L1 Cache and TLB Enhancements to the RAMpage Memory
Hierarchy

Philip Machanick
School of ITEE, University of Queensland
Brisbane, Qld 4068, Australia

philip@itee.ug.edu.au

ABSTRACT

The RAMpage hierarchy moves main memory up a level to replace
the lowest-level cache by an equivalent-sized SRAM main memory,
and uses the TLB to cache page translations in that main memory.
Earlier RAMpage evaluation used a relatively small L1 cache and
TLB. Given that TLB misses can take up a significant fraction of
run time, better TLB management in general is worth pursuing. For
the RAMpage hierarchy, the effect is clearer than with a conven-
tional hierarchy, because it is more feasible to make a TLB which
maps a high fraction of main memory pages. This paper illustrates
how more aggressive components higher in the memory hierarchy
make time spent waiting for DRAM more significant as a fraction
of total execution time, and, hence, approaches to hide the latency
of DRAM become more important. For an instruction issue rate of
1 GHz, the simulated standard hierarchy waited for DRAM 10%
of the time; with the instruction issue rate increased to 8 GHz, the
fraction of time spent waiting for DRAM increased to 40%, and
was higher for a larger L1 cache. The RAMpage hierarchy with
context switches on misses was able to hide almost all DRAM la-
tency. Increasing the processor speed in a standard hierarchy by
a factor of 8 and increasing L1 cache size by a factor of 16, with
DRAM speed unchanged, resulted in a speedup of 6.12. Adding
the RAMpage model and introducing context switches on misses,
with similar processor speed and L1 improvements, resulted in a
speedup of 10.7 over the slowest conventional hierarchy. A larger
TLB was shown to increase the viable range of SRAM page sizes
in the RAMpage hierarchy.

Categories and Subject Descriptors

B.3.2 [Memory Structures]: Design Styles—memory hierarchy,
memory wall, cache memories, virtual memory, translation |ooka-
side buffer, TLB; B.3.3 [Memory Structures]: Performance Anal-
ysis and Design Aids—simulation

1. INTRODUCTION

The RAMpage memory hierarchy moves main memory up a level
to replace the lowest-level cache with an SRAM main memory,

Technical Report submitted for potential publication 18 November 2002:
look for published version in 2003.

Zunaid Patel
School of Computer Science, University of the
Witwatersrand
Private Bag 3, Wits, 2050, South Africa

Zunaid@cs.wits.ac.za

while DRAM becomes a first-level paging device. Previous work
has shown that RAMpage represents an alternative, viable design
in terms of hardware-software trade-offs [25] and that it scales bet-
ter as the CPU-DRAM speed gap grows, particularly by virtue of
being able to take context switches on misses [24].

One of the potential gains of the RAMpage hierarchy, which has
been mentioned in previous work but not fully explored, is for the
TLB to be less of a bottleneck in the RAMpage model than in a
conventional physically-addressed cache. Further, it was hypothe-
sized that the RAMpage model would be more competitive across
a wider range of SRAM page sizes (equivalent to the line size of
the lowest-level cache in a conventional hierarchy) with a more ag-
gressive TLB design. Secondly, it was hypothesized that a more
aggressive L1 cache would emphasize differences in lower levels
of the hierarchy — particularly that DRAM latency would become a
more significant factor.

In some studies, handling TLB misses has accounted for as much
as 40% of run time [15], with figures in the region of 20-30% not
uncommon [8, 26]. The RAMpage model has the potential to re-
duce the significance of the TLB on performance for two reasons.
Firstly, unless the reference which causes a TLB miss would also
miss in the SRAM main memory, no reference to update the TLB
needs go to DRAM, with the page table organization chosen for
RAMpage. Secondly, there is no mismatch between the size of
page mapped by the TLB and the “line size” of the “lowest-level
cache”, as would be the case with a conventional hierarchy. Con-
sequently, the TLB can more easily de designed to map a specific
fraction of the SRAM main memory, than is the case for a conven-
tional cache.

The role of increasingly aggressive on-chip caches also needs to be
evaluated, against the view that such caches address the memory
wall problem. While it may be accepted that quadrupling the size
of a cache halves the number of misses [31], such cache expansion
may not always be practical, and increasing the size of caches in
any case makes it harder to scale up their speed [13].

The approach taken in this paper is to compare the RAMpage model
with a conventional 2-level cache hierarchy as the size of the TLB
is scaled up, across a number of different SRAM main memory
page sizes, as well as with a variety of L1 cache sizes.

The simulated second-level cache of 4Mbytes runs at a third of the
peak issue rate, which is unrealistically fast, given that some cur-
rent commodity designs are up to 9-way superscalar [2]. The intent

is to emphasize that even a very fast, large on-chip cache results in
a large fraction of run-time being spent waiting for DRAM. Even
s0, given that DRAM references are the dominant effect being mea-
sured, an unrealistically fast cache should not invalidate the general
trends being studied.

TLB measurements show that both models see a reduction in TLB
miss rates as the TLB size increases, but RAMpage becomes more
viable with smaller SRAM main memory page sizes. Further, since
the SRAM page size is the unit mapped by the TLB, it becomes eas-
ier to find an optimum point in the design space for the RAMpage
model. Finally, the possibility of taking context switches on misses
makes relatively large SRAM page sizes viable, which means that a
smaller TLB can achieve reasonable results in the RAMpage model
than is the case for a conventional cache architecture.

Cache measurements show that as L1 cache size increases, the frac-
tion of time spent waiting for DRAM increases (even if overall run
time decreases), which makes the option in the RAMpage hierarchy
of taking a context switch on a miss more attractive.

The remainder of this paper is structured as follows. Section 2
presents more detail of the RAMpage hierarchy and related re-
search. Section 3 explains the experimental approach, while Sec-
tion 4 presents experimental results. In conclusion, Section 5, sum-
marizes the findings and outlines future work.

