

References 130

List of Figures

1.1 RISC-V base formats . 3

2.1 Variations on RISC formats . 25

3.1 Cache addressing . 35
3.2 Example of miss rate calculation 45

4.1 Progress through a 5-stage pipeline 53
4.2 Pipeline progress with datapaths 53
4.3 Our code without pipeline bubbles 61
4.4 Our code with stalls . 61
4.5 Approaches to reducing stalls . 62
4.6 Limits of forwarding . 63
4.7 Branch-induced stalls . 63
4.8 Two-bit branch predictor state transitions 65
4.9 Finding a branch prediction . 65
4.10 Dependences in one iteration of the loop 68
4.11 Simple two-instruction-issue schedule 69
4.12 Dependences in two instances of the loop 70
4.13 Possible branch table buffer organization 73
4.14 Two-level predictive branch . 74

5.1 MESI state transitions . 83
5.2 The Intel Nehalem archictecture 85
5.3 The Intel Nehalem die showing major components 86
5.4 False sharing example . 89
5.5 Simple ticket lock . 92

6.1 Variations on vector loads . 98

v

vi LIST OF FIGURES

6.2 The principle of multiple memory banks 99

8.1 3D die stacking with CPU and RAM in one package. 122
8.2 Limits of perceptrons . 125
8.3 XOR and linear separation . 125

List of Tables

2.1 Condition Codes and alternatives 24

3.1 Common terminology . 30
3.2 Performance parameters . 43
3.3 Performance improvement measures 43

4.1 Simple instruction set for examples 58

5.1 Intel Nehalem latencies . 88

7.1 Dependability terminology . 110
7.2 Dependability example . 110
7.3 Expected number of failures for 2,500 computers 111
7.4 Performance parameters for scalability 115

vii

viii LIST OF TABLES

1 Introduction

COMPUTER ARCHICTURE is a rapidly moving field yet a few things have
held good over the last three decades. Before the RISC movement of
the late 1970s, much computer architecture was based on gut feel, or

poor communication between the hardware and software sides of design teams.
For example, the hardware people may decide that an aspect of setting up or
undoing up the call stack involves tedious repetition and, to be nice to the compiler
people, they roll this all into one instruction. Only, because they didn’t correctly
understand the requirements of the compiler people, the instruction they design
isn’t useful and is never used. Then when they try to implement a more aggressive
version of the design, they find all the complicated instructions they weren’t asked
to design by the software people make it hard to produce a more aggressive
design. Related to this communication issue is a lack of standards for quantifying
improvements. In the 1970s, Gene Amdahl, a former IBM engineer who split
with IBM to form his own high performance computing company, formulated
a speedup limitation [Amdahl 1967] that became known as Amdahl’s Law. In
essence this says that to calculate the effect of a speed improvement, you need
to take into account the entire run time including parts that are not sped up. An
apparently obvious revelation, it’s a point often forgotten when extolling some
brilliant enhancement (not only to computer systems).

What really created an impetus for improved standards in quantifying per-
formance was a dispute that arose between two schools of computer architecture,
the high-level-language oriented approach, and the simplicity-oriented approach.
The latter gained credibility as early as the 1960s, when Seymour Cray, at that
time working for a relatively small company called Control Data, produced a
design that was much faster than the best the market leader IBM could produce.
However, some designers still argued that a machine instruction set closer to high
level languages was more efficient because even though each instruction may be
slower than with a design closer to the hardware, you needed fewer instructions.

1

2 CHAPTER 1. INTRODUCTION

This argument carried some weight when memories were relatively small, and
hardware complexity could be replaced by microcode, a very low-level instruction
set that interpreted the actual machine instructions. Microcode was stored in
a ROM (read-only memory) that was many times faster than DRAM (dynamic
random access memory, what main memories are made of), so frequent accesses
to microstore as the cost of fewer instruction fetches was a reasonable trade-off.
However, as DRAM speeds caught up with ROM speeds and it became viable
to implement caches in fast SRAM (static RAM – more expensive than DRAM
because it is lower density), the case was less clear. It took a landmark paper in
1980 [Patterson and Ditzel 1980] to fire up a new movement inspired by Seymour
Cray’s 1960s designs [Thornton 1963; Pagelkopf et al. 1975] to push the case
for simpler instruction sets, and that push led to a more quantitative approach to
architecture design and evaluation. In particular, to win the case for simplified
instruction sets, the RISC (reduced instruction set computer) movement began
a move to more scientific principles in measuring alternative designs, with an
emphasis on repeatable experiments that were representative of real workloads.

Why do we still need to understand all this? A few years back someone asked
me what there is still do do in this field because Intel won. With the massive
growth in mobile devices using the ARM processors, this claim is not so obvious
anymore. Also, a very large number of computer parts is sold as part of another
machine – an embedded system. Most embedded CPUs are not Intel parts and
ARM, while a big player in this market, does not have the dominance they have
in the mobile market. There are also other niches such as graphics processing
units (GPUs) that have different design issues. Even if the instruction set design
is fixed, implementation techniques are wide open to research and understanding
design principles aids in choosing between alternative available designs.

In this book we learn about tools and techniques for measuring performance,
how architectures are designed and what factors are useful to consider when
comparing performance of alternative designs. I relate these issues to a range of
different areas of architecture design: memory hierarchy, instruction set design,
input and output, and parallelism in various forms.

To provide a focus, I base the discussion on design principles of RISC-V, a free
design based on experience of earlier RISC architectures [Asanović and Patterson
2014]. A free design is suitable for research without concern about licensing,
and RISC-V is a simplification of previous designs, with a simple minimal 32-bit
integer subset that can be used to illustrate basic principles, with optional add-ons
that can illustrate any degree of complexity that is reasonable to cover. RISC-V

Measurement 3

funct7 rs2 rs1 funct3 rd opcode

imm[11:0] rs1 funct3 rd opcode

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

imm[31:12] rd opcode

31 25 24 20 19 15 14 12 11 07 6

I
R

S
U

opcode rs rt rd shift amt function

opcode rs rt immediate

opcode address

R

I

J

056101115162021252631

015162021252631

0252631

opcode rs rt rd shift amt function
056101115162021252631

I
R

J
opcode rs rt immediate

opcode rs address

Figure 1.1: RISC-V base formats. There are other variants but these cover much of the base
32-bit instruction set.

has another significant benefit: the instruction set design is documented, providing
reasons for design decisions. I review these decisions as a way of understanding
how to understand design choices.

Figure 1.1 illustrates the way a RISC instruction set has relatively simple
variations on instruction types.

1.1 Measurement
Computer architecture measurement falls into two broad categories: evaluating
existing designs and implementations, and evaluating design alternatives. In
the first category, we can run standard benchmarks (software that represents a
workload of interest) and we can also use simulations so as to produce repeatable
run times. In the second category, we mainly rely on simulations because it is too
expensive (even using reconfigurable hardware, such as FPGAs) to create multiple
real variations in a design to check the effect of changes in design parameters.

Whichever approach we use, we try to adhere to a few essential principles of
the scientific method:

• repeatable – running the same experiment twice should give the same result
and we should report enough detail so others can redo the experiment

• separation of variables – where more than one factor can influence perform-
ance in a way that cannot be separated out, only vary one such variable at a
time

• representativity – the experiment should represent something real to those
interested in the evaluation, not an artificial exercise that will not rank
alternative designs the same way as would real usage

While these principles seem obvious, the quantitative approach was novel enough
at the time that two senior academics, David Patterson at the University of

4 CHAPTER 1. INTRODUCTION

California, Berkeley and John Hennessy at Stanford, felt the need to codify
the principles in an academic text in 1990 [Hennessy and Patterson 1990] that
has subsequently entered its fifth edition [Hennessy and Patterson 2012], and
these principles are now routinely observed in mainstream computer architecture
research1, which was not the case when I first became interested in the field in
1980.

The fact that we now have well-established scientific principles of architecture
measurement doesn’t mean that the field is devoid of creativity or innovation.
However, that innovation now has to be based on reasonably sound principles.
Even so, some large mistakes are still possible, for example, the attempt by Intel
to break out of their IA32 architecture with the IA64 (Itanium) design, which
failed to achieve its performance goals or wide market acceptance.

A scientifically sound basis for measurement only allows us to be accurate
about making comparisons: it does not remove the requirement of thinking up
innovations, because someone has to derive the new ideas to compare with old.

1.2 Design Approaches

Given all that, how do we arrive at innovations?
Much of the early computer architecture work up to the 1970s set the scene

for widely accepted design alternatives today. A fair fraction of innovation today
involves rediscovering old ideas that worked well in a different form factor, and
finding that technology today makes those ideas work well once more. Much of
Seymour Cray’s work in the 1960s was in essence reinvented by RISC designers
in the 1970s through to around 2000, as it progressively became possible to fit
more of the features of his multichip designs onto a single-chip CPU. Remarkably,
very little in modern designs wasn’t found in his landmark CDC 6600 of 1962,
including hardware to support multiple instructions per clock cycle and out of
order execution. By the end of the decade, the successor to the 6600, the CDC
7600, had a pipeline as well [Pagelkopf et al. 1975].

A good starting point for looking our for potential for innovation is to examine
various trend lines and work out when new design trade-offs become possible.
Possibly the most famous of these trends is Moore’s Law, an observation that the
number of transistors at a given price doubles about every 2 years [Moore 1965].

1Well, mostly – I see some research on general-purpose programming on GPUs that has fallen
back to the bad old practice of evaluation using code that is mostly one algorithm.

Design Approaches 5

There are others, like the quartering of the cost of DRAM every 3 years, and the
much slower speed improvement of DRAM. Understanding how long these trends
can persist and when a change in technology is predictable opens up opportunities
for architecture research. For example, in the 1990s, I observed that the speed
gap between DRAM and CPUs was heading for similar numbers as measured by
lost instruction execution opportunity to the speed gap between CPUs and paging
devices when virtual memory was first invented. That led to the RAMpage project,
of which I cite a fraction of the research outputs here [Machanick et al. 1998;
Machanick 2000; Machanick and Salverda 1998; Machanick 2004].

In another breakthrough, which led to a major change in the whole industry,
a Nigerian academic at Stanford University Kunle Olukotun [Olukotun et al.
1996] made a case for replacing very aggressive single-CPU designs by what
are now known as multicore designs. In essence his argument (backed up by
design studies and simulations) is that the potential for speedup of a single core
design is limited by how much instruction-level parallelism is available, whereas a
multicore design can gain speed from several dimensions. A clever compiler can
convert instruction-level parallelism into threads, code already designed to run
threads or multiple processes can speed up, and multiprogramming workloads (as
on a typical operating system where there may be dozens of processes, many not
visible to the non-technical user) can also see a speed gain. Multicore designs have
in recent years also gained in utility because they create more options for scaling
both performance and energy use. The more complex a design is (and this also
applies to miniaturization) the more energy is wasted to leakage: transistors leak
current even when they are turned off, and this becomes an increasing factor as
components scale down and circuits consequently become more complex [Kim
et al. 2003]. An example of the kind of design trade-offs possible is ARM
multicore designs that have CPUs of varying complexity and hence speed and
energy use. Here, I focus on a “big-little” design. When high speed is required e.g.
with user interaction that requires rapid responses, the process or thread providing
that response can run on the “big” core, while the “little” cores can be used for
lower-priority tasks. When no high priority task is active, the “big” core can be
put to sleep.

Yet another approach to looking for breakthroughs in architecture is studying
roadmaps of predicted future technology2. In one example, Trever Mudge at the
University of Michigan picked up the likelihood that vertical stacking of dies

2International Technology Roadmap for Semiconductors http://www.itrs2.net is a good
example.

http://www.itrs2.net

6 CHAPTER 1. INTRODUCTION

(a die is a chip without the packaging) was on the horizon, and he explored
the implications of this technology for making a package tightly integrating
DRAM and a multicore CPU design. The resulting design has a number of
advantages. Because through-chip vias (conductors) can be as fast as within-chip
communications and wide buses are practical to construct in this form, the CPU-
DRAM speed gap can be considerably reduced. Since the CPU wastes less time
waiting for DRAM, a given level of performance can be achieved with a slower
clock, reducing he problem of heat dissipation out of a compact package. The
resulting PicoServer design [Kgil et al. 2006] and its successor Centip3De [Fick
et al. 2012] may at some stage emerge as a commercial product; even if it does
not, it is a good illustration of looking out for technologies that may later become
viable. A design compromise is to do a multilayer design mostly consisting of
DRAM but with a logic layer to speed access; this is how HMC (Hybrid Memory
Cube) RAM is designed [Courtland 2014a].

A more radical take on going 3-dimensional is 3D Xpoint (pronounced “cross-
point”) RAM, a kind of nonvolatile RAM designed to be a lot faster and more
durable than flash. The earliest product scheduled for launch is Intel’s Optane
drive Bourzac [2017]. Details are sketchy but patents are a pointer to some details
indicating that the internal structure is truly 3-dimensional rather than layers of
2-dimensional slices [Reinberg and Zahorik 2004; Lowrey 2002].

1.3 Performance Factors

When considering performance, we need to take into account several axes.
Depending on the target appllication or market, different axes may be more
important. The most significant ones are

• cost – not only of one component such as the CPU, but overall packaging
and environment costs

• speed – again, not only one component contributes to speed (remember
Amdahl?)

• energy – in some applications like mobile computing, energy is a first-class
concern but even in large-scale computing, energy is a limiting factor

• scalability – a design that works at many scales means early expensive
versions can be sold into high-margin markets like high-end servers,

Architecture Areas 7

while older designs can be sold into high-volume markets to maximise
amortisation of costs

• longevity – one of the most classic errors of hardware designers is to fail
to take into account the rate at which technology improves: too small
an address space is one of the most common reasons once-successful
architectures have had to be abandoned

Cutting across these axes are two aspects of performance that can be in conflict:

• latency – time to complete a specific operation or service

• throughput – average rate of work completion

Low latency is what the user desires; high throughput is what the accountants
want. Low latency means you have a responsive system, but that responsiveness
can be bought at the expense of lowering throughput, by ensuring that the system
is not busy when you want a response.

In this book I examine case studies of performance covering a range of these
axes, using RISC-V as an example and also as a contrast to other designs, as noted
earlier.

1.4 Architecture Areas
Computer architecture is broadly speaking design principles of any area of the
computer system including the hardware and any area where hardware and
software interface. Architecture is usually narrowed to mean aspects of design
that do not change the programming model. It’s convenient to divide architecture
into different areas, though these necessarily interact. For example, the memory
hierarchy includes components that use the IO (input-output) system, and efficient
implementation of IO requires design with the memory hierarchy in mind. So, as I
divide the architecture world for clarity, remember that the division is not absolute.

1.4.1 Memory Hierarchy

The need for a memory hierarchy arises from the fact that memory components
fast enough to keep up with the CPU are many times more expensive than slower
memories. Fortunately, the principle of locality helps here: a program uses a
relatively small part of its address space at a time. Locality is generally divided
into two types:

8 CHAPTER 1. INTRODUCTION

• temporal locality – a memory location that is referenced is likely to be
referenced again soon

• spatial – a memory location near a location that is referenced is likely to be
referenced soon

The definitions of “soon” and “near” depend on how big the speed gap is between
layers. If the speed gap is big, we stretch the definitions out to longer in time and
space, because we can less afford the penalty of accessing slower memory.

In an operating systems design, we focus on locality as it applies to virtual
memory; here we also consider hardware layers of the memory system, including
caches, the TLB (translation lookaside buffer: a small cache of recent page
translations) and registers.

1.4.2 Hardware Layers

It is useful to divide computer hardware into logical layers. As seen by the user
(or, in today’s world, the compiler and related tools like the linker), there is the
machine code layer. This layer cannot change much in basic functionality without
losing the user base. If you have to recompile or relink your code to run on a new
generation of a particular vendor’s design, that takes away a reason to stay loyal
to that vendor. The instruction set architecture or ISA is such an important part of
a design’s identity and its ability to retain a user base that the ISA is often referred
to as the architecture (the IA32 architecture, the ARM architecture, etc.).

The ISA is not only characterised by a set of instructions but also by the
available machine registers, the memory bus size and instruction modes such
as supervisor and user mode that implement protection. The idea of an ISA
originated with the IBM 360 series of the 1960s [Amdahl et al. 1964], which
was the first to feature a whole family of designs launched at once that could run
the same programs, subject only to resource limits not differences in the type of
code that could execute.

The ISA can be implemented many different ways and remains the same ISA
as long as the same programs can run (give or take constraints like memory size
and available peripherals).

Some details that can vary include the pipeline, extra copies of the registers
to support implementation details like hardware multithreading support and out
of order execution, branch prediction and variations in the memory hierarchy. All

Architecture Areas 9

these variations are below the level of the ISA because they are hidden (other than
performance impacts) from user-level code.

One area that is not obvious to the user (even a compiler writer) that is hard to
change in practice is hardware support for virtual memory (VM). If this changes,
unless the old approach is maintained for backward compatibility, every operating
system using the new design will need to be modified, since hardware support for
VM is tightly integrated into the software side of VM implementation.

1.4.3 Hardware-Software Layers

The operating system provides a layer of abstraction that hides the bare metal from
the user, and some parts of the system architecture may involve hardware and
software components. The most obvious of these is the virtual memory system
that cannot be implemented effectively without hardware support (otherwise,
every memory reference would take several times as long as without VM, since it
must be looked up and translated, as well as checked for validity).

There are other aspects of the system where hardware and software play a
role. In some earlier microprocesor designs including some RISC designs and
some implementations of the Intel IA32, significant speed gains could be had from
reordering instructions. Such reordering required recompilation in most cases, and
was seldom done for the very good reason that the next generation had a different
optimal ordering of instructions.

In yet another area, IO involves hardware-software cooperation. IO is very
slow compared with the CPU and RAM and that speed gap has to be hidden. An
operating system typically schedules IO-bound processes with higher priority than
CPU-bound processes for two reasons. If CPU-bound processes run to completion
while there are still IO-bound processes in the system, there is no work to be done
while waiting for IO. Secondly, if IO-bound processes are able to use the CPU,
it’s best to give them more time than CPU-bound processes so they can make
progress. An operating system has a range of strategies to hide the latency of IO
in addition to scheduling policy. Here is a quick summary:

• scheduling – IO-bound processes have higher priority than CPU-bound
processes

• buffering – slightly different effects for input and output:

– input – read more than absolutely needed, relying on spatial locality
not to waste the extra IO because it’s usually more efficient to transfer

10 CHAPTER 1. INTRODUCTION

in large blocks

– output – don’t wait for writes to complete: dump output to memory
and let the device empty the buffer in its own time

• cacheing – keep data (or code) in a faster layer of memory as long as
possible; buffering can be a form of cacheing if the contents are available
for repeated use

• spooling – for devices that have to accept a job to completion, spooling is a
specialist kind of buffering that stores the data until it’s that job’s turn (most
often used for printing)

• specialist IO hardware – in some systems IO is hived off to a separate
specialist CPU relieving the main CPU of the detail of IO

These represent some of the strategies used by an operating system; we do not
cover much detail here. If you want to know more, you need an OS text.

1.4.4 Hardware-Software Interaction

Given overlaps in hardware and software, how important is it for software to be
aware of hardware, and vice-versa? In addition to the issues raised above of
communication between parts of the design team, users of a design can benefit
from knowing how their software interacts with hardware.

Some areas where this knowledge can apply include:

• memory-sensitive algorithms design – understanding of how the cache and
VM subsystems work can have a large effect on performance [Lam et al.
1991; Machanick 1996; Xiao et al. 2000; Rahman and Raman 2000]. But
it is important to reevaluate design trade-offs against current systems as
caches are much larger than they were when early studies were conducted.

• balancing VM use and IO – in an experiment, I ran quicksort on randomly
generated data varying the size until I ran out of RAM and page faults
occurred. I rewrote the code so it sorted a section at a time, storing most of
the data on disk, using mergesort to merge only as much as would fit into
RAM at one time. This ran a lot faster than relying on VM. No big surprise.
But what was a bit surprising was that it was not significantly slower than
quicksort on data that did fit into RAM.

Architecture Areas 11

• efficient use of shared memory – with multithreaded code or processes with
shared memory, a clear understanding of cacheing makes a big difference
to performance [Machanick 1996]; since the 1990s when multiprocessor
systems were relatively expensive, some hardware-software interaction con-
cerns have found their way to the mass market because of the proliferation
of multicore designs

• role of VM hardware support – understanding how VM is supported in
hardware can also make a big difference to performance [Machanick 1996]

In this book I explore some of the issues.

1.4.5 Instruction Set Design

Instruction set design used to be a core area of computer architecture. It is less
so now that it’s clear that RISC is fundamentally a good idea, but the Intel IA32
architecture isn’t going to go away despite this. The fact that ARM dominates the
mobile space despite breaking a fair number of the rules of a clean RISC design
also is a hint that getting the design right is not a guarantee of success. That does
not however mean we should not understand the principles of good design so that
future designs can draw on past lessons.

Styles of Instruction Set

Prior to the RISC (reduced instruction set computer) movement, there were two
major schools of design:

• short-term design goals – base design trade-offs on obvious requirements
like fitting into a small memory, for example, make common instructions
shorter than less common ones to reduce memory footprint at the expense
of making instruction fetch and decoding harder

• high-level language oriented or HLL – design the instruction set to be easier
for compiler writers to generate code

In the first category, we have some of the most enduring designs. The Intel IA32
developed out of a processor with a 16-bit address space, the Intel 8086, which
was upgraded to a 32-bit address space with the 80386 in 1985 and now includes
64-bit implementations. The IA32 has endured because it was adopted for IBM’s
PC design, which developed a massive market, and also because Intel was able not

12 CHAPTER 1. INTRODUCTION

only to throw massive resources at improving its performance against the odds, but
had very skilled engineers working around the inherent flaws in the design. The
IBM 360 architecture [Amdahl et al. 1964; Gifford and Spector 1987] is another
that endured for decades despite clear flaws (in terms of subsequent knowledge
on how to design for performance). The 360 endured because IBM was one of the
first computer companies to sell on service rather than technology, and because
the design had a few key things right: it was designed for 32-bit addressing
ahead of much of the competition, and had an adequate number of registers, a
critical feature for achieving high performance. IBM, like Intel, had very skilled
engineers able to work around inherent flaws in the design.

Intel and IBM made design choices that may have seemed optimal at the time.
The Intel 8086 was designed at a time when PCs had a few thousand bytes of
RAM, so decisions that today make it hard to scale up performance made sense
at the time. One of the hardest problems in architecture is balancing forward
thinking with immediate design trade-offs applicable to the current generation of
hardware.

In the second category, one of the more successful examples is the Burroughs
B5000 architecture [Mayer 1982], which used a stack-based instruction set and
had hardware support for arrays including bounds checking (a hardware data
structure called a descriptor stored details of each dimension of the array).
Memory was tagged with extra bits representing the type of contents of a machine
word, further supporting error checking. Since the hardware could determine the
type from the tag bits, there was only one instruction for each basic operation like
addition (not a separate instruction for floating point, integer and various precision
alternatives). The instruction set was very compact, since stack instructions do not
need register names let alone memory addresses except to move data onto or off
the stack, and in an exception to common practice, the hardware and software
teams worked in close collaboration. Unusually for its time, the system software
was written in a high-level language (a version of Algol 60, a language with some
following in academia), and the operating system was distributed as source code.
The Burroughs machines were not particularly fast if you measured the run of
a single program but had a very efficient VM system and, with real workloads,
could outperformed machines that were a lot faster on paper. Unfortunately,
Burroughs designed their array support assuming the Algol 60 approach of storing
multidimensional arrays in row major order, whereas the scientific community
mostly chose to use FORTRAN, which requires arrays to be stored in column
major order, causing significant complications in generating efficient FORTRAN

Architecture Areas 13

code.
The Burroughs example illustrates one of the hazards of HLL-oriented design:

high-level languages differ enough that it’s hard to do a design that’s good for one
without serious compromises for implementing other languages.

One of the less successful examples of HLL designs is the Intel 432 [Organick
1983]. The 432 had very fine-grained protection, supposedly to support object-
oriented coding, but had very poor performance [Colwell et al. 1988], and didn’t
ever gain significant market share.

The IA432 illustrates another hazard of HLL-oriented design: it can result
in poor performance, especially when insufficient attention is paid to any of
practicalities of hardware implementation and usability of features in compilers.

More recently, hardware support for executing Java bytecode has emerged.
However, just in time (JIT) compilers reduce the advantage of a Java machine.
One implementation of partial hardware support for Java targets small devices
with real-time requirements [Schoeberl 2008]. Some niches may justify specialist
designs though on the whole it’s easier to use a language that’s a better fit to the
problem than to design hardware to work around limitations of a language. For
example, garbage collection makes for unpredictable execution times, a problem
for real time – to fix this, rather use a language without garbage collection or fix
the garbage collector than design special hardware.

By contrast, the RISC movement specifies a very simple regular approach to
instruction set design:

• fixed instruction length – all instructions are the same length, making it easy
to fetch and decode multiple instructions in parallel3

• load-store architecture – all memory references are loads (copy memory
contents to a register) or stores (copy contents of a register to memory);
arithmetic and logic unit (ALU) operations are always on registers

• standard operands – ALU operations always operate on 1 or 2 source
operands (immediates or registers) and one destination register

• bounded execution time – with the exception of excursions down the
memory hierarchy (limited by design to instruction fetches and data move-

3There are versions of RISC designs with compressed modes, in which some instructions are
shorter. However, these variants are usually based on a fixed-length design, with shortened
instructions in particular implementations designed for small-memory applications.

14 CHAPTER 1. INTRODUCTION

ments only in loads and stores), instructions have clearly defined execution
time

• simple control – the number and type of control transfer instructions is
limited (usually unconditional jump, and a few conditional branches)

• large general-purpose register file – a small number of registers, registers
with specific purposes or setting logic conditions in condition codes makes
it harder for compiler writers to generate code, and harder for hardware to
reorder instructions

Some RISC designs compromise on details, e.g., a number do use condition codes.
Nonetheless RISC architectures are generally very similar, unlike other classes of
ISA design that differ widely.

We see next why the RISC movement claims advantages over the other
approaches. At this point, note that even with the Burroughs design where the
hardware and software teams did work in close collaboration, the fact that their
pesky customers chose to use a different language for programming meant that
much of their good work was wasted.

Design for Performance

The RISC movement is based on a few key observations of how performance is
achieved. First, to make the overall system fast, you need to have the highest
possible clock speed and rate of instruction flow through the system. The latter
works best if you can implement an efficient pipeline. A pipeline is inherently
inefficient if the stages are not all the same length (the longer stages will force the
shorter ones to idle). To implement a fast clock speed, relatively short pipeline
stages help. If there are many variations in type and size of instruction, these
things become harder to achieve.

Second, an important principle is make the common case fast. This seems
contrary to the lesson of Amdahl’s Law that the best speed gains arise from
making everything faster. However if you calculate speed improvement based on
accurate performance measurement, you can quantify this effect. For example,
having to run 50% more instructions as the price for doubling clock speed
is probably a win (though you need a comprehensive measurement that takes
into account other effects like changes in memory hierarchy use). By contrast,
introducing a few special-case instructions that are rarely used but make it hard to

Architecture Areas 15

scale up the clock speed is seldom a win. Again, quantifying makes the case, not
gut feel or hand waving.

To take an example, RISC architectures generally implement a call with
several (general-purpose) instructions, rather than using a special instruction to
set up a stack frame and store the return address. While this increases the
instruction count, the absence of special instructions makes it easier to implement
an aggressive pipeline. At the cost of of occasionally using more instructions, the
overall system is faster. We can quantify this effect if we know how much faster
the clock speed can be made, or how the pipeline can be improved in other ways
by simplifying the instruction set design, and calculate the net gain. The need
to do this sort of calculation to convince RISC sceptics provided impetus to the
modern approach to quantitative design.

1.4.6 Input and Output

IO is an important part of systems design because most IO devices are so much
slower than the rest of the system. A disk for example may take of the order
of 10ms to do a seek (move the head to the right track). Flash is about 1000
times faster and DRAM access is about a million times faster. A 2GHz CPU,
if executing only one instruction per clock, takes 0.5ns per instruction, which is
20-million times faster than disk seek time. If you have an aggressive pipeline
executing several instructions per clock the speed gap is even greater (before you
consider keeping up with multiple cores).

In this book I do not cover IO in detail; many of the performance issues are
dealt with in operating systems design. At the hardware level we can consider
various modes of interfacing, the relationship between latency and throughput (or
bandwidth in the IO context) and trends in device technology.

1.4.7 Parallelism

Every now and then when progress in a given approach to technology appears to
be heading for a dead end, parallelism appears as the solution. What usually
happens is a new approach to sequential programming appears, and all the
complexities of parallel programming lose their attraction. Over time many
models of parallelism have appeared, and some have proved enduring, while
others keep resurfacing as packaging trade-offs change, and the reason they were
abandoned is forgotten.

16 CHAPTER 1. INTRODUCTION

As long as Moore’s Law was effectively delivering double the performance
every 2 years or so, there was little benefit in writing parallel code for performance
unless you could afford a large-scale system. Any system that achieved a speedup
over a serial implementation (measured as timeserial

timeparallel
) of less than 4 would be

overtaken by faster hardware in a year or two, sometimes sooner than the time
it took to achieve an efficient parallelisation.

Instruction-Level Parallelism

Before the multicore era, the most common form of parallelism was instruction-
level parallelism (ILP), because it took no effort from the programmer. Provided
the hardware can find more than one instruction ready to run at the same time, ILP
provides speedup at the expense of hardware complexity, a trade-off increasingly
justifiable as the number of transistors per chip at a given price point increases.

ILP however has some inherent limits. There’s a limit to how much inherent
parallelism that exists at instruction level because of dependencies between
instructions [Wall 1991; Lam and Wilson 1992; Postiff et al. 1998], and there are
limits to the extent to which practical architectures can find available parallelism
(e.g., instructions with no dependency between them may be relatively far apart).
A problem that has arisen more recently is that the increasing complexity required
for more aggressive ILP has a high cost in energy use [Yeap 2002] and hence also
heat.

Another limitation to pursuing performance using more and more aggressive
ILP with higher and higher clock speeds is the growing gap between the speed
of CPUs and DRAM, resulting in limited gains as a higher fraction of the CPU’s
time is spent waiting for DRAM, a problem called the memory wall, predicted in
1995 [Wulf and McKee 1995].

Multiprocessor and Multicore

In the past multiprocessor architectures differed widely in characteristics. Some
emphasised data parallelism (the same instructions on several or many different
data items in registers or memory), others instruction parallelism (different in-
struction streams on each ALU). Memory organization also varied. A distributed-
memory architecture had no shared memory and communication primitives like
messaging were used. A shared-memory architecture had one global memory
and required mechanisms to ensure consistency of caches. A distributed shared
memory system [Bennet et al. 1990; Dwarkadas et al. 1993; Bordawekar 2000]

Architecture Areas 17

is physically distributed but gives programmers as model that looks like shared
memory. There are also programming tools and libraries like MPI that hide some
of the detail of the memory model, but some understanding of the memory model
is essential to achieve performance.

More recently, as limits of ILP and scaling up the clock speed (in part because
of the memory wall but also because of limits to ILP and the increasing cost of
hot high-energy consumption designs), multicore designs have become popular,
and these generally are shared-memory designs, often with a shared lower-level
cache. Writing parallel code is now an option for the mass market, so the
specialist skills needed for programming big iron in the 1990s [Cheriton et al.
1991, 1993; Machanick 1996] now apply more widely, but the problems are no
easier. A good understanding of how the memory system works in shared-memory
multiprocessors is even more important to achieving good performance than with
a uniprocessor.

GPUs

The conversion of specialist processors designed for graphics to general-purpose
computing is not a new idea. The Intel i860, marketed as a general-purpose
CPU with graphics support [Grimes et al. 1989] was clearly designed more with
graphics support than general purpose use in mind. Among other things, it
suffered very high latency for context switches, and VM support was minimal. On
a page fault, it only reported that a fault occurred, not whether it’s a read, write or
instruction fetch, meaning the page fault handler has to reconstruct the cause, in
effect interpreting the instruction that caused the fault to work out what happened
[Anderson et al. 1991]. The i860 was reasonably successful as a graphics
processor in the days when a high-end graphics system was a multichip design,
with features presaging vector extensions to the IA32 line. Overall the i860,
despite being deployed on some large-scale supercomputer designs [Berrendorf
et al. 1994], was not a great success as a high-performance CPU.

So is the general purpose GPU (CPGPU) concept reasonable, given that
specialist processors have not historically been a win? There are arguments for
and against. Against, Amdahl’s Law tells us that a 100× speedup of a small
section of our code will have a small overall effect on run time, and coding
for these specialist processors, even with high-level tools like NVIDIA’s Cuda
[Wynters 2011]4 and OpenCL, is hard. On the for side, the massive market for

4More at http://developer.nvidia.com/nvidia-gpu-computing-documentation.

http://developer.nvidia.com/nvidia-gpu-computing-documentation

18 CHAPTER 1. INTRODUCTION

GPUs means that there’s a lot more critical mass behind this movement than other
attempts at using specialist processors for more general purposes than originally
intended. Computers with powerful GPUs are increasingly ubiquitous in the
mass maket, making it likely that large-scale computation using such GPUs will
continue into the future, whereas past specialist designs did not have that critical
mass.