2. BACKGROUND

2.1 Introduction

The RAMpage model was proposed [23] in response to talk of the
memory wall [33, 18]. The key idea of the RAMpage model is to
minimize hardware complexity, while moving more of the mem-
ory management intelligence into software. A RAMpage machine
therefore looks very like a conventional model, except the lowest-
level cache controller is replaced by a conventionally-addressed

physical memory, though implemented in SRAM rather than DRAM.

A number of other approaches to addressing the memory wall have
been proposed. This section summarizes the memory wall issue,
followed by more detail of RAMpage. After presenting other alter-
natives, the options are discussed.

2.2 Memory Wall

The memory wall is the situation where the effect of CPU im-
provements start to become insignificant as the speed improvement
of DRAM becomes a limiting factor. Since the mid-1980s, CPU
speeds have improved at a rate of 50-100% per year, while DRAM
latency has only improved at around 7% per year [14].

If predictions of the memory wall situation are correct [33], DRAM
latency in future will be a serious limiting factor in performance im-
provement. Clearly, attempts at working around the memory wall
are becoming increasingly common, including workshops at ma-
jor architecture conferences [11]. But the fundamental underlying
DRAM and CPU latency trends continue [30].

2.3 The RAM page Approach

The RAMpage model is based on the notion that DRAM, while
still orders of magnitude faster than disk, is increasingly starting to
display the attributes of a peripheral — that there is sufficient time
to do other work while waiting for it [27] — particularly if relatively
large units are moved between DRAM and the lowest SRAM level,

a trend encouraged by the general trend towards higher-bandwidth
interconnects [10, 3] and larger cache block sizes (e.g., 512 bytes
on the Power4 L3 cache [32]).

The RAMpage hierarchy makes as few changes from a traditional
hierarchy as possible. The lowest-level cache is managed as the
main memory (i.e., as a paged virtually-addressed memory), with
disk used as a secondary paging device. The RAMpage main mem-
ory page table is inverted, to minimize its size. Further, an inverted
page table has another benefit: no TLB miss can result in a DRAM
reference, unless the reference causing the TLB lookup is not in
any of the SRAM layers [25].

The RAMpage model has the following advantages:

o fast hits— provided there is not TLB miss, a hit is a simple
matter of physically addressing an SRAM memory

o full associativity — hardware full associativity has a penalty in
slower hits, but achieving full associativity by implementing
a paged memory avoids that problem

o software managed replacement — page replacement can be as
sophisticated as needed, drawing on operating system prac-
tice

e TLB missessto DRAM minimized — as explained above

e pinning in SRAM - critical operating system data and code
can be pinned in SRAM, which is hard to do without full
associativity

e hardware simplicity — the complexity of a cache controller is
removed from the design of the lowest level of SRAM

e context switches on misses to DRAM - the processor can be
kept busy

These advantages come at the cost of slower misses because of
software miss-handling, and the need to make operating system
changes. However, the latter problem could be avoided by adding
hardware support for the model (e.g., in the form of an intelligent
memory controller which made page faults to DRAM look like disk
references, or the software may be hidden in architecture extensions
such as PALcode in the Alpha processor [4]).

The RAMpage approach has in the past been shown to scale well
in the face of the grown CPU-DRAM speed gap, particularly when
context switches are taken on misses. The effect of taking context
switches on misses is that, provided their is work available for the
CPU, waiting for DRAM can effectively be eliminated [24]. While
the other advantages of RAMpage may result in a small perfor-
mance win, context switches on misses have the most significant
effect, as time which would otherwise be spent waiting for DRAM
increases.

24 Alternatives

Alternative approaches to addressing the memory wall can loosely
(with some overlaps) be grouped into latency tolerance and miss
reduction.

Some approaches to latency tolerance include prefetch, critical word
first, memory compression, write buffering, non-blocking caches,
and simultaneous multithreading (SMT).

Prefetch requires loading a cache block before it is requested, ei-
ther by hardware [7, 20] or with compiler support [28]; predictive
prefetch attempts to improve accuracy of prefetch for relatively var-
ied memory access patterns [1]. In critical word first, the word
containing the reference which caused the miss is fetched first, fol-
lowed by the rest of the block [13]. The Power4 has a variation of
this, in which large cache blocks are divided into sectors, and the
critical sector is fetched first [32]. Memory compression in effect
reduces latency because a smaller amount of information must be
moved on a miss. Of course, the compression and decompression
overhead should be less than the time saved on memory transfers
[21]. There are many variations on write strategy when the write
causes a miss, but the most effective generally include write buffer-
ing, because completion of a write is not necessary to continue with
other operations [19]. A non-blocking cache (or lockup-free) cache
can allow an aggressive pipeline to continue processing other in-
structions while waiting for a miss [6].

SMT is aimed at masking not only DRAM latency, but also other
causes of pipeline stalls, by having hardware support for more than
one active thread [22].

These ideas come with various costs, for example, prefetching can
displace needed cache content, causing unnecessary misses. How-
ever, the biggest problem is that most of these approaches do not
scale with the growing CPU-DRAM speed gap. Critical word first
is not as helpful as the latency for the first reference grows in rela-
tion to the total time for a big DRAM transaction. Prefetch, mem-
ory compression and nonblocking caches have limits as to the ex-
tent to which they can reduce effective latency because of limits to
predictability of future behaviour. Write buffering can scale pro-
vided buffer size can be scaled, and references to buffered writes
can be handled before they are written back. SMT has the potential
to mask much of the time spent waiting for DRAM, but at the cost
of more complex hardware in the CPU.

Reducing misses has generally been addressed by increasing cache
size, associativity, or both. Given the limits on how large a cache
can be made at a given speed, the number of cache levels has also
increased over time.

Given the extra overheads on hits introduced by increasing associa-
tivity, there have been various attempts at supporting higher asso-
ciativity in hardware by alternative means.