Warehouse-Scale Computing and the Cloud

One of the ongoing debates in computer architecture is whether large-scale
computing is best achieved with massive numbers of inexpensive boxes with
redundancy to mask failure, or dedicated highly-scalable designs. One of the
earlier ideas of this type is RAID, originally redundant array of inexpensive
disks [Patterson et al. 1988] (now usually “independent” instead if “inexpensive”,
possibly so manufacturers can claim their disks are “enterprise grade” and hence
not inexpensive).

Possibly the best-known example of the extension of this idea to a redundant
array of inexpensive computers (no one uses RAIC as a name for some reason)
is Google’s approach or warehouses full of inexpensive computers, with many
fail-safes to allow for hardware and software faults [Barroso et al. 2003]. This
kind of infrastructure is becoming increasingly important as the Internet expands
to ever new services including some that might for a brief period require hundreds
or even thousands of servers, then settle back to more modest requirements [Liu
and Wee 2009]. How best to put these services together is still a work in progress,
and there is no doubt that expertise in this field will be useful for some time ahead.

The “cloud” term is somewhat vague in meaning, and is really marketing
speak for distributed services, sometimes storage, sometimes computation, some-
times both. The key feature of a distributed system, as opposed to a networked
system, is naming or location transparency, i.e., you don’t know (or need to
know) whether data or a process is running locally, over a network or even over
several computers – that is a performance detail. By contrast, a networked service
requires naming the location where the service occurs. What really distinguishes
the cloud from earlier distributed services is that the infrastructure is provided on
a closed proprietary system, rather than as a file system or operating system that
installs on your own computer. While some such services like Google Drive or
DropBox occupy file space on a computer on which you use the service, they do
not integrate cleanly. Can you put a DrobBox folder into a Google Drive folder?

The Other Edge 19

If so, will this still work next week? Can you mix any of these with Amazon’s
AWS or Apple’s iCloud?

Large-scale cloud services are linked to warehouse-scale computing in that
they need large highly-scalable geographically dispersed implementations. That’s
not to say all implementations use the same infrastructure, or that someone won’t
find a better way. This is a relatively new area and one with a lot of potential for
innovation – even though the core concept of a distributed system is quite old,
with some of the theory dating back to the 1970s [Lamport 1978].

1.5 The Other Edge
Much of the previous discussion assumes we want the fastest possible system,
constrained by cost, power consumption etc. However, Moore’s Law can be read
the other way. As hinted at by Gordon Bell, new classes of computer become
viable as a given level of functionality becomes available at a price point [Bell
2008].

In the 1970s, a personal computer capable of doing interesting work – includ-
ing the first spreadsheet, VisiCalc [Bricklin and Frankston 1979], became viable
because a single-chip microprocessor powerful enough to run an elementary
operating system and programming tools reached an affordable price point.

Since then, other breakthroughs have included:

• scalable PC – the original IBM PC was not a huge advance on the previous
generation but Intel’s ability to add enhancements like 32-bit addressing as
new thresholds in the number of affordable transistors were crossed meant
the CPU remained viable – even if major OS rewrites and recompiles were
needed in the transition to 32 bits (and less so to 64 bits)

• Linux – when the IA32 became powerful enough to support a UNIX-
like operating system it was only a matter of time before a free UNIX
emerged; Linux was the first (1991) but there are others like FreeBSD
(which appeared only two years later)

• RISC – the ability to implement a version of Seymour Cray’s 1960s ideas on
a single chip, starting from the 1980s, culminating in the collapse of most
medium to large-scale computing options that didn’t use microprocessors

• mobile devices – starting from increasingly sophisticated notebook com-
puters, mobile devices today include smart phones and tablets. Each

20 CHAPTER 1. INTRODUCTION

new form factor derives from another step in the amount of functionality
available at a lower price point – and able to run longer between charges or
on a smaller and hence cheaper battery

• pico-PCs – a likely development out of smart phone parts is ultra-small PCs,
of which the Raspberry Pi is an example

In some ways the “other edge” space is even more exciting than the big iron end
of the design space because it creates the potential to transform the lives of many
people, always remembering that technology is only a tool, and a tool only works
if competently applied and to the right problem.

1.6 Structure and further reading

In the remainder of this book I examine the above topics in more detail. First, I use
RISC-V to illustrate general principles of instruction set design, by contrasting
its design with other common instruction set designs. Then I go on to using
memory hierarchy as a starting point for understanding quantitative principles of
system design and research, as well as trends and how to analyse their long-term
effects. Next I examine parallelism in its various forms, starting with instruction-
level parallelism. This is a large topic on its own encompassing pipelines, out of
order execution, minimizing delays from branches and the rationale behind the
multicore movement. Next I look at alternative models of parallelism including
data parallel architectures and more specifically GPUs. I go on then to examine
thread-level parallelism and how it relates to areas previously covered including
memory hierarchy and multicore designs. Finally I look at the two ends of
the scale: warehouse-scale computing and emerging small-scale systems as
representing two very different consequences of technology trends.

Hennessy and Patterson [2012] is a comprehensive advanced architecture text
and worth reading for full coverage of the field. This shorter work draws on my
own research experience and does not aim to be as comprehensive as theirs.

Exercises

1. Does high-level language-oriented design seem like a good idea to you?
Consider historical advantages and compare with current possibilities.

Structure and further reading 21

2. If Intel has features in their current instruction set architecture that made
sense in the 1980s and less so now, why is Intel still successful?

3. Contrast the RISC strategy with any design that differs from the core
concepts: how much do these differences make it hard to achieve:

(a) Speed

(b) Low-energy design?

4. Parallel architectures are becoming mainstream after being confined to
narrow niches like supercomputers. Explain why.

5. How does warehouse-scale computing change design options for computer
architects?

6. If you had to design a new instruction set from scratch, what factors would
you take into account and how would the likely area of application influence
design choices?

2 Principles of Instruction Set Design

INSTRUCTION SET DESIGN is a moving target because design trade-offs change
over time. Memory sizes and relative speeds change, types of problems of
interest change as technology prices and packaging options change. Another

big challenge is the scale difference of systems is growing rapidly. As larger
and larger-scale systems become viable, very small system with volume markets
also become viable. Designs that cover a wide range of scales are desirable so
economies of scale can be realized.

As an example of an extremely small system, WiFi-enabled flash cards
designed to allow access to photographs in a camera in some cases include a
web server. An entire computer system is added on to a flash card, only visible
to the camera (assuming it does not interface to the card functionality) as a higher
power draw. For such a system to be easy to implement, it should ideally run a
standard operating system that can support a web browser and WiFi base station.
And that would be easiest if this WiFi-enabled flash card had the same ISA as a
larger, widely-used system with a suitable OS and tool chain.

2.1 Scalability
One of the most common reasons for an ISA dying out in the early days of
computing was insufficient address bits. The PDP-11 was a very successful
minicomputer in the days when that was a category, but it had only 16 bits of
addressing. The manufacturer, Digital, replaced it by a very different 32-bit
architecture, the VAX. Intel, on the other hand, has progressively scaled the x86
architecture up from 16 bits to 64 bits (the last step led by AMD).

Are we ever going to need more than 64 bits? A 64-bit address space covers
about 18-million terabytes. That seems to be more than anyone could ever need,
but there could be applications needing a huge address space like a distributed
database implemented in a single address space.

22

Hardware Simplicity 23

A different requirement for scalability is designs that work for very small as
well as very large systems. Some design compromises like variations in the ISA or
addressing bits are necessary. Intel’s IA32 design is most competitive in relatively
aggressive designs because its complex instruction set makes it hard to implement
simplified versions with really low power consumption. At the other end of the
scale, ARM focused on design for low power and struggled to break into the high-
end market though they are now starting to appear in high-end systems [Maqbool
et al. 2015; Harris et al. 2015].

Let us see how RISC-V addresses scalability.
RISC-V has a core 32-bit integer instruction set that covers a wide range of

uses. It has extensions like floating point and variants like a 64-bit version and a
compressed instruction set for small memory footprint-sensitive applications. The
usual instructions are 32 bits and are stored 4 byte-aligned. The compressed ISA
has instructions in 16-bit parcels, so instructions have to be 2 byte-aligned. What
makes the design interesting is that all these variants have been designed together.

An example of how RISC-V takes the different options into account in its
design is immediate operand bits in control flow instructions. In the MIPS 32-bit
ISA, immediates of this kind are at a 4-byte granularity: the low two bits are not
encoded since they are always zero. In RISC-V, only the lowest bit is not encoded
for a 2-byte granularity since this is needed for the compressed instruction set.
While this means a bit is wasted (in 32-bit instruction mode, the lowest immediate
bit is always 0), differences between compressed and non-compressed modes are
minimized.

2.2 Hardware Simplicity

Hardware simplicity is critical for implementing aggressive pipelines and slightly
less so for simple low-energy designs. Instruction set design plays to both
concerns in different ways. RISC-V provides a number of examples that illustrate
how simplicity by design is easier to achieve with hindsight from previous ISAs.

2.2.1 Condition Codes

An illustrative example is the use of condition codes. Condition codes are
typically set by most ALU operations and make it possible to test an outcome
without an explicit place to store a test outcome. Superficially, condition codes

24 CHAPTER 2. PRINCIPLES OF INSTRUCTION SET DESIGN

Table 2.1: Condition Codes and alternatives

Condition Code Result to Register Test and Branch
sub R1, R2, R3 sub R1, R2, R3 blt R2, R3, target
bneg, target bltz R1, target

are a very minor hardware complication since the logic to set a code bit can be
added on to each ALU operation at relatively low cost.

The problem comes when you try to implement an aggressive pipeline that
reorders instructions dynamically.

Condition codes are bad for hardware instruction reordering because almost
all ALU operations set one or more condition codes so an instruction setting
a condition code that is used for example in a branch creates a dependency
that hardware has to detect and differentiate from other instructions that also set
condition codes.

So this apparently minor hardware complication turns out to be a major
complication in the design of aggressive hardware.

ARM uses condition codes and this has not been an obstacle to implementing
low-energy designs. However, ARM has battled to produce higher-performance
designs to compete in the desktop and server space. This cannot be the only
obstacle since the SPARC architecture, which also uses condition codes, does
scale up to relatively fast design – but every additional complication adds to the
difficulty of making a fast version.

The alternative used in some other RISC instruction sets including MIPS and
RISC-V is explicit condition-checking instructions that store a result in an integer
register or combine the condition check with a branch instruction. Another option
used in IBM’s POWER architecture is multiple condition code registers, which
breaks the tight dependence between all ALU operations and branches.

Table 2.1 shows some variants on testing whether the contents of register x2
is less than x3. The condition code variant has the advantage that more bits are
available for the branch offset since no register is named, but a piece of arithmetic
is required whether the answer is needed or not, possibly wasting a register. If
the arithmetic is done anyway, that objection falls away. The “Result to register”
option is similar to MIPS code. This again requires an extra register because MIPS
has a limited number of conditional branch instructions, so I in this case convert
the condition test to a subtract and a compare less than zero. The final column,
“Test and branch”, is the RISC-V variant. In this small code snippet, the RISC-V

Hardware Simplicity 25

funct7 rs2 rs1 funct3 rd opcode

imm[11:0] rs1 funct3 rd opcode

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

imm[31:12] rd opcode

31 25 24 20 19 15 14 12 11 07 6

I
R

S
U

opcode rs rt rd shift amt function

opcode rs rt immediate

opcode address

R

I

J

056101115162021252631

015162021252631

0252631

opcode rs rt rd shift amt function
056101115162021252631

I
R

J
opcode rs rt immediate

opcode rs address

(a) RISC-V base formats

funct7 rs2 rs1 funct3 rd opcode

imm[11:0] rs1 funct3 rd opcode

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

imm[31:12] rd opcode

31 25 24 20 19 15 14 12 11 07 6

I
R

S
U

opcode rs rt rd shift amt function

opcode rs rt immediate

opcode address

R

I

J

056101115162021252631

015162021252631

0252631

opcode rs rt rd shift amt function
056101115162021252631

I
R

J
opcode rs rt immediate

opcode rs address

(b) MIPS basic instruction formats

Figure 2.1: Variations on RISC formats. MIPS and RISC-V are conceptually similar with
some significant differences.

version saves one instruction, but that may not always be the case because the
arithmetic required may be needed for other purposes. In the RISC-V design,
including the test in the branch instruction does not add significant complication
as compared with the MIPS approach of comparing against zero.

2.2.2 Big Gains from Minor Complications

Avoiding complication is a good starting point but when a small amount of
complication is a big win, it is a good investment. RISC-V again provides some
examples.

It is constructive to examine the differences between basic MIPS and RISC-V
instruction formats, as illustrated in figure 2.1. Superficially, the RISC-V basic
formats look more complex, but they are designed to simplify implementation. In
broad terns these basic formats correspond to (all integer operations):

• R-type – register-register

• I-type – register-immediate (e.g. arithmetic with immediate values, loads)

• S-type – register-register, with immediate and no destination register (e.g.
stores)

• U-type – single immediate 20-bit operand (e.g. JAL instruction: the
destination register is the return address)

Here are a few details to note:

26 CHAPTER 2. PRINCIPLES OF INSTRUCTION SET DESIGN

• position of destination register

– it looks as if the MIPS instruction set always has the destination
register in the same location but this is not true; load instructions only
need 2 registers, one for an address and another for a destination. A
load instruction uses I format and register rt becomes the destination

– the RISC-V instruction set, at the cost of sometimes having to split
an immediate in parts, always uses the same field for the destination
register

• position of immediates – in RISC-V instructions, the high bits of an
immediate are always at the high end of the instruction word, which make
sign extension simpler (since the sign bit is always at the highest bit of the
word)

• position of opcode – The RISC-V opcode is at the low end of the instruction
word, while the MIPS opcode is at the start of the instruction word. The
RISC-V arrangement makes it possible to mix 16 and 32-bit instructions in
a compressed mode: the low 2 bits determine whether a 32-bit parcel is one
instruction or two.

Unscrambling immediates (RISC-V has some formats more complex than the
“S” format example given here) is easy in hardware – it is a simple matter of
routing wires. On the other hand, having two potential destination register fields
means any aggressive pipeline featuring out of order execution must decide which
alternative register is the destination early. By contrast, a RISC-V pipeline only
needs determine that it is not an “S” format (or others not illustrated here without
a destination register). An aggressive implementation could assume bits 7..11
encode the destination register at the early stage of setting up dependences, then
drop this dependence if it is not an instruction that writes a register. The MIPS
design, with a similar strategy, would require treating both the rt and rt fields as a
potential target register before determining which or both to drop as a dependence.

Both MIPS and RISC-V have function fields that add to the opcode as a way
of differentiating instructions and both present similar performance issues. If the
function fields are extracted early in parallel with interpreting the same bits as
immediates, some work is thrown away once the opcode is decoded sufficiently
to decide on the purpose of the bits but no new dependences are created.

Of these design choices, the ones of most significance are positioning the
immediate (very easy to find the sign bit; sign extension can start before knowing

Hardware Simplicity 27

whether it’s needed) and keeping the destination register in a fixed place (only one
possible register write dependence to resolve).

What these examples illustrate is that a good understanding of hardware design
can guide instruction set design to non-obvious choices that superficially add
complexity but in fact simplify implementation.

2.2.3 Summary

A general principle of instruction set design is to keep things as simple as possible
– but also with an eye to scalability up and down. New designs, if capable
of scaling up to much more aggressive implementation or down to much less
aggressive implementations (e.g., for embedded systems), will have a longer life
and wider applicability than designs that neglect these concerns.

Even designs that are not particularly well thought through in terms of
longevity can be rescued by smart engineering, though inherent design limits
make taking implementation a particular direction – much faster, lower energy
use, etc. – more difficult.

Exercises

1. Look for instruction set manuals for MIPS, RISC-V and Intel-64 (the
current architecture).

(a) How much similarity do you find between them?

(b) Could you learn one of the others easily if you knew just one other of
these instruction sets? If so, which would you start from?

(c) Compare RISC-V and MIPS: to what extent is it true that the RISC-V
designers learnt from past errors, as claimed?

2. RISC-V always uses the Rd field as a destination for instructions that require
one register to be updated. Compare with MIPS and comment on why
RISC-V is designed this way.

3. RISC-V in some instruction formats has immediate operands that are split
into different parts of the instruction word. Explain why the designers made
this choice and discuss whether this has positive or negative consequences
for performance.

28 CHAPTER 2. PRINCIPLES OF INSTRUCTION SET DESIGN

4. Explain why condition codes are a problem for scaling up to more aggress-
ive pipelines.

5. ARM is branching out from the mobile and embedded markets to high-
performance computation. Discuss problems they may run into with this
move and any advantages they may have over established competitors.

6. The VAX had a single instruction to set up the call stack yet a sequence of
simpler instructions ran 20% faster [Patterson 1985]. Explain what we can
learn from this example.

3 Memory and Quantitative Design

MEMORY HIERARCHY is a critical part of computer system design because
a memory large enough to contain a whole program and its data, and also
fast enough not to stall the CPU, in most cases would be prohibitively

expensive and almost certainly physically impossible to design. While we can
rely on the principle of locality as outlined in Chapter 1 in general terms, we
cannot set the size and organization of the various layers of the memory system
with reasonable precision (achieve a required cost-performance trade-off) without
measuring variations.

In this Chapter, I present a range of design alternatives and techniques for
measurement focused on evaluating the design alternatives for memory. These
same techniques can apply with differences in detail to measuring differences in
design alternatives in other areas of system design.

3.1 Memory Systems
Memory systems encompass the biggest range in performance difference of any
one logical component of a computer system. For this reason, there are different
organization details at each layer, though there are common principles. First I
present these common principles, then illustrate how they apply at each level.

3.1.1 Organization Principles

Aside from obvious classifications like speed, size and cost, memory systems are
generally organised by how they can be accessed and managed. The following
in general terms apply to all memory systems, with significant variations in the
detail (summarised in Table 3.1):

• naming – some kinds of memory have unique names (generally this applies
to registers), others use an addressing scheme where a location is identified

29

30 CHAPTER 3. MEMORY AND QUANTITATIVE DESIGN

term definition
block unit of storage or management

caches: also called line
VM: fixed-size page (older systems had variable-sized segments)

hit block is found at the requested level
miss block is not found at the requested level
replacement if there is no vacant block to place a miss another must be evicted
victim block to be replaced
dirty block modified with respect to one or more lower layers
write through writes reflected at next layer down
write back dirty block copied only on replacement
associativity measure of how many different locations a block can occupy:

direct-mapped: only 1 location for any block
n-way set associative: n different locations for a block
fully-associative: a block can be placed anywhere

Table 3.1: Common terminology. There is some variation across layers but these terms
generally apply.

by a numeric offset from the start

• accessible unit – some kinds of memory are accessible in fixed-size units
(again, mostly registers, though some have variants like single and double
precision) whereas others can be accessed at various granularities such as
a byte, two bytes, etc. The latter category may have alignment restrictions
(e.g., if memory addresses refer to bytes, a two-byte access must start at an
even address) and preferred sizes (a machine word is usually the width of
the data bus)

• transfer unit – some kinds of memory only transfer to the next layer up
or down in fixed size units (e.g., a cache typically has a block, sometimes
called a line of fixed size; a VM system has a usually fixed page size)

• management unit – some kinds of memory are managed in fixed size
chunks, including issues like protection, recording whether the contents is
modified (sometimes called dirty), valid meaning that the unit of memory
can be used without generating an interrupt, present meaning that the unit
of memory is available at that level of the hierarchy or shared, meaning

Memory Systems 31

that more than one way exists to access that memory (usually a property of
multiprocessor systems)

• replacement – how do we determine which unit to evict if we run out of
space? If we do so, what is the policy on writing dirty data to the level
below?

As we examine levels of the hierarchy we will see how these properties apply
and differ. Computer architects consider faster elements of the hierarchy to be
“higher” and if the same kind of memory is split into more layers, the highest
level is numbered 1.

3.1.2 Levels of the Hierarchy

In considering levels of the hierarchy, it is logical to start from the top and
work down. When a program starts executing, the first thing that happens is the
program counter (PC) register is loaded with the start address (actually the last
thing from the point of view of the software that loads the program). The ALU
then attempts to fetch the instruction from the next level down, the L1 cache –
but only after translating the address (on a VM machine) using the TLB, a level
above the L1 cache in terms of speed. Levels below these are only accessed if
the required data, page translation or instruction is not available at the topmost
level. For this reason I describe the hierarchy from the top (fastest) down, though
I defer discussion of some of the more complex strategies to the lower layers,
since the interface between the very slowest layers and the next level up justifies
sophisticated strategies to minimise access to the slowest levels of the hierarchy.

Registers

The top level of the hierarchy is registers. Registers are tightly integrated into the
ALU and pipeline, and can usually be accessed in a fraction of a clock cycle. In
terms of our universal principles:

• naming – register names are encoded into machine instructions, and
generally can’t be computed at run time

• accessible unit – registers are a fixed size though they may sometimes
support precision variations (e.g., single, double) and vector machines allow
registers to be treated like fixed-length arrays

32 CHAPTER 3. MEMORY AND QUANTITATIVE DESIGN

• transfer unit – registers only transfer values in fixed sizes up to their widest
precision (times vector length, if applicable)

• management unit – registers are sometimes collectively managed in hard-
ware, e.g., if there is hardware support for multithreading, each hardware
context has its own copy of the registers. More commonly detailed
management of registers is in software: the compiler manages what is
within them within a single process, and the OS manages saving and
restoring registers between context switches (some older designs have
hardware support for context switches)

• replacement – deciding which register to spill is usually totally under
software (in practice, the compiler or on a context switch, the operating
system) control

TLB

The next level of the hierarchy is the translation lookaside buffer or TLB, which
contains recent page translations. The TLB is usually integrated into the pipeline
and can be accessed in a fraction of a clock cycle. A TLB is often organised as an
associative memory, in essence a hardware hash table that doesn’t have collisions.
The key being looked up is effectively the address: in this case, the virtual page
number. A TLB is in the critical path of logic: if a page translation can be found,
it is used immediately to check if the memory location is represented in the L1
cache. In some architectures, virtually addressed caches [Inouye et al. 1992;
Wheeler and Bershad 1992] are used, making TLB speed less critical, possibly
completely eliminating the need for a TLB [Kang et al. 2011].

• naming – virtual page numbers identify entries

• accessible unit – each item in the table is a pair: a virtual page number (to
check compare against when indexing) and a physical page number

• transfer unit – the TLB is generally filled and replaced in units of 1 page
translation though it is possible to flush it (depending on the system, this
may be necessary on a context switch)

• management unit – as with transfers TLBs are usually managed per entry.
With a virtually-addressed cache, if a TLB is present, it will need to be
tagged with process IDs or be flushed on a context switch

Memory Systems 33

• replacement – TLB replacement can in theory encompass the range of
possibilities used in page replacement polices (see below: least recently
used, first in first out, etc.) but in practice since the TLB is in the critical
path for performance, a strategy that is fast to implement such as random
replacement has some appeal

Any machine that is designed to achieve reasonable performance with VM needs
hardware support for page table lookups to speed up handling TLB misses [Jacob
and Mudge 1998]. For example, Intel’s IA32 architecture has a hardware page
table walker that assumes a 2-level page table, reducing the time to handle a TLB
miss to data references and no code in routine cases. Hardware page table walkers
limit OS designers’ ability to experiment with new strategies for page table design.
In the worst case, a page table lookup, even with hardware support, can involve
a trip to backing store, since some systems allow parts of the page table to be
swapped out.

Minimising TLB misses is an aspect of performance tuning that is often
neglected, and the consequences can be high. Assume an average TLB miss adds
50 cycles execution time (miss penalty). That is not an unreasonable assumption
given the cost of accessing DRAM vs. CPU cycle time. Then if 1% of instructions
result in a TLB miss on a machine that would otherwise execute 1 instruction per
clock cycle, average execution time becomes

te = 1+0.01×50

or 1.5 cycles, a significant drop over 1 cycle per instruction.
How can a high TLB miss rate be avoided?
A TLB represents one page translation. If you have a memory access pattern

that spends very little time on one page, you will access many pages without
accessing a high fraction of total memory. For example, if a page is 4KiB (the
most common size), and you have a loop that looks like this:

for (i = 0; i < 1024 * 1024 * 1024; i+= 4 * 1024)
a[i] = 42;

each assignment is on a different page. This is of course a contrived example, but
it’s possible to write code that scatters data references around memory if not in
quite such an extreme way. For example, object-oriented code with many small
objects that are not referenced in the order they are placed in memory can exhibit
this problem [Machanick 1996].

34 CHAPTER 3. MEMORY AND QUANTITATIVE DESIGN

Caches

The next level of the hierarchy is caches. A cache is usually made of static RAM
(SRAM), which uses transistors as its building blocks and hence draws on the
same technology advances as CPUs. SRAM does not have any significant delay
for an access over and above than the time to transfer its contents, so there is no
special advantage to doing access in large units. A wide bus will deliver contents
faster than a narrow bus because it can do so in fewer transactions, but there is no
lengthy setup time to amortize.

The top-level (level 1, or L1) cache is usually in recent designs tightly
integrated into the pipeline and can be accessed in one clock cycle. To continue
with our logical progression down the hierarchy, I describe caches before virtual
memory, though VM is the natural place to describe some of the more complicated
strategies since VM is closer to the operating system and hence has a higher
software component.

• naming – cache contents is generally tagged with a value representing the
machine address of the cache block

• accessible unit – when accessing a cache, the CPU uses the same units of
addressing as apply to main memory

• transfer unit – caches contents are moved or copied in blocks (also called
lines) that are typically multiple machine words long. Typical values are 32
to 128 bytes. Some caches feature critical word first, in which the part of
the block that caused the miss is transferred first to reduce the time the CPU
is stalled [Zivkov et al. 1994; Moudgill et al. 1999; Aasaraai and Moshovos
2010]

• management unit – most caches have tags representing the address of the
contents and state (modified, valid, etc.) for each block

• replacement – cache replacement policy depends on how the cache is
organized:

– direct-mapped – a given address can only go into one location so if
that location is already occupied, whatever is there is replaced: very
simple to implement

– n-way set associative – a given address can go in one of n locations,
so if none of those is available, one has to be selected for replacement;

Memory Systems 35

Figure 3.1: Cache addressing. The low-order bits of the address are used to find the right
byte or bytes within the cache block. The next-lower bits are used as an index into the cache,
and the high-order bits in excess of those needed to identify a cache block are stored in the
tag to identify which of the possible blocks is actually in the cache. For higher associativity,
cache indexing produces more than one result and a hit is detected by checking if any of the
stored tags matches the required block.

given the relatively high speeds involved cache replacement strategies
tend to be simple, though some have investigated software-based
approaches [Cheriton et al. 1986] that approach the sophistication
of virtual memory page replacement; for small n, hardware is still
reasonably simple

– fully associative – some have proposed making the lowest level of
cache look more like virtual memory, and hence advocate approaches
that approach the sophistication of virtual memory page replacement
[Machanick et al. 1998; Hallnor and Reinhardt 2000], including
allowing a cache block to be placed anywhere in the cache: to
implement full associativity purely in hardware is expensive and
impractical for a large cache since every location has to be searched to
compare the address tag with the request

In Figure 3.1 I illustrate how a machine address is broken up to check for a hit in
a cache. In the event a hit is found, the cache returns the required memory items
(or in the case of a write, overwrites the portion of the cache block pointed at by
the address). In the case of a miss, the cache controller must identify a victim (in
a direct-mapped cache, that’s always the same location; in other organisations, a
victim may be picked at random since time is short at this level of the hierarchy),
and request the block from the next level down. If the victim block is modified (or
dirty), it must be written back to the next level down (cleaned). Caches can have

36 CHAPTER 3. MEMORY AND QUANTITATIVE DESIGN

one of two write policies:

• write through – all writes immediately are reflected at the next level down:
seldom used because memory traffic is high

• write back – a dirty block is cleaned on replacement

In addition to the address tag, cache blocks have status bits. These can vary but
common examples include:

• modified – a bit indicating the block is dirty

• exclusive – a bit indicating the block is not shared with another CPU or core

• shared – a bit set if the block is shared across more than one CPU or core

• invalid – a bit set if the block does not have valid contents

A system with this exact set of status bits is referred to as using the MESI
protocol1. You may wonder why you need a shared and an exclusive bit. If a
block is not initially shared, setting the exclusive bit makes this clear. We go more
into shared caches when considering multiprocessor systems.

In most systems currently available, there is more than one level of cache. The
L1 cache is relatively small and tightly integrated into the ALU so it can keep up
with the pipeline. The L2 cache is larger and not as fast; some systems have 3 or
even more levels of cache, on the principle that as much cache as possible is good
but a large one cannot be fast without high costs in energy, a significant factor in
design.

In aggressive ILP designs, a cache miss can cause a major slowdown. With
a clock speed of 2GHz, one cycle is 0.5µs. If you can execute 4 instructions on
one clock, the average time per instruction is 0.125µs so even if your second-level
cache is very fast with hits taking only 1µs, a miss costs a delay of 8 instructions.
To address this problem, non-blocking caches allow any instructions that are
ready to go to continue without waiting for a cache miss [Chen and Baer 1992;
Belayneh and Kaeli 1996; Aasaraai and Moshovos 2010]. If your ILP design
already includes out of order execution, likely with an aggressive design, support
for non-blocking caches is a relatively cheap addition.

1A few other details, specifically restrictions on the allowed combinations, apply to the definition
of MESI.

Memory Systems 37

For multicore systems, a common approach is to have an L1 cache that is
local to each core and a shared L2 cache. Shared caches is an idea explored in
research into high-end systems in the past [Cheriton et al. 1988, 1989; Nayfeh and
Olukotun 1994] – illustrating the value of a thorough understanding of technology
history as technology change makes it possible to package old high-end ideas at
new affordable price points.

Main Memory

The main memory in current systems is generally made of DRAM. DRAM
uses a capacitor as its storage element. Unlike SRAM, DRAM has to be
refreshed periodically because a capacitor’s charge drains. Because the underlying
technology is different, DRAM has its own price-performance trend, and that is
driven more by price per bit than by speed. Hence, DRAM speed improvement
lags CPU speed improvement (less so since the move from aggressive ILP and
higher clock speeds to multicore, but multicore designs still are growing faster
than DRAM speed, if you aggregate the rate at which memory requests occur
across the cores). Also unlike SRAM, there is a lengthy delay before the contents
can be accessed, so most current DRAMs have streaming modes where, once an
access is set up, further sequential accesses moving along from that location are a
lot faster. For this reason, moving to or from DRAM in large units is attractive if
it does not cause other delays.

• naming – a memory address usually refers to a byte, numbered from the
start; many machines require aligned access for large units (e.g., to do a
2-byte access, you must start on an even address)

• accessible unit – most DRAM systems are accessible at the byte level
though in practice to handle cache misses, write-backs and write-throughs,
a larger unit is transferred

• transfer unit – the transfer unit is the same as the access unit in practice,
since most DRAM access are via the cache.

• management unit – at the low level, DRAM can be managed down to the
byte level but in practice, with a VM system, what is in the DRAM or not
is managed in pages

• replacement – replacement strategy in VM is complex and must take into
account the mix of processes, other IO (since paging uses an IO device) and

38 CHAPTER 3. MEMORY AND QUANTITATIVE DESIGN

the extremely high latency of backing store (also often called swap). Some
strategies include:

– least recently used or LRU – the page used longest ago is evicted

– first in first out or FIFO – the oldest page is evicted

– working set or WS – each process is limited to pages it used over some
fixed time period

– clock – a way of approximating LRU by systematically marking pages
as unused, working around the list of pages in the style of a clock hand,
and selecting a victim that is not marked as used (indicating the page
was not used since the clock hand last passed that page)

– page standby list – a list of pages recently target for eviction [Russinovich
2007]

In some systems there may be a mix of global and local policies: a global policy
balances DRAM use across processes, while a local policy attempts to ensure that
a given process has enough DRAM to make progress. A local policy generally
attempts to implement the working set principle: a process generally only access
a subset of its pages for a reasonably long time before shifting to another part
of its code or data address space. While the working set concept is quite old
[Denning 1968], the principle still applies and will as long as memory has a
hierarchy with several orders of magnitude difference in speed. A global policy
may sometimes simply shut down processes if there is insufficient RAM (in the
worst case, terminate them).

A complete coverage of virtual memory properly belongs in an operating
systems course since it’s at the interface between hardware and software, and
software plays a much larger role than in higher levels of the hierarchy.

Paging Device

Paging devices historically have been mechanical magnetic storage devices of
various forms. Early paging devices were dedicated magnetic drums, conceptually
the same as a disk but with the recording surface on the outside of a cylinder. The
earliest commercial VM system, the British Ferranti Atlas [Lavington 1978], had
a drum memory with rotational time of 12ms (and thus an average rotational delay
of 6ms), and no seek time since the heads were fixed, making it competitive with
technology of 50 years later on speed if not capacity. The basic cycle time of the

Memory Systems 39

CPU was 2µs, only about 103 faster, compared with today’s speed gap of a factor
of over 106. It is the observation that in the late 1990s the delay in handling a cache
miss to DRAM was approaching 3 orders of magnitude slower than CPU cycle
times that led me to starting the RAMpage project, in which I move the virtual
memory system up a layer to handle misses from SRAM to DRAM [Machanick
et al. 1998] – so knowing a bit of history is useful.

Today paging is usually on standard drives (disk or, increasingly common,
flash). There are two major variants: the traditional UNIX approach of a swap
partition, and using free space in the boot partition. Mac OS X uses the latter;
Linux can use either. On iOS devices, which use a relatively small flash drive,
paging is limited to evicting easily recreated content such as code from RAM.
There are two reasons for this strategy: flash is small on these devices and repeated
modification of the same bits in flash can wear them out. Programmers of iOS
apps are advised by Apple to accept low memory messages and reduce their
memory footprint as required [Apple 2012]. Bigger devices that use flash drives
use flash much the same way as disk for paging. Reducing the tendency to wear
out over-used bits using wear levelling [Chang 2007] may be easier with Apple’s
strategy of sharing the file system with backing store rather than using a separate
swap partition.

• naming – a page on backing store can be anywhere on the device and is
identified by a page table, using the virtual address (or more properly the
virtual page number) as an index

• accessible unit – a VM system usually deals in whole pages

• transfer unit – pages may be transferred singly or the OS may move several
contiguous pages to reduce overall latency

• management unit – pages are managed as a unit but also by process; if a
process completes or dies, all its pages are freed

• replacement – since this is the bottom of the hierarchy, there is no
replacement until a process exits the system; however, some systems do not
keep pages on backing store if they exist in RAM and in that sense pages
may not always exist on swap.

In a difference to cacheing terminology, a miss is called a page fault. In most real
systems, a page fault results in a context switch: there is no point stalling the CPU
for millions of cycles so despite the fact that a context switch has other significant

40 CHAPTER 3. MEMORY AND QUANTITATIVE DESIGN

costs like losing contents of caches, it is faster overall to allow another process to
use the CPU while waiting for a page fault to be processed.

Having wended our way all the way down from the world of registers and
TLBs that are accessible in a fraction of a clock cycle to paging devices that area
accessible in millions of cycles, let’s see how we measure the effects of all of this.

3.2 Measurement

There are many levels at which we can measure computer systems performance.
We can measure individual components, we can measure times taken by small
blocks of code, we can time a whole program, and we can time a workload of
interest. Aside from timing overall, we can apportion costs, so as to work out
what to improve. Then in addition to timing, we can measure other attributes
of interest like energy use, memory requirements if we change some detail (e.g.
simplify the instruction set) and frequency of use of specific features.

3.2.1 Architecture-Oriented Measures

Depending on what we are measuring and how much detail we want, there are
many variations, including:

• logic-level simulation – useful for checking design details like timing and
energy use, but too slow to measure non-trivial program runs though work
on speeding up such simulations may make larger runs viable [Chatterjee
et al. 2009; Mironov et al. 2010]

• execution-driven simulation – a program runs on a simulator which can
measure at a particular (sometimes parameterizable) level of detail includ-
ing

– cycle-accurate simulation – simulation run in software designed
to give an accurate representation of machine time or energy use
[Simunic et al. 1999]; slow for large runs though recent enhanced
techniques make such methods more viable for whole workloads [Lee
et al. 2008]

– whole-system simulation – while not necessarily cycle-accurate, these
simulators are fast enough to evaluate whole workloads

Measurement 41

• trace-driven simulation – a record of memory accesses (usually classified
as read, write or instruction fetch) is read by these simulators, allowing
memory system variation to be modelled (instruction variation can only be
modelled in a limited way since the actual instructions are not recorded, and
changes in execution order cannot easily be modelled)

• emulation – emulation differs from simulation in that it only aims to run a
non-native instruction set rather than to provide accurate performance data

• profiling – measurement of relative times spend on different parts of a
program; profiling can be implemented as a feature of a simulator [Cmelik
and Keppel 1994] but it is more commonly implemented by instrumenting
code [Reddi et al. 2004]

• back of the envelope – quick calculations that quantify relatively simple
effects; limited in applicability since a whole system includes complex
interactions between all influences on performance

From the difference in goals of emulation and simulation arises an interesting
question: is it possible for a simulation to be too good? While real systems have
variations in execution time that can’t be eliminated arising from interactions
between processes and interactions with external events, to produce repeatable
results for scientific investigations, you need repeatable measurement. For an
emulator, you care less about repeatable measurement and more about both
accurate implementation of the target system as well as speed and minimal
resource requirements. For a simulator, while those factors are important, it may
be reasonable to sacrifice a little accuracy or speed for repeatability. In a sense
then it is possible for a simulation to be too good.

3.2.2 Benchmarking

When we are really only concerned with comparing competing systems, rather
than pinning down where the time is spent, benchmarking – comparing standard
program runs against competing systems – is popular. Benchmarks fall into two
broad categories:

• kernels – useful for testing how some very specific feature compares across
architectures, e.g., floating point multiplication

42 CHAPTER 3. MEMORY AND QUANTITATIVE DESIGN

• full workloads – programs that exercise the whole system including the file
system, the memory hierarchy and even the network in ways representative
of one or more classes of real programs; some examples include

– SPEC – divided into integer and floating point scores [Henning 2006]
and widely used specially in the UNIX space to compare systems

– numerous other benchmark suites to evaluate web server performance
(e.g. SPECweb – discontinued in 2012), database scalability (e.g.
TPC bechnmarks [Nambiar et al. 2011]), energy [Poess et al. 2010],
embedded systems [Guthaus et al. 2001; Schoeberl et al. 2010] and
other specific kinds of workload

One of the hot issues in benchmarking is gaming the system. For example,
creating a compiler that recognises a specific benchmark and inserts hand-
tuned code that no compiler could generate automatically, or including a special
instruction that is hard to use in general are tricks used in the past. Kernels have to
some extent fallen into disuse because they are so easy to hand-tune or otherwise
arrive at fake results that do not predict real system performance. Even with SPEC
benchmarks, which are whole programs of the size of a compiler run, I’ve had the
experience of running my own code on two machines one of which had double
the SPEC rating of the other, and my own code reversed this to the extent of
the “slower” machine on published SPEC results running in half the time of the
“faster” machine.

In my experience the best benchmark is the workload of interest to you, run
under conditions representative of your usual work (e.g., running an installer or
compiling it yourself, then running it on a system loaded the way you usually run).

Since benchmarks are most useful for comparing competing machines rather
than elucidating performance details of system components, I do not include them
as an example for measuring memory systems.

3.3 Putting it All Together: Measuring Memory
Systems Performance

Since memory references occur at least once for each instruction (an instruction
must be fetched from memory and may also move data to or from main memory),
an accurate simulation of memory systems performance making it possible to
compare different options should really simulate most aspects of the pipeline. I

Putting it All Together: Measuring Memory Systems Performance 43

term definition
miss rate fraction of references at a level that miss
global miss rate miss rate over all references
local miss rate miss rate at a given level
miss penalty extra time arising from a miss
hit cost time for a hit

Table 3.2: Performance parameters. The most important thing is elapsed time; minimising
miss rate for example is not an end in itself.

examine here the variations that can be useful, starting from those that simulate
the least detail.

Table 3.2 lists some terminology of use when evaluating memory perform-
ance. At the top of the hierarchy, the cost of a hit is often absorbed into a
pipeline stage and hence not counted. At lower levels, we usually count the hit
cost as part of the miss penalty for the layer above. When evaluating memory
system alternatives, we care most about overall run time. Minimising miss rate
for example may seem like a good idea, especially if as big speed gap is involved,
but if doing so slows down the faster layer, there may not be an overall win.

3.3.1 Back of the Envelope Calculation

To get a quick feel for the effect of design parameters we can do simple
calculations of the likely effect, remembering always that such calculations can
be misleading because they do not take into account the full range of interactions
of components. For example, with an aggressive pipeline that allows instructions
to continue through the pipeline when others are stalled waiting for a cache miss,
a simple calculation of the effect of increasing or decreasing the miss rate is at
best a crude approximation.

measure definition

speedup
timeoriginal

timenew

improvement 1−
timeoriginal− timenew

timeoriginal

Table 3.3: Performance improvement measures. Improvement is often given as a percentage.
Dividing by tnew is very misleading and greatly exaggerates the % improvement.

44 CHAPTER 3. MEMORY AND QUANTITATIVE DESIGN

Let’s nonetheless look at an example in detail and at the same time introduce
some terminology for speed comparison.

In Table 3.3 I list common measures of speed improvement. A speedup greater
than 1 means you are doing better; a speed improvement greater than 0 means
you are doing better. Speed improvement is a risky measure to use because
“50% faster” doesn’t sound nearly as impressive as “150%” faster so many people
especially in marketing forget to subtract the 100%. You also get a very different
answer if you look at improvement relative to the faster rather than the slower
system. When quantifying speed improvement, make sure you define your terms.

To calculate the effect of misses, we need an execution time formula, which I
generalize to allow more than one level of cache (and the main memory could also
simply be counted as another level; going to a paging device is more complicated
because the operating system is involved and hence a simple miss penalty does
not apply):

te = th1 +
n

∑
i=1

pmi× rmi (3.1)

where te is relative execution time, normalized to 1=no misses; actual execution
time is te× IPC× IC× tclock, where pmi is the penalty of misses from level i and
rmi is the rate of misses from level i (we use a global miss rate here since we want
to quantify the effect on overall run time). It is useful to leave out the instruction
count IC because that way we can compare scenarios where we don’t vary the
instruction count without knowing exactly how many instructions were executed.
We also leave out the clock cycle time tclock since that allows us to compare
scenarios of similar clock speed without needing to fix the clock cycle time. This
general formula can be adapted to include other causes of stalls. Instructions
per clock (IPC) is an average that depends on the workload (how much local
parallelism there is) and the CPU (how many instructions can complete in one
clock cycle). For simple ballpark comparisons we can take IPC = 1.

For example, in Figure 3.2, we have miss rates from L1 of 0.2 and from L1 of
0.1. Applying the formula with the penalties given (and the noted approximations)
results in:

te = 1+10×0.2+100×0.1

= 13

In a real system, you would expect much lower miss rates than this, especially to
the lower level (and slower) parts of the hierarchy.

Putting it All Together: Measuring Memory Systems Performance 45

level hit or miss penalty
1 h h h h m h h h h m 10
2 h m 100
3 m h

Figure 3.2: Example of miss rate calculation. We need to account for misses to L2 and L3,
since there are no misses from L3. Assume hits in level 1 take 1 time unit, and penalties are
relative to that.

For simplicity I assume that the L1 hit time accounts for all execution time,
which is true in the case of a pipelined architecture. There is the possibility of
misses for both data and instruction references, and we also need to ensure that
we do not double-count hit time at level i+1 so we should not we treat an access
at that level as part of the miss penalty of level i if we count it as part of the hit
time at level i+1. However you do this make sure you make it completely clear
what you are including in the calculation and why.

Case Study

A simple example illustrates design trade-offs. Assume we have two ways of
designing a cache. A direct-mapped cache has very simple logic (a given address
can only map to one block in a cache) but has the drawback that it can have a
high miss rate, since some combination of addresses used repeated close together
in time that coincidentally map to the same block can evict each other when the
cache is nowhere near full. A 4-way associative cache (4 different ways you
can place any given address) can avoid this problem at the cost of slower cache
reference time. Assume:

• effect on hits – the 4-way associative hit time is 10% slower than the direct-
mapped hit time

• effect on miss rate – the 4-way associative cache has 20% fewer misses

• miss penalty – a miss from this level of cache costs 100× a hit in the direct-
mapped cache

Calculate the miss rate in the direct-mapped cache at which the two caches have
the same performance, and hence the point at which it becomes useful to use the
4-way associative cache.

46 CHAPTER 3. MEMORY AND QUANTITATIVE DESIGN

Solution

We assume that the miss rate rm is relative to this level of cache since we don’t
know anything about the rest of the hierarchy. We don’t know absolute times so
make the direct-mapped hit time td and base everything on that:

• hit time at level i ≡ thi; for this example:

– direct mapped hit time ≡ td

– 4-way associative hit time ≡ t4 = 1.1td

• miss rate at level i ≡ rmi; for this example:

– direct mapped miss rate ≡ rd

– associative miss rate ≡ r4

• miss penalty from level i ≡ pmi; for this example, only one level with pm =

100td

To find the break-even point, we can adapt the execution time formula (3.1) to
make it easier to compare our two cache variants without excessive notation. For
this example I need only 1 level and drop the i subscript, and derive variants for
each case, which I need to set equal to find the break-even point:

ted = td + pm× rd (3.2)

te4 = t4 + pm× r4 (3.3)

We know that the 4-way associative cache has 20% fewer misses, and its hit time
is 10% slower than the direct-mapped cache, so we can rewrite Equation 3.3 as
follows:

te4 = td×1.1+ pm× rd×0.8 (3.4)

and the miss rate at which the two equations have the same execution time occurs
when Equation 3.4 = Equation 3.2. So we need to solve for rd in:

td + pm× rd = td×1.1+ pm× rd×0.8 (3.5)

Put all the rd terms on one side, and put everything in units of direct-mapped hit
time td , noting that pm = 100td:

pm× rd− pm× rd×0.8 = td×1.1− td

Putting it All Together: Measuring Memory Systems Performance 47

and simplify:
100td× rd(1−0.8) = td(1.1−1)

0.2×100td× rd = 0.1td

20td× rd = 0.1td

So the break-even point is where

rd = 0.005 (3.6)

To put the answer in English, in this scenario, we need at least 0.5% of the hits
in the direct-mapped cache to be misses before changing the design to a 4-way
associative cache is a win.

Is this result surprising?
Having done a calculation like this, look back at the numbers to see if the

answer makes sense. A miss penalty of 100 is pretty big in relation to the penalty
of 10% slower hits for the 4-way associative cache so it shouldn’t take a high
number of misses for a reduction of 20% to be a win even given a small increase
in hit time. The answer therefore looks plausible. Now go back to Equation 3.5
and check that rd = 0.005 does indeed make the two sides equal and that a larger
value of rd does make the direct-mapped formula (Equation 3.2) for run time
bigger than the 4-way associative formula (Equation 3.3).

Another way to check this sort of calculation is to see if you end up with the
right units. We want a number expressed as a fraction without units like seconds or
number of instructions executed, since a miss rate is just a dimensionless fraction.
If you end up with something that has the wrong units, you’ve probably forgotten
to cancel something out or made a mistake in moving terms around.

In practice, most CPUs have two or more levels of cache to reduce the need
for this sort of design trade-off. The L1 cache can be as fast as possible, and the
L2 cache can be designed with a few compromises on raw speed to reduce miss
rate.

3.3.2 Profiling

Profiling is most useful to ascertain where time is spent on an existing architecture
for a given workload, and is most often used as a tool to tune performance of
a given program or set of programs rather than as an architecture design tool.
The reason for this is that profiling does not allow the option of varying design

48 CHAPTER 3. MEMORY AND QUANTITATIVE DESIGN

parameters on a real system, and there is little point in doing profiling at the
application level on a simulator, since you can instrument the simulator.

That said an understanding of architecture can inform your approach to
profiling. If you understand the role of various system components like caches
and the TLB, you are in a better position to understand where to look for
improvements.

3.3.3 Trace-Driven Simulation

A trace-drive simulation takes as input a trace file, containing addresses tagged
as one of a read, write or instruction fetch. It is possible to simulate multitasking
workloads by interleaving traces, including traces simulating operating system
functions, though the OS component necessarily must be an approximation.

Given speed improvements in direct execution simulation, trace-driven simu-
lation is not as popular as it used to be [Borg et al. 1990; Uhlig and Mudge 1997;
Engblom and Ermedahl 1999], though there is still a fair amount of research
conducted using traces. It is nonetheless a useful tool for testing new ideas
independently of CPU details. It is not very hard to create a simple trace-driven
simulation, and there are tools to generate traces (e.g., Pin [Reddi et al. 2004;
Bach et al. 2010]).

To measure memory system variation, the same trace file can be run through
different models of the memory hierarchy (e.g., different sizes, organisations and
speeds of caches). A simulation may also be sped up by starting the trace at a
point of interest in the code (e.g., skipping initialization). Although there is some
inaccuracy, you aim to make that inaccuracy minimal as a fraction of the total run.
With the aid of profiling it may be possible to isolate out parts of a program that
contribute most to run time and focus on those, not forgetting that effects of the
parts of the program not measured can perturb the results.

Tracing also misses the complications of CPU interactions with the memory
system (pipeline behaviour etc.) but can give a good first approximation to the
effect of memory hierarchy variation and is particularly useful when CPU design
is incomplete.

3.3.4 Whole-System Simulation

Since performance of direct-execution simulations improved so that they run
at a reasonably small slowdown over running on real hardware, it has become

Putting it All Together: Measuring Memory Systems Performance 49

increasingly common for such simulators to support running a full system
including an operating system, making for higher accuracy in measuring inter-
process and system influences on performance. A good example of an academic
project for full-systems simulation is M5 [Binkert et al. 2003] from University of
Michigan and its successor gem5 [Binkert et al. 2011]. Gem5 has full-system
support for the Alpha, ARM, SPARC and Intel x86 instructions sets. Alpha
historically was a popular architecture for research because it is one of the cleaner
RISC designs, though it is no longer in production.

A full-system simulation allows not only detailed variation of the cache
architecture but also parameterization of memory system performance down to
disk and even network layer, and potentially changing the page table structure, if
you have the fortitude to rewrite the operating system interface to the hardware.

A factor that mitigates against the slowdown of full-system simulation is
ubiquitous PCs capable of running Linux. Rather than run one simulation faster
(as you can do with a less detailed model), you can run many instances of the
simulation with different parameters if you are lucky enough to be in a university
with large numbers of PCs in student labs that researchers can take over at off-
peak times.

3.3.5 More Detailed Approaches

It is seldom that low-level cycle-accurate simulation is necessary for evaluating
memory system variations. The biggest performance effects are excursions down
the hierarchy, rather than at the level of registers or the pipeline, so small
inaccuracies in timing at those levels have an insignificant effect compared with
a small change in miss rate. If you are checking a design for correctness, that’s a
different matter and cycle-accurate simulation as well as mathematical approaches
to formal verification play a significant role.

3.3.6 Summary

For most research today, a full system simulation is the approach of choice. For
classroom examples, we do paper exercises. For small-scale design studies, trace-
driven simulation still has a lot to recommend it. We seldom need more detailed
simulations purely to evaluate overall system performance but if producing a new
design, we may want to do cycle-accurate simulation to check design assumptions,
e.g., for the time a specific implementation should take for given operations (as

50 CHAPTER 3. MEMORY AND QUANTITATIVE DESIGN

well as to validate the design, as I describe above). For example, you need to at
least work through the timing of the extra logic needed for a 4-way associative
cache to know what percentage slower it is than a direct-mapped cache (the 10%
number in the case study is not based on a real example).

Learning about a few publically available research tools is useful: do a web
search to build on the examples listed here. Also practice at examples of back
of the envelope calculation. These are useful to build an appreciation of how
performance trade-offs work, even if they are poor indicators of overall system
performance.

Exercises
1. Assume in the absence of misses a machine executes on average 1 instruc-

tion per clock. You are investigating a new page table organization that
reduces page faults by 1%; to implement this you will lose hardware support
for TLB misses. Assume a page fault takes 1-million cycles to handle, and a
TLB miss without this improvement takes 50 cycles with hardware support.
Without hardware support, a TLB miss takes 100 cycles. Apply the general
multilevel miss formula (Equation 3.1) here with the TLB as level 1 and the
page fault as level 2:

(a) What is the net speed gain (or loss) of the improvement if 0.1% of
TLB references are misses?

(b) Is this a useful calculation for a real system? Consider what a real
system does on a page fault.

2. Assume we have a machine that in the absence of misses executes on
average 2 instructions per cycle. Such a machine would have a higher peak
throughput but would be limited by other limits on ILP such as branches.

(a) Redo the calculation of the case study (3.3.1) under this assumption.

(b) Now allow for a non-blocking cache that can avoid a stall on average
for 5 instructions before having to stall.

(c) Is a non-blocking cache a useful improvement given the miss cost of
this example? When might change your answer?

4 Pipelines and ILP

PIPELINES ARE AT THE CORE of instruction-level parallelism so I discuss the
two together. A pipeline, sometimes pipe for short, is based on the same
principle as assembly-line mass production. If you break a task down into

smaller tasks, each requiring the same time to complete, you can dramatically
speed up overall operation, even if completing one task is not sped up, because
you overlap multiple tasks each at a different stage of the pipeline (or production
line).

The key to pipeline performance is balanced stages. If one stage takes a lot
longer than the others, that stage determines performance. Another consideration
is overheads in moving from one stage to the next, which limits how deep a
pipeline is practical. Another limitation on how deep a pipeline is practical is
the cost of flushing the pipeline when instructions at various stages turn out not to
be needed, usually on a branch instruction.

Instruction-level parallelism (ILP) builds on pipelining by adding options of
out-of-order execution and more than one instruction per clock. These additions,
as noted in Chapter 1, go back to the early work of Seymour Cray in the 1960s.
Because RISC architectures lend themselves naturally to aggressive pipelines,
some commentators erroneously label such features as “RISC-like”, including in
versions of the Intel IA32 (and of course IA32-64) architecture, which clearly does
not have the attributes of typical RISC ISA. A RISC architecture makes aggressive
ILP easier to design, but there is no reason in principle that any other ISA should
not also feature an aggressive ILP implementation.

In this chapter, I review basics of pipelining and go on to show how
ILP can be added onto a basic design. Much of the discussion is based on
pipelines that complete at most a single instruction per cycle, and that have the
same total execution time. Pipelines that allow multiple instructions per cycle
(superscalar pipelines), and floating-point pipelines with instructions that have
multiple execute cycles considerably increase complexity.

51

52 CHAPTER 4. PIPELINES AND ILP

4.1 Simple Pipelines
Pipelines can be organized with many variations on the number and type of stages.
To keep things simple, I start out with a 5-stage pipeline that is relatively easy to
implement for integer instructions using a RISC ISA. The stages are (in some
cases, allowing for variations in instruction types):

1. instruction fetch (IF) – use the program counter register (PC) to load the
next instruction and increment the PC

2. instruction decode (ID) – decode the instruction and also read register
values from source operands; compute the branch target address; sign-
extend immediate operand values

3. execution (EX) – complete ALU operations using previously prepared
operands including:

(a) memory reference – add the offset to the base address

(b) branch – determine branch outcome

(c) register-register ALU operation

(d) register-immediate ALU operation

4. memory access (MEM) – for a load instruction, fetch the data from memory;
for a store, send the data to memory from the register whose value is to be
stored

5. write-back (WB) – for ALU operations and memory loads, copy the result
to the destination register

In a RISC ISA, much of this is radically simplified. For example, in IF, we can do
all the possible options simultaneously and drop any not needed, because register
operands are always in the same place in an instruction1. We need sign extension
on immediate operands because a negative value has all 1s in the most significant
bits if we extend the precision. An immediate operand is built into the instruction
and is therefore smaller than a machine word.

We see the value of the load-store architecture of a RISC ISA here. Because
no instruction does both a memory reference and an ALU operation, a single pipe
stage can do any part of either kind of memory operation.
1Almost – remember how MIPS spoils this by sometimes using a different register as a destination?

Simple Pipelines 53

clock number
instruction no. 1 2 3 4 5 6 7 8 9

i IF ID EX MEM WB
i+1 IF ID EX MEM WB
i+2 IF ID EX MEM WB
i+3 IF ID EX MEM WB
i+4 IF ID EX MEM WB

Figure 4.1: Progress through a 5-stage pipeline.

Figure 4.2: Pipeline progress with datapaths. The register file is repeated: the first time it
appears where it’s read, the second time where it’s written. The grey boxes represent inter-
stage registers. Instruction (IM) and data (DM) memory are represented separately though
they are logically in the same address space, capturing the property of most L1 caches that
are divided between instruction (I) and data (D) caches.

This design does not complete all instructions in uniform time. A branch can
complete in the second stage, a store in the fourth and all other instructions need
all five stages. Nonetheless it is a simple design and easy to pipeline simply by
starting an IF on every clock, provided nothing interferes with simple sequential
execution.

In Figure 4.1, I illustrate progress through a pipeline, assuming each in-
struction can start without delay. This is a common notation for illustrating
progress through a pipeline and counting up total elapsed clock cycles. In this
example, each instruction can start immediately and continues for all five stages
without a break. In real examples, instructions my stall for various reasons,
adding a bubble to the pipeline. A more realistic example should take into
account dependences between instructions, e.g., if one instruction creates a value,
a following instruction cannot enter the pipe stage where it needs that value until
it’s ready.

54 CHAPTER 4. PIPELINES AND ILP

Another notation used to illustrate a pipeline uses a picture of a datapath,
repeated starting once for each stage, showing the components active at each
stage. The advantage of this notation is that it’s easy to visualise dependences
between stages. Figure 4.2, based on the style used by Hennessy and Patterson
[2012], illustrates how the datapath can be visualised in this time-shifted way.
The grey boxes between stages represent pipeline registers, which pass values
between stages. Because the register file is accessed at two different stages, it
appears twice, with a broken line on the left if it’s being read and on the right if
it’s being written. You can clearly see with this notation if a dependency may exist
because the pipe stages where registers are accessed are explicit. The notation for
the register file is useful because it contains a hint that a modification to a register
and a read may be possible on the same cycle if the modification happens in the
first half of the cycle and the read in the second half.

4.1.1 Pipeline Limitations

Our 5-stage pipeline isn’t the only organisation possible. Some designs have fewer
stages and the later versions of the Pentium 4 architecture had as many as 31
[Zukowski et al. 2006]. Very deeply pipelined machines are sometimes referred to
as superpipelined. The theoretical gain from a deeper pipeline – more instructions
in parallel hence theoretically greater speedup – is offset by various costs. These
include:

• clock skew – longest delay between the clock arriving at any pair of registers

• propagation delay – the pipeline registers are fast but each new stage adds
delay

• cost of pipeline flushes – the deeper the pipeline the more instructions are
lost when the wrong instructions are in the pipeline; this adds not only to
the cost of branches but also of context switches

In general super-deep pipelines have been explored and not had big enough
performance wins to remain in the mainstream.

Another complication in pipeline design is floating-point instructions. For
practical purposes, it is not possible to complete some of the more complex
operations like floating point divide in one cycle, meaning that the clean simplicity
of a RISC pipeline with uniform instruction handling is broken.

Simple Pipelines 55

4.1.2 Pipeline Performance

Once we’ve worked out the number of stages and any delays between stages, we
can work out a theoretical peak execution rate, which is just the clock rate. The
clock rate is limited by the time of the longest pipe stage plus overhead. A 5-stage
pipeline can at most result in a speed up of 5 over a non-pipelined machine. A real
machine though will have bubbles in the pipeline induced by stalls, and therefore
not achieve its theoretical peak throughput.

Case Study

Let’s look at an example. The timing for each stage has to be worked out by doing
a proper logic design, and working out the longest logic path at that stage. Here,
I use invented numbers to illustrate the principle. Assume inter-stage logic has an
overhead of 0.1ns, and the following times for each stage:

1. IF – 0.5ns

2. ID – 0.4ns

3. EX – 0.3ns

4. MEM – 0.5ns

5. WB – 0.2ns

The longest stage takes 0.5ns, and overhead is 0.1ns, so this sets cycle time at
0.6ns (1.67GHz; to convert between GHz and ns: GHz = 1

ns). How much speedup
is this over a non-pipelined implementation? Superficially, we can add the cycle
times of the nonpipelined machine, but we should also take into account the fact
that some instructions don’t use all stages and a nonpipelined implementation
could possibly be designed to finish faster. In our 5-stage pipeline, only memory
operations need all 5 stages (other instructions are idle in the MEM stage). To
work out what average instruction execution time a non-pipelined machine takes,
we need an instruction mix. Assume instructions break down as follows (as a
fraction of all instructions executed in a particular workload):

• load – 20%

• store – 10%

• branch – 20%

56 CHAPTER 4. PIPELINES AND ILP

• ALU operation – 50%

We can now work out an average for a non-pipelined instruction, in which 30%
(loads plus stores) use all 5 stages, and the rest skip the MEM stage:

tnopipe = 0.7× (0.5+0.4+0.3+0.2)+0.3× (0.5+0.4+0.3+0.5+0.2)

= 0.7×1.4+0.3×1.9

= 0.98+0.57

= 1.55ns

So our actual speedup is 1.55
0.6 = 2.58, significantly less than a speedup of 5 that

you would predict from a superficial understanding of pipelining.
It is tempting given the numbers in our example to split the pipeline stages.

Assuming we can split each longer stage into two stages, each half the size of the
original (of course with overhead as before, but now for more stages), can we do
better? Let’s work the numbers, aiming for a new maximum stage of 0.25ns:

1. IF1 – 0.25ns

2. IF2 – 0.25ns

3. ID1 – 0.2ns

4. ID2 – 0.2ns

5. EX1 – 0.15ns

6. EX2 – 0.15ns

7. MEM1 – 0.25ns

8. MEM2 – 0.25ns

9. WB – 0.2ns

We how have 9 stages, and the longest is 0.25ns, so our cycle time is 0.35ns with
overheads, a speedup of 4.4 over the non-pipelined design, and 1.7 over the 5-
stage pipeline. That looks worthwhile but as we will see later, this is not the whole
pipeline story, and we need to take into account pipeline stalls before declaring a
clear win.

What if we take this to the limit, and make each stage 0.1ns, the same as the
overhead? In this case, we have 19 stages and the cycle time is 0.2ns, a speedup

Simple Pipelines 57

of 3 over the 5-stage pipeline, and 7.8 over the non-pipelined design. However,
we have thrown a lot more hardware at the problem and we incur other significant
costs, e.g., as we see when we deal with branches, we have significant costs of
having the wrong instructions in the pipeline. With these numbers, it should be
clear that further reducing the stage size has little benefit.

Hazards

Now we hit the hard part of pipelining, quantifying the costs when we have
bubbles in the pipeline. A pipeline has an empty time slot when it can’t
proceed because of a dependency or resource constraint, generally called a hazard.
Hazards fall into three categories:

• data hazards – data dependences prevent progress, divided into:

– read after write or (RAW) – any use of a data value after its changed
including registers and memory locations, though mostly registers in
our examples: the main challenge is ensuring the updated value is read

– write after write or (WAW) – any attempt to change a data value
after another change: making sure the last change sticks is the main
challenge

– write after read or (WAR) – this hazard in less aggressive designs can
be avoided by writing to registers and memory in a late stage; see
Figure 4.2 for example where the “DM” box representing the MEM
pipeline stage where movement of data between memory and registers
happens, and the second “Reg” box representing the WB pipeline
stage are the two latest pipeline stages

• control hazards – a change (or possible change) in order of execution
prevents progress

• structural hazards – a limit on hardware resources prevents progress (e.g.,
a functional unit is not available to two instructions that need it on the same
cycle, something not a problem with our simple pipeline)

To quantify simple examples, we need a machine code instruction set. We
base ours on a generic RISC architecture, with ALU operations that either take
two register source operands and one destination, or the source operands can
include an immediate operand, a value encoded into the instruction. Memory data

58 CHAPTER 4. PIPELINES AND ILP

instruction effect
lw Rd,(offset)Rs1 Rd ← mem[Rs1+offset]
sw Rs2,(offset)Rs1 mem[Rs2+offset]← Rs1

add Rd,Rs1,Rs2 Rd ← Rs1 +Rs2

addi Rd,Rs1,value Rd ← Rs1+ value
sub Rd,Rs1,Rs2 Rd ← Rs1−Rs2

subi Rd,Rs1,value Rd ← Rs1− value
mult Rd,Rs1,Rs2 Rd ← Rs1×Rs2

multi Rd,Rs1,value Rd ← Rs1× value
div Rd,Rs1,Rs2 Rd ← Rs1÷Rs2

divi Rd,Rs1,value Rd ← Rs1÷ value
and Rd,Rs1,Rs2 Rd ← Rs1 ∧Rs2

or Rd,Rs1,Rs2 Rd ← Rs1 ∨Rs2

xor Rd,Rs1,Rs2 Rd ← Rs1⊕Rs2

lshift Rd,Rs1,Rs2 Rd ← Rs1 << Rs2

rshift Rd,Rs1,Rs2 Rd ← Rs1 >> Rs2

cmpeq Rd,Rs1,Rs2 Rd ← Rs1 = Rs2

cmpne Rd,Rs1,Rs2 Rd ← Rs1 6= Rs2

cmplt Rd,Rs1,Rs2 Rd ← Rs1 < Rs2

breq Rs1,Rs2,offset Rs1 = Rs2 ? PC← PC+ offset << 2
brne Rs1,Rs2,offset Rs1 6= Rs2 ? PC← PC+ offset << 2
jal Rd,address Rd ← PC+4; PC← PC + (address << 2)
jalr Rd,Rs1 Rd ← PC+4; PC← PC + Rs1

Table 4.1: Simple instruction set for examples. Both offset and value are signed 12-bit
values. All instructions operate on a 32-bit integer word, and a “i” suffix implies an immediate
operand. We don’t need both < and > tests because we can reverse the operands. You can
obtain a logical negation by using xor Rd,Rs1,R0. You can check for negative values by cmplt
Rd,Rs1,R0. To keep the notation consistent with an assignment, the destination operand is
always written first. A jump instruction without saving the return address (j or jr is just the
jal equivalent with the return address register x0, the RISC-V zero register, which cannot be
altered.)

references are all either loads (copy from memory to register) or stores (copy from
register to memory). We assume 32 registers (named R0. . .R31, with R0 always
the value 0), and a 32-bit instruction word.