Full associativity can be achieved in hardware without the over-
heads for hits associated with a conventional fully-associative cache,
in an indirect index cache (I1C), by what amounts to a hardware
implementation of the page table lookup aspect of the RAMpage
model. An inverted page table is in effect implemented in hard-
ware, to allow a block to be placed anywhere in a memory orga-
nized as a direct-mapped cache [12]. The drawback of this ap-
proach is that all references incur some overhead of an extra level
of indirection. The advantage is that the operating system need not
be invoked to handle the equivalent of a TLB miss in the RAMpage
model.

In the 1980s, there was some work on software-based cache man-
agement, with emphasis on managing cache coherence in a shared-
memory system [9]. More recent work on managing the inter-
face between cache and DRAM in software has focused on ad-
dress translation [16]. These approaches, however, were not aimed
specifically at managing replacement.

25 Summary

The memory wall problem needs to be addressed by minimizing
time spent waiting for DRAM. The RAMpage approach allows
time which would otherwise be spent waiting for DRAM to be
masked by taking context switches on misses. Other approaches
which have been proposed generally either do not aim to mask the
time spent waiting for DRAM, but to reduce it, or require more
complex hardware.

RAMpage can, however, potentially be combined with some of the
other approaches (such as SMT), so it is not necessarily in conflict
with other ideas.

3. EXPERIMENTAL APPROACH

3.1 Introduction

This section outlines the approach to the reported experiments. Re-
sults are designed to be comparable to previously reported results
as far as possible.

The simulation strategy is explained, followed by some detail of
simulation parameters; in conclusion, expected findings are dis-
cussed.

3.2 Simulation Strategy

The approach followed here is similar to that used in previously
reported work. A range of variations on a standard 2-level hierarchy
is compared to similar variations on a RAMpage hierarchy, with
and without context switches on misses.

Simulations are trace-driven, and do not model the pipeline. It is
assumed that pipeline timing is less significant than variations in
DRAM referencing behaviour. Processor speed is given in GHz,
representing a peak instruction issue rate, rather than a clock speed.

It could be argued that over-simplification of the pipeline level ne-
glects effects like branches and the potential for other improve-
ments like non-blocking caches. However, the results being looked
for here are relatively large improvements, so inaccuracies of this
kind are unlikely to be significant. What is important is the effect
as the CPU-DRAM speed gap increases, and the simulation is of
sufficient accuracy to capture such effects.

3.3 Simulation Parameters

The parameters used are similar to previous published work to make
results comparable. However, the range of instruction issue rates is
higher than in earliest work [25], to take into account advances in
CPU speed.

The following parameters are unchanged from previous simula-
tions, and are common across RAMpage and the conventional hier-
archy. This represents the baseline before L1 and TLB variations:

e L1 cache — 16Kbytes each of data and instruction cache,
physically tagged and indexed, direct-mapped, 32-byte block
size, 1-cycle read hit time, 12-cycle penalty for misses to L2
(or SRAM main memory in the RAMpage case); for the data
cache: perfect write buffering with zero (effective) hit time,
writeback (12-cycle penalty; 9 cycles for RAMpage since
there is no L2 tag to update), write allocate on miss

e TLB - 64 entries, fully associative, random replacement, 1-
cycle hit time, misses modeled by interleaving a trace of page
lookup software

e DRAM level — Direct Rambus without pipelining: 50n.s be-
fore first reference started, thereafter 2 bytes every 1.25ns

e paging of DRAM - inverted page table: same organization as
RAMpage main memory for simplicity, but infinite DRAM
modeled with no misses to disk

e TLB and L1 data hits are fully pipelined: they do not add to
execution time; only instruction fetch bits add to simulated
run time; time for replacements or maintaining inclusion are
costed as L1d or TLB “hits”

The same memory timing is used as in earlier simulations. Al-
though faster DRAM has since become available, the timing can
be seen as relative to a particular CPU-DRAM speed gap, and the
figures can accordingly be rescaled.

3.3.1 specific to conventional hierarchy
The “conventional” system has a 2-way associative 4Mbyte L2
cache.

The bus connecting the L2 cache to the CPU is 128 bits wide and
runs at one third of the CPU issue rate reflecting the fact that the
modeled CPU cycle time is intended to represent a superscalar issue
rate. The L2 cache is clocked at the speed of the bus to the CPU.
Hits on the L2 cache take 4 cycles including the tag check and
transfer to L1.

Inclusion between L1 and L2 is maintained [14], so L1 is always
a subset of L2, except that some blocks in L1 may be dirty with
respect to L2 (writebacks occur on replacement).

The TLB caches translations from virtual addresses to DRAM phys-
ical addresses.

3.3.2 specific to RAMpage hierarchy

In the RAMpage simulations, most parameters remain the same,
except that the TLB maps the SRAM main memory, and full as-
sociativity is implemented in software, through a software miss
handler. The operating system uses 6 pages of the SRAM main
memory when simulating a 4 Kbyte-SRAM page, i.e., 24 Kbytes,
up to 5336 pages for a 128 byte block size, a total of 667 Kbytes.

The RAMpage SRAM main memory uses an inverted page table,
and TLB misses will not incur a DRAM reference, as long as the
required reference can be found in an SRAM level.

3.3.3 inputs and variations

Traces used are from the Tracebase trace archive at New Mex-
ico State University'. Although these traces are from the obso-
lete SPEC92 benchmarks, they are sufficient to warm up the size
of cache used here, because 1.1-billion references are used, with
traces interleaved to create the effect of a multiprogramming work-
load.

To measure variations on L1 caches, the size of each of the instruc-
tion and data caches was varied from the original RAMpage size of
16 KB to 32 KB, 64 KB, 128 KB and 256 KB (i.e., the total of L1

1The traces used in this paper can be found at ftp:
//tracebase. nnsu. edu/ pub/traces/ uni/r2000/
utilities/ and ftp://tracebase. nnsu. edu/ pub/
traces/ uni /r2000/ SPEC92/ .

cache varied from 32 KB to 512 KB). Further, to explore more of
the design space, L1 block size was measured at sizes of 32, 64 and
128 bytes.