A few things to note:

• unsigned operands are specified in the instruction as “u” after the operand
name

• immediate operands are encoded into the instruction and limited to 12
bits so, to extend the range of possible values, when they are used as
address offsets for aligned access, the low bits are not present (which is
why the “<< 2” calculation is used before adding them to a word address);
immediate operand instructions are written with a “i” suffix

• register operands are 32 bits wide and can potentially generate unaligned

Simple Pipelines 59

accesses, which are trapped by hardware since these are errors for this
architecture

• branch instructions generally are relative to the current program counter
(PC); in assembly language for convenience we use symbolic labels to
indicate the branch target but, in machine code, the target is a signed offset

• jump instructions are unconditional and usually allow longer addresses than
the short offsets allowed in branches but are still relative addresses, unless
you use the “r” variants

• MIPS-V combines jal and j instructions: by setting the destination register
(the return address) to register x02, which is hardwired to zero, you get the
effect of a jump instruction that does not save the return address

I only include word-length instructions with signed operations in the Table 4.1; an
example of another variation, an unsigned add of 1 half-word (“s” for “short”) is:

addsu R6,R5,R4

This is a very simple instruction set; simpler in some ways even than the MIPS
instruction set, one of the more regular RISC examples3, and a small sampling of
the RISC-V instruction set.

Let’s look at a simple code snippet, translated to assembly language in our
notation, and see how it proceeds through the pipeline:

for (int i = 0; i < N; i++) {
a[i] += b[i] - 42;

}

To translate to our machine instruction is reasonably straightforward. We need to
note a few things:

• word size is 4 bytes so we need to go up in steps of 4 to iterate through an
array

• the variable i is local to the loop and only used in array references, so we
can replace it by an offset incrementing in steps of 4

2To keep things simple, I call my registers in examples R0 . . .R31, with R0 in the role of x0.
3See http://www.mrc.uidaho.edu/mrc/people/jff/digital/MIPSir.html for some
details of the MIPS instruction set.

http://www.mrc.uidaho.edu/mrc/people/jff/digital/MIPSir.html

60 CHAPTER 4. PIPELINES AND ILP

• we need to test the stop condition before the first iteration to be consistent
with the definition of a C-style for loop

In assembly language it looks something like this, with the original code
interleaved as comments:
Bugs fixed in the below code, should be propagated to following examples –
read for now on assumption that all we are concerned about is dependences.

assignment of variables to registers:
N: R1
base address of a: R2
base address of b: R3
for (int i = 0; i < N; i++) {

multi R7,R1,4 # loop end point (N scaled by 4)
add R4,R0,R0 # i = 0 // scaled by 4 below

test: cmplt R8,R4,R7 # < end of loop test?
breq R8,R0,end # < test false? get out

add R5,R2,R4 # address of a[i]
add R6,R3,R4 # address of b[i]

a[i] += b[i] - 42;
lw R9,0(R6) # get b[i]
subi R9,R9,42 # b[i]-42
lw R10, 0(R5) # get a[i]
add R10, R10, R9 # calculate a[i]+b[i]-42
sw R10,0(R5)
addi R4,R4,4 # advance by 4 because word = 4 bytes
j test

}
end: # next instruction after loop

This code could be more efficient (e.g., jumping to the test is less efficient than
doing the test at the end) but it serves to illustrate progress of code through a
pipeline, and gives us a simple example to explore control hazards. To start with,
we will only look at the body of the loop without conditional code, to see how
data hazards arise. The body of the loop on its own is as follows:

add R5,R2,R4 # address of a[i]
add R6,R3,R4 # address of b[i]

Simple Pipelines 61

clock number
instruction 1 2 3 4 5 6 7 8 9 10
add R5,R2,R4 F D X M W
add R6,R3,R4 F D X M W
lw R7,0(R6) F D X M W
subi R7,R7,42 F D X M W
sw R7,0(R5) F D X M W
add.i R4,R4,4 F D X M W

Figure 4.3: Our code without pipeline bubbles. I mark registers modified in previous steps in
red. R5 is set up far enough ahead that we need not consider it. We now have to work out
where stalls should occur. For brevity I shorten the stage names to 1 letter.

clock number
instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
add R5,R2,R4 F D X M W
add R6,R3,R4 F D X M W
lw R7,0(R6) F – – – D X M W
subi R7,R7,42 F – – – D X M W
sw R7, 0(R5) F – – – D X M W
addi R4,R4,4 F D X M W

Figure 4.4: Our code with stalls (marked as “–”) causing pipeline bubbles.

lw R7,0(R6)
subi R7,R7,42
sw R7,0(R5)
addi R4,R4,4 # advance by 4 because word = 4 bytes

To see what dependences there are, let’s write out a timing diagram then refer
back to our definition of timing in the pipeline. In Figure 4.3, I list the
instructions without bubbles in the pipeline but instructions that depend on
previous instructions highlighted. The sw instruction also depends on R5 but only
the delay caused by subi matters, since it is more recent that the calculation of
R5. In our simple pipeline, a load and ALU result is available in the target register
at the end of the WB cycle and an ALU operation needs a register value in the ID
stage. That means we must stall the pipeline for three cycles in each case where
an ALU or store operation follows another instruction that changes a register it
needs.

The result as illustrated in Figure 4.4 is an increase from 10 to 19 cycles to
complete the sequence of code.

That’s a rather large slowdown4: 10
19 = 0.53. Can we do better? Waiting for

the end of a cycle when a result is written to a register is not really necessary if we

4Technically, this is a “speedup” though the word looks wrong applied to a case of slowdown.

62 CHAPTER 4. PIPELINES AND ILP

can write a register in the first half of a cycle and read it in the second half. Also,
we can go a step further and add hardware resources to determine that a value
is needed so we can bypass the register file, an approach also called forwarding.
By making the first improvement, we can reduce each stall by 1 cycle. If we
introduce forwarding hardware, we can use each result as soon as it’s ready rather
than routing it via the register file. In the case of an ALU operation, it is ready
the cycle after EX. In the case of a load, it is ready after the MEM stage. Also,
we can route the result at the cycle it’s needed rather than the cycle before, e.g.,
for an ALU operation, if the result is ready before EX, forwarding can make it
available at the start of EX even if it’s not available at the start of ID. A store
instruction only needs its value at the start of MEM. I illustrate a minimal version
of stall reduction in the top half of Figure 4.5, and a more aggressive version using
forwarding in the lower half.

In this example, we are able to eliminate all but one stall by aggressive use
of forwarding. The cost of forwarding is a more complex decode stage, which
must determine if any needed registers are pending results and if so set up bypass
logic, which can include receiving values from the ALU or from a memory read.
It is this kind of detail that illustrates the benefit of the extremely regular design
of a RISC architecture. Register operands are always encoded the same way, so
relatively little effort is required to determine which registers need values in the
decode stage. In Figure 4.6, I illustrate why all stalls can be eliminated except for
the add immediately following a load.

What of the branches? We have only so far considered data hazards. There
are two places where control hazards occur: the test at the top of the loop and the
jump at the end. We consider only the first example. The second is useful as an
exercise for later. In this case (Figure 4.7) it is not strictly necessary to stall since

clock number
instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
add R5,R2,R4 F D X M W
add R6,R3,R4 F D X M W
lw R7,0(R6) F – – D X M W
subi R7,R7,42 F – – D X M W
sw R7, 0(R5) F – – D X M W
addi R4,R4,4 F D X M W
add R5,R2,R4 F D X M W
add R6,R3,R4 F D X M W
lw R7,0(R6) F D X M W
subi R7,R7,42 F D – X M W
sw R7, 0(R5) F – D X M W
addi R4,R4,4 – F D X M W

Figure 4.5: Approaches to reducing stalls. The example above the line shows the effect of
being allowed to read a register in the second half of the cycle when it’s written. The version
below the line illustrates the benefit of forwarding.

Simple Pipelines 63

clock 1 2 3 4 5 6

add R5,R2,R4

add R6,R3,R4

lw R7,(0)R6

subi R7,R7,42

IM reg regDMA
LU

IM reg regDMA
LU

IM reg regDMA
LU

IM reg regDMA
LU

7 8

Figure 4.6: Limits of forwarding. The connecting lines show how values can be forwarded;
the star shows where forwarding would require sending a value back in time, since the load
result is not ready in time for the next ALU operation.

the ID phase doesn’t do anything that can’t be undone. However with aggressive
forwarding there is a fair amount of logic that would be wastefully exercised, a
consideration for low-energy design. In this case, the branch is mostly not taken,
i.e., the branch condition is false every time until we exit the loop. So eliminating
the stall would be a win. Alternatively if a branch is mostly taken, starting to
load the target instruction immediately that the branch target is known (in our
architecture, at the end of ID) rather than wait for the outcome to be known, would
be a win.

Clearly, the loop control branch instruction will most often go the same way.
We know here that the breq instruction controls a loop, but that’s because we have
the source code. How do we know in general when a branch is less or more likely
to be taken? Many recent designs have hardware branch predictors. We can see
from this example that a branch predictor will not be a huge win. If we predict the
branch as not taken, that eliminates 1 stall (the only stall in the example), provided

clock number
instruction 1 2 3 4 5 6 7 8 9 10
multi R7,R1,4 F D X M W
add R4,R0,R0 F D X M W
cmplt R8,R4,R7 F D X M W
breq R8,R0,end F D X M W
add R5,R2,R4 F – D X M W

Figure 4.7: Branch-induced stalls. After fetching the last instruction, we know the previous
instruction is a branch, and stall until the outcome is known.

64 CHAPTER 4. PIPELINES AND ILP

the prediction is correct. If the prediction is incorrect, we lose the opportunity to
load the target instruction as early as possible, and lose 1 cycle.

The simplest approach to branch prediction is static prediction, based on the
observation that loops repeat by branching backwards. If you predict all forward
branches as not taken and all backward branches as taken, you capture a large
fraction of easily-predicted branch behaviour [Piguet 2006]. Our example may
not be typical of machine code – it is more usual to put the test at the end of the
loop and jump over the body the first time. Would this branch predictor work in
this case?

A simple approach to dynamic branch prediction is to use 1 bit to record
whether a branch is taken or not. In a case like a loop, 1 bit of prediction is
potentially useful; in a case where prediction depends on the outcome of other
branches a more complex strategy may be better. A simple way of storing state is
in a branch history table, indexed by low-order bits of the instruction address. The
more address bits used, the less chance two branches’ predictions are confused
with each other. A table of 4Ki entries suffices for smaller programs; current
architectures may use bigger tables and more sophisticated schemes. There was
a lot of research into branch prediction in the 1990s, when aggressive ILP was a
major design goal [Yeh and Patt 1992, 1993; Kaeli and Emma 1997; Young and
Smith 1999; Skadron et al. 1999]. If a branch is taken, the bit is set to 1, otherwise
0, and whatever was previously set is used to predict the branch outcome. A 1-
bit scheme has the drawback that, since it changes every time the direction of
the branch changes, if a branch mostly goes the same way, it mispredicts not
only on the rare occasion when it goes the other way, but the next time when the
direction reverts to the usual way (taken or not). A simple solution is to use 2 bits,
in a scheme that requires the branch go twice in a different direction before the
prediction changes.

Figure 4.8 illustrates state transitions of a 2-bit predictor. Each state is
identified by two bits. If both bits are zeroes, that represents a prediction that the
branch is not taken, which requires two successive instances of the branch being
taken to flip the prediction. Both bits being ones means it takes two successive
instances of the branch to not be taken to flip the prediction. The other two states
each require only 1 disagreeing branch direction to change the next prediction,
and can be pushed back to the “00” or “11” state in a single step. The scheme
used here is a 2-bit saturating up and down counter. It is “saturating” because
it stops when it hits an end point, and “up and down” because it has two end
points, one for counting up, the other for counting down. A branch predictor,

Simple Pipelines 65

bits prediction event new bits
00

not taken

not taken 00
00 taken 01
01 not taken 00
01 taken 11
10

taken

not taken 00
10 taken 11
11 not taken 10
11 taken 11

Figure 4.8: Two-bit branch predictor state transitions. Each predictor is stored in a table
indexed by low address bits of branch instructions.

like many simple hardware constructs, can be described as a finite state machine
(FSM), which I represent here as a table. You can also represent an FSM as a
diagram with one node per state, and arrows labeled with events indicating state
transitions.

I illustrate how a branch instruction’s address is used to look up a prediction
in Figure 4.9. In this case the branch table only has 8 entries, not big enough to
be useful, but we can see the whole example in one picture.

Branch prediction becomes a much more significant issue with superscalar
pipelines, where deciding early to flush the pipeline and go on a new path makes
a big difference, if you mostly choose the right option.

When we consider more exotic pipelines the benefits of branch prediction and
other approaches to reduce branch latency become clearer.

Figure 4.9: Finding a branch prediction. Low bits of a branch instruction address are used to
index a single global pattern table. In this toy example (table size only 8), 3 bits are needed.
Instructions are word-aligned, so the low 2 bits of the instruction address are always 0 and not
used in the index.

66 CHAPTER 4. PIPELINES AND ILP

4.2 More Exotic Pipelines
Three variations on pipelines add complication (assuming we are starting with a
simple, regular instruction set: the IA32 is pretty complicated even in a simple
implementation, for example):

• deeper pipelines – hazards have a higher cost the deeper the pipeline
because there are more instructions in flight

• multi-cycle instructions – even in a simple RISC architecture, floating-point
instructions cannot all be implemented in one execute cycle (particularly
divide)

• multiple instructions per clock – a superscalar pipeline multiplies the
opportunities for hazards

Aside from the standard kinds of hazards, handling interrupts becomes more
complex the more complicated the pipeline. Ideally, you want your architecture
to maintain precise exceptions: any instruction that logically entered the pipeline
before that causing the exception should finish, and any instruction that logically
enters the pipeline later should not finish, and should not have any effect on the
machine state. In other words, interrupts should not behave differently than if the
instructions execute in order.

There is considerable complexity in handling floating point because some
instructions take multiple cycles and hence make it hard to maintain precise
exceptions (e.g. a divide overflow exception may take a few cycles to become
apparent, implying that other logically later instructions that completed before the
long-running instruction should be rolled back). Long instruction completions
also make it possible even with our simple pipeline model to have WAR hazards.

Timing of deeper pipelines depends exactly how the stages are split.
Here I only consider multiple instructions per clock. Since this technique is

in competition with multiple cores, it is useful to understand the basic concepts
and how far they can go. I also examine tactics that can reduce dependences or
pull them further apart. These techniques include instruction reordering, register
renaming and loop unrolling. You can reduce stalls either by static or dynamic
scheduling:

• static scheduling – the compiler (or a fanatical human who goes down to
the machine code layer) can optimize ordering of instructions for a given
pipeline

More Exotic Pipelines 67

• dynamic scheduling (also dynamic dispatch) – the hardware determines the
order of instructions at run time

A pipeline that can issue – start the EX stage – more than one instruction per
clock is called superscalar. In the simplest scheme, the next k instructions are
fetched and if there are no dependences between them limiting parallel execution,
all are dispatched or issued simultaneously. A limitation of this scheme is
that it’s not necessarily a given that adjacent instructions have no dependences
but other instructions further apart may be free to go. Another limitation of
a simple scheme is that branches limit simple ILP. In a typical MIPS integer
workload, between 15 and 25% of instructions (counted dynamically, i.e., as
fraction of instructions executed) are branches, meaning you can typically expect
3–6 instructions between branches [Hennessy and Patterson 2012, p 149]. While
floating point code often has longer sequences of instructions between branches,
working around branches is a key aspect of achieving significant ILP.

In some schemes, dispatch and issue are treated separately5:

• dispatch – queue the instruction for execution

• issue – allocate a functional unit to the instruction and start its execute step

It is useful to treat dispatch and issue as separate concerns in out of order
machines; in machines that start instructions strictly in order, there is no need
to treat these steps individually. Note the usage above of “dynamic dispatch”: this
is a generic description that does not necessarily imply an instruction enters the
EX stage at the same time as others dispatched with it.

A superscalar pipeline requires duplicated resources for any operations that
could occur in parallel. Typically, the ALU is divided into functional units, a
major grouping of related instructions, such as integer or floating point, and the
number of each type of functional unit limits the number of that type of instruction
that can simultaneously be issued.

Before we go on, we need a little more terminology. We already know about
data, control and structural hazards. Another type is a name hazard, a situation
where instructions share the same data resource, usually a register, but do not
actually interchange data. A name dependence usually arises because a machine
does not have a limitless register set, so registers have to be recycled. Another

5Mark Smotherman has a nice summary of the terminology here: http://www.cs.clemson.
edu/~mark/464/dynsched.txt

http://www.cs.clemson.edu/~mark/464/dynsched.txt
http://www.cs.clemson.edu/~mark/464/dynsched.txt

68 CHAPTER 4. PIPELINES AND ILP

 multi R7,R1,4
 add R4,R0,R0
test: cmplt R8,R4,R7
 breq R8,R0,end
 add R5,R2,R4
 add R6,R3,R4
 lw R7,(0)R6
 subi R7,R7,42
 sw R7, (0)R5
 addi R4,R4,4
 j test
end: # next instruction after loop

Figure 4.10: Dependences in one iteration of the loop. To reduce clutter I omit dependences
between initialization and the loop body. R4 in the loop body depends on the initialization
step in the second instruction, and the loop test also depends on the value of R7.

example is the call stack, which is recycled between calls, and limits any hardware
attempt to convert function or method calls into threads [Postiff et al. 1998].

Static scheduling

Let us now return to our simple example, and see what happens if we attempt to
execute two instructions per clock. To start with, I look at reordering instructions
and other changes that could be done at compile time.

In Figure 4.10, I illustrate data dependences using an arrow from the place
the data is updated to the place it’s used. To avoid cluttering the picture, I leave
out dependences between the loop initialization and the body; of more interest
is what happens when we repeat the loop. A question we need to ask is if these
are true dependences, or name dependences. In one iteration of the loop, they are
true dependences, limiting ILP. In a two-instruction per clock pipeline, we cannot
issue two successive instructions if the second depends on the first. In the body of
the loop, the only cases where pairs of instructions do not have a dependence on
their immediate predecessor are the three adds. The first two adds can proceed in
parallel; the second one can run in parallel with anything other than the other two
adds, both of which use the value in R4, modified in the final add.

Using the same subset of the program as in Figure 4.5, let us see how much
parallelism we can extract in a simple scheme that fetches two instructions at a
time and if there is no dependence, issues both at once. If there is a dependence,
the second waits until the dependence is cleared. Figure 4.11 illustrates the
outcome.

If we compare the result against eliminating stalls using forwarding but in a
scalar pipeline in Figure 4.5, we’ve reduced total cycles from 11 to 9, not a huge

More Exotic Pipelines 69

win for significantly greater hardware resources.
Can we do better? So far, we have fudged the issue of multiple iterations of

the loop. If we return to the original C-style code:

for (int i = 0; i < N; i++) {
a[i] += b[i] - 42;

}

a simple observation is that the calculation for each value of i is independent so
this code has more natural parallelism than is at first apparent. There’s no reason
if our hardware isn’t clever enough that we shouldn’t be able to run as many loop
bodies as we have hardware resources for in parallel. The reuse of the variable
i is an example of a name dependence, which we can break by systematically
renaming i each iteration of the loop. The only real dependence is that we need to
compute each new value of i based on the last one, but that’s only one dependence
rather than a long chain that imposes a strict ordering on our code.

So back to the machine code version: if we write out two iterations of the
loop, leaving out the condition and branch, we have dependences between R4, the
index variable, across iterations, but are these true data dependences? Not really,
because we can replace R4 by a different register. In Figure 4.12, I illustrate
how two instances of the loop have minimal dependences between them – though
the new register, R9, has many dependences to successor instructions (as does
R4 in the original code, had I shown them). I then go on to show that I can
increase the gap between dependences by increasingly aggressive renaming and
taking advantage of that to reorder instructions.

What’s the win here? The dependence between R4 and successor instructions

clock number
instruction 1 2 3 4 5 6 7 8 9
add R5,R2,R4 F D X M W
add R6,R3,R4 F D X M W
lw R7,0(R6) F D X M W
subi R7,R7,42 F D – – X M W
sw R7, 0(R5) F – – D X M W
addi R4,R4,4 F – – D X M W

Figure 4.11: Simple two-instruction-issue schedule. If two instructions cannot execute on
the same cycle, the second stalls. We fetch two instructions every cycle where there isn’t a
pending stall. Forwarding makes it possible to use a result at the end of the stage when it is
created.

70 CHAPTER 4. PIPELINES AND ILP

addi R9,R4,4
add R5,R2,R4
add R6,R3,R4
lw R7,(0)R6
subi R7,R7,42
sw R7, (0)R5
add R5,R2,R9
add R6,R3,R9
lw R7,(0)R6
subi R7,R7,42
sw R7, (0)R5
addi R4,R9,4

add R5,R2,R4
add R6,R3,R4
lw R7,(0)R6
subi R7,R7,42
sw R7, (0)R5
addi R4,R4,4
add R5,R2,R4
add R6,R3,R4
lw R7,(0)R6
subi R7,R7,42
sw R7, (0)R5
addi R4,R4,4

addi R9,R4,4
add R6,R3,R4
add R5,R2,R4
add R10,R2,R9
lw R7,(0)R6
add R11,R3,R9
subi R7,R7,42
lw R12,(0)R10
sw R7, (0)R5
subi R12,R12,42
addi R4,R9,4
sw R12, (0)R11

(a) Two unrolls.

addi R9,R4,4
add R5,R2,R4
add R6,R3,R4
lw R7,(0)R6
subi R7,R7,42
sw R7, (0)R5
add R5,R2,R9
add R6,R3,R9
lw R7,(0)R6
subi R7,R7,42
sw R7, (0)R5
addi R4,R9,4

add R5,R2,R4
add R6,R3,R4
lw R7,(0)R6
subi R7,R7,42
sw R7, (0)R5
addi R4,R4,4
add R5,R2,R4
add R6,R3,R4
lw R7,(0)R6
subi R7,R7,42
sw R7, (0)R5
addi R4,R4,4

addi R9,R4,4
add R6,R3,R4
add R5,R2,R4
add R10,R2,R9
lw R7,(0)R6
add R11,R3,R9
subi R7,R7,42
lw R12,(0)R10
sw R7, (0)R5
subi R12,R12,42
addi R4,R9,4
sw R12, (0)R11

(b) Rename R4.

addi R9,R4,4
add R5,R2,R4
add R6,R3,R4
lw R7,(0)R6
subi R7,R7,42
sw R7, (0)R5
add R5,R2,R9
add R6,R3,R9
lw R7,(0)R6
subi R7,R7,42
sw R7, (0)R5
addi R4,R9,4

add R5,R2,R4
add R6,R3,R4
lw R7,(0)R6
subi R7,R7,42
sw R7, (0)R5
addi R4,R4,4
add R5,R2,R4
add R6,R3,R4
lw R7,(0)R6
subi R7,R7,42
sw R7, (0)R5
addi R4,R4,4

addi R9,R4,4
add R6,R3,R4
add R5,R2,R4
add R10,R2,R9
lw R7,(0)R6
add R11,R3,R9
subi R7,R7,42
lw R12,(0)R10
sw R7, (0)R5
subi R12,R12,42
addi R4,R9,4
sw R12, (0)R11

(c) More renaming.

Figure 4.12: Dependences in two instances of the loop. To reduce clutter I omit dependences
more than 3 instructions apart. I rename R4 as R9, then show with more aggressive renaming
and reordering dependences can be moved further apart. Note that the final update of R4 is
necessary so we can start the next iteration with the right value in R4. Check also for changes
in instruction order facilitated by renaming.

need not be as close to them as in Figure 4.12a, if we rename R4 as R9 for the
second instance of the loop body. We can move the initialization of R9 to the top
as in Figure 4.12b, and we can get further gains by interleaving the code for the
two instances of the loop, with further renaming of registers (Figure 4.12c). We
now have the potential if we generalise to more than one instance of the loop to
achieve a respectable level of ILP.

So far, I’ve assumed that we can have two instances of a loop. That is not in
general true: if the loop executes an even number of times, we can do this, and
adjust the stopping condition. What I’ve presented here is an example of loop
unrolling. A compiler can generate code using the principles I illustrate here, but
only for a loop where the stopping condition is a limit on a counter as in a typcial
for loop. In that case, the compiler can generate two instances of the loop: one
that runs for N%k times, the other for N÷ k times. In this case, where k = 2, the
compiler would generate code equivalent to

int i = 0;
int k = 2;
// a N%2 == 1 or 0; could use an if statement
// but the following generalises to k > 2

More Exotic Pipelines 71

for (int j = 0; j < N%k; j++) {
a[i] += b[i] - 42;
i++;

}
for (int j = 0; j < N/k; j++) {

a[i] += b[i] - 42;
a[i+1] += b[i+1] - 42;
i+=2;

}

We can potentially improve our unrolled code even further by using two registers
for the different instances of the loop index from the start, and incrementing each
separately. However we have enough detail at this point to see how unrolling
works in general, and how if can be extended to multiple instances of the loop
body. What we do not have is a way to do loop unrolling when the stopping
condition is more complicated, i.e., we don’t know even at run time (by the first
iteration of the loop).

Dynamic scheduling and better branch prediction

There are three big downsides to static scheduling:

• an ideal schedule for one pipeline may not be ideal for another – recom-
piling code may be an option for software created in-house or on frequent
release cycles, but maintaining versions of code for multiple pipelines is
impractical for most software in common use

• some limits on parallelism may only be possible to resolve at run time

• you can run out of registers – even in a RISC design with 32 integer
registers, some may be reserved in practice for specific purposes or e.g.
you may be required to preserve and restore them; the example of Figure
4.12 uses 10 registers in its fully unrolled renamed form, 4 more than in its
original form

The Control Data CDC 6600 was the first machine to tackle the concepts of out
of order execution in hardware. It had 10 functional units [Thornton 1963], and
had a hardware structure called a scoreboard that kept track of dependences and
identified which instructions could issue [Thornton 1980].

72 CHAPTER 4. PIPELINES AND ILP

To justify out of order execution, you need to sacrifice about as much chip
space as a functional unit. Once it became possible to add the equivalent in logic
to another functional unit to implement a scoreboard-like feature on a single chip,
commodity processors started to appear with out of order execution.

Another part of the picture, for a change not originally designed by Seymour
Cray, is hardware loop unrolling. Robert Tomasulo, an IBM engineer, developed a
hardware algorithm [Tomasulo 1967] bearing his name that was the first example
of register renaming. The keys to the algorithm is reservation stations that hold an
instruction until all its operands are available, and internal register renaming. In
an example like our unrolled loop, it would not be necessary to find new registers
for the second (or subsequent) instances of the loop; the hardware would allocate
virtual registers to the successive instances of the loop.

The important thing about both a scoreboard and Tomasulo’s algorithm is that
they make it possible to issue out of order, even though aggressively superscalar
architectures were not feasible in the 1960s. A scoreboard makes it possible to
issue instructions when data dependences are met; Tomasulo goes one step further
and makes it possible to eliminate name dependences (at least between registers:
name dependences as relate to memory addresses are another whole problem).

The major thing that these innovations add is that the sort of scheduling
exercise illustrated in Figure 4.12 can work as well as the hardware available:
provided there is a sufficiently large hardware instruction window, dependences
can be limited to real dependences, and as many functional units as are available
can be kept busy, up to the limit imposed by true dependences. That leaves us
with one major cause of stalls we need to reduce: branches.

So far the best we have is a 2-bit branch predictor, that can capture up of the
order of 93% of branch behaviour. The remaining 7% is significant if the penalties
are high. If for example we have a very aggressive design capable of issuing up to
8 instructions per clock and we mispredict a branch, we not only have to flush up
to 7 instructions from the pipeline, but we have lost the opportunity to start up to
7 instructions in the correct path of the branch.

Before going to a more sophisticated branch prediction strategy, I introduce
one more improvement in branching: a branch target buffer (or BTB). The win
from a BTB, which stores the target instruction of the branch, is that as soon
as the branch is resolved as taken, the target instruction can be inserted into the
pipeline. In some schemes, a BTB may include branch prediction [Perleberg and
Smith 1993], but I prefer to keep the terms separate. A BTB may store varying
degrees of information from a prediction of the branch target address through to

More Exotic Pipelines 73

2048F04
2048F08
2048F0C
2048F10

breq R10,R0,12
addi R5,R5,4
lw R7,(0)R5
j exit

address instruction

BTB
xxxxx 0 xxxxxxx xxxxxxxx

2048F 1 2048F10 j exit

xxxxx 0 xxxxxxx xxxxxxxx

40566 1 4056644 add R7,R7,R8

index tag valid address instruction
00

01
02

03
:

63 2000F 1 2000F0C lw R6,(0)R7

: : : :

ignore low
 2 bits

Figure 4.13: Possible branch table buffer organization. The instruction would of course be
represented in binary rather than a human-readable form. Some BTBs only represent the target
address, and others also include the branch prediction. Note that in a word-aligned machine
with 32-bit instructions, it isn’t necessary to store the low 2 bits of the instruction or use them
in the index. In this example, the index uses 6 bits, leading to a 64-entry table.

the target address and the actual instruction. Unlike a branch predictor, a BTB
needs an accurate representation of the target instruction since it would be useless
to start executing a completely wrong instruction, so a BTB typically includes
a tag that allows the address of the source branch to be reconstructed. In other
words, similarly to a cache, a BTB is indexed by part of the address of the branch
being predicted, and the rest of the branch address is used in a tag to check that
the right target has been found. This scheme can obviously only work if branch
instructions cannot vary the target address, i.e., it’s always based on an immediate
operand, not a register. Figure 4.13 illustrates a possible BTB organization. If the
top branch instruction in the illustrated snippet of code is about to be executed,
the BTB logic looks up the target instruction. If the branch is predicted as taken,
it can be fetched immediately. In an aggressive scheme, the BTB can be looked
up before the instruction is decoded, since the tag ensures that a lookup will miss
if the current instruction turns out not to be a branch.

A BTB, much like a cache, can experience misses. In the event that the branch
is predicted as taken, a miss requires waiting for the target instruction but the BTB
is updated for next time. If the branch is predicted as not taken, the BTB can be

74 CHAPTER 4. PIPELINES AND ILP

Figure 4.14: Two-level predictive branch. After each branch, the pattern history for that
branch is shifted left and the latest actual outcome becomes the low-order bit. The individual
branch histories may be stored in various ways including a structure indexed and tagged like a
cache.

ignored.
On now to more sophisticated branch schemes. There are many of these [Yeh

and Patt 1993; Skadron et al. 1999; Tyson 1994; Kaeli and Emma 1997] and there
was considerable research on these in the 1990s at the height of ILP research,
and I only consider one in depth, and adaptive two-level predictor [Yeh and Patt
1991]. With the shift to multicore designs, branch prediction is unlikely to need
more sophisticated schemes in the near future than the schemes of the 1990s. In
this scheme, there is a predictor for each branch. Each predictor maintains a k bits
of history of a branch. These k bits are used as an index into a pattern table that
predicts what the next branch should do. The entry for each pattern is a saturating
counter, much as for our single-level 2-bit predictor. The main difference is that
a previous pattern of branches like taken, taken, taken, not taken, taken, of it’s
the same as the current pattern (for k = 5 in this example) selects the prediction,
rather than the address of the branch. We still use the branch address as an index
into the branch history, but use a global pattern table. Figure 4.14 illustrates the
basic idea of the scheme. This scheme with a 512-entry 4-way associative history
table was shown to have 97% accuracy in predicting branches in the original Yeh
and Patt [1991] study.

A final wrinkle on branch prediction is speculative execution. If a branch
outcome cannot be determined in time to keep the pipeline busy, in a speculative
machine, instructions that may have to be discarded are executed, with results
in shadow registers, that are copied to the real registers when the instructions
are committed. If the branch prediction is incorrect, the speculated instructions
are discarded [Lee et al. 1995; Hiraki et al. 1998; Krishnan and Torrellas 1999].

More Exotic Pipelines 75

Speculative execution can include speculative loads [Rogers and Li 1992] and
even threads [Martínez and Torrellas 2002; Ceze et al. 2006]. Any memory
access that’s speculative should not cause a page fault, as that’s a huge overhead
compared with a pipeline stall, so implementation of speculation is very complex,
yet it made it to commodity designs like the Pentium 4. The Pentium 4 could
issue 3 instructions per clock but could have up to 60 pending issue at any one
time [Sohi 2001].

With all of this out of the way it now becomes possible to explore a reasonable
level of ILP in a superscalar architecture. Paper exercises similar to that of 4.12
are instructive, though real design studies showing the effects of cache misses,
TLB misses and unavoidable stalls for dependences show that in practice, it is
hard to achieve much more than two instructions per clock on average.

Compiler-Exposed ILP

One more idea is to have the compiler expose ILP. A pioneering approach to
this is packing multiple instructions in one long machine word. This idea, called
very long instruction word (VLIW) was used in the Multiflow machines of the
late 1980s. The intial design had 256-bit instructions containing 7 operations,
followed by a more ambitious design with double the instruction width and 14
operations per instruction word. The idea was that a compiler technique called
trace scheduling would expose enough ILP to fill a high fraction of the operations
with useful work (otherwise a null operation or NOP had to be inserted) [Colwell
et al. 1990].