To measure the effect of increasing the TLB size we varied it from
64 entries (the original size) to 128, 256 and 512 entries. An even
larger TLB could be modelled (e.g., the Power4 has a 1024-entry
TLB [32]), but this range is sufficient to capture variations of inter-
est.

3.4 Expected Findings

As the L1 cache becomes larger, RAMpage without context switches
on misses should see less of a gain, since some of its gains re-
sult from more efficient management of DRAM at the expense of
slower software intervention. While improving L1 should not ef-
fect time spent in DRAM, RAMpage’s extra overheads in manag-
ing DRAM may have a more significant effect on overall run time.
However, as the fraction of references in upper levels increases
without a decrease in references to DRAM, context switches on
misses should become more favourable.

As the TLB size increases, we expect to see smaller SRAM page
sizes become viable; very large TLB sizes should have little ef-
fect on larger SRAM page sizes in the RAMpage model because
larger pages ensure that a relatively large fraction of the SRAM
main memory is mapped, even without a very large TLB. To quan-
tify this, if the TLB has 64 entries and the page size is 4 KB with
a4 MB SRAM main memory, 6.25% of the memory is mapped by
the TLB. If the TLB has 512 entries, the TLB maps 50% of the
memory. By comparison, with a 128 B page, a 64-entry TLB only
maps about 0.2% of the memory, and a big increase in the size of
the TLB is likely to have a significant effect.

The effect on a conventional architecture of increasing TLB size is
not as significant because it maps DRAM pages, not SRAM pages.
In our simulations, DRAM pages are fixed at 4 KB. We would ac-
cordingly expect to see some improvement in a conventional ar-
chitecture with a larger TLB, but not as much as with RAMpage
(especially with small SRAM main memory page sizes).

4. RESULTS

4.1 Introduction

This section presents results of simulations, with some discussion
of their significance. The main focus here is on differences in-
troduced by the changes over previous simulations, but some ad-
vantages of RAMpage, as previously described, should be evident
again from these new results.

Presentation of results is broken down into the effects of increas-
ing L1 cache size, and the effects of increasing the TLB size, since
these two improvements have very different effects on the hierar-
chies modelled.

In all cases, results are presented for all three cases: the conven-
tional 2-level cache with a DRAM main memory, and RAMpage
with and without context switches on misses.

The remainder of this section presents the effects of L1 changes,
then the effects of TLB changes, followed by a summary.

4.2 IncreasingL1 Size

& 0.005 -+-1GHz
& 0.003 -* 8 GHz

32 64 128 256 512
L1 Total Size (KB)

(a) RAMpage with context switches on misses

0.008 4
0.007 +
0.006 -
2
& 0.005 +
1’3
£ 0.004 -
=
& 0.003 4
-
0.002 +

0.001 4

32 64 128 256 512
Total L1 size (KB)

(b) Standard hierarchy

Figure1: L1i missratevsL1 sizefor differingissuerates. L1i
size is half the total L1 size.

Figures 1 and 2 show how the miss rates of the first level instruc-
tion and data caches vary as their size is progressively increased
for both RAMpage with context switches on misses and the stan-
dard hierarchy. (Data for RAMpage without context switches on
misses is not shown since it follows the same trend as the stan-
dard hierarchy.) These graphs show that as cache sizes increase,
the miss rate decreases, initially fairly rapidly. The trend is sim-
ilar for all models. There is however some variation for different
CPU speeds with context switches on misses, because increasing
the CPU-DRAM speed gap increases the probability of more than
one miss to DRAM being outstanding at once, and hence increases
the rate of context switching.

Table 1 shows the simulated execution times obtained for each
of the cache sizes examined within each hierarchy. As expected,
larger caches decrease execution times due to the reduction in ca-
pacity misses, as evident from the reduced miss rates. However,
incremental improvements in performance decrease as cache sizes
increase, a trend which was also observed for miss rates. For in-
stance, doubling the total L1 size from 32 to 64 KB at the 1 GHz
issue rate results in a speedup of about 1.12 for all three hierar-
chies. In contrast, between the 256 and 512 KB sizes the speedup
obtained is about 1.02.

The best overall effect is from the combination of introducing RAM-
page with context switches on misses and increasing the size of L1.

0.08 4
0.07 4
0.06 -

j<]

& 0.05 A ——1GHz
& -a- 2 GHz
)]

s 004 =4 GHz
) -

& 0.03 4 8 GHz
—

0.02 4

0.01 4

32 64 128 256 512
Total L1 Size (KB)

(a) RAMpage with context switches on missees

0.08 4
0.07 4
0.06 -
0.05 4
0.04 4
0.03 4

L1-D Miss Rate

0.02 4

0.01 4

32 64 128 256 512
Total L1 Size (KB)

(b) Standard hierarchy

Figure2: L1d missratevsL 1sizefor differingissuerates. L1d
size is half the total L1 size.

Total L1
Size(KB) | 1GHz | 2GHz | 4GHz | 8 GHz
32 1322 | 0.709 | 0401 | 0.248

1.276 | 0.670 | 0.370 | 0.220
1.229 | 0.623 | 0.302 | 0.152

64 1193 | 0.644 | 0.370 | 0.232
1.141 | 0.619 | 0.346 | 0.207
1.094 | 0556 | 0.276 | 0.139

128 1.127 | 0.611 | 0.353 | 0.224
1.082 | 0.592 | 0.330 | 0.200
1.022 | 0516 | 0.258 | 0.131

256 1.082 | 0.588 | 0.342 | 0.218
1.061 | 0.580 | 0.325 | 0.197
0.988 | 0.508 | 0.248 | 0.128
512 1.058 | 0.577 | 0.336 | 0.216
1.042 | 0571 | 0.320 | 0.195
0.978 | 0.489 | 0.245 | 0.124

Table 1: L1 cache size (total of instruction and data caches)
vs. issue rate. Each row shows simulated execution times (s)
for standard hierarchy (top), RAMpage no context switches on
misses (middle) and RAMpage with context switches on misses
(bottom).

The execution time of 0.124s of the fastest variation represents a
speedup of 10.7 over the slowest configuration, as compared with
the clock speedup of 8. Only increasing the L1 cache while mul-
tiplying clock speed by 8 results in a speedup of 6.12, for the con-
ventional hierarchy, as modelled here. Comparing like with like,
RAMpage without context switches on misses has a speedup of 6.5
when the clock speed is sped up by 8 and L1 is increased from
32 KB to 256 KB in total. With context switches on misses, the
speedup over its own slowest case is 9.9. So, whether by com-
parison with a conventional architecture or by comparison with a
slower version of itself, RAMpage scales up well with more ag-
gressive hardware, especially when context switches are taken on
misses.

o 2
£
E
5 b [E32kB
5 W 64KB
8 [@128KB
[m256KB
g B512KB
©
k5
o
.

3 2 2 3 2 2 % 3 B 3 2 B

& 2 T g & 2 T g

r o« T & r « T &

o] o o] o

— N < @

Issue Rate (GHz) and Hierarchy

Figure 3: Relative execution times as cache sizes vary with in-
struction issue rates. Execution times normalised: best at each
issue rate = 1. (“Std”: standard hierarchy; RAMpage with and
without context switches on misses: “Rsw”, “Rnosw™).

Execution times from Table 1 are plotted in Figure 3, normalised
to the best execution time obtained at each CPU speed. Although
larger caches may make it harder to scale down CPU cycle time, the
need to avoid off-chip latencies has led to designs with relatively
large L1 caches, for example, the total of 128 KB of L1 cache on
the AMD Athlon CPU [2].

Figure 4 shows the relative times each variation for the slowest and
fastest CPU modelled spend waiting for each level of the standard
hierarchy, as L1 cache size increases. Since TLB and L1 data refer-
ences are pipelined, they do not show up as a significant amount of
time. The 8 GHz issue rate for the conventional hierarchy spends
over 40% of total execution time waiting for DRAM for the largest
L1 cache modelled, which is in line with measurements of the Pen-
tium 4, which spends 35% of its time waiting for DRAM running
SPECint2k on average at 2 GHz [31]. As simulated, this configura-
tion of the Pentium 4 corresponds roughly to a 6 GHz issue rate in
this paper. The similarity of the measure of time waiting for DRAM
lends some credibility to our view that our results are reasonably in
line with real systems.

While cache size increases boost performance significantly, as CPU
speed increases, a large L1 cannot save a conventional hierarchy
from the high penalty of waiting for DRAM.

In Figure 5, it can be seen that RAMpage only improves the situa-
tion marginally without context switches on misses.

100% L~ TLB
< 90% A
>
2 gow |
S 70%
g ° L1l
% 60% -
2 50%
S 0%
o
I L1-D
3 20% -
& L2
L 10%
0% ' DR :
32K 64K 128K 256K 512K
Total L1 size (KB)
(a) Issue rate 1 GHz
100% L~ TLB
% 90% A
& gow |
= ? L1l
S 70% 4
e)0/
(]
g 5% 2
S 4% 4
o
5 30% 1
g 20% DRAM
L 10%
0% : : "
32K 64K 128K 256K 512K

Total L1 size (KB)

(b) Issue rate 8 GHz

Figure 4: Fraction of time spent in each level of the standard
hierarchy. Figures in GHz are peak instruction throughput rate.
TLB and L1 data (L1-D) hits are fully pipelined, so they only
account for a small fraction of total execution time; TLB misses
are accounted for in other memory traffic. In all cases L2 (or
RAMpage main memory) is 4 Mbytes.

With context switches on misses, however, the amount of time
spent waiting for DRAM in the RAMpage model remains negli-
gible even as the CPU-DRAM speed gap increases by a factor of
8, as illustrated in Figure 6. Figure 6 makes it clear why improv-
ing L1 makes it possible for the RAMpage hierarchy to achieve
superlinear speedup if L1 is increased significantly as clock speed
increases. The largest L1 cache (combined size 512KB, or 256KB
each of instruction and data cache) results in only about 10% of
execution time being spent waiting for the SRAM main memory,
while DRAM wait time remains negligible. By contrast, the other
hierarchies simulated, while seeing a significant reduction in time
spent waiting for L2 cache or the SRAM main memory, do not see
a similar reduction in time spent waiting for DRAM as L1 becomes
larger.

4.3 TLB Variations

All TLB variations are measured with the L1 parameters of the
original RAMpage measurements — 16 KB each of instruction and
data cache.

Figure 7 illustrates TLB miss rate as TLB size increases. The miss

100%

£~ TLB

% 90%
2
3 g%
=
g 70%1
% 60% L1l
E 50% -
Z 40%
[=]
5 30%
5 20w | L1D
I 10% L2
0% ' DRAM ‘
32K 64K 128K 256K 512K
Total L1 Size (KB)
(a) Issue rate 1 GHz
100% TLB
% 90%
2
3 0%
5 70% L1
et 0/
= 60%
£ 50% L1D
£ 40% 2
5 30%
S 20%
E o 1o%d DRAM
0% : : ‘
32K 64K 128K 256K 512K

100% . TLB

< 90% |
2
o gow |
=
g 70%1
= 60% L1
E 50%
S 40%
o
5 30%
g 2w —\&
L 10% L2

0% ‘ : —DRAM

32K 64K 128K 256K 512K
Total L1 size (KB)
(@) Issue rate 1 GHz
100% L TLB

— 90% A
g
3 80% A
S 70% A
(7]
5 60%4 L1
“E’ 50% -
< 40% A
o
5 30%
S 20% 4

10% A L2

__DRAM
0% -

32K 64K 128K

256K

512K

Total L1 size (KB)