The Intel IA64 was designed based on similar principles. Despite considerable
money being thrown at the project not only by Intel but partners like HP,
performance was disappointing. One of the lead architects on the Multiflow
project, Bob Colwell, on joining Intel, led the design of the Pentium Pro and
successors [Colwell and Steck 1995], possibly an indication that he’d learnt his
lesson at Multiflow. That lesson is that if compiler technology cannot deliver for
an exotic architecture that very smart people are working on, the chances are it
will not deliver for anyone else.

The supposed gain of VLIW is to remove the hardware complexity of dynamic
scheduling by having a smart compiler that can expose ILP. So why did VLIW
fail? You could argue that Multiflow failed because it was a startup, and that what
startups do: so why couldn’t Intel and HP get it right? Mainly because ILP is
not only dependent on statically-determined dependences. Memory delays are

76 CHAPTER 4. PIPELINES AND ILP

also a factor, and in the area where the IA64 was competing, cache misses are a
significant factor. If any instruction in your long word has to stall for any reason,
all the rest must stall, unless you go back to where you started, hardware to support
dynamic scheduling. Multiflow avoided that particular problem by not using
caches, not a practical approach for a general-purpose architecture. The IA64
included a few other innovations like bits that the compiler could set as hints to
the hardware on available parallelism, and predicated instructions [Tyson 1994].
A predicated instruction is tagged with a condition that must be true otherwise
the instruction is not executed. Predicated instructions are intended to avoid the
overheads of branches in short sequences of conditional code.

Despite the innovations, the IA64 was a market failure, and the time when
Intel was focused on that approach allowed AMD to dictate the design of 64-bit
extensions to the IA32 architecture [Keltcher et al. 2003].

4.3 Summary

Increasing ILP was the key focus of computer architecture in the 1990s. Much
of what I describe here was implemented in increasingly aggressive forms. By
2000, it was starting to become apparent that aggressive ILP was hitting limits,
and any new attempts at increasing ILP would have limited gains and significant
costs in energy and heat, and clocks become increasingly hard to scale as the
total wiring on the chip increases [Agarwal et al. 2000]. IBM’s Power5 CPU
pretty much did everything: it had 8 execution units, with a peak issue rate of
8 instructions per cycle (one per unit), hardware multithreading and speculative
out of order execution and two cores [Kalla et al. 2004]. Unlike its predecessor
the Power4 [Tendler et al. 2002], Power5 did not lead to mass-market designs,
as IBM and Motorola lost the Apple account, the one major market for PC-scale
CPUs outside the Intel camp. At that point, it seemed that RISC had lost to CISC,
though a better explanation is that aggressive ILP had peaked.

The case made by Olukotun et al. [1996] – and repeated in a special issue
of IEEE Computer [Nayfeh and Olukotun 1997] on what to do with a billion
transputers – is that more ILP should give way to more cores. That argument over
20 years later still looks good.

Summary 77

Exercises

In all examples where code is required, use the following:

for (int i = 0; i < N; i++)
b[i] += a[i];

Translated into:

addi R1,R0,0 # i = 0
addi R4,R2,0 # copy base address of a
addi R6,R3,0 # copy base address of b
j forTest001

forBody001: lw R5,0(R4) # get value of a[i]
lw R7,0(R6) # get value of b[i]
add R7,R7,R5 # calculate a[i]+b[i]
sw R7,0(R6) # update b[i]

forNext001: addi R4,R4,4 # increment address of element of a
addi R6,R6,4 # increment address of element of b
addi R1,R1,1 # increment loop count

forTest001: blt R1, R2, forBody001

1. Do a pipeline timing diagram of the given example under the following
assumptions:

(a) No stalls.

(b) Maximum stalls, based on when values are available (as in Section
4.1) and without any forwarding.

(c) Stalls without maximum forwarding.

(d) Unroll the loop once (two copies) and show how to reduce stalls by
reordering and (if necessary) register renaming.

(e) Can this example benefit from Tomasulo’s algorithm? Explain.

2. Rework the pipeline timing diagram of the given example under the
following assumptions:

(a) We can issue any pair of instructions, subject only to dependences;
assume the most aggressive achievable model of forwarding.

78 CHAPTER 4. PIPELINES AND ILP

(b) Add now the ability to do register renaming; assume the hardware is
smart enough to rename any register after a write to it and no limit to
the number of virtual registers (do you run out of paper?).

3. Now go back to the simpler dual-issue pipeline without register renaming
and evaluate the effect of a simple 2-bit branch predictor.

(a) Will a more sophisticated scheme like a 2-level adaptive scheme make
a difference here? Explain.

(b) Now assume we have an if statement in the loop that only does the
assignment on odd values of i. Write out the assembly language for
this case (you may fudge some details as long as the branches are
plausible). Will a more sophisticated branch predictor help in this
case? Explain.

4. Assume we have a floating-point pipeline in which a multiply takes 2 cycles
and a divide 4 cycles (both in the execution stage; other stages are the same
as for integer instructions). Explain how these instructions introduce new
types of hazard not present in the integer pipeline and why they present
problems for interrupts.

5. Look up how precise exceptions or precise interrupts are handled in
multiple-issue implementations.

6. VLIW was based on the premise that a compiler technique, trace schedul-
ing, could expose significant ILP. Look up trace scheduling and analyse its
strengths and weaknesses.

7. The Pentium Pro introduced a concept of cracking complex instructions into
simpler micro-operations, or µ-ops6. These µ-ops could be pipelined much
more easily than the native instruction set. Explain how this feature helped
to bridge the gap between RISC and CISC and why Intel could not have
done this with earlier designs.

6Pronounced “mu-ups” in deference to the pronunciation of the Greek letter µ .

5 Multiprocessors

MULTIPROCESSOR SYSTEMS ARE NOT A NEW CONCEPT – what is com-
paratively new is multicore designs. Multicore systems are not funda-
mentally different from older multiprocessor systems. They have two

major advantages: lower cost, and lower latency interprocessor communication.
Otherwise they present many of the same performance and software challenges.

In the days of big iron multiprocessor systems, many models of parallelism
were explored, and the winner was shared-memory multiprocessors. I review here
are few of the other variations, then focus on shared-memory systems and relate
the general field to current multicore designs. I save other models of parallelism
currently in use, vector instruction sets and GPUs, for the next chapter, since they
are significantly different in implementation and efficiency issues, and only briefly
review them here..

5.1 Multiprocessor Models
Models of multiprocessor classically have been defined by whether they have
more than one instruction stream, more than one data stream, or both:

• SISD – single instruction single data stream: a uniprocessor

• SIMD – single instruction multiple data stream: vector architectures for
example, but there are other types

• MIMD – multiple instruction multiple data stream: more general types
of multiprocessor, which run multiple threads or processes each relatively
independent of each other

It’s not clear that MISD – multiple instruction single data stream – makes
sense. Another classification that cuts across these to some extent is memory
organization:

79

80 CHAPTER 5. MULTIPROCESSORS

• shared memory – all processes can access a single global memory (limited
by protection in the operating system)

• distributed memory – processes have local memories that cannot be directly
accessed; there are two models for distributed memory programming:

– message passing – all communication is by messages similar to those
you’d send over a network

– distributed shared memory – the effect of a single global memory is
faked using software, often using a combination of the virtual memory
system and networking

The shared-memory model MIMD proved to be most popular because it most
easily adapts to a variety of workloads, including multitasking a large number
of single-threaded processes. It’s possible to program in a message-passing style
on a shared-memory machine, while distributed shared memory needs operating
systems support for efficient implementation. In that sense a shared-memory
machine is more general than a distributed-memory machine. MPI, now in
common use as OpenMPI [Gabriel et al. 2004]1, is a message-passing API that
can work efficiently on a variety of architectures, including networked systems
and shared-memory systems.

Examples of vector additions to standard instruction sets include

• MMX [Peleg et al. 1997], SSE (Streaming SIMD Extension) extensions to
the IA32 instruction set, and successors (SSE1, 2, etc.) and AVX [Firasta
et al. 2008]

• AltiVec extensions to the PowerPC [Diefendorff et al. 2000]

In one of the more extreme examples that has made it to a commodity product, the
Cell processor designed by IBM, Toshiba and Sony has 8 vector units, each with
a local memory. The Cell seemed to be an attempt at recreating all the hardware
design errors of the past. Vector instruction sets only work well on specialised
workloads, local memories put a lot of load on the programmer to get the right
data in the right place at the rights time and combining vector units with another
model of parallelism (multiple cores) is an untried programming model. The Cell
was designed with two purposes in mind: developing HDTV codecs, and the
Playstation 3. For the former, it had prospects of success because computation is

1See also http://www.open-mpi.org.

http://www.open-mpi.org

Shared Memory Principles 81

highly regular. Despite exaggerated expectations [Macedonia 2004], a handful of
games developed specifically for the Playstation 3 was available at launch, and it
was notoriously difficult to program.

SIMD systems take two forms: applying the same operations at multiple
CPUs, and applying the same operation to multiple registers grouped together
as a vector register. Early large-scale supercomputers such as those made by
Cray were vector machines, and had refinements like applying the same memory
operation to sequential addresses, or locations with a fixed distance (stride) apart.
Vector registers are common in GPU and similar instruction sets, such as the
vector extensions of the Intel and PowerPC instruction sets. Vector instruction
sets save a lot of time in avoiding the need to process multiple instructions and
take advantage of high bandwidth of sequential or other regular memory access
patterns as well as the speed of registers. However, they rely on problems that are
well suited to highly regular computation on sequences of data.

In the past, there was another class of SIMD machines that were described
as “massively parallel”, exemplified by the Thinking Machines CM-1 and CM-
2 (“CM” for “connection machine”) that had up to 64Ki relatively simple 1-bit
processors that could work simultaneously on the same instruction on different
data; the effect was of 2048 parallel 32-bit integer processors. In addition to 1-bit
integer processors, the CM-2 had floating-point units and the last model made,
CM-5, gave up on 1-bit processing and used Sparc CPUs (a RISC design – but
still programmed in SIMD mode, with an external controller that streamed th
same instructions to each CPU). These machines seldom came close to their peak
throughput, and were notoriously hard to program. The nodes were arranged in
a hypercube [Womble et al. 1999], a structure designed to minimise distances
between nodes while also minimising the total number of interconnections.

Since GPUs have taken on a new life as an alternative to conventional
performance-oriented architectures, I consider them separately. SIMD and vector
architectures feed into the design of GPUs, so I add a little more detail as applies
to GPUs in the next chapter.

5.2 Shared Memory Principles
Shared-memory systems have significant performance advantages over distributed
memory systems up to the point where they run into scalability issues (though
you can argue that distributed memory systems only appear more scalable because
they are unsuited to problems with a large amount of interprocess communication,

82 CHAPTER 5. MULTIPROCESSORS

IPC). Nonetheless shared memory can cause significant performance penalties if
not well understood. Those issues start with performance problems generic to
memory hierarchies, and extend to those specific to shared memory.

In what follows, I talk about a “CPU” as synonymous with a core, since there
is no logical difference.

First, let’s review some memory hierarchy basics. At the top level registers are
specific to a CPU and not an issue for sharing. The TLB too tends to be specific
to a CPU, and isn’t specific to multiprocessing2, though failure to understand the
TLB can cause major performance problems. Once we get to caches, we start
to run into significant performance problems. Even though the L1 cache may be
local to a CPU, we need to take into account shared memory and ensure that the
caches remain consistent.

Maintaining cache coherence is one of the bigger problems of shared-memory
multiprocessors. In addition to the usual cache tag scheme where we need a
sufficient portion of the address to determine what memory locations a block
represents, and status bits to indicate validity and whether the block is dirty, we
also need to know if a block is shared. The simplest way to do this would be
to add a shared bit. However, keeping track of whether the block is shared is a
useful addition, because a non-shared block can immediately change to modified
(or dirty) without waiting for any other caches to report back. One of the most
common cache protocols is called MESI for having 4 states, modified, exclusive,
shared and invalid. MESI is specifically well suited to a write back cache, i.e.,
one where blocks can be dirty. If a block is written through, i.e., all modifications
immediately go to the next level down, a different protocol is needed. However,
write-through caches are not in wide use, and have seldom been used in real
systems [Archibald and Baer 1986]. Early designs with relatively slow CPUs
used write-through caches (e.g. some early Sequent systems – a company with a
brief period of success mainly in the database server market) but they do not scale
to faster designs, as the number of writes saturates the bus.

Here is some common terminology:

• multilevel inclusion – bigger low-level components of the memory hier-
archy include everything in the smaller higher levels (especially caches):
this makes coherence a lot easier to manage as absence in a lower level
automatically means absence in a higher level; caches without inclusion

2This is not strictly accurate since shared memory involves sharing a page table, but the
performance issues of a TLB tend not to be significantly exacerbated but this effect.

Shared Memory Principles 83

have the subset property

• snooping – each cache controller watches the shared bus for transactions
that relate to its content; snooping doesn’t scale to very large systems,
and various directory schemes have been developed for very large shared-
memory systems.

There are several variations on how cache coherence is implemented in practice.
Using snooping, each CPU’s cache controller watches for activity on a shared bus,
and either intervenes in other caches, or modifies the state of its own if necessary.
The MESI protocol is designed to reduce the need for snooping, because once a
block is marked exclusive in a cache, the owner need not broadcast any actions on
that block. It must however react if any other cache broadcasts an action. Let’s
examine in detail how the MESI protocol works in a variety of scenarios (from
the point of view of a specific block in one cache – see Figure 5.1). In each
case, assume that a miss results in initiating a read from main memory, and this is
aborted if another cache has a copy. If 1 other cache has a copy, it puts it on the
bus for the requester; if it’s shared, the owners race to put a copy on the bus.

• read

– hit – no action

– miss – state currently I

* no copy (no other cache responds to snoop) – state→ E

M,E E

S Iother I or self replace

self write

ot
he

r r
ea

d 
m

us
t w

rit
e

ba
ck

se
lf

writ
e

oth
er

s I

se
lf

m
is

s
no

 o
th

er
s S

 o
r E

other:
 rea

d

self miss
others S or E

Figure 5.1: MESI state transitions. Viewed from the perspective of one block in one cache:
actions above the line trigger a transition, with consequences or explanations below the
transition lines.

84 CHAPTER 5. MULTIPROCESSORS

* another cache S – state→ S

* another cache E – state→ S; snoop makes owner set its state→ S

* another cache EM – state → S; snoop makes owner set its state
→ S; write back to main memory

• write

– hit

* state EM – no action

* state E – state→ EM

* state S – invalidate signal sent on bus; state→ EM

– miss

* no copy – state→ EM

* another cache E or S – state→ EM; invalidate signal sent on bus

* another cache EM – state→ EM; snoop makes owner set its state
→ I; write back to main memory

• replacement – what we do to a block we evict from the cache (on a read or
write)

– state EM – write to main memory, continue as for miss

– state E or S – no action, continue as for miss; if state is S and only 1
other cache holds the block, it will still hold it in state S

The protocol doesn’t have a way of turning a block that’s shared back to exclusive
if all other processors lose theirs. To do so, we would have to broadcast on the
bus every time a shared block was evicted, and keep a count of sharers. Note also
that “main memory” really means the next level down, and in current multicore
designs is usually a shared L2 or L3 cache. This version minimises copying from
main memory; more conservative designs copy to main memory whenever a copy
is requested from another cache.

The Intel Nehalem architecture (launched with the Core i7, late 2008), with
the major functions illustrated in Figure 5.2 and the die layout in Figure 5.3, is
an example of a recent design with shared caches, in this case, L3. The version
illustrated is from the first series with 8MiB of L3 cache; in more recent designs
with 12MiB of L3 cache, caches would take up more than half the real eastate of
the die. In the Nehalem design, the MESI protocol routes most requests via the L3

Shared Memory Principles 85

cache rather than having direct transactions between L2 caches, but is extended to
something closer to the above, with an extra feature confusing called forwarding,
making it a MESIF protocol, implementing the scheme I describe where caches
forward a value to another that requests it rather than going via main memory (or
in this case the L3 cache). The forwarding feature is limited to processors outside

quadruple associative Instruction Cache 32 KByte,

128-entry TLB-4K, 7 TLB-2/4M per thread

Prefetch Buffer (16 Bytes)

Predecode &

Instruction Length Decoder

Instruction Queue

18 x86 Instructions

Alignment

MacroOp Fusion

Complex

Decoder

Simple

Decoder

Simple

Decoder

Simple

Decoder

Decoded Instruction Queue (28 µOP entries)

MicroOp Fusion

Loop

Stream

Decoder

2 x Register Allocation Table (RAT)

Reorder Buffer (128-entry) fused

2 x

Retirement

Register

File

Reservation Station (128-entry) fused

Store

Addr.

Unit

AGU

Load

Addr.

Unit

AGU

Store

Data

Micro

Instruction

Sequencer

256 KByte

8-way,

64 Byte

Cacheline,

private

L2-Cache

512-entry

L2-TLB-4K

Integer/

MMX ALU,

Branch

SSE

ADD

Move

Integer/

MMX

ALU

SSE

ADD

Move

FP

ADD

Integer/

MMX ALU,

2x AGU

SSE

MUL/DIV

Move

FP

MUL

Memory Order Buffer (MOB)

octuple associative Data Cache 32 KByte,

64-entry TLB-4K, 32-entry TLB-2/4M

Branch

Prediction

global/bimodal,

loop, indirect

jmp

128

Port 4 Port 0Port 3 Port 2 Port 5 Port 1

128 128

128 128 128

Result Bus
256

Quick Path

Inter-

connect

DDR3

Memory

Controller

Common

L3-Cache

8 MByte

Uncore

4 x 20 Bit

6,4 GT/s

3 x 64 Bit

1,33 GT/s

GT/s: gigatransfers per second

Figure 5.2: The Intel Nehalem archictecture. Source: http: // en. wikipedia. org/ wiki/
Nehalem_ (microarchitecture) .

http://en.wikipedia.org/wiki/Nehalem_(microarchitecture)
http://en.wikipedia.org/wiki/Nehalem_(microarchitecture)

86 CHAPTER 5. MULTIPROCESSORS

Figure 5.3: The Intel Nehalem die showing major components.
Source: http: // arstechnica. com/ uncategorized/ 2008/ 11/
intels-3-2ghz-monster-nehalem-roars-onto-the-scene/ .

a single multicore unit. In local core-core cache transactions, the L3 cache acts as
a central repository for transactions with tag bits indicating the state of blocks in
the individual cores, reducing the need for snooping [Molka et al. 2009].

5.3 Shared Memory Performance

There are many performance factors in a shared-memory system. The less sharing
there is, the fewer problems there are with scaling. Some problems are avoidable
with careful programming, but any workload with a high rate of communication
between components will not achieve a good speedup on any multiprocessor
system.

Here are a few key factors in performance of shared-memory multiprocessors,
that apply (almost) equally to multicore systems:

• high rate of sharing – as you should be able to see from the MESI protocol,
modifying a variable in one CPU (or core) then reading it in another creates
significant bus traffic. Even if you don’t need to wait for the write to the
lower level to complete, you need to wait for the other cache to broadcast

http://arstechnica.com/uncategorized/2008/11/intels-3-2ghz-monster-nehalem-roars-onto-the-scene/
http://arstechnica.com/uncategorized/2008/11/intels-3-2ghz-monster-nehalem-roars-onto-the-scene/

Shared Memory Performance 87

on the bus. That, in some systems, may not be a huge penalty compared
with waiting for the lower level of memory. Still, if it happens a lot the bus
can saturate.

• false sharing – if two or more variables that are actually not shared are in
the same cache block, the coherence protocol doesn’t know that: it only
sees whole cache blocks; in this scenario a lot of unnecessary delay and bus
traffic can result

• contention for locks – if a lock is implemented as a simple spinlock relying
on the cache coherence scheme to ensure that updates are propagated, the
amount of bus traffic when a lock is released and set by one of several
contending processes can be very high

These factors are in addition to the usual problems of scaling up a multiprocessor
workload: load balance (ensuring the work is evenly split) and ensuring program
correctness.

False Sharing

Let’s use numbers from a real system, an Intel Nehalem design. I list some key
numbers in Table 5.1. A few things need explanation: snoop latency is the extra
time L3 must take before responding to a miss if a block is exclusive in a higher-
level cache, since it must also check if the block has been modified. If a block
is shared, L3 can immediately provide the block to the missing cache with the
shared access latency. In this scheme, misses in L1 or L2 are handled out of L3,
rather than the more aggressive scheme suggested in my definition of MESI. The
reason for this is to relieve the high-level caches of the need to service requests
from other caches. Since L3 is relatively fast compared with DRAM, this is a
reasonable trade-off to avoid either the complication of another port on the L2
caches or forcing them to stall if they have a competing request from another
core as well as servicing their own L1 misses. The Nehalem architecture includes
other features we do not explore here including a fast interconnect for building
multi-chip multiprocessor systems.

Given the Nehalem numbers, let’s consider costs of cache misses and perform-
ance bugs such as false sharing. Suppose we have two sequences of code on two
cores that each modify a separate variable that’s in the same cache block. Let’s
take a short sequence of code in a loop as our example (using our simple RISC
instruction set but with the Nehalem latencies):

88 CHAPTER 5. MULTIPROCESSORS

level
latency

cycles ns
L1 4 1.4
L2 10 3.4
L3 38 13
DRAM 191 65
multiprocessor overheads
shared access 38 13
snoop latency 27 9.2

Table 5.1: Intel Nehalem latencies. These are for a specific model, an Intel Xeon X5570 with
core frerquency 2.933 GHz (cycle time hence 0.34ns), as determined by Molka et al. [2009];
at a different clock speed latencies will vary.

core 0 core 1
1 lw R6,0(R2) lw R6,4(R2)
2 add R6,R6,R5 add R6,R6,R5
3 sw R6,0(R2) sw R6,4(R2)
4 addi R4,R4,4 addi R4,R4,4
5 cmplt R8,R4,R7 cmplt R8,R4,R7
6 brne R8,R0,-20 brne R8,R0,-20

These two examples pretty much do the same thing, except one has a variable
at offset 0 from the address pointed to by R2, and the other a variable at offset 4
from the address in R2. The two cores’ registers are independent, though I assume
here that R2 has the same value in both cores. Unless we are extremely lucky and
R2 is pointing at the last 4 bytes of a cache block, we will get false sharing here
(assuming blocks are more than 4 bytes).

At the start of the loop, to keep things simple, neither core has a copy of the
cache block and it is in the shared L3 cache, and that they are running in lock-
step until one has a cache miss. At instruction number 1, both processors have a
miss, and whichever acquires the bus first issues a miss to L3. We must add the
latencies for L3, L2 and L1; once the block is copied from L3 to L2, the shared
bus is released and the other core can access the block from L3. Since the outcome
doesn’t differ, let’s assume core 0 wins the race. The sequence of events starts out
as in Figure 5.4, and goes downhill from there. After the illustrated steps, the bus
protocol should allow core 1 to acquire the block (forcing core 0 to write it back so
the state can be S again) to complete the load and it can then do the add (#2), since

Shared Memory Performance 89

that only involves registers, even if core 0 invalidates core 1’s copy of the block
again. The chances are core 1 will have another miss when it tries to write the
block at which point it retaliates by forcing core 0 to give up the block (writing
it back as well, as part of the write miss from core 1). It’s a useful exercise to
calculate in this scenario how long it takes for both loops to complete as few as 10
iterations.

So how can we avoid this scenario?
One approach is to use processes rather than threads, with explicitly allocated

shared memory, and take care that you manage how data structures are used
between cores or CPUs. While processes are heavier-weight entities than threads,
it doesn’t take a lot of inadvertent false sharing to cancel out the gains. Another
approach is to pad all variables to a size that’s a multiple of the cache block size,
making sure that all variables start on a cache block boundary. To do this, you
may need your own memory allocator.

Locks

For multithreaded and multi-process programming, we need mutual exclusion
to ensure predictable behaviour of updating shared variables. For example,
if we have a global counter and two threads update it, we don’t want a
scenario where one thread loads it into a register, another thread also loads it
into a register, then each increment the variable and store it back in memory,
resulting in the counter only increasing by 1. A result that depends purely
on the order competing processes or threads complete an action is called a

Figure 5.4: False sharing example. Core 0 wins the race to acquire the block, and reaches
instruction #3 before core 1 completes handling its miss to L2. L3 maintains global state of
shared blocks, and issues a snoop on the bus to inform core 0 that its copy of the block is
changed to state S before if can supply the block to core 1. Core 0 is stalled on cycle 4 of its
store (#3) because it can only invalidate a block once the bus is free, before it can modify it.
Latencies are drawn to scale; shading representing the memory hierarchy (darker ≡ slower).

90 CHAPTER 5. MULTIPROCESSORS

race condition, and is usually a programming error. Since synchronization is
critical to parallel program correctness, we need efficient implementations so
synchronization doesn’t become a bottleneck.

A simple lock structure, a spinlock, is based on an atomic memory operation.
There are several that can work. Earlier architectures used test and set, that tested
a value for a specific condition and set it based on the outcome, and the instruction
was guaranteed to complete without interruption (or to have that effect). A more
recent variant is atomic swap, which allows swapping contents of a memory
location with a register. Again, the operation is guaranteed to complete without
being interrupted. A spinlock using an atomic swap operation could look like this
(assuming there is a location in memory we can refer pointed at by register R5
that’s initially 0, and R6 is initialised with 1):

lock: swap R6,0(R5)
bne R6,R0,lock

If our swap operation gets back a 0, that means the lock wasn’t previously held,
and we’ve now set it. If it’s not a 0, we have to try again. For either outcome, we
set the value of the lock to 1. If someone else held it already, we don’t effectively
change it, since it would be 1 already. This tight little loop continues until whoever
else got in first releases the lock, which is done like this:

sw R0, 0(R5)

We rely on cache coherence to ensure that locking an unlocking is serialised, and
updated to each processor or core when the lock variable’s value changes.

Using an atomic swap is not ideal for a lock because it has the ABA problem –
if you look at the same memory location twice and see the same value, it may have
changed twice (originally A, changed to B then back to A). If you really want to be
sure that you are seeing the same value because it hasn’t change, another option
is that in the RISC-V instruction set, the pair of instructions Load Reserved–Store
Conditional. The first of these, lr, is a load that marks the memory location as
one that must be watched for changes; the second, sc, stores conditional on the
memory location not having changed. A sc instruction has a destination register
field that is set to 0 on success and a non-zero error code on failure. There is a
limited time that the “reservation” holds, after which the sc automatically fails.
There is also a restricted list of instructions that may appear between the two to
minimize chances of breaking the design decisions behind the pair of instructions.

Shared Memory Performance 91

For purposes of understanding memory effects, our atomic swap is sufficient
since the memory state changes are the same (excluding the need for “reserving”
a memory location).

The swap strategy looks nice and simple; the bad stuff happens when a lot
of processes or threads are trying to acquire the lock. Each time one of them
tries to acquire the lock, since the swap instruction is a memory write, it must be
invalidated out of any cache that holds it. The first core or CPU that tries to issue
a swap instruction will cause an invalidate, forcing a write back, then get a copy
in its cache, where it will immediately write to it (even if the effect of the write is
to overwrite the lock variable with the exact same value as it had before, it’s still
a write). Every other process trying to acquire the lock will experience a cache
miss, and queue up on the bus. If the process that holds the lock meanwhile has
a cache miss for any other purpose, it will also have to wait its turn for the bus,
further slowing things down. When finally the holder of the lock releases it, it
will also have a miss, invalidate the lock variable from any other cache that has a
copy, and modify it, causing a flurry of invalidates as each contender races to be
the next one to acquire the lock.

If you think this sounds pretty bad, you’d be right. That’s why there has been
considerable research into more scalable locking strategies. One example of this
is a ticket lock. There are various ways of implementing ticket locks (and some
that are inconsistent with the basic definition, suggesting that the name sounds
appealing and has been appropriated by anyone wanting to claim they have a
scalable lock design). The key idea is that each contender for the lock picks up
one ticket that corresponds to their place in the queue, and they can either spin on
that ticket, which is a variable only shared between that thread or process and the
one immediately ahead of it in the queue, or suspend pending the release of that
specific ticket. Compared with a spinlock, a ticket lock has these benefits:

• minimal multiprocessor contention – there’s a race to acquire the next ticket
but from there on no spinning on a single shared variable

• fairness – the first contender to win a specific ticket will be serviced in the
order of winning the ticket so starvation cannot occur

A simple implementation of a ticket lock is as follows. Each contending thread or
process has to have a unique variable in shared memory, the address of which we
store in register R6. We start out with the address of the global ticket in register
R5. Initially, the global ticket pointer (the address contained in R5) must point to a

92 CHAPTER 5. MULTIPROCESSORS

(a) Just before swap. (b) After swap.

Figure 5.5: Simple ticket lock. Contention for updates is reduced to grabbing the address of
the next available “ticket”.

location containing the value 0, so the first contender to win will find the lock not
set. To lock:

addi R4,R0,1
sw R4,0(R6)
addi R7,R6,0 # save for next time
swap R6,0(R5) # find out who beat us

test: lw R8,0(R6)
bne R8,R0,test # wait for the winner if any
addi R6,R7,0 # restore the address of our lock

We release the lock as follows:

sw R0,0(R6) # release our lock

What we have done here is to set up our own lock variable with the value 1,
and swap its address with whatever address is already stored in the global ticket
pointer. We now spin on the value at the address previously pointed at by the
ticket pointer. The global ticket pointer has to be initialised to point to a memory
location with the lock value set at 0 so the first contender can get in. The effect
of this approach is that each contender is spinning on a different lock variable that
will be released only when the process or thread that was immediately ahead of
it in attempting to acquire the lock releases it. While there will be contention
for swapping the address of our local lock with that stored in the global ticket
pointer location, that only happens once for each attempt at acquiring the lock.
Subsequent spinning is on a memory location only known by the current stalled
thread and the owner of that location. Of course we need to ensure there is no

Summary 93

false sharing though even this is not that important because we are spinning on a
memory read rather than a write; if more than one core experiences an invalidation
there will not be consequential series of follow-on invalidations. I illustrate the
two crucial steps of the lock: initializing and the swap instruction in Figure 5.5.
In Figure 5.5a, I illustrate the way state is set up in a scenario where the initial
ticket is still zero, representing the case where the lock is not held. In Figure 5.5b,
I show how the state changes when the current contender has acquired the lock.

Ticket locks are but one of many approaches to scalable synchronization
primitives [Mellor-Crummey and Scott 1991]. Parallel programs use a range
of primitives including barriers: a barrier with parameter N causes N − 1
thread or processes to stall and when the Nth arrives at the barrier, all proceed.
Implementing a barrier using spinlocks is very inefficient, even on a small number
of processors, and threads packages such as Pthreads implement barriers by
queueing waiting threads and putting them to sleep. Even so the underlying
implementation will be unscalable if it’s based on spinlocks as a basic building
block. One approach to implementing scalable barriers uses a tree structure
[Markatos et al. 1991]; another is to synchronize with nearest neighbours, limiting
global communication [Machanick 1996]

5.4 Summary

Although there are many multiprocessor architectures, I focus here on shared
memory MIMD architectures since they represent the mainstream of conventional
computing. SIMD architectures in various forms have come and gone, and remain
persistent mainly because GPUs are such a large share of the market.

Shared-memory architectures will likely be with us for some time given that
they are a natural organization for multi-core devices, because they accommodate
so many different types of workloads, including parallel applications and mul-
titasking. The performance issues covered here, before the multicore era, were
primarily the concern of relatively high-end systems. Given that multiple cores
are commonplace, understanding the performance problems and avoiding them is
increasingly important both in user-level vode and system code.

94 CHAPTER 5. MULTIPROCESSORS

Exercises
1. Use the latencies in Table 5.1, and the timing illustrated in Figure 5.4. You

can assume every instruction can complete in one clock if fully pipelined, a
store modifies memory in the MEM stage (4th stage of the pipeline), and an
invalidate requires the latency of a snoop for the invalidating core if the bus
is not occupied.

(a) Calculate the total time it takes before core 0 manages to complete the
illustrated store instruction.

(b) Now assume that core 1 acquires the block as soon as possible after
core 0’s store completes. Calculate the total time from the start of
Figure 5.4 until core 1 completes its first store, assuming that core 0
continues with the loop with minimal stalls.

(c) Calculate the total time it takes for 10 iterations of the loop for both
cores, stating assumptions about timing of competing events.

(d) Why is it a reasonable assumption that an invalidate requires a
relatively short stall (here, 2 cycles), not a longer delay, e.g., the 27-
cycle delay required for a snoop?

2. Will the ticket lock as described here work as you expect if N threads enter
it and leave it, then try to re-enter at a later stage? Hint: what will the global
pointer have as its value, and what will be stored at that location?

3. Spinlocks are often used as a core primitive to implement more complex,
scalable synchronization techniques like semaphores that put a process or
thread to sleep and wake it when it reaches the head of a queue. Are
spinlocks a reasonable choice in that scenario, or would you still look for a
more scalable option like a ticket lock?

4. Is a test and set instruction superior or inferior to an atomic swap? Explain,
considering the design philosophy of a RISC ISA.