(b) Issue rate 8 GHz

Figure 5: Fraction of time spent in each level of the RAM page
hierarchy (no context switches on misses). Interpretation of the
graphs is as in Figure 4.

rate is significantly higher in all RAMpage cases than for the stan-
dard hierarchy, except for a 4 KB RAMpage page size. As SRAM
main memory page size increases, TLB miss rates drop, as ex-
pected. Further, as TLB size increases, smaller pages’ miss rates
decrease. In the case of context switches on misses, the number
of context switches increases as the CPU-DRAM speed gap grows,
since the effective time waiting for one DRAM reference grows.
Consequently, the TLB miss rate is higher for a faster clock speed
in this case (see Figure 7(c)), whereas it does not change signifi-
cantly for the other variations measured. Note also that L2 block
size has little effect on TLB miss rate in the standard hierarchy
(Figure 7(a)).

Figure 8 shows how TLB miss and page fault handling overhead
varies with page and TLB size for all hierarchies with an 8 GHz
processor issue rate. Overhead here is measured purely as extra
references generated, which is conservative, as the actual cost can
be up to double, once memory hierarchy effects are taken into ac-
count [17]. Corresponding with the miss rate measures in the previ-
ous section, reductions in overhead diminish as the page and TLB
sizes of each hierarchy are increased. In fact, from 1024 B pages
upwards percentage differences in overhead between 256 and 512
entry TLBs are minor.

Total L1 Size (KB)

(b) Issue rate 8 GHz

Figure 6: Fraction of time spent in each level of the RAM-
page hierarchy (context switches on misses). Interpretation of
the graphs is as in Figure 4.

Although the overhead due to TLB and page fault handling are still
relatively high for small pages, with a 4 KB page RAMpage with-
out context switches on misses is within 50% of the overhead in-
curred by the standard hierarchy. RAMpage TLB misses do not
result in references to DRAM, unless there is a page fault, so,
although the additional number of references seems high, these
should not result in a substantial performance hit.

Figure 9 illustrates execution times for the hierarchies at 1 and
8 GHz, the speed gap which shows off the differences most clearly.
There are two competing effects: as block (or SRAM page size)
increases, the miss penalty to DRAM increases. In the RAMpage
hierarchy, reduced TLB misses compensate for the higher DRAM
miss penalty, which can be seen as a speed improvement as page
size increases in the case of no context switches on misses. The
performance of the standard hierarchy becomes worse as the block
size increases due to the higher miss penalty. The TLB size varia-
tion makes little difference to the performance of the standard hi-
erarchy with the simulated workload. Performance of RAMpage
with switches on misses does not vary much for pages of 512 B
and greater even with TLB variations, while RAMpage without
switches is best with 1024 B pages.

The performance-optimal TLB and page size combination for RAM-

0.00012

0.0001
0.00008 -
i3
g W 128 entry
«» 0.00006 ~ 0256 entry
1]
= @512 entry
0.00004
0.00002 -
oA
128 256 512 1024 2048 4096
L2 Block Size (B)
(a) Standard Hierarchy (8 GHz)
0.006
0.005
0.004
Q
g W 128 entry
P 0.003 D256 entry
= @512 entry
0.002 ~
0.001 ~
oA

128 256 512 1024 2048 4096
Page Slze (B)

(b) RAMpage no switches on misses (8 GHz)

W 128ent-1GHz
128ent-8GHz
m256ent-1GHz
256ent-8GHz
O512ent-1GHz
512ent-8GHz

Miss Rate

128 256 512 1024 2048 4096
Page Size (B)

(c) RAMpage with switches on misses

Figure 7: TLB missrate vs L2 block/SRAM page size. Only
RAMpage with context switches has significant variation with
CPU speed.

page without context switches on misses, with a 512 entry TLB, is
a 1024 B page for all issue rates. In previous work, with a 64-entry
TLB, the optimal page size at 1 GHz was 2048 B, while other issue
rates performed best with 1024 B pages. Thus, a larger TLB results
in a smaller page size being optimal for the 1 GHz speed. While
other page sizes are still slower than the 1024 B page size, for all
cases with pages of 512 B and greater RAMpage without context
switches on misses is faster than the standard hierarchy.

a 2048sw

E nosw D512 entry

0 1024sw [1256 entry

O nosw m128 entry
g 512sw
nosw
2565w
nosw
128sw

0 10 20 30 40

Overhead (%)

Figure8: TLB missand page fault handling overhead (fraction
of all references) for each hierarchy with varying TLB and page
sizes. Processor issue rate is fixed at 8 GHz.

35

3.0

25

2.0 W 1GHz-Rsw
O1GHz-Rnosw
15 = W 1GHz-Std

Execution Time (s)

0.5 1

0.0

14096
14096
14096

512
128
256
512

TLB entries/L2 Block (Page) Size (B)

(a) 1 GHz issue rate

0.600

0.500

0.400

B Rsw-8GHz
O Rnosw-8GHz
B Std-8GHz

0.300

Execution Time (s)

0.200 1 Iy O O O O

0.100 LB CL O UL LN L

0.000

128
128
128
256
256
256
512
512
024
1024
1024
2048
2048

S
S 3
@

128
256
512
128
256
512
128
256/512
2
256
512
28]
56/
51212048
128/4096
256/4096
512/4096

TLB entries/L2 Block (Page) Size (B)

(b) 8 GHz issue rate

Figure 9: Comparison of execution times for each hierarchy
with different TLB and page or L2 cache block sizes. Best ex-
ecution time is RAMpage with context switches on misses: 256
entry TLB, 1024 B page.

For RAMpage with context switches on misses, the performance-
optimal page size has shifted to 1024 B with a larger TLB. Previ-

ously the best page size was 4096 B for 1, 2 and 4 GHz and 2048 B
for 8 GHz. A TLB of 256 or even 128 entries combined with the
1024 B page will yield optimum or almost optimum performance.
Nonetheless, TLB performance is highly dependent on application
code, so results presented here need to be considered in that light.

With a 1024 B page and 256 entries, a total of 256 KB, or 6.25% of
the RAMpage main memory is mapped by the TLB, which appears
to be sufficient for this workload (a 4 KB page with a 512-entry
TLB maps half the SRAM main memory, overkill for any workload
with reasonable locality of reference).

Contrasting the 1 Ghz and 8 GHz cases in Figure 9 makes it clear
again how the differences between RAMpage and a conventional
hierarchy scale up as the CPU-DRAM speed gap increases. At
1 GHz, all variations are reasonable comparable across a range of
parameters. At 8 GHz, RAMpage is clearly better in all variations,
but even more so with context switches on misses. Increasing the
size of the TLB broadens the range of useful RAMpage configura-
tions, without significantly altering the standard hierarchy’s com-
petitiveness.

44 Summary

In summary, the RAMpage model with context switches on misses
gains most from L1 cache improvements, though the other hierar-
chies also reduce execution time. However, without taking context
switches on misses, increasing the size of L1 has the effect of in-
creasing the fraction of time spent waiting for DRAM, since the
number of DRAM references is not reduced, nor is their latency
hidden. As was shown by scaling up the CPU-DRAM speed gap,
only RAMpage with context switches on misses, of the variations
presented here, is able to hide the increasing effective latency of
DRAM.

Increasing the size of the TLB, as predicted, increased the range of
SRAM main memory page sizes over which RAMpage is viable,
widening the range of choices for a designer.

5. CONCLUSION

5.1 Introduction

This paper has examined further enhancements on the RAMpage
memory hierarchy, which measure its potential for further improve-
ment, as opposed to similar improvements to a conventional hierar-
chy. As in previous work, the RAMpage model has been shown to
scale better as the CPU-DRAM speed gap grows but more specifi-
cally, that RAMpage with context switches on misses can take ad-
vantage of a more aggressive core including a bigger L1 cache, and
a bigger TLB.

The remainder of this section summarizes results, outlines future
work and sums up overall findings.

5.2 Summary of Results

Introducing significantly larger L1 caches — even if this could be
done without problems with meeting clock cycle targets — has lim-
ited benefits. Scaling the clock speed up by a factor of 8 achieves
only about 77% of this speedup in a conventional hierarchy, as mea-
sured here. On the other hand, a RAMpage hierarchy with context
switches on misses is able to make effective use of a larger L1
cache, and achieves superlinear speedup with respect to a slower
clock speed and smaller L1 cache. While this effect can only be ex-
pected in the case of a RAMpage machine with an unrealistically

large L1 cache, this result shows that increasingly aggressive L1
caches are not as important a solution to the memory wall problem
as finding alternative work on a miss to DRAM.

That results for RAMpage without context switches on misses are
an improvement but not as significant as results with context switches
on misses suggests that attempts at improving associativity and
replacement strategy will not be sufficient to bridge the growing
CPU-DRAM speed gap.

Larger TLBs, as expected, increase the range of useful RAMpage
SRAM main memory page sizes, though the performance benefit
on the workload measured was not significant versus larger page
sizes and a more modest-sized TLB.

5.3 Future Work

Given that the CPU-DRAM speed gap has grown to the point where
finding alternative work on a miss to DRAM is looking increas-
ingly useful, it will be interesting to match RAMpage with models
for supporting more than one instruction stream without operating
system changes, such as simultaneous multithreading. SMT, while
adding hardware complexity, is an established approach [22], and
there are existing implementations [5].

It would also be interesting to explore alternative interconnect ar-
chitectures, so that data could be streamed to more than one out-
standing request on a miss to DRAM [27]. HyperTransport is a
fast point-to-point interconnect infrastructure [3], which could be
adapted to such a purpose.

A more detailed simulation capable of modelling operating system
effects accurately would be useful. SimOS [29], for example, could
be adapted to this purpose.

Finally, it would be interesting to build a RAMpage machine to
validate performance claims in more detail. In principle, since the
number of hardware changes is relatively small, this should not be
difficult.

5.4 Overall Conclusion

The RAMpage architecture has been simulated in a variety of forms.
In this latest study, enhancing the L1 cache and TLB have shown
that it gains as much and in some cases significantly more from
such improvements than a conventional architecture.

The most important finding generally from RAMpage work is that
finding other work on a miss to DRAM is becoming increasingly
viable. While RAMpage is not the only approach to finding such
alternative work, it represents a potentially viable solution.

6. REFERENCES
[1] Thomas Alexander and Gershon Kedem. Distributed
prefetch-buffer/cache design for high-performance memory
systems. In Proc. 2nd IEEE Symp. on High-Performance
Computer Architecture (HPCA), pages 254-263, San Jose,
CA, February 1996.

[2] AMD. AMD Athlon processor model 4 data sheet [online].
November 2001. Available from World Wide Web: ht t p:
/I www. and. coni us- en/ asset s/ content _t ype/
whi t e_papers_and_t ech_docs/ 23792. pdf.

[3] AMD. HyperTransport technology: Simplifying system
design [online]. October 2002. Available from World Wide

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Web: htt p: / / ww. hypertransport. or g/ docs/
26635A HT_Syst em Desi gn. pdf.

Gorden Bell and W. D. Strecker. Retrospective: what have
we learned from the PDP-11-what we have learned from
VAX and Alpha. In 25 years of the international symposia on
Computer Architecture (selected papers), pages 6-10, New
York, NY, 1998.

J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla, and S. R.
Kunkel. A multithreaded PowerPC processor for commercial
servers. IBM Journal of Research and Devel opment,
44(6):885-898, November 2000.
http://ww.research.ibm conijournal/rd/
446/ bor kenhagen. pdf .