6 GPUs

GPUS HAVE BEEN AROUND FOR A LONG TIME and represent an untidy mix
of architectural ideas – so why are they worth considering separately?
First, because they are a mix of architectural styles, they represent a case

study in comparing the benefits and weaknesses of various models of parallelism.
Secondly, because they are so widely available, there is more chance that,
despite any difficulties in programming them, they may become established as
an alternative platform for high-speed computation. It is that market, rather than
the obvious one (given that the name means “graphics processing unit”), that hold
some interest, because there are limits to how much further graphics performance
needs to be taken. Once you can do realistic three-dimensional imaging in real
time, where else can you go?

The idea of adapting a part designed for graphics processing to general
purpose computation is not new; as I describe on page 17, the Intel i860 featured
as a component in large-scale supercomputers in the 1990s. I also note there that
it was not a great success. Will GPUs be more successful as high-performance
computation engines? If only because they are deployed on a vast scale whether
used in that mode or not, there is a lot of ongoing investment in pursuing
this question. Since the primary market for GPUs remains graphics, design
compromises will tend to favour that application. Early attempts at using GPUs
as compute engines ran into the problem that design compromises favouring
speed in graphics rendering meant that CPUs could not in general be expected
to implement the IEEE floating point standard as strictly as a general-purpose
floating-point unit [Chinchilla et al. 2004; Meredith et al. 2009] (the odd wrong
pixel is less noticeable than failing to render the next frame in time). Given the
growth in the market for general-purpose use of GPUs (GPGPU), manufacturers
have started to pay attention to quality of their floating-point implementation
[Krakiwsky et al. 2004; Whitehead and Fit-Florea 2011].

In this chapter, I briefly survey some of the architectures that contribute to the

95

96 CHAPTER 6. GPUS

design of GPUs, adding to the discussion of Chapter 5.

6.1 Vector Processing
Vector processors fall into two broad categories: vector register architectures, and
memory-based vector machines. The latter generally require vector registers to
perform at a reasonable level, so I start with vector registers. Vector machines of
the class of the designs created by Seymour Cray generally have very aggressive
memory architectures. I briefly describe how these work; in the heyday of this
class of machine, there was considerable research into designing memories for
them [Cheung and Smith 1986; Weiss 1989; Valero et al. 1992; Seznec and
Lenfant 1992], possibly a pointer to difficulties with vector register machines with
no special memory architecture.

A vector register machine has registers that replicate a specific data type, and
in some cases can be reconfigured as more lower-precision (narrower) or fewer
higher-precision (wider) registers. For simplicity, I assume a vector register is
comprised of a fixed number of scalar registers of a fixed size. To make the
discussion concrete, I assume a vector register has length 64 (i.e., it can contain
64 distinct values). Vector architectures can generally either operate on a pair
of vectors producing a vector result, or a vector and a scalar producing a vector
result. In the latter case, the same scalar is an operand for each operation on the
source vector. For example, you may want to multiple each vector element by a
constant.

In a case where the available vector length (here 64) is sufficient, you can
use a single instruction to do the main work (e.g. multiplying all 64 elements by
a constant, or adding all 4 elements to the equivalent entries of another vector).
This single instruction has a latency dependent on how long the hardware can
perform 64 operations. By contrast, if you use a scalar architecture, you will do
the same 64 operations but need to wrap a loop around them, and add ancillary
code for array indexing. The saving in number of instructions executed in this
case should be about a factor of 100. That is not as big a saving as it sounds,
since the vector unit still has to do 64 operations, and those cannot happen
instantaneously. However contrast the requirements of speeding up the vector
operations by adding more parallel hardware with doing the same for the scalar
code. The scalar code has a loop, so you will need to unroll the loop, either
by a coding technique (compiler optimisation or hand-unrolling it), or hardware
support such as Tomasulo’s algorithm. If you go the first route, you need to know

Vector Processing 97

in advance how many times it’s worth unrolling the loop; in the latter case, you
add significant hardware complexity including register renaming. On the other
hand, to speed up the register code in hardware is relatively simple. You can add
more functional units and provided there are no dependences between computing
vector elements, as many calculations as there are available functional units can
start at once.

You can apply the same trick as with a scalar pipeline to reduce inter-
calculation delays, forwarding a result to the input of a functional unit rather than
going via the register file. In a vector architecture, forwarding is called chaining.

In a simple implementation of a vector machine, each ALU operation takes as
long as in a single-issue scalar machine. The major saving is in fewer instruction
issues and removing branches for loops. In the case of a simple loop with two
ALU operations, in a typical RISC instruction set the loop body and condition
would add up to about 10 instructions. For a 64-long register vector machine
(without for now going into how the operands find their way to registers), the
equivalent code would be about half the number of instructions and also would
not require repetition. The scalar code would therefore require about 128 times
the number of instructions, though the number of ALU operations would be the
same, meaning that the practical speed gain would be relatively modest, especially
if the ALU operations are multi-cycle floating point operations. The big gain from
vector instructions comes from the extremely regular nature of the parallelism,
which makes it possible to split the work across multiple functional units without
complications such as data and control hazards.

In big-iron vector machines such as those designed by Cray, vector ALU
operations are accompanied by vector memory operations, which is where things
start to get more interesting. In a simple example where the data size exactly
matches the register length, a vector load instruction that fetches the next N (64
in our example) elements of an array, sequentially from a given base address, is a
good fit to the problem. There is a range of scenarios that cover cases where the
data size is not an exact fit:

• data shorter than the vector size – one approach is to have a vector length
register (VLR) that can be any value up to the hardware vector length; vector
instructions’ length is controlled by the VLR’s value. Some machines also
have a maximum vector length set in the hardware. The MVL can change
in new hardware, avoiding the need to change the instruction set when the
vector length changes

98 CHAPTER 6. GPUS

(a) Simple vector load (b) Vector load stride 3

(c) Vector load gather.

Figure 6.1: Variations on vector loads. Stores have similar variations; the store version of a
gather is a scatter. In stride mode, the load fetches data stride S apart. In gather mode, an
index vector is used to find the offset from the start of the main array in memory.

• data longer than the vector size – use the MVL value to create an outer
loop that splits the problem of size N into the portion that is an exact
multiple of MVL, repeated b N

MV Lc times, and the remainder (done once).
This technique is called strip mining

• elements not adjacent in memory – we need a way to specify a stride, a
distance apart of memory locations. Big-iron vector machines have this
capability (e.g., a stride register could set the distance apart of successive
elements for vector load or store)

• sparse vectors – in a case where a data structure has a lot of zeros (or
other elements not of interest), it may be stored using indirect indices,
e.g., element i is found at A[index[i]]. To handle this scenario, vector
architectures may use gather-scatter:

– gather – use an index vector to add to a base address to do loads

– scatter – use an index vector to add to a base address to do stores

Gather-scatter can be used to save memory, if the index array is a smaller data
size than the actual data and also as a way of accessing memory in different orders
without having to sort the original data each time a different ordering is needed.
To implement all of these operations with an aggressive vector CPU that can do
multiple ALU operations per cycle requires high memory bandwidth. To get some
idea how much, if we consider a clock cycle time of the order of 2ns (500MHz:

Vector Processing 99

Figure 6.2: The principle of multiple memory banks. An access is started on each bank in
each successive cycle. Although there may be a sizeable delay before each bank responds, each
bank will deliver its request in successive cycles after that delay.

fast at the time of the later Cray vector machines), with main memory SRAMs
with a cycle time of 15ns (available at the time), one vector load would saturate
the memory system. If we start going more aggressive and allow more than one
load or store per cycle, or add processors, the system is going to be memory-
bound despite the fast SRAM main memory. The solution is to multi-bank the
main memory. A bank is a division of memory that can be separately addressed.
While one bank can’t supply results as fast as the clock speed, pipelining access
to multiple banks can. Supercomputers of that era could have of the order of 1024
banks. A similar effect can be achieve with multi-banked DRAM, though the
startup delay is much higher. Modern architectures tend to reduce the need for
memory banks by using very fast caches that can keep up with the CPU.

In Figure 6.2 I illustrate the general principle of multiple banks. In this case,
there are four, and the total latency of a memory operation is 8 cycles. By starting
bank requests on successive cycles, the total latency for 4 accesses is 11 cycles,
rather than 32 cycles, as would be the case if each access had to be strictly
sequential. In the illustrated scenario (where each bus transaction takes only 1
cycle), there is no contention for the interconnect (a hexagon in a timing diagram

100 CHAPTER 6. GPUS

as seen here represents a state where values could be 1 or 0, and we don’t care
which, only that a transition occurred), so data and addresses could use a common
bus, even though I illustrate the separately. In high-end systems of the Cray era, a
more complex interconnect was required.

Another inhibition on vector mode is conditional code. If you have a program
that for example should only do an ALU operation if a vector operand is non-zero,
you want your vector code to apply the operation to every element except those
that are zero. A common approach is to use a vector mask, a special register with
1 bit per element of a vector register. If the bit is 1, the operation is wanted. If not,
it isn’t. To implement vector masks, you need an instruction that resets the mask
to all 1s (the default, meaning all operations are wanted), and vector compare
instructions that set the corresponding bit of a vector mask based on whether the
compare is true (1) or false (0). The mask then applies to whether the outcome of
the ALU operation is stored on not; the time for the ALU operation is unchanged.
The mask in effect only says whether it’s written to the destination vector register
element or not. While time and resources are wasted for results that aren’t needed,
the overall effect in most cases is still faster than executing the ALU operations in
scalar mode with a loop.

Why aren’t vector machines mainstream? Cray’s machines peaked in the
1990s. Seymour Cray split from his company Cray Research in 1990 when the
Cray 3 project was put on the back burner, and his new company, Cray Computers,
failed to sell more than one of its first model, the Cray 3, and folded before it could
deliver its successor, the Cray 4. Cray Research continued for a while but with
the end of the cold war, generous funding for high-speed computers of limited
applicability faded and at around that time, RISC architectures started to deliver
a significant fraction of the performance of specialist architectures at a fraction of
the price. In the mass market, large SRAM memories with a thousand or more
banks are not practical (not until someone finds a way to package them cheaply
anyway).

The big question that all of this leads to is whether vector architectures
embedded in GPUs and multimedia media extensions to instruction sets make
any sense without the massive memory bandwidth available to a machine of the
old Cray type. The Cray X1, for example, a successor to the T90, has 16 memory
controllers per node supplying 204 Gibytes/s to each 4-core vector unit [Dunigan
et al. 2005] – and this is an architecture with caches, unlike earlier Cray designs.

SIMD Extensions to Instruction Sets 101

6.2 SIMD Extensions to Instruction Sets

Many media applications need relatively short data types, e.g. 8 bits per colour,
and it’s relatively easy to partition an arithmetic unit so that instead of 32 or 64-
bit arithmetic, it can do multiple instances of a narrower unit like 8 bits. In the
Intel IA32, multimedia extensions were added by a relatively modest extension
of the existing ALU based on this principle. Where Cray vector registers were in
the range of 64-128 long supporting full-size floating point, the data types arising
from such modest extensions are limited to what can fit into a double-precision
(64-bit) register. Intel’s original MMX additions were based on that simple model.
Later extensions, Streaming SIMD Extensions (SSE) double the register width to
128, and the latest iteration, Advanced Vector Extensions, increased register width
to 258, allowing up to 32 8-bit operations per register.

Because these are ad-hoc extensions with big jumps from each design, and
without the advantage of the older vector architectures of hardware support for
varying the vector length, the number of new instructions is large, several hundred
counted across all Intel’s variations [Firasta et al. 2008]. There are about 90
AVX instructions, if you do not count all variants of the same basic instruction
separately, and the AVX reference runs to 750 pages [Intel 2009].

While compiler support for these instructions is improving, it is not nearly
as easy for a compiler to spot opportunities to use them automatically as with a
traditional vector architecture. They tend to be used more commonly in hand-
coded drivers or plug-ins for programs with intensive graphics requirements.
Despite these problems, this form of limited SIMD does have some advantages.
Unlike vector machines, a page fault across a load or store boundary can’t happen
– or at least it couldn’t until Intel allowed loads to be explicitly unaligned with SSE
[Lomont 2011], and relaxed the requirement for loads to be aligned in most cases
with the AVX design [Intel 2009]. Also, the limited vector size is a better match
to commodity memory systems that would battle to keep up with the demands
of a full vector instruction set, with 64 or more double-precision floating point
numbers per vector register.

Overall, while SIMD extension instruction sets initially set out to be simple,
avoid the complications that attend traditional vector designs, hundreds of
instructions requiring a good fraction of 1,000 pages to document suggests
something not quite right.

102 CHAPTER 6. GPUS

6.3 GPUs
Graphics processing units are increasingly migrating to the general purpose space
(hence GPGPU: general-purpose use of GPUs). As with SIMD extensions to
instruction sets, they suffer ad hoc design and repeated changes. That style of
change has a venerable history. Silicon Graphics, the pioneer of high-speed 3D
graphics, went through architecture iterations that reprised a good fraction of the
major models of parallelism:

• pipeline – early versions of the SGI Geometry Engine were deeply pipelined,
with some SIMD aspects [Harrell and Fouladi 1993]

• heteorgenous architecture – the Reality Engine used a small number of
relatively non-exotic Intel i860 processors with hundreds of specialised
cores [Akeley 1993]

• SIMD – the InfiniteReality system of the late 1990s uses a SIMD architec-
ture [Montrym et al. 1997]

SGI early on realised the need for a high-level programming interface that hid the
hardware, and developed GL, the basis for OpenGL, as an abstraction layer. That
approach made it possible to change the underlying implementation radically as
design trade-offs changed.

However, SGI did not ever envisage their graphics hardware being used for
high-speed computation: they had a different department covering that, and they
had very competitive machines in the 1990s, that were part of the reason that
traditional supercomputer makers like Cray ran into trouble.

In more recent times, the underlying reason for rapid change in graphics
hardware has not changed. As hardware becomes cheaper, approaches to graphics
processing that previously were impractical become viable. Unlike with the
history of SGI though, those changes are accompanied by an increasing demand
to make it possible to run non-graphics applications on GPUs.

NVIDIA has addressed the problem of rapid hardware change providing C and
C++ extensions called CUDA (Compute Unified Device Architecture) that allow
programming that divides code between the host CPU and the graphics system.
OpenCL (Open Computing Language) is a more generic alternative (extending C)
that aims to be portable across a wider range of hardware, not only GPUs [Stone
et al. 2010]. Aside from the usual portability concern (ideally, a recompiled should
be sufficient to run on a different CPU), performance portability is a hard problem

GPUs 103

[Du et al. 2012] even within one manufacturer’s line: assumptions underlying your
coding strategy may not apply on a different model.

A few basics apply to current designs. First, streaming access to memory hides
latency. As with multiple banks in older designs, in current DRAM designs, every
access after the first has no additional delay (up to the limit of a column access).

I examine briefly some of the features of a typical GPU from NVIDIA, and
the performance portability problems that can arise.

First, the memory hierarchy of a GPU is complicated. In recent designs that
support multiple SIMD threads to hide memory latency, there is a small cache
for local variables that don’t fit the streaming model. There may also be a local
memory that is used for synchronization between threads (e.g. NVIDIA has a
hardware barrier instruction [NVIDIA 2011]). Then there is a global memory that
is separate from the main CPU’s main memory. Second, NVIDIA hides frequent
changes in the hardware by using an abstraction layer in the form of the PTX
(Parallel Thread Execution) instruction set, that has to be translated at load time
to the actual underlying machine instruction set.

PTX has about 40 basic instructions that Hennessy and Patterson [2012] use
in examples. There are many other specialist instructions and when you add in all
the available variations, the number blows out to hundreds, though the reference
manual only runs to about 200 pages [NVIDIA 2011], potentially an improvement
on Intel’s AVX design at least in that respect. PTX hides some of the complexity
of identifying threads and branching, allowing these to vary from implementation
to implementation.

Here is a contrast between traditional vector and PTX code, implementing the
following function (DAXPY stands for double precision a times x plus y, and is
part of the popular Linpack benchmark suite):

void daxpy (int n, double a, double *x, double *y) {
for (int i = 0; i < n; i++)

y[i] = a * x[i] + y[i];
}

First, let’s look at how a typical old-school vector instruction set would implement
this. In pseudocode, it would be something like this for the body of the loop:

Vload Rx, x[i] # get VL items starting at i
Vload Ry, y[i] # get VL items starting at i
VSmuld Rx, a, Rx # do the vector*scalar multiply

104 CHAPTER 6. GPUS

VVaddd Ry, Ry, Rx # do the vector add
Vstore y[i],Ry # vector store result

In a strip-mining solution, we need to take care of details like how often to repeat
the loop and a fragment where the full vector length isn’t needed.

A PTX version is significantly more complicated though superficially it looks
similar. Part of the reason for that is that memory access always uses gather-
scatter. Also, in creating SIMD code, you create a large number of threads, as part
of the strategy of hiding memory latency by using threads. Rather than use vector
registers, you allocate a block of threads, then do a calculation simultaneously
with each thread doing a different part of the calculation. This would appear
to throw away the performance advantage of sequential memory access, but if
a program is written so adjacent threads access adjacent memory, the memory
subsystem coalesces memory references. The basic steps in pseudocode are:

use thread id to create offset in array
load x[i+offset]
load y[i+offset]
do x*a multiplication
add to y
store y[i+offset]

This code is replicated across threads, each with a different id and hence offset in
the array.

An important difference between GPU threads in the NVIDIA world and
threads in a general CPU is that all threads are either executing the same
instruction or are idle. A combination of mechanisms makes this possible,
including masks similar to those in vector machines and predicates, similar to
those in VLIW machines. Branches allow threads to diverge, with hardware
support to handle managing this. The unwary programmer can create code where
most threads are idle.

Although CUDA and OpenCL provide an even higher-level abstraction than
PTX, some basic understanding of the underlying hardware is necessary to
program efficiently.

6.4 Review
Let’s compare GPUs and multimedia extensions with what we generally know
about instruction set design. Here are some core principles derived from the RISC

Review 105

movement and experience with supercomputers:

• Amdahl’s Law – speedup depends on the whole workload, not only the
subset that can be improved

• make the common case fast – a large instruction set with rarely-used
instructions makes it harder to achieve overall speed improvement

• minimise instruction format variation – keep fetch and decode simple to
make aggressive pipelines easier to implement

• optimize for average throughput not peak throughput – as Cray demon-
strated in the days of big iron vector machines, a high peak throughput is
meaningless if the average case isn’t close to the peak

• simple memory model for programming – even if there’s a complex memory
hierarchy that varies from generation to generation of the hardware, a simple
uniform model for programmers ensures code longevity and performance
portability over time

Why then do multimedia extensions (Intel is not the only guilty party: the AltiVec
extensions to PowerPC are also large and complicated, with a reference manual
running to over 260 pages1, if more regular in design than Intel’s efforts [Freescale
1999]) and GPU instruction sets violate these principles?

A key consideration is the real time argument. In hard real time, if a deadline
is not met, the system is broken; in soft real time, failing to meet a deadline is a
performance bug but tolerable (e.g., if the picture pixelates but no so often as to
be annoying, you keep watching your digital TV). While graphics is not strictly a
hard real time application, the faster the graphics system, the better the quality
picture. In graphics-intensive applications like a photo editor, implementing
a filter fast enough to be usable adds value, even if the careful hand-coding
necessary doesn’t speed up the overall application, a very different consideration
than applying Amdahl’s Law. If the system is fast enough, expectations expand,
but there is a limit to human perception. At some point, perception saturates and
there is no point making graphics any faster. Once we approach that point, selling
faster GPUs requires another market, hence the interest of GPU makers in selling
to a broader base.
1You can find a summary on Apple’s developer web site – https://developer.apple.
com/hardwaredrivers/ve/instruction_crossref.html – a legacy of when Apple used
PowerPC.

https://developer.apple.com/hardwaredrivers/ve/instruction_crossref.html
https://developer.apple.com/hardwaredrivers/ve/instruction_crossref.html

106 CHAPTER 6. GPUS

However, once we exceed the limit of human perception, a model of GPU that
has lower peak throughput but a much simpler instruction set that can be used
effectively by compilers has a lot to recommend it. If such an instruction set had
80% of the peak throughput of a much more complex design, either it would
be sufficient when the more complex design was sufficiently ahead of human
perception, or it could be implemented as two independent cores with at least
the same performance as the more complex design, with the option to use one of
the other cores for non-graphics tasks. If the ISA were general enough to apply
to ordinary workloads, instead of a separate GPU, a multicore design could have
some cores used exclusively for graphics and others for computation, with the
option to choose dynamically which to use. Another design challenge is how to
organize memory so that both graphics and ordinary usage would be satisfied;
high-end graphics systems generally avoid this problem with dedicated memory.
A cost of dedicated memory in graphics systems is a memory hierarchy that’s
difficult for programmers.

A detailed design is necessary to evaluate these ideas, as was the case with the
original argument for multiple cores (then called a chip multiprocessor [Olukotun
et al. 1996]). A useful starting point would be a minimal RISC instruction set,
with design studies to determine extra styles of instruction that add the maximum
value for parallel execution modes. We can safely avoid ideas that failed in the
past like VLIW, be cautious about adopting ideas that are hard to program like
SIMD, give careful consideration to ideas that work well in limited cases like
vector instructions, and shun ideas that make life for programmers hard, like local
scratch memories under programmer control.

Exercises
1. You can find some specifications of the Cray T-90 here (Table 1): ftp://

ftp.cs.ucsd.edu/pub/faculty/carter/cug.html. Based on numbers
you find:

(a) What is the maximum number of loads and stores possible in one clock
cycle?

(b) In an 8-processor configuration, with the maximum possible numbers
of loads and stores, how many banks of 15ns RAM are required to
keep up with demand? Assume each load or store can be divided into
as many banks as are needed.

ftp://ftp.cs.ucsd.edu/pub/faculty/carter/cug.html
ftp://ftp.cs.ucsd.edu/pub/faculty/carter/cug.html

Review 107

(c) The top model of this range, the T932, had up to 32 processors and a
slightly faster clock speed than that in the above reference (2.167ns).
It had 1024 banks of RAM, and the RAM was upgraded from a 15ns
cycle time to twice as fast. Was this upgrade necessary?

2. Look up details of the AltiVec instruction set. How does it compare with
the other architecture styles we’ve examined? Is it a reasonable fit to the
RISC philosophy?

3. Find a detailed example of NVIDIA PTX code. Explain how parallelism is
achieved in the example.

4. If you were designing the Intel AVX instructions from scratch, rather than
as an extension of previous designs, how different would your approach be?

7 Warehouse-Scale Computing

MASSIVE-SCALE COMPUTING in the 1990s was the province of high-
performance computing (HPC), mainly a concern for computational
sciences and large-scale engineering projects (e.g. simulating wind

tunnels). Much of that market has disappeared into various models of scaling
up commodity parts, e.g. clusters. In some cases, these designs use extra-fast
interconnects, but many use commodity networks. A big change since the 1990s is
the emergence of massive-scale computing mainly targeting ordinary consumers,
not large commercial or research enterprises.

A key difference in the new kind of large-scale computing is economy of scale.
Large service providers like Google and Amazon deal in customer bases in many
millions, and achieve economy of scale on three fronts:

• mass-market commodity hardware – whereas supercomputer makers like
Cray and Thinking Machines designed their own parts for a very limited
market, this new category of computing draws on the low cost inherent in
massive markets

• purchasing at scale – even given that these operations use commodity
hardware, they score by being able to buy in massive quantities, and hence
achieving a much lower price point per unit of work than even a home
PC; this large scale also makes it possible for them to design custom
configurations of commodity hardware and still arrive at a reasonable cost
[Barroso et al. 2003]

• massive user base – unlike past HPC-oriented large-scale computing, the
new services spread their costs over an enormous user base

All this being the case, some of the complexities of scaling up to extremely large
systems remain. Google, Amazon, et al. to some extent have the luxury of
choosing the services they offer, since many are offered at no charge, and as a

108

Fault tolerance and dependability 109

way of building advertising revenue or directing users to for-money services (like
buying books or apps).

As a generic term for such large-scale services, we use the term warehouse-
scale computer (WSC). Google famously uses relatively entry-level computers,
and lots of them. In an operation on this scale with over 50,000 computers,
managing individual computers is not possible. A WSC operation has to have
considerable support for automated managing of configurations, detecting errors
and moving calculations when a computer fails. The range of applications run
on these systems is highly variable, and that variation to some extent makes them
viable. For example, a large part of Google’s operation is web crawling to build
search indexing. That kind of workload is both highly parallel and not interactive,
and can soak up any available computational resources and network capacity.
Multiplexing that kind of workload with requirements for more rapid response
time is a good mix, as temporary demand for interactive response time can easily
be accommodated by reducing resources for the other type of workload. Contrast
this with an electricity grid where instant responsiveness requires not only a lot of
spare capacity, but generators capable of rapid cycling up. In one such system for
example (the Australian state of Queensland where I used to live), the last 1% of
demand costs 100 times base load per kilowatt hour. Power utilities could learn a
thing or too about load and demand balancing from WSC operators.

All of this is not however without significant challenges. Users of interactive
services, especially those where they care about losing data and want access when
they need it, expect a highly dependable service. Downtime of 1 day a year
requires 99.7% availability and downtime of at most an hour requires 99.99%
availability.

7.1 Fault tolerance and dependability
A key aspect of large-scale systems built out of reasonably reliable components
is that the probability of failure increases as you scale up, because there are more
parts to fail. First I start with some terminology in Table 7.1 and the following
definition:

Availability =
MT BF

MT BF +MT T R
(7.1)

or alternatively,

Availability =
ttotal− tdown

ttotal
(7.2)

110 CHAPTER 7. WAREHOUSE-SCALE COMPUTING

term definition
MT BF mean time between failures: expected time before a module fails
MT T R mean time to repair: expected time to fix a faulty module
reliability measure of probability of no failures
dependability measure of likelihood of being useful
fault tolerance ability to work despite failures
availability fraction of time a system is able to do work
durability total time a system is useful
nines availability of 99.9% is 3 nines for example

Table 7.1: Dependability terminology.

probability / year failure type
0.02 disk failure
0.01 uncorrectable DRAM failure
0.3 bad software configuration

Table 7.2: Dependability example. There are many other sources of failure like software
crashes and uncorrected power glitches (assuming use of backup power).

A key thing to understand is the difference between dependability and reliability.
Something that’s reliable has a low chance of failing. Something that’s dependable
has a low chance of not being usable despite failures. A way of ensuring that
dependability is higher than reliability is by fault tolerance. Fault tolerance is
often achieved using redundancy along with error checking and correction. For
example, a RAID disk system may be configured so that if one drive fails, its
content may be recreated. Although the disk subsystem has had a failure, it still
works and is therefore dependable, even if it’s not reliable.

Similar considerations apply to WSC with tens of thousands of computers.
Not only the computers themselves, but networking, building power supplies
and software can all fail. To make this concrete, let’s take a centre with 2,500
computers and apply the failure rates in Table 7.3. Assume a hardware fault takes
1 hour to repair, and reboot takes 60s. With the figures in Table 7.3, in an average
year with 2,500 computers we get the expected number of failures in Table 7.3.
Optimistically assume we can fix a bad software configuration with a reboot, and
the others require a hardware repair taking an hour. Then the total time systems

Fault tolerance and dependability 111

expected failures / year failure type
50 disk failure
25 uncorrectable DRAM failure
750 bad software configuration

Table 7.3: Expected number of failures for 2,500 computers.

are out of action is

hoursoutage = (50+25)×1+750× 1
60

= 87.5

Applying Equation 7.2, and noting there are 8766 hours in an average 365.25 day
year:

availability =
8766−87.5

8766
= 0.99

So any service requiring continuous use of all 2,500 computers would experience
two nines of availability. A real system would have more modes of failure than
those listed here, so availability without error correcting and fault tolerance would
be considerably lower in practice.

A system like Google’s relies on a combination of features to ensure de-
pendability. First, there is considerable checking for potential faults. Second,
when a highly distributed computation has a few outstanding results, rather than
wait for them, they are farmed out again to the network. Third, there is a high
degree of replication of data, to ensure that a hard failure can be recovered. This
replication is also required for performance, so fault tolerance falls out of the
basic design, rather than being an expensive add-on [Barroso et al. 2003]. In
general ensuring high availability in such a large-scale system is a complex task,
and the ability of large operations like Google and Amazon to maintain services
with high dependability, especially as Google has history of rapid evolution of
their user-level software offerings, is a considerable achievement.

Fault tolerance is a large and complex topic; whole courses are given on the
subject. I leave it here with a few of the key concepts, rather than an in-depth
coverage.

112 CHAPTER 7. WAREHOUSE-SCALE COMPUTING

7.2 Programming model

WSC provides parallelism on an unprecedented scale. Given that ordinary-scale
parallelism can be hard to use, as we’ve seen in preceding chapters, does WSC
provide a model for large-scale parallelism, or is it only good for thousands of
uniprocessor workloads (in itself a useful feature)?

A lot hinges on the programming model and the nature of parallel workloads.
Google uses an approach derived from two LISP programming constructs, map
and reduce. In LISP (a predecessor of modern functional languages), map
is a family of functions that apply another function to each element of a data
structure, producing another data structure usually of similar size. The LISP
reduce function applies a function pairwise to elements of a data structure to
produce a single value. An example of application of a LISP-style map operation
would be to take a list of words and return a list of the length of each. An example
of a LISP-style reduce operation would be to take a list of numbers and return
their sum (here, the applied function would be “+”).

Google’s MapReduce1 and the free equivalent, Hadoop MapReduce (Hadoop
is an Apache project, including a distributed file system with related tools and
services2), are based on the LISP map and reduce concepts. In Common LISP, a
map operation looks like this:

(map ’list ’length ’("fred" "jim" "james"))
=> (4 3 5)

and a reduce operation looks like this:

(reduce ’+ ’(4 3 5))
=> 12

with a lot of variations possible3. The single-quote symbol in LISP forces the next
item to be passed to the calling function without evaluation.

In a MapReduce implementation, a map operation takes as input a function
and a list of values. The function produces an intermediate value in the form of

1You can find a MapReduce tutorial here: http://code.google.com/edu/parallel/
mapreduce-tutorial.html.

2http://hadoop.apache.org/
3More on map here: http://www.lispworks.com/documentation/HyperSpec/Body/f_
map.htm and on reduce here: http://www.lispworks.com/documentation/HyperSpec/
Body/f_reduce.htm.

http://code.google.com/edu/parallel/mapreduce-tutorial.html
http://code.google.com/edu/parallel/mapreduce-tutorial.html
http://hadoop.apache.org/
http://www.lispworks.com/documentation/HyperSpec/Body/f_map.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_map.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_reduce.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_reduce.htm

Programming model 113

a list of keys and values, and a reduce operation applies another function to the
result of map. In a typical application, the items in the list of values would be
large enough to schedule as work units on separate machines, so the map and
reduce stages provide a model of parallelism. Part of the fault tolerance in the
design is periodic checks on whether the sub-tasks have completed. If they don’t
after a timeout, the master process restarts them on another node. Coordination
and synchronization occurs in effect by a combination of the reduce tasks waiting
for map outputs, and the master process waiting for the reduce tasks to complete.
Scalability depends on reasonably large chunks of work in each of the map and
reduce list elements, and on a reasonable load balance. The overall approach
appears to be very successful, given the scale of Google’s operation. Within 5
years of the development of the initial implementation in 2003, Google had more
than 10,000 internal MapReduce programs, and each day 100,000 MapReduce
programs processed about twenty petabytes (PB = 1015B) of data [Dean and
Ghemawat 2008].

MapReduce is of course not the only programming model possible for large-
scale distributed computing; a comprehensive study of the options is worthy of a
whole course. Whatever approach is used has to observe a few key principles to
achieve scale:

• minimum communication – each scheduled unit of work should be reason-
ably large and able to complete without sharing data with other work units

• coordination – there should be a strategy to ensure that outstanding
work is completed and there is a reasonable balance between waiting
for uncomplete work and scheduling new work; coordination decouples
communication and cooperation from computation [Gelernter and Carriero
1992; Tanenbaum and van Steen 2002, p 700]

• load balance – work should be spread reasonably evenly over available
resources; while rebalancing load by migrating workloads is theoretically
possible, the costs in time lost to communication seldom make the move
worthwhile

• fault tolerance – there should be a fallback strategy to cope with parts of the
workload failing to complete

The programming model is interesting to the computer architect because there has
to be one for an architecture to be usable (hence the drive to find usable models

114 CHAPTER 7. WAREHOUSE-SCALE COMPUTING

for GPUs that can use a reasonable fraction of their theoretical throughput, rather
than hand-tuning assembly language). MapReduce is successful and therefore
validates the broad concept of WSC; that doesn’t mean a better model can’t be
found, but it is not a problem for the computer architect.

MapReduce has another aspect of interest to a computer architect: it is
similar in some ways to a dataflow architecture, in which operations are fired by
availability of operands, rather than being driven by order of the code. Dataflow
was a style of architecture that attracted some research interest in the 1990s
[Ghosal and Bhuyan 1990; Arvind and Nikhil 1990; Lieverse et al. 1999]. Despite
some attempts to revive the concept [Swanson et al. 2006; Petersen et al. 2006],
dataflow has not been widely adopted because it’s too hard to build hardware that
fully exploits theoretically available parallelism in the model without changes to
programming languages. Though dataflow languages were also an area of active
research for two decades [Traub 1986; Johnston et al. 2004], in practice it is
hard to sell a new architecture without the option of (mostly) running existing
code. Some versions of Intel’s IA32 pipelines use dataflow [Papworth 1996],
though the parallelism in that case is relatively local (instruction or micro-op
reordering). In the case of MapReduce, dataflow is more a coordination (large-
scale parallelism) concept than a highly local form of parallelism, and seems
to work well at that scale; use of dataflow languages for coordination is an
idea developed independently of MapReduce [Lombide Carreton and D’Hondt
2010]. Dataflow architectures today survive in specialist domains [Vo 2011] and
in FPGA-based designs, where the programming model is nonstandard anyway
[Silva and Lopes 2010; Voigt et al. 2010; Ferlin et al. 2011].