T. Chen and J. Baer. Reducing memory latency via
non-blocking and prefetching caches. In Proc. 5th Int. Conf.
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-5), pages 51-61, September
1992.

T-F. Chen. An effective programmable prefetch engine for
on-chip caches. In Proc. 28th Int. Symp. on
Microarchitecture (MICRO-28), pages 237-242, Ann Arbor,
MlI, 29 November — 1 December 1995.

D.R. Cheriton, H.A. Goosen, H. Holbrook, and

P. Machanick. Restructuring a parallel simulation to improve
cache behavior in a shared-memory multiprocessor: The
value of distributed synchronization. In Proc. 7th Workshop
on Parallel and Distributed Smulation, pages 159-162, San
Diego, May 1993.

D.R. Cheriton, G. Slavenburg, and P. Boyle.
Software-controlled caches in the VMP multiprocessor. In
Proc. 13th Int. Symp. on Computer Architecture (ISCA’'86),
pages 366-374, Tokyo, June 1986.

R. Crisp. Direct Rambus technology: The new main memory
standard. IEEE Micro, 17(6):18-28, November/December
1997.

B. Davis, T. Mudge, B. Jacob, and V. Cuppu. DDR2 and low
latency variants. In Solving the Memory Wall Problem
Workshop, Vancouver, Canada, June 2000. In conjunction
with 26th Annual Int. Symp. on Computer Architecture.

Erik G. Hallnor and Steven K. Reinhardt. A fully associative
software-managed cache design. In Proc. 27th Annual Int.
Symp. on Computer Architecture, pages 107-116,
Vancouver, BC, 2000.

J. Handy. The Cache Memory Book. Academic Press, San
Diego, CA, 2nd edition, 1998.

J.L. Hennessy and D.A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kauffmann, San Francisco,
CA, 2nd edition, 1996.

J. Huck and J. Hays. Architectural support for translation
table management in large address space machines. In Proc.
20th Int. Symp. on Computer Architecture (ISCA ' 93), pages
39-50, San Diego, CA, May 1993.

B. Jacob and T. Mudge. Software-managed address
translation. In Proc. Third Int. Symp. on High-Performance
Computer Architecture, pages 156-167, San Antonio, TX,
February 1997.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Bruce L. Jacob and Trevor N. Mudge. A look at several
memory management units, TLB-refill mechanisms, and
page table organizations. In Proc. 8th Int. Conf. on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS-VIII), pages 295-306, San
Jose, CA, 1998.

E.E. Johnson. Graffiti on the memory wall. Computer
Architecture News, 23(4):7-8, September 1995.

Norman P. Jouppi. Cache write policies and performance. In
Proc. 20th annual Int. Symp. on Computer Architecture,
pages 191-201, San Diego, California, United States, 1993.

D. Kroft. Lockup-free instruction fetch/prefetch cache
organisation. In Proc. 8th Int. Symp. on Computer
Architecture (ISCA ' 81), pages 81-84, May 1981.

Jang-Soo Lee, Won-Kee Hong, and Shin-Dug Kim. Design

and evaluation of a selective compressed memory system. In
Proc. |IEEE Int. Conf. on Computer Design, pages 184-191,
Austin, TX, 10-13 October 1999.

J.L. Lo, J.S. Emer, H.M. Levy, R.L. Stamm, and D.M.
Tullsen. Converting thread-level parallelism to
instruction-level parallelism via simultaneous
multithreading. ACM Trans. on Computer Systems,
15(3):322-354, August 1997.

P. Machanick. The case for SRAM main memory. Computer
Architecture News, 24(5):23-30, December 1996.

P. Machanick. Scalability of the RAMpage memory
hierarchy. South African Computer Journal, (25):68-73,
August 2000.

P. Machanick, P. Salverda, and L. Pompe.
Hardware-software trade-offs in a Direct Rambus
implementation of the RAMpage memory hierarchy. In Proc.
8th Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VII1), pages
105-114, San Jose, CA, October 1998.

Philip Machanick. An Object-Oriented Library for
Shared-Memory Parallel Smulations. PhD Thesis,
Department of Computer Science, University of Cape Town,
October 1996.

Philip Machanick. What if DRAM is a slow peripheral?
Computer Architecture News, page in press, December 2002.

T.C. Mowry, M.S. Lam, and A. Gupta. Design and evaluation
of a compiler algorithm for prefetching. In Proc. 5th Int.
Conf. on Architectural Support for Programming Languages
and Operating Systems, pages 62—73, September 1992.

M. Rosenblum, S.A. Herrod, E. Witchel, and A. Gupta.
Complete computer system simulation: The SimOS
approach. |EEE Parallel and Distributed Technology,
3(4):34-43, Winter 1995.

Ashley Saulsbury, Fong Pong, and Andreas Nowatzyk.
Missing the memory wall: the case for processor/memory
integration. In Proc. 23rd annual Int. Symp. on Computer
architecture, pages 90-101, Philadelphia, Pennsylvania,
United States, 1996.

[31] Eric Sprangle and Doug Carmean. Increasing processor
performance by implementing deeper pipelines. In
Proceedings of the 29th annual international symposium on
Computer architecture, pages 25-34, Anchorage, Alaska,
2002.

[32] J. M. Tendler, J. S. Dodson, Jr. J. S. Fields, H. Le, and
B. Sinharoy. POWER4 system microarchitecture. IBM
Journal of Research and Development, 46(1):5-25, 2002.
http://researchweb. wat son. i bm conl
journal /rd/461/tendl er. htm .

[33] W.A. Wulf and S.A. McKee. Hitting the memory wall:
Implications of the obvious. Computer Architecture News,
23(1):20-24, March 1995.

Acknowledgements

Financial support for this work has been received from the Univer-
sity of the Witwatersrand and the South African National Research
Foundation.