7.3 Hardware Design
One of the most important considerations of a system on this scale is cost per
unit of work. In the early 1990s, when the RISC revolution was at its height,
I made the observation that a high-end box was seldom worth the extra cost
because the maximum performance was had from a machine a step or two down
from that with as much RAM and disk as you could afford. Any machine that
you could not afford to populate to the maximum with RAM would no longer
be worth the cost of upgrades in a year or two. Google has made a similar
discovery: they generally use components typical of a mid-range rather than top
of the line PC. An important consideration in their design is overall cost, including
power consumption and heat. Another important consideration in design for scale

Hardware Design 115

operation latency
network switch 10µs
local RAM access 100ns = 0.1µs
disk latency 12ms

Table 7.4: Performance parameters for scalability. Disk latency is based on half a rotation for
a 7,200rpm disk (4ms) plus a conservative 8ms average seek time, assuming a cheaper design
than a fast enterprise drive. Local RAM access assumes a miss to DRAM.

is network bandwidth and latency. If the network within a building has high
bandwidth and low latency, workloads that require some communication can be
accommodated within a building or if the requirements for communication are
higher, within a single rack with a single fast ethernet switch.

To get some idea of how things scale, let’s take some numbers. Actual
latency of ethernet depends on how loaded the network is as well as how many
switches there are between the nodes sharing information and an accurate model
of performance should be based on real workloads [Jin and Caesar 2010]; network
latency in Table 7.4 is a little on the optimistic side. On the other hand, disk
latencies and memory are on the high side: I assume that as with the Google
philosophy, we are aiming for a midrange PC configuration, rather than enterprise-
grade drives, and that all memory access are misses to DRAM. This combination
of assumptions reduces the penalties for remote access, and puts an upper bound
on scalability estimates.

Taking all this into account, let’s estimate the fraction of memory accesses that
can be remote without doubling average memory access time. That is a break-even
point of a fashion: with that amount of overhead, it would be better if we could
make the work go to the remote node rather than access its data. Let’s go back to
our relative execution time formula (Equation 3.1), remembering that we are not
really calculating execution time. In this case, we are not even calculating relative
execution time as before, just comparing local and remote memory accesses.
Assume that the basic latency numbers are a close enough approximation to
overall transaction time, which is true of relatively small accesses, and we have
a workload where we only have local and remote memory accesses, and no disk
accesses. Then our average memory access time is:

tMEM = tlocal + tremote (7.3)

I define local access time tlocal using the fraction of memory references that are

116 CHAPTER 7. WAREHOUSE-SCALE COMPUTING

local memlocal and time to access RAM tRAM

tlocal = memlocal× tRAM (7.4)

and remote access time tlocal using the fraction of memory references that are
remote memlocal and time to access the network tNW (using the above assumptions,
as defined in Table 7.4):

tremote = memremote× tNW (7.5)

We want to find the point where tMEM = 2×tlocal , which leads to

2×tlocal = tlocal + tremote

tlocal = tremote

memlocal× tRAM = memremote× tNW

0.1memlocal = 10memremote
memlocal

memremote
= 100 (7.6)

In other words, if more than 1% of memory references are remote, we are going
to see a slowdown of at least 2 versus purely local computation, and we need to
rethink our programming strategy.

The calculation I present here is very optimistic: in a real machine in which
most memory references are cached, going over the network is a much larger
performance hit, even if we don’t add all the components of network latency I’ve
missed here. What I have not gone into is how memory is accessed over a network.
In most cases, there will be more to it than putting a packet on a network: a process
at the other node will have to interpret the packet and send a response.

Let’s now consider a simple memory hierarchy in which latency for a cache
hit is hidden by the pipeline and so is effectively the same as the clock speed.
Let’s set the clock speed to 2GHz, or 0.5ns. Let’s conservatively allow 10% of
memory references to miss to DRAM (a high miss rate in most practical systems,
e.g. recent Intel designs with 8-12MiB of L3 cache; here I only consider 1 level
of cache for simplicity). Then applying Equation 3.1, the average local memory
access time is

te = th1 +
n

∑
i=1

pmi× rmi

= 0.5ns+100ns×0.1

= 10.5ns

Warehouse Design 117

In the units used to derive Equation 7.6, 10.5ns = 0.015µs. So rewriting the local
memory term:

0.015memlocal = 10memremote
memlocal

memremote
= 666.7 (7.7)

These numbers should give some indication, without working through in full
detail, that a model like MapReduce has to distribute relatively large chunks
of work that can be computed independently, only communicating results after
reasonably long computation.

To make things worse, the minimal network latency only applies if you stay
within one network switch. Typically a network switch will cover one rack; there
may be several switches covering a full warehouse, and once you go out to the
wider Internet, latency quickly mount up. 4000 km, about the distance across
continental United States, is about 0.01 light seconds, so the shortest time (unless
you can find a way to work around relativity) that you can access information over
that distance is about 20ms, 2,000 times our extremely optimistic network access
time, though to be fair, this time I’m counting the round trip, so let’s call it at least
a factor of 1,000.

Note in all this I didn’t mention disks. Clearly, a delay of the order of 1000
times the minimum delay on a network is also a big factor in performance, but
that’s a factor without highly distributed systems. Disk latency can to some
extent be hidden by accessing large units, and by cacheing disk contents in RAM.
Accessing a disk over a network doesn’t significantly increase the latency, but
disk bandwidth tends to be higher than network bandwidth, and less subject to
contention. In that sense there is a mismatch between the two technologies. A
disk works best streaming large quantities of data, but a network works best with
smallish packets, not bigger than a few thousand bytes.

7.4 Warehouse Design

Although WSC uses commodity parts, these will generally be packaged into
rack-mount systems for ease of maintenance. A rack can be design to use a
single network switch, and packaging can be optimized to fit requirements like
minimising network cabling, even distribution of power, quick identification of
faulty systems and selectively replacing obsolete models.

118 CHAPTER 7. WAREHOUSE-SCALE COMPUTING

A critical aspect of the overall design is heat dissipation. Even if the Google
approach of using mid-range systems is followed, a few thousand PCs in a
warehouse add up to significant heat to extract. A midrange CPU is likely to
generate about 100W of heat. To allow for all components, let’s take a ballpark
figure of 300W (Google reports CPU use as about a third of the total energy
budget [Barroso and Hölzle 2009, p 10]). If we have a warehouse of 2,500
computers, that adds up to 750kW of heat (to a good approximation; some of the
electricity actually does get used for useful work). Large computer installations
may use water as a heat exchange medium, potentially a significant factor in
their environmental footprint. As WSC becomes an increasing component of
computer services, environmental footprint will become an increasingly important
issue, including energy consumption and lifecycle costs [Chang et al. 2012]. By
contrast, if you have a single PC in an office or in your home, the impact of its
heat dissipation on heating and air conditioning is negligible.

A typical warehouse-scale system will include a large diesel backup power
supply, as well as more instantaneous backup UPS power [Barroso and Hölzle
2009].

The overall design of cooling, power supply and component positioning is
very complex, and can make a big difference to life cycle costs.

Exercises
Note that the standard abbreviation for byte is “B” and for bit is “b”. Recall that
binary prefixes have an "i" added to differentiate them from decimal multiples
(e.g., Ki means 210, whereas G means 109).

1. With an average year of 8766 hours, how many hours of downtime does
four nines of availability represent?

2. You would like to offer four nines of availability on a 2,500 server
configuration. Which of the following gets you closest to this goal (starting
from the base of the figures in Table 7.3, which gave us 2 nines of
availability):

(a) replacing the hard drives by solid-state drives (SSDs), reducing the
expected number of failures to 10 a year

(b) replacing the RAM with DRAMs with error checking and correction
(ECC), reducing the number of uncorrectable failures to 20 per year

Warehouse Design 119

(c) running a more robust operating system that reduces failure to 250 per
year

Given the above, comment on Google’s actual approach, which is to tolerate
failures.

3. Google is a significant investor in clean energy technologies, and Apple has
reportedly commissioned one of the largest solar energy facilities no owned
by a power utility. Discuss why this may be the case.

4. Use the Intel Nehalem latencies from Table 5.1, with the network latency in
this chapter (Table 7.4):

(a) Assume a uniprocessor task running on a local CPU, and redo the
calculation for the fraction of remote accesses that double the average
memory access time, assuming global miss rates from L1 or 10%,
from L2 of 1% and from L3 of 0.1%.

(b) Now redo the calculation assuming 10% of L2 misses incur snoop
latency (implying a multiprocessor task). How does this change your
answer?

(c) Adjust your answers by doubling network latency to allow for the
round trip, and adding 10% to allow for network congestion. How
much of a difference does this adjustment make?

(d) Assume the network latency adds for each switch. How much
difference will it make if you have to go through 3 switches to obtain
a data item?

(e) In general terms, discuss the performance hit going to a remote ma-
chine rather than local accesses, even with multiprocessor overheads.

5. Gbit ethernet switches are commodity technology. Let’s consider whether
10Gbit switches are worth considering. Assume switching latency is the
same, and the only change is the transfer rate.

(a) Ignoring switching latency and packet overheads, how long does it
take to move a packet of 4KiB at 1Gb/s?

(b) Ignoring switching latency and packet overheads, how long does it
take to move a packet of 4KiB at 10Gb/s?

120 CHAPTER 7. WAREHOUSE-SCALE COMPUTING

(c) How big a difference is there in these two numbers if we add 10µs
switching latency?

(d) MapReduce operates on relatively large chunks of data. Relate
switching latency to transfer time in this example, and explain why
MapReduce is generally used that way.

(e) If you were designing a new WSC facility would you consider 10Gb
ethernet switches? Explain.

8 New Developments

UP TO NOW my focus has been on classic issues that have not changed much
in twenty years or more – some of the best ideas go back to the 1960s. I
change focus now to recent developments – possible new breakthroughs

and some new ideas that may or may not work out.

Two of these relate to a revival of specialist modes of processing – special-
purpose processors and FPGAs (field-programmable gate arrays). These are not
new ideas but specialist niches with high computational demands are giving them
a new lease of life.

A particular application of FPGAs is in astronomy, where the Square Kilo-
metre Array, which will be by far the world’s largest radio telescope when
complete [Dewdney et al. 2009; Arshakian et al. 2009], has massive data
requirements. Deep learning – an approach to neural networks – has led to a
revival of specialist architectures, driven in part by another big data need – the
kind of massive data sets generated by companies like Google.

Another area that is likely to see growing interest is three-dimensional (3D)
packaging, either of multiple dies or as a way of structuring a die to include more
components. Finally, I review new trends in nonvolatile RAM (NVRAM). Flash
for a long time has been the mainstay of nonvolatile RAM and is increasing seen
as a replacement for disks in solid-state drives (SSDs). However flash has serious
limitations and new generations of nonvolatile RAM are attempting to address
those. NVRAM has some connection to 3D packaging as at least one design has
a 3D internal structure.

The remainder of this chapter is structured as follows. In §8.1 I review some
approaches to going 3D, which sets the scene for NVRAM in §8.2. I follow this
with a review of deep learning in §8.3 and end with §8.4 that contains an outline
of use of FPGAs in the SKA project. I conclude by summarizing where these
trends are likely to take us (§8.5).

121

122 CHAPTER 8. NEW DEVELOPMENTS

CPURAM TSV heat sink

Figure 8.1: 3D die stacking with CPU and RAM in one package.

8.1 Three Dimensions

One of the key problems of scaling Moore’s Law is wiring delays and total wiring
length. Another is the limits to scaling down – if components become small
enough, effects like quantum tunnelling break classical electronics [Cavin et al.
2012]. A way of working around this is to add more layers to a die (chip). That
means more parts are reachable through short paths. An intermediate strategy is
to layer parts in three dimenstions – more like 2.5D than 3D since the parts are
still in essence designed in a plane.

One approach to going 3-dimensional is 3D die stacking, which has the
advantage that dissimilar technologies can relatively easily be combined. For
example, PicoServer was a design study that combined a multicore CPU layer
with DRAM layers, using through-silicon vias (TSVs) to create a package that
eliminated off-chip latencies. Figure 8.1 illustrates the general idea. The
advantage of this form of die stacking is that it can utilize standard technologies to
build a very compact system and the reduced latencies mean that the system can
run at lower clock speed for a given level of performance, hence saving energy
[Kgil et al. 2008]. The drawback of this approach is that heat dissipation limits
the number of layers and potential overall speed. Possibly for this reason, more
recent work has focused on building fast RAM by including a logic layer in the
3D stack as in Hybrid Memory Cube (HMC), which stacks DRAM on top of a
logic layer designed to give faster access to DRAM – rather than including a CPU
layer in the stack [Courtland 2014b].

What of a truly 3D design, one that implements logic using all three
dimensions, rather than stacing 2D layers?

3D Xpoint (pronounced “cross-point”) nonvolatile RAM (NVRAM) is one
example where the 3D structure plays a role in the memory design [Bourzac 2017]
and there are moves to implement logic structures in 3 dimensions [Cartwright
2011]. Moving into three dimensions is in its infancy – expect more in this
space. In particular, 3D Xpoint really exploits the extra dimension in its internal
electronics; that is a radical idea that could make real innovations in other areas

Nonvolatile RAM 123

possible in future.

8.2 Nonvolatile RAM
3D Xpoint is a good opening to the next topic – NVRAM. The current dominant
NVRAM technology is flash, available in a variety of formats and form factors
from entry-level cards and USB flash drives to high-end disk replacements.

Flash, broadly speaking, has two problems:

• speed – while of the order of 1000 times faster than disk, it is still about
1000 times slower than DRAM and writes are particularly slow

• endurance – flash is written by erasing existing contents then writing and
there is a limit to the number of erase-write cycles before flash starts to wear
out

Most flash on sale today is based on NAND gates to store bits and cannot be
addressed at a fine-grained level like DRAM. Instead, it is block-addressed. This
is usually not a problem when using it as a disk replacement as disks work much
the same way. NOR flash can be byte-addressed but is more expensive as it
requires 2–4 times the chip space for the same storage [Kgil and Mudge 2006].
Flash dates back to the 1980s [Masuoka et al. 1987] and many improvements
have since been made to the basic technology. Products on sale have advertised
endurance ranging from under 10,000 erase cycles to over 100,000. Even the
higher end is far lower than the number of writes a disk or DRAM can perform
without wearing out. An approach to minimizing damage is wear levelling [Chang
2007], where frequent written blocks are moved. However, for wear levelling to
be effective, a significant number of free blocks is needed to reduce performance
impacts of copying.

The holy grail of NVRAM is a RAM with the speed of DRAM and the
endurance of disk – as well as of course a cost closer to disk than DRAM.
The closer we can get to that the easier it would be to retire disk entirely and
do away with DRAM as the main memory. Why would we want to do that?
For long-running systems the ability to checkpoint and restart requires complex
software interventions. If the main memory were nonvolatile, all you would need
to checkpoint is enough state to recover to the last known state of the caches and
registers, a much smaller problem. Also, flash, while fast enough to be a good
replacement for disk, is inconvenient because of the endurance problem.

124 CHAPTER 8. NEW DEVELOPMENTS

If we cannot achieve the ideal case, an NVRAM at least as fast as flash but
a lot more durable would still be a win. Intel and Micron announced 3D Xpoint
in 2015 to much fanfare [Farrow 2015]; actual product has been slow to appear.
At time of writing the only announcement has been an SSD trademarked Optane
[Bourzac 2017]. If 3D Xpoint does turn out to be much faster and more durable
than flash, the remaining challenge is to make it affordable.

NVRAM is a highly active research area with different device physics being
explored; examples include [Eshita et al. 2014]:

• ferroelectric RAM

• magnetoresistive RAM (MRAM)

• phase change RAM (PCRAM)

• resistive RAM (ReRAM)

From the point of view of the computer architect, it does not matter which of
these wins (or indeed something completely different) – the key question is how
do we change the memory hierarchy if we get a new technology closer to DRAM
in speed but nonvolatile – particularly if it has the endurance to use as a main
memory or disk replacement?

The current multilevel cache-DRAM-swap hierarchy is designed around the
existing range of speed gaps; though flash radically altered the speed gap for swap,
it did not alter it enough to be a real game changer. NVRAM research could be if
it delivers as promised, though there is a huge gap between the research lab and a
mass-market afforable product.

8.3 Deep Learning Architectures
Neural nets go back a long way to the idea of a perceptron – a simple model
of a neuron with a number of inputs, a function and a possibly different number
of outputs [Rosenblatt 1958]. Early work on simulating neural nets on computers
took the form of n inputs, k function nodes and m outputs. While the area became a
hot topic in AI [Minsky and Papert 1969], a theoretical limitation on the capability
of the original model reduced that enthusiasm considerably.

A neural net is a classifier: it splits the search space into categories. It does
so by learning weights in its decision function until the classification is correct
(the training phase). The original model was shown to fail to linearly separate

Deep Learning Architectures 125

1 2
3

4 5

Figure 8.2: Limits of perceptrons. Different categories that can be separated with a straight
line when represented on a plane are linearly separable. As illustrated, some are and some are
not. A simple single-layer neural net cannot correctly linearly separate in all cases, limiting its
usefulness.

the search space in even some trivial cases. Visualize this as the search space
represented as points on a plane. A correct classifier finds a line on the plane that
splits the points of the space into two categories if this is possible; there are cases
where a simple single-layer neural net fails when this should be possible. Figure
8.2 illustrates linear separability. The particular problem was the XOR problem,
which cannot be linearly separated as illustrated in Figure 8.3. No linear function
can split the space into {0,0} and {1,1}.

While a book by Minsky and Papert [1969] is widely held to have torpedoed
neural net research, it was more complex than that [Olazaran 1996] – in essence,
the AI world had a philosophy war that the symbolic processing camp won,
pushing neural nets to the periphery.

0

1

0 1

1 0

0 1

XOR

Figure 8.3: XOR and linear separation. A simple neural net cannot separate the space into
outputs that are all 1 or all 0 because you cannot create a linear function that divides the
space that way.

126 CHAPTER 8. NEW DEVELOPMENTS

In the late 1980s, there was a big revival in neural net research with the
growing acceptance that one or more hidden laters – in effect additional “neurons”
between the initial layer and output – solved the lack of generality of the original
design. The dominant approach became learning using back propagation – the
hidden-layer weights were adjusted to correct for the error in the classification and
this adjustment was used to adjust the weights of the input layer [Hecht-Nielsen
1992; Svozil et al. 1997].

More recently, deep learning – machine learning models with multiple layers,
including multi-layer neural nets [LeCun et al. 2015] – have become increasingly
popular as a solution to processing the vast amounts of data generated for example
by social media. In the hardware wold, there is a growing number of projects
to implement special-purpose hardware and software architectures using GPUs
[Collobert and Weston 2008; Ahmed et al. 2015; Arel et al. 2009; Gupta et al.
2015] to accelerate particularly the learning phase, which takes the most time.

This kind of hardware acceleration is relatively simple because the learning al-
gorithm is relatively regular and can for example use limited-precision arithmetic.

Google internally uses what they call Tensor Flow Architecture; little detail
has been released but a software platform is available for general use; the main
idea is using data flow graphs to direct numeric computation1.

Does any of this make sense? Over past decades there was a lot of research
into custom architectures. These generally died on one or more of these issues:

• too much overhead transferring data and control between the general and
specialist CPU (particularly if there was a specialist local memory)

• by the time the custom hardware was designed and programmed, Moore’s
Law had advanced conventional CPUs so far, there was little point

• the cost could not be justified vs. a room full of conventional computers

• they were too specialist to attract a big enough community developing an
ecosystem (toolchains, support chips, etc.)

In this case, a small number of big adopters like Google with a big enough need
could overcome the traditional objections to this sort of architecture.

1More at https://www.tensorflow.org/

https://www.tensorflow.org/

FPGAs and the SKA 127

8.4 FPGAs and the SKA
An FPGA consists of two core components: lookup tables (LUTs) that you can
think of as a way of implementing a logic function in a truth table and routing
logic that ties logic functions together. Detail varies a lot in particular designs
– some have a large on-chip memory, others have logic functionality built in
even to the level of complexity of a whole CPU. A CPU on an FPGA can be
configured as a hard core [Güneysu 2011], meaning it is some form of CPU with
its logic implemented hardware, or a soft core, meaning it is implemented in LUTs
[Lysecky and Vahid 2005] possibly with the aid of some dedicated hardware.

The SKA is the biggest of the big data science projects, with total data
generated once complete estimated to be about ten times the total data flow of
the entire worldwide Internet2. Even though the Internet will likely scale way
bigger than this, SKA remains an impressively large project and its Science Data
Processor3 sub-project is a key component as it will generally not be possible to
store that volume of data for later processing.

The SKA data architecture includes FPGA platforms such as SKARAB
[Madisa et al. 2018]. Because of the massive data requirement, the main problems
with FPGAs are less relevant to SKA than is generally the case. These problems
include:

• too much overhead transferring data and control between the general and
specialist CPU (particularly if there was a specialist local memory)

• by the time the custom FPGA was designed and programmed, Moore’s Law
had advanced conventional CPUs so far, there was little point

• the cost could not be justified vs. a room full of conventional computers

• they were too specialist to attract a big enough community developing an
ecosystem (toolchains, support chips, etc.)

This list may look a tad familiar. In this case, the FPGA engine can sit between
the data sources and other software so latency to access specialist memory is not
an issue: data enters the FPGA board and a processed version of it exits. While
FPGA programming is harder than regular coding, the win is big enough here to
be worth the effort. While more conventional computers could do the same thing,

2https://www.skatelescope.org/signal-processing/
3https://www.skatelescope.org/sdp/

https://www.skatelescope.org/signal-processing/
https://www.skatelescope.org/sdp/

128 CHAPTER 8. NEW DEVELOPMENTS

reducing a rack full of equipment to one board is a significant gain in a project of
this scale.

8.5 Summary

Of all these developments, those most likely to be of general applicability are
going 3D and advances in NVRAM. Going 3D could open up new areas of the
design space not previously explored and better NVRAM could radically shake
up the memory hierarchy.

FPGAs and deep learning engines are just a new iteration of an old idea –
custom hardware. All that has changed is that there are some really big projects
now that can justify the cost; that does not mean the ideas necessarily generalize
to more niches. They could but, if history is a guide, they won’t.

A good understanding of the fundamentals and what did or did not work in the
past does not stop you from thinking out of the box or being innovative. But it can
save you a lot of pain from reliving mistakes of the past.

Exercises

1. It is becoming increasingly useful to package dies (chips) in 3 dimensions
as well as to build 3-dimensional logic structures within a die.

(a) Discuss in general terms, making clear that you understand the
difference between the two concepts.

(b) Compare 3D Xpoint RAM and HMC RAM in terms of the way they
are constructed.

(c) Which category does picoserver fit into? Discuss whether this is a
good idea.

2. If nonvolatile RAM (NVRAM) could be made almost as fast as DRAM

(a) Explain how this could alter the memory hierarchy.

(b) Explain potential benfits for long-running computations.

(c) Would this be a win for mobile devices? Explain.

Summary 129

3. Are deep learning architectures likely to win wide acceptance? Consider
the list of points that have worked against spdecialist processors on page
126.

4. Are FPGAs likely to win wide acceptance? Consider the list of points that
have worked against specialist processors on page 127.

References

Aasaraai, K. and Moshovos, A. (2010). An efficient non-blocking data cache for
soft processors. In 2010 International Conf. on Reconfigurable Computing and
FPGAs (ReConFig), pages 19 –24.

Agarwal, V., Hrishikesh, M. S., Keckler, S. W., and Burger, D. (2000). Clock rate
versus IPC: the end of the road for conventional microarchitectures. In Proc.
27th annual int. symp. on Computer architecture (ISCA’00), ISCA ’00, pages
248–259, New York, NY, USA. ACM.

Ahmed, E., Jones, M., and Marks, T. K. (2015). An improved deep learning
architecture for person re-identification. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3908–3916.

Akeley, K. (1993). Reality Engine graphics. In Proc. 20th annual conf. on
Computer graphics and interactive techniques (SIGGRAPH’93), SIGGRAPH
’93, pages 109–116, New York, NY, USA. ACM.

Amdahl, G. M. (1967). Validity of the single processor approach to achieving
large scale computing capabilities. In Proc. Spring joint computer conference,
AFIPS ’67 (Spring), pages 483–485.

Amdahl, G. M., Blaauw, G. A., and Brooks, F. P. (1964). Architecture of the IBM
System/360. IBM Journal of Research and Development, 8(2):87 –101.

Anderson, T. E., Levy, H. M., Bershad, B. N., and Lazowska, E. D. (1991). The
interaction of architecture and operating system design. SIGARCH Comput.
Archit. News, 19(2):108–120.

Apple (2012). About the virtual memory system. Online: https:
//developer.apple.com/library/mac/#documentation/performance/

130

https://developer.apple.com/library/mac/#documentation/performance/conceptual/managingmemory/articles/aboutmemory.html
https://developer.apple.com/library/mac/#documentation/performance/conceptual/managingmemory/articles/aboutmemory.html
https://developer.apple.com/library/mac/#documentation/performance/conceptual/managingmemory/articles/aboutmemory.html

REFERENCES 131

conceptual/managingmemory/articles/aboutmemory.html last accessed
6 July 2012.

Archibald, J. and Baer, J.-L. (1986). Cache coherence protocols: evaluation using
a multiprocessor simulation model. ACM Trans. Comput. Syst., 4(4):273–298.

Arel, I., Rose, D. C., and Coop, R. (2009). DeSTIN: A scalable deep learning
architecture with application to high-dimensional robust pattern recognition. In
AAAI Fall Symposium: Biologically Inspired Cognitive Architectures.

Arshakian, T. G., Beck, R., Krause, M., and Sokoloff, D. (2009). Evolution
of magnetic fields in galaxies and future observational tests with the square
kilometre array. Astronomy & Astrophysics, 494(1):21–32.

Arvind, K. and Nikhil, R. S. (1990). Executing a program on the mit tagged-token
dataflow architecture. IEEE Trans. Comput., 39(3):300–318.

Asanović, K. and Patterson, D. A. (2014). Instruction sets should be free:
The case for RISC-V. Technical Report UCB/EECS-2014-146, University of
California, Berkeley. http://www.eecs.berkeley.edu/Pubs/TechRpts/
2014/EECS-2014-146.html.

Bach, M., Charney, M., Cohn, R., Demikhovsky, E., Devor, T., Hazelwood, K.,
Jaleel, A., Luk, C.-K., Lyons, G., Patil, H., et al. (2010). Analyzing parallel
programs with Pin. Computer, 43(3):34–41.

Barroso, L., Dean, J., and Holzle, U. (2003). Web search for a planet: The Google
cluster architecture. IEEE Micro, 23(2):22–28.

Barroso, L. A. and Hölzle, U. (2009). The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines. Morgan &
Claypool. online http://www.morganclaypool.com/doi/pdf/10.2200/
S00193ED1V01Y200905CAC006.

Belayneh, S. and Kaeli, D. (1996). A discussion of non-blocking/lockup-free
caches. Computer Architecture News, 24(3):18–25.

Bell, G. (2008). Bell’s law for the birth and death of computer classes. Commun.
ACM, 51(1):86–94.

https://developer.apple.com/library/mac/#documentation/performance/conceptual/managingmemory/articles/aboutmemory.html
https://developer.apple.com/library/mac/#documentation/performance/conceptual/managingmemory/articles/aboutmemory.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
http://www.morganclaypool.com/doi/pdf/10.2200/S00193ED1V01Y200905CAC006
http://www.morganclaypool.com/doi/pdf/10.2200/S00193ED1V01Y200905CAC006

132 REFERENCES

Bennet, J., Carter, J., and Zwaenepoel, W. (1990). Adaptive software cache
management for distributed shared memory architectures. In Proc. 17th Int.
Symp. on Computer Architecture (ISCA ’90), pages 125–134, Seattle, WA.

Berrendorf, R., Burg, H. C., Detert, U., Esser, R., Gerndt, M., and Knecht,
R. (1994). Intel Paragon XP/S – architecture, software environment, and
performance. Technical Report KFA-ZAM-IB-9409, Jülich Supercomputing
Centre, Jülich, Germany.

Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu, A.,
Hestness, J., Hower, D. R., Krishna, T., Sardashti, S., Sen, R., Sewell, K.,
Shoaib, M., Vaish, N., Hill, M. D., and Wood, D. A. (2011). The gem5
simulator. SIGARCH Comput. Archit. News, 39(2):1–7.

Binkert, N. L., Hallnor, E. G., and Reinhardt, S. K. (2003). Network-oriented
full-system simulation using M5. In Sixth Workshop on Computer Architecture
Evaluation using Commercial Workloads (CAECW), pages 36–43.

Bordawekar, R. R. (2000). Quantitative characterization and analysis of the I/O
behavior of a commercial distributed-shared-memory machine. IEEE Trans. on
parallel and distributed systems, 11(5):509–526.

Borg, A., Kessler, R., and Wall, D. (1990). Generation and analysis of very long
address traces. In Proc. 17th Int. Symp. on Computer Architecture (ISCA ’90),
pages 270–279.

Bourzac, K. (2017). Has intel created a universal memory technology?[news].
IEEE Spectrum, 54(5):9–10.

Bricklin, D. and Frankston, B. (1979). VisiCalc Computer Software Program for
the Apple II and II Plus. Personal Software, Inc, Sunnyvale, CA.

Cartwright, J. (2011). Intel enters the third dimension. Nature News.

Cavin, R. K., Lugli, P., and Zhirnov, V. V. (2012). Science and engineering beyond
moore’s law. Proceedings of the IEEE, 100(Special Centennial Issue):1720–
1749.

Ceze, L., Tuck, J., Torrellas, J., and Cascaval, C. (2006). Bulk disambiguation of
speculative threads in multiprocessors. In ISCA ’06: Proc. 33rd Int. Symp. on
Computer Architecture, pages 227–238, Boston.

REFERENCES 133

Chang, J., Meza, J., Ranganathan, P., Shah, A., Shih, R., and Bash, C. (2012).
Totally green: evaluating and designing servers for lifecycle environmental
impact. In Proc. 17th int. conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’12), ASPLOS ’12, pages 25–36,
New York, NY, USA. ACM.

Chang, L.-P. (2007). On efficient wear leveling for large-scale flash-memory
storage systems. In Proceedings of the 2007 ACM symposium on Applied
computing, SAC ’07, pages 1126–1130, New York, NY, USA. ACM.

Chatterjee, D., DeOrio, A., and Bertacco, V. (2009). GCS: High-performance
gate-level simulation with GPGPUs. In Design, Automation Test in Europe
Conference Exhibition DATE ’09., pages 1332–1337.

Chen, T. and Baer, J. (1992). Reducing memory latency via non-blocking
and prefetching caches. In Proc. 5th Int. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-5), pages 51–61.

Cheriton, D., Goosen, H., and Boyle, P. (1989). Multi-level shared caching
techniques for scalability VMP-MC. In Proc. 16th Int. Symp. on Computer
Architecture (ISCA ’89), pages 16–24, Jerusalem.

Cheriton, D., Goosen, H., Holbrook, H., and Machanick, P. (1993). Restructuring
a parallel simulation to improve cache behavior in a shared-memory
multiprocessor: The value of distributed synchronization. In Proc. 7th
Workshop on Parallel and Distributed Simulation, pages 159–162, San Diego.

Cheriton, D., Goosen, H., and Machanick, P. (1991). Restructuring a parallel
simulation to improve cache behavior in a shared-memory multiprocessor: A
first experience. In Proc. Int. Symp. on Shared Memory Multiprocessing, pages
109–118, Tokyo.

Cheriton, D., Gupta, A., Boyle, P., and Goosen, H. (1988). The VMP
multiprocessor: Initial experience, refinements and performance evaluation. In
Proc. 15th Int. Symp. on Computer Architecture (ISCA ’88), pages 410–421,
Honolulu.

Cheriton, D., Slavenburg, G., and Boyle, P. (1986). Software-controlled caches
in the VMP multiprocessor. In Proc. 13th Int. Symp. on Computer Architecture
(ISCA ’86), pages 366–374, Tokyo.

134 REFERENCES

Cheung, T. and Smith, J. (1986). A simulation study of the CRAY X-MP memory
system. IEEE Transactions on computers, C-35(7):613–622.

Chinchilla, F., Gamblin, T., Sommervoll, M., and Prins, J. F. (2004). Parallel
N-body simulation using GPUs. Technical report, Department of Computer
Science, University of North Carolina at Chapel Hill. http://wwwx.cs.unc.
edu/~tgamblin/gpgpu/GPGPfinalReport.pdf.

Cmelik, B. and Keppel, D. (1994). Shade: a fast instruction-set simulator for
execution profiling. SIGMETRICS Perform. Eval. Rev., 22(1):128–137.

Collobert, R. and Weston, J. (2008). A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of
the 25th international conference on Machine learning, pages 160–167. ACM.

Colwell, R. and Steck, R. (1995). A 0.6µ BiCMOS processor with dynamic
execution. In Proc. 42nd IEEE Int. Conf. on Solid-State Circuits (ISSCC), pages
176–177, 361.

Colwell, R. P., Gehringer, E. F., and Jensen, E. D. (1988). Performance effects of
architectural complexity in the Intel 432. ACM Trans. Comput. Syst., 6(3):296–
339.

Colwell, R. P., Hall, W. E., Joshi, C. S., Papworth, D. B., Rodman, P. K.,
and Tornes, J. E. (1990). Architecture and implementation of a VLIW
supercomputer. In Proc. 1990 ACM/IEEE conference on Supercomputing,
Supercomputing ’90, pages 910–919, Los Alamitos, CA, USA. IEEE Computer
Society Press.

Courtland, R. (2014a). Memory in the third dimension. IEEE Spectrum, 51(1):60–
61.

Courtland, R. (2014b). Memory in the third dimension. IEEE Spectrum, 51(1):60–
61.

Dean, J. and Ghemawat, S. (2008). MapReduce: simplified data processing on
large clusters. Commun. ACM, 51(1):107–113.

Denning, P. J. (1968). The working set model for program behavior. Commun.
ACM, 11(5):323–333.

http://wwwx.cs.unc.edu/~tgamblin/gpgpu/GPGPfinalReport.pdf
http://wwwx.cs.unc.edu/~tgamblin/gpgpu/GPGPfinalReport.pdf

REFERENCES 135

Dewdney, P. E., Hall, P. J., Schilizzi, R. T., and Lazio, T. J. L. (2009). The square
kilometre array. Proceedings of the IEEE, 97(8):1482–1496.

Diefendorff, K., Dubey, P., Hochsprung, R., and Scale, H. (2000). AltiVec
extension to PowerPC accelerates media processing. IEEE Micro, 20(2):85
–95.

Du, P., Weber, R., Luszczek, P., Tomov, S., Peterson, G., and Dongarra, J.
(2012). From cuda to opencl: Towards a performance-portable solution for
multi-platform gpu programming. Parallel Computing, 38(8):391–407.

Dunigan, T.H., J., Vetter, J., White, J.B., I., and Worley, P. (2005). Performance
evaluation of the Cray X1 distributed shared-memory architecture. IEEE Micro,
25(1):30 – 40.

Dwarkadas, S., Keleher, P., Cox, A., and Zwaenepoel, W. (1993). Release con-
sistent software distributed shared memory on emerging network technology.
In Proc. 20th Int. Symp. on Computer Architecture (ISCA ’93), pages 144–155,
San Diego, CA.

Engblom, J. and Ermedahl, A. (1999). Pipeline timing analysis using a trace-
driven simulator. In Proc. Sixth Int. Conf, on Real-Time Computing Systems
and Applications (RTCSA), pages 88–95.

Eshita, T., Wang, W., Nakamura, K., Mihara, S., Saito, H., Hikosaka, Y., Inoue,
K., Kawashima, S., Yamaguchi, H., and Nomura, K. (2014). Development
of ferroelectric RAM (FRAM) for mass production. In 2014 Joint IEEE
International Symposium on the Applications of Ferroelectrics, International
Workshop on Acoustic Transduction Materials and Devices & Workshop on
Piezoresponse Force Microscopy (ISAF/IWATMD/PFM), pages 1–3. IEEE.

Farrow, R. (2015). Interview with darrell long. ;login:, 40(6):36–37.

Ferlin, E. P., Lopes, H. S., Lima, C. R. E., and Perretto, M. (2011). Prada; a high-
performance reconfigurable parallel architecture based on the dataflow model.
Int. J. High Perform. Syst. Archit., 3(1):41–55.

Fick, D., Dreslinski, R., Giridhar, B., Kim, G., Seo, S., Fojtik, M., Satpathy, S.,
Lee, Y., Kim, D., Liu, N., Wieckowski, M., Chen, G., Mudge, T., Sylvester,

136 REFERENCES

D., and Blaauw, D. (2012). Centip3De: A 3930DMIPS/W configurable near-
threshold 3D stacked system with 64 ARM Cortex-M3 cores. In Proc. IEEE
Int. Solid-State Circuits Conference (ISSCC), pages 190–192.

Firasta, N., Buxton, M., Jinbo, P., Nasri, K., and Kuo, S. (2008). Intel® AVX:
New frontiers in performance improvements and energy efficiency. Technical
report, Intel. http://toolbox-dzada.googlecode.com/svn/trunk/docs/
simd/Intel+AVX_New+Frontiers+in+Performance+Improvements+and+
Energy+Efficiency_WP.pdf.

Freescale (1999). AltiVec Technology Programming Environments Manual.
Freescale Semiconductor. online http://www.freescale.com/files/
32bit/doc/ref_manual/ALTIVECPIM.pdf accessed 7 August 2012.

Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R. H., Daniel,
D. J., Graham, R. L., and Woodall, T. S. (2004). Open MPI: Goals, concept,
and design of a next generation MPI implementation. In Proceedings, 11th
European PVM/MPI Users’ Group Meeting, pages 97–104, Budapest, Hungary.

Gelernter, D. and Carriero, N. (1992). Coordination languages and their
significance. Commun. ACM, 35(2):97–107.

Ghosal, D. and Bhuyan, L. N. (1990). Performance evaluation of a dataflow
architecture. IEEE Trans. Comput., 39(5):615–627.

Gifford, D. and Spector, A. (1987). Case study: IBM’s system/360-370
architecture. Comm. ACM, 30(4):291–307.

Grimes, J., Kohn, L., and Bharadhwaj, R. (1989). The Intel i860 64-bit processor:
A general-purpose CPU with 3D graphics capabilities. IEEE Comput. Graph.
Appl., 9(4):85–94.

Güneysu, T. (2011). Utilizing hard cores of modern fpga devices for high-
performance cryptography. Journal of Cryptographic Engineering, 1(1):37–55.

Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan, P. (2015). Deep
learning with limited numerical precision. In International Conference on
Machine Learning, pages 1737–1746.

http://toolbox-dzada.googlecode.com/svn/trunk/docs/simd/Intel+AVX_New+Frontiers+in+Performance+Improvements+and+Energy+Efficiency_WP.pdf
http://toolbox-dzada.googlecode.com/svn/trunk/docs/simd/Intel+AVX_New+Frontiers+in+Performance+Improvements+and+Energy+Efficiency_WP.pdf
http://toolbox-dzada.googlecode.com/svn/trunk/docs/simd/Intel+AVX_New+Frontiers+in+Performance+Improvements+and+Energy+Efficiency_WP.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

REFERENCES 137

Guthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mudge, T., and Brown, R.
(2001). MiBench: A free, commercially representative embedded benchmark
suite. In Proc. IEEE Int. Workshop on Workload Characterization, 2001 (WWC-
4), pages 3–14.

Hallnor, E. G. and Reinhardt, S. K. (2000). A fully associative software-managed
cache design. In Proc. 27th Ann. Int. Symp. on Computer Architecture, pages
107–116, Vancouver, BC.

Harrell, C. B. and Fouladi, F. (1993). Graphics rendering architecture for a
high performance desktop workstation. In Proc. 20th Ann. Conf on Computer
graphics and Interactive Techniques, pages 93–100.

Harris, C., Beckett, G., Bording, C., Carey, D., Chew, A., Elwell, A.,
Deeptimahanti, D., Grimwood, D., Maxville, V., OÕShea, M., et al. (2015).
Hpc technology update. Technical report, Pawsey Supercomputing Centre.

Hecht-Nielsen, R. (1992). Theory of the backpropagation neural network. In
Wechsler, H., editor, Neural networks for perception, pages 65–93. Elsevier.

Hennessy, J. and Patterson, D. (1990). Computer Architecture: A Quantitative
Approach. Morgan Kauffmann, San Francisco, CA, 1st edition.

Hennessy, J. and Patterson, D. (2012). Computer Architecture: A Quantitative
Approach. Morgan Kauffmann, San Francisco, CA, 5th edition.

Henning, J. L. (2006). SPEC CPU2006 benchmark descriptions. SIGARCH
Comput. Archit. News, 34(4):1–17.

Hiraki, K., Tamatsukuri, J., and Matsumoto, T. (1998). Speculative execution
model with duplication. In Proc. 1998 Int. Conf. on Supercomputing, pages
321–328, Melbourne, Australia.

Inouye, J., Konuru, R., Walpole, J., and Sears, B. (1992). The effects of virtually
addressed caches on virtual memory design and performance. Technical Report
CS/E 92-010, Department of Computer Science and Engineering, Oregon
Graduate Institute of Science and Engineering.

Intel (2009). Intel® advanced vector extensions programming reference.
Technical Report 319433-006, Inte.

138 REFERENCES

Jacob, B. L. and Mudge, T. N. (1998). A look at several memory management
units, TLB-refill mechanisms, and page table organizations. In Proc. 8th Int.
Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-VIII), pages 295–306, San Jose, CA.

Jin, D. and Caesar, D. N. M. (2010). Efficient gigabit ethernet switch models for
large-scale simulation. In 2010 IEEE Workshop on Principles of Advanced and
Distributed Simulation (PADS), pages 1–10.

Johnston, W. M., Hanna, J. R. P., and Millar, R. J. (2004). Advances in dataflow
programming languages. ACM Comput. Surv., 36(1):1–34.

Kaeli, D. and Emma, P. (1997). Improving the accuracy of history-based branch
prediction. IEEE Trans. on Computers, 46(4):469–472.

Kalla, R., Sinharoy, B., and Tendler, J. (2004). IBM Power5 chip: a dual-core
multithreaded processor. IEEE Micro, 24(2):40–47.

Kang, S. C., Nicopoulos, C., Lee, H., and Kim, J. (2011). A high-performance
and energy-efficient virtually tagged stack cache architecture for multi-core
environments. In Proc. IEEE 13th Int. Conf. on High Performance Computing
and Communications (HPCC), pages 58 –67.

Keltcher, C., McGrath, K., Ahmed, A., and Conway, P. (2003). The AMD Opteron
processor for multiprocessor servers. IEEE Micro, 23(2):66 – 76.

Kgil, T., D’Souza, S., Saidi, A., Binkert, N., Dreslinski, R., Reinhardt, S.,
Flautner, K., and Mudge, T. (2006). PicoServer: Using 3D stacking technology
to enable a compact energy efficient chip multiprocessor. In Proc. 12th Int’l
Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 117–128, San Jose, CA.

Kgil, T. and Mudge, T. (2006). Flashcache: a NAND flash memory file cache for
low power web servers. In Proceedings of the 2006 international conference on
Compilers, architecture and synthesis for embedded systems, pages 103–112.
ACM.

Kgil, T., Saidi, A., Binkert, N., Reinhardt, S., Flautner, K., and Mudge, T. (2008).
PicoServer: Using 3D stacking technology to build energy efficient servers. J.
Emerg. Technol. Comput. Syst., 4(4):16:1–16:34.

REFERENCES 139

Kim, N., Austin, T., Baauw, D., Mudge, T., Flautner, K., Hu, J., Irwin, M.,
Kandemir, M., and Narayanan, V. (2003). Leakage current: Moore’s law meets
static power. Computer, 36(12):68–75.

Krakiwsky, S., Turner, L., and Okoniewski, M. (2004). Acceleration of finite-
difference time-domain (FDTD) using graphics processor units (GPU). In Proc.
IEEE MTT-S Int. Microwave Symp., volume 2, pages 1033–1036 Vol.2.

Krishnan, V. and Torrellas, J. (1999). A chip-multiprocessor architecture with
speculative multithreading. IEEE Trans. on Computers, 48(9):866–880.

Lam, M., Rothberg, E., and Wolf, M. (1991). The cache performance and
optimizations of blocked algorithms. In Proc. 4th Int. Conf. on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-4),
pages 63–74, Santa Clara, CA.

Lam, M. S. and Wilson, R. P. (1992). Limits of control flow on parallelism.
In Proc. 19th Ann. Int. Symp. on Computer Architecture, pages 46–57,
Queensland, Australia.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565.

Lavington, S. H. (1978). The Manchester Mark I and Atlas: a historical
perspective. Commun. ACM, 21(1):4–12.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature,
521(7553):436.

Lee, D., Baer, J.-L., Calder, B., and Grunwald, D. (1995). Instruction cache fetch
policies for speculative execution. In Proc. 22nd Ann. Int. Symp. on Computer
Architecture, pages 357–367, S. Margherita Ligure, Italy.

Lee, J., Kim, J., Jang, C., Kim, S., Egger, B., Kim, K., and Han, S. (2008).
FaCSim: a fast and cycle-accurate architecture simulator for embedded
systems. In Proc. 2008 ACM SIGPLAN-SIGBED conference on Languages,
compilers, and tools for embedded systems, LCTES ’08, pages 89–100, New
York, NY, USA. ACM.

Lieverse, P., Deprettere, E. F., Kienhuis, A. C. J., and De Kock, E. A. (1999).
A clustering approach to explore grain-sizes in the definitionof processing
elements in dataflow architectures. J. VLSI Signal Process. Syst., 22(1):9–20.

140 REFERENCES

Liu, H. and Wee, S. (2009). Web server farm in the cloud: Performance evaluation
and dynamic architecture. In Jaatun, M., Zhao, G., and Rong, C., editors, Cloud
Computing, volume 5931 of Lecture Notes in Computer Science, pages 369–
380. Springer Berlin / Heidelberg.

Lombide Carreton, A. and D’Hondt, T. (2010). A hybrid visual dataflow
language for coordination in mobile ad hoc networks. In Proc. 12th
int. conf. on Coordination Models and Languages (COORDINATION’10),
COORDINATION’10, pages 76–91, Berlin, Heidelberg. Springer-Verlag.

Lomont, C. (2011). Introduction to Intel® Advanced Vector Extensions. Technical
report, Intel.

Lowrey, T. (2002). Three-dimensional (3d) programmable device. US Patent
6,501,111.

Lysecky, R. and Vahid, F. (2005). A study of the speedups and competitiveness of
fpga soft processor cores using dynamic hardware/software partitioning. In
Proceedings of the conference on Design, Automation and Test in Europe-
Volume 1, pages 18–23. IEEE Computer Society.

Macedonia, M. (2004). The digital world’s midlife crisis. Computer, 37(8):100 –
101.

Machanick, P. (1996). An Object-Oriented Library for Shared-Memory Parallel
Simulations. PhD Thesis, Department of Computer Science, University of Cape
Town.

Machanick, P. (2000). Scalability of the RAMpage memory hierarchy. South
African Computer J., (25):68–73.

Machanick, P. (2004). Initial Experiences with Dreamy Memory and the
RAMpage Memory Hierarchy. In Proc. Ninth Asia-Pacific Computer Systems
Architecture Conf., pages 146–159, Beijing.

Machanick, P. and Salverda, P. (1998). Preliminary investigation of the RAMpage
memory hierarchy. South African Computer J., (21):16–25.

Machanick, P., Salverda, P., and Pompe, L. (1998). Hardware-software trade-offs
in a Direct Rambus implementation of the RAMpage memory hierarchy. In
Proc. 8th Int. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-VIII), pages 105–114, San Jose, CA.

REFERENCES 141

Madisa, K., Marais, N., Ramaila, A., and den Heever, L. V. (2018). Integration
of MeerKAT and SKA Telescopes using KATCP/Tango Translators. In
Proc. of International Conference on Accelerator and Large Experimental
Control Systems (ICALEPCS’17), Barcelona, Spain, 8-13 October 2017,
number 16 in International Conference on Accelerator and Large Experi-
mental Control Systems, pages 1964–1968, Geneva, Switzerland. JACoW.
https://doi.org/10.18429/JACoW-ICALEPCS2017-THSH201.

Maqbool, J., Oh, S., and Fox, G. C. (2015). Evaluating arm hpc clusters for
scientific workloads. Concurrency and Computation: Practice and Experience,
27(17):5390–5410.

Markatos, E., Crovella, M., Das, P., Dubnicki, C., and LeBlanc, T. (1991). The
effects of multiprogramming on barrier synchronization. In Proc. 3rd IEEE
Symp. on Parallel and Distributed Processing, pages 662–669.

Martínez, J. F. and Torrellas, J. (2002). Speculative synchronization: applying
thread-level speculation to explicitly parallel applications. In ASPLOS-X:
Proc. 10th Int. Conf. on Architectural support for programming languages and
operating systems, pages 18–29, San Jose, CA.

Masuoka, F., Momodomi, M., Iwata, Y., and Shirota, R. (1987). New ultra high
density EPROM and flash EEPROM with NAND structure cell. In Electron
Devices Meeting, 1987 International, pages 552–555. IEEE.

Mayer, A. J. W. (1982). The architecture of the Burroughs B5000: 20 years later
and still ahead of the times? SIGARCH Comput. Archit. News, 10(4):3–10.

Mellor-Crummey, J. M. and Scott, M. L. (1991). Algorithms for scalable
synchronization on shared-memory multiprocessors. ACM Trans. on Computer
Systems (TOCS), 9(1):21–65.

Meredith, J. S., Alvarez, G., Maier, T. A., Schulthess, T. C., and Vetter, J. S.
(2009). Accuracy and performance of graphics processors: A quantum Monte
Carlo application case study. Parallel Computing, 35(3):151–163.

Minsky, M. L. and Papert, S. A. (1969). Perceptrons: an introduction to
computational geometry. MIT Press, Cambridge, MA.

Mironov, D., Ubar, R., Devadze, S., Raik, J., and Jutman, A. (2010). Structurally
synthesized multiple input BDDs for speeding up logic-level simulation

142 REFERENCES

of digital circuits. In 13th Euromicro Conf. on Digital System Design:
Architectures, Methods and Tools (DSD), pages 658 –663.

Molka, D., Hackenberg, D., Schone, R., and Muller, M. (2009). Memory
performance and cache coherency effects on an Intel Nehalem multiprocessor
system. In Proc. 18th Int. Conf. on Parallel Architectures and Compilation
Techniques (PACT’09), pages 261–270.

Montrym, J. S., Baum, D. R., Dignam, D. L., and Migdal, C. J. (1997).
InfiniteReality: a real-time graphics system. In Proc. 24th annual conf. on
Computer graphics and interactive techniques (SIGGRAPH ’97), SIGGRAPH
’97, pages 293–302, New York, NY, USA. ACM Press/Addison-Wesley
Publishing Co.

Moore, G. E. (1965). Cramming more components onto integrated circuits.
Electronics, 38(8):114–117.

Moudgill, M., Wellman, J.-D., and Moreno, J. (1999). Environment for PowerPC
microarchitecture exploration. IEEE Micro, 19(3):15 –25.

Nambiar, R., Wakou, N., Carman, F., and Majdalany, M. (2011). Transaction
processing performance council (TPC): State of the council 2010. In
Nambiar, R. and Poess, M., editors, Performance Evaluation, Measurement
and Characterization of Complex Systems, volume 6417 of Lecture Notes in
Computer Science, pages 1–9. Springer Berlin / Heidelberg.

Nayfeh, B. and Olukotun, K. (1997). A single-chip multiprocessor. Computer,
30(9):79–85.

Nayfeh, B. A. and Olukotun, K. (1994). Exploring the design space for a shared-
cache multiprocessor. In ISCA ’94: Proc. 21st Ann. Int. Symp. on Computer
Architecture, pages 166–175, Chicago, Illinois, United States.

NVIDIA (2011). PTX: Parallel thread execution ISA version 2.3.

Olazaran, M. (1996). A sociological study of the official history of the perceptrons
controversy. Social Studies of Science, 26(3):611–659.

Olukotun, K., Nayfeh, B. A., Hammond, L., Wilson, K., and Chang, K.
(1996). The case for a single-chip multiprocessor. In Proc. 7th Int. Conf.
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-7), pages 2–11, Cambridge, MA.

REFERENCES 143

Organick, E. I. (1983). A programmer’s view of the Intel 432 system. McGraw-
Hill, Inc., New York, NY, USA.

Pagelkopf, D., Moe, R., Lincoln, N. R., Krueger, L., Krohn, H., Kort,
R., Hutson, M., Hawley, C. L., Grinna, D., Bhend, B., et al. (1975).
Reminiscences of computer architecture and computer design at control data
corporation. http://conservancy.umn.edu/bitstream/handle/11299/
104327/1/oh321cdc.pdf.

Papworth, D. (1996). Tuning the Pentium Pro microarchitecture. IEEE Micro,
16(2):8–15.

Patterson, D. A. (1985). Reduced instruction set computers. Communications of
the ACM, 28(1):8–21.

Patterson, D. A. and Ditzel, D. R. (1980). The case for the reduced instruction set
computer. Computer Architecture News, 8(6):25–33.

Patterson, D. A., Gibson, G., and Katz, R. H. (1988). A case for redundant arrays
of inexpensive disks (RAID). In Proceedings of the 1988 ACM SIGMOD
international conference on Management of data, SIGMOD ’88, pages 109–
116, New York, NY, USA. ACM.

Peleg, A., Wilkie, S., and Weiser, U. (1997). Intel MMX for multimedia pcs.
Commun. ACM, 40(1):24–38.

Perleberg, C. and Smith, A. (1993). Branch target buffer design and optimization.
IEEE Transactions on Computers, 42(4):396–412.

Petersen, A., Putnam, A., Mercaldi, M., Schwerin, A., Eggers, S., Swanson, S.,
and Oskin, M. (2006). Reducing control overhead in dataflow architectures.
In Proceedings of the 15th international conference on Parallel architectures
and compilation techniques, PACT ’06, pages 182–191, New York, NY, USA.
ACM.

Piguet, C. (2006). Ultra-low-power processor design. In Oklobdzija,
V. G. and Krishnamurthy, R. K., editors, High-Performance Energy-Efficient
Microprocessor Design, Integrated Circuits and Systems, pages 1–30. Springer
US. DOI:10.1007/978-0-387-34047-0_1.

http://conservancy.umn.edu/bitstream/handle/11299/104327/1/oh321cdc.pdf
http://conservancy.umn.edu/bitstream/handle/11299/104327/1/oh321cdc.pdf

144 REFERENCES

Poess, M., Nambiar, R. O., Vaid, K., Stephens, Jr., J. M., Huppler, K., and Haines,
E. (2010). Energy benchmarks: a detailed analysis. In Proceedings of the
1st International Conference on Energy-Efficient Computing and Networking,
e-Energy ’10, pages 131–140, New York, NY, USA. ACM.

Postiff, M. A., Green, D. A., Tyson, G. S., and Mudge, T. N. (1998). Limits
of instruction level parallelism in SPEC95 applications. In INTERACT-3
Workshop on Interaction between Compilers and Computer Architectures, part
of ASPLOS VIII, pages 31–34, San Jose, CA.

Rahman, N. and Raman, R. (2000). Analysing cache effects in distribution sorting.
J. of Experimental Algorithmics (JEA), 5:14.

Reddi, V. J., Settle, A., Connors, D. A., and Cohn, R. S. (2004). PIN: a binary
instrumentation tool for computer architecture research and education. In Proc.
2004 workshop on Computer architecture education: held in conjunction with
the 31st Int. Symp. on Computer Architecture, WCAE ’04, New York, NY,
USA. ACM.

Reinberg, A. R. and Zahorik, R. C. (2004). X-point memory cell. US Patent
6,777,705.

Rogers, A. and Li, K. (1992). Software support for speculative loads. In Proc. 5th
Int. Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-5), pages 38–50.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386.

Russinovich, M. (2007). Inside the Windows Vista kernel: Part 2. TechNet
Magazine.

Schoeberl, M. (2008). A Java processor architecture for embedded real-time
systems. Journal of Systems Architecture, 54(1–2):265 – 286.

Schoeberl, M., Preußer, T. B., and Uhrig, S. (2010). The embedded Java
benchmark suite JemBench. In Proceedings of the 8th International Workshop
on Java Technologies for Real-Time and Embedded Systems, JTRES ’10, pages
120–127, New York, NY, USA. ACM.

REFERENCES 145

Seznec, A. and Lenfant, J. (1992). Interleaved parallel schemes: improving
memory throughput on supercomputers. In Proc. 19th annual int. symp. on
Computer architecture (ISCA ’92), ISCA ’92, pages 246–255, New York, NY,
USA. ACM.

Silva, J. L. E. and Lopes, J. J. (2010). A dynamic dataflow architecture using
partial reconfigurable hardware as an option for multiple cores. W. Trans. on
Comp., 9(5):429–444.

Simunic, T., Benini, L., and De Micheli, G. (1999). Cycle-accurate simulation of
energy consumption in embedded systems. In Proc. 36th Design Automation
Conference, pages 867–872.

Skadron, K., Ahuja, P. S., Martonosi, M., and Clark, D. W. (1999). Branch
prediction, instruction-window size, and cache size: Performance trade-offs
and simulation techniques. IEEE Trans. on Computers, 48(11):1260–1281.

Sohi, G. (2001). Microprocessors – 10 years back, 10 years ahead. In Wilhelm,
R., editor, Informatics, volume 2000 of Lecture Notes in Computer Science,
pages 209–218. Springer Berlin / Heidelberg.

Stone, J., Gohara, D., and Shi, G. (2010). OpenCL: A parallel programming
standard for heterogeneous computing systems. Computing in Science
Engineering, 12(3):66–73.

Svozil, D., Kvasnicka, V., and Pospichal, J. (1997). Introduction to multi-
layer feed-forward neural networks. Chemometrics and intelligent laboratory
systems, 39(1):43–62.

Swanson, S., Putnam, A., Mercaldi, M., Michelson, K., Petersen, A., Schwerin,
A., Oskin, M., and Eggers, S. J. (2006). Area-performance trade-offs in
tiled dataflow architectures. In ISCA’06: Proc. 33rd Int. Symp. on Computer
Architecture, pages 314–326, Boston.

Tanenbaum, A. S. and van Steen, M. (2002). Distributed Systems: Principles and
Paradigms. Prentice Hall, Upper Saddle River, NJ.

Tendler, J. M., Dodson, J. S., Fields, J. S., Le, H., and Sinharoy, B.
(2002). POWER4 system microarchitecture. IBM Journal of Research and
Development, 46(1):5–25.

146 REFERENCES

Thornton, J. E. (1963). Considerations in computer design – lead-
ing to the Control Data 6600. Technical report, Control Data
Corp. http://archive.computerhistory.org/resources/text/CDC/
CDC.6600.1963.102641207.pdf.

Thornton, J. E. (1980). The CDC 6600 project. Annals of the History of
Computing, 2(4):338 –348.

Tomasulo, R. M. (1967). An efficient algorithm for exploiting multiple arithmetic
units. IBM J. Research and Development, 11(1):25–33.

Traub, K. R. (1986). A compiler for the mit tagged-token dataflow architecture.
Technical report, MIT, Cambridge, MA, USA. http://www.ncstrl.org:
8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%
3Amitai%3AMIT-LCS%2F%2FMIT%2FLCS%2FTR-370.

Tyson, G. S. (1994). The effects of predicated execution on branch prediction. In
Proc. 27th Ann. Int. Symp. on Microarchitecture, pages 196–206, San Jose, CA.

Uhlig, R. A. and Mudge, T. N. (1997). Trace-driven memory simulation: a survey.
ACM Comput. Surv., 29(2):128–170.

Valero, M., Lang, T., and Ayguadé, E. (1992). Conflict-free access of vectors with
power-of-two strides. In Proc. 6th int. conf. on Supercomputing (ICS ’92), ICS
’92, pages 149–156, New York, NY, USA. ACM.

Vo, H. T. (2011). Designing a parallel dataflow architecture for streaming large-
scale visualization on heterogeneous platforms. PhD thesis, University of Utah,
Salt Lake City, UT, USA. AAI3454865.

Voigt, S., Baesler, M., and Teufel, T. (2010). Dynamically reconfigurable dataflow
architecture for high-performance digital signal processing. J. Syst. Archit.,
56(11):561–576.

Wall, D. (1991). Limits of instruction level parallelism. In Proc. 4th Int. Conf.
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-4), pages 176–188, Santa Clara, CA.

Weiss, S. (1989). An aperiodic storage scheme to reduce memory conflicts in
vector processors. In Proc. 16th annual int. symp. on Computer architecture
(ISCA ’89), ISCA ’89, pages 380–386, New York, NY, USA. ACM.

http://archive.computerhistory.org/resources/text/CDC/CDC.6600.1963.102641207.pdf
http://archive.computerhistory.org/resources/text/CDC/CDC.6600.1963.102641207.pdf
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%3Amitai%3AMIT-LCS%2F%2FMIT%2FLCS%2FTR-370
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%3Amitai%3AMIT-LCS%2F%2FMIT%2FLCS%2FTR-370
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%3Amitai%3AMIT-LCS%2F%2FMIT%2FLCS%2FTR-370

REFERENCES 147

Wheeler, B. and Bershad, B. (1992). Consistency management for virtually
indexed caches. In Proc. 5th Int. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-5), pages 124–136.

Whitehead, N. and Fit-Florea, A. (2011). Precision & performance: Floating
point and IEEE 754 compliance for NVIDIA GPUs. NVIDIA white paper,
http://developer.download.nvidia.com/compute/DevZone/docs/
html/C/doc/Floating_Point_on_NVIDIA_GPU_White_Paper.pdf.

Womble, D. E., Dosanjh, S. S., Hendrickson, B., Heroux, M. A., Plimpton, S. J.,
Tomkins, J. L., and Greenberg, D. S. (1999). Massively parallel computing: A
sandia perspective. Parallel Computing, 25(13L’–14):1853–1876.

Wulf, W. and McKee, S. (1995). Hitting the memory wall: Implications of the
obvious. Computer Architecture News, 23(1):20–24.

Wynters, E. (2011). Parallel processing on NVIDIA graphics processing units
using CUDA. J. Comput. Sci. Coll., 26(3):58–66.

Xiao, L., Zhang, X., and Kubricht, S. A. (2000). Improving memory performance
of sorting algorithms. J. of Experimental Algorithmics (JEA), 5:3.

Yeap, G. C.-F. (2002). Leakage current in low standby power and high
performance devices: trends and challenges. In Proc. 2002 Int. Symp. on
Physical design, pages 22–27, San Diego, CA.

Yeh, T.-Y. and Patt, Y. N. (1991). Two-level adaptive training branch prediction. In
Proceedings of the 24th annual international symposium on Microarchitecture,
MICRO 24, pages 51–61, New York, NY, USA. ACM.

Yeh, T.-Y. and Patt, Y. N. (1992). Alternative implementations of two-level
adaptive branch prediction. In Proc. 19th Ann. Int. Symp. on Computer
Architecture, pages 124–134.

Yeh, T.-Y. and Patt, Y. N. (1993). A comparison of dynamic branch predictors that
use two levels of branch history. In Proc. 20th Ann. Int. Symp. on Computer
Architecture, pages 257–266, San Diego, CA.

Young, C. and Smith, M. D. (1999). Static correlated branch prediction. ACM
Trans. on Programming Languages and Systems (TOPLAS), 21(5):1028–1075.

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/Floating_Point_on_NVIDIA_GPU_White_Paper.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/Floating_Point_on_NVIDIA_GPU_White_Paper.pdf

148 REFERENCES

Zivkov, B., Ferguson, B., and Gupta, M. (1994). R4200: a high-performance
MIPS microprocessor for portables. In Compcon Spring ’94, Digest of Papers.,
pages 18 –25.

Zukowski, M., Héman, S., Nes, N., and Boncz, P. (2006). Super-scalar RAM-
CPU cache compression. In Proc. 22nd Int. Conf. on Data Engineering (ICDE
’06), page 59.

	List of Figures
	List of Tables
	Introduction
	Measurement
	Design Approaches
	Performance Factors
	Architecture Areas
	Memory Hierarchy
	Hardware Layers
	Hardware-Software Layers
	Hardware-Software Interaction
	Instruction Set Design
	Styles of Instruction Set
	Design for Performance

	Input and Output
	Parallelism
	Instruction-Level Parallelism
	Multiprocessor and Multicore
	GPUs
	Warehouse-Scale Computing and the Cloud

	The Other Edge
	Structure and further reading

	Principles of Instruction Set Design
	Scalability
	Hardware Simplicity
	Condition Codes
	Big Gains from Minor Complications
	Summary

	Memory and Quantitative Design
	Memory Systems
	Organization Principles
	Levels of the Hierarchy
	Registers
	TLB
	Caches
	Main Memory
	Paging Device

	Measurement
	Architecture-Oriented Measures
	Benchmarking

	Putting it All Together: Measuring Memory Systems Performance
	Back of the Envelope Calculation
	Profiling
	Trace-Driven Simulation
	Whole-System Simulation
	More Detailed Approaches
	Summary

	Pipelines and ILP
	Simple Pipelines
	Pipeline Limitations
	Pipeline Performance
	Case Study
	Hazards

	More Exotic Pipelines
	Static scheduling
	Dynamic scheduling and better branch prediction
	Compiler-Exposed ILP

	Summary

	Multiprocessors
	Multiprocessor Models
	Shared Memory Principles
	Shared Memory Performance
	False Sharing
	Locks

	Summary

	GPUs
	Vector Processing
	SIMD Extensions to Instruction Sets
	GPUs
	Review

	Warehouse-Scale Computing
	Fault tolerance and dependability
	Programming model
	Hardware Design
	Warehouse Design

	New Developments
	Three Dimensions
	Nonvolatile RAM
	Deep Learning Architectures
	FPGAs and the SKA
	Summary

	References

