
1

What if DRAM is a Slow Peripheral?
Philip Machanick

School of IT and Electrical Engineering

University of Queensland

Brisbane, QLD 4072

Australia

Email: philip@itee.uq.edu.au

Abstract—The memory wall is approaching: the time when in-
creases in processor speed will be masked by the high penalty of
misses to DRAM. It would seem that the time when we must re-
gard DRAM as a slow peripheral is some way off. But, given the
possibility that the inherent latency problem of DRAM may not be
solved, that possibility needs to be addressed. This paper presents
some thoughts on how future DRAM may be organized, in the
form of the proposed RAMnet architecture. RAMnet aims to pro-
vide alternative paths between processor and RAM, with a hier-
archy of controllers with sufficient intelligence to optimize routing
through the hierarchy. Key design goals include minimizing paths
between components, and use of commodity components wherever
possible.

Keywords—memory wall, DRAM interconnect, DRAM latency,
RAMnet memory architecture

I. I NTRODUCTION

The memory wall was first publicized in 1995 [15], and,
since then, processor speed improvement has continued to fol-
low Moore’s Law (doubling the components available every
year [12], resulting in a 50–100% speed improvement per year),
while DRAM cycle time has continued to improve relatively
slowly (7% per year).

In 2002, it was possible to purchase a commodity processor
with a clock speed in excess of 2GHz, and the most aggressive
commodity designs were 9-way superscalar. The average peak
throughput rate of high-end commodity designs was better than
5 instructions per nanosecond, while commodity DRAM had
a cycle time of around 30–40ns, resulting in miss penalties to
DRAM in the hundreds of lost instructions.

Clearly, these numbers are not as significant as the cost of
a disk access (5–10 milliseconds) or waiting for the network
(also in the milliseconds), but DRAM is starting to display the
attributes of a peripheral – enough latency to do other work
while waiting for it – rather than a tightly integrated component
of the CPU subsystem.

This paper reviews the problem briefly, proposes a solution
in the form of the RAMnet architecture, and ends with some
conclusions, including thoughts about future work.

II. T HE PROBLEM

System designers continue to assume that DRAM can be
fixed by small tweaks to the design. We have seen various
models for adding cache to DRAM [7, 4], as well as various
approaches at increasing throughput from DRAM [2, 4]. How-
ever, none of these approaches address the problem that a full

memory access cycle has growing latency with respect to the
processor.

One approach which does address latency, but only off-chip
delays, is integrating a processor with DRAM on a chip, the
IRAM approach [8]. IRAM does not eliminate the underly-
ing latency trend, and has other drawbacks, including linking
CPU and DRAM implementation, very different areas of de-
sign, which have not always been well done simultaneously by
the same vendor.

Improvements to caches, too, will not solve the problem.
Even a large (4MByte) fully-associative L2 cache only masks
the effect of the memory wall to a limited extent, and does
not scale significantly better in the face of the growing CPU-
DRAM speed gap than a less aggressive L2 cache [10]. Ap-
proaches to improve associativity in conventional caches [5],
therefore, will only stave off the problem, not make it go away.

The problem we have to face is that there will always be at
least some references to DRAM which will incur the full la-
tency of a DRAM operation. We can minimize this number,
but, once minimized, it becomes a limit on CPU performance
improvement.

III. A P ROPOSAL: RAMNET

Clearly, if there will always be some DRAM references
whose latency can’t be hidden, we need to look at strategies
used elsewhere to deal with latencies too high to ignore. The
obvious place to look is in the memory hierarchy – hence the
RAMpage model [11], which proposes to move the whole hi-
erarchy up a level, with the lowest-level SRAM functioning as
main memory, and DRAM a paging device (backed up by disk
as a 2nd-level paging device).

RAMpage gets its best results by taking context switches on
misses to DRAM [10], and other approaches to having alterna-
tive work available for the processor, like simultaneous multi-
threading (SMT), have the potential to see similar gains [14, 9].
Hence, the only assumption made here is that the difficulties
of bridging the CPU-DRAM speed gap will require that more
than one instruction stream be active at a time and there could
consequently be competing requests for DRAM.

While DRAM latencies remain orders of magnitude faster
than disk latency, it is instructive to consider the way in which
disk latencies have been minimized historically in high-end sys-
tems. Perhaps some of these ideas could be useful for future
DRAM designs.



2

The remainder of this section examines how IBM designed
a disk system for scalability and low latency, goes on to intro-
duce an analogous approach to designing a RAM subsystem,
and ends with a discussion of the proposed new architecture.

A. IBM Mainframe Disk System

Let’s look at the IBM mainframe disk system [6], as an exam-
ple of a classic design of a low-latency peripheral architecture.

The dominant philosophy was to choose latency over
throughput wherever a trade-off had to be made. The reason
for this was the view (often found to be valid in practice) that
it’s much easier to improve throughput by adding hardware than
to reduce latency. To put it in another way, you can buy band-
width, but you have to design for latency.

The subsystem was divided into the following hierar-
chies:

• control – the hierarchy of controllers provided a range of
alternative paths between memory and I/O devices, and
controlled the timing of transfers

• data – the hierarchy of connections was the path over
which data moved

The hierarchy was designed to be highly scalable; each sec-
tion of the hierarchy could contain up to 64 drives, and the IBM
3090/600 CPU could have up to 6 such sections, for a total of
384 drives.

High expandability and low latency are hard to achieve si-
multaneously; IBM achieved this by use of hierarchical paths
to connect many devices. This, plus all the parallelism inher-
ent in the hierarchy, allowed simultaneous transfers, so high
bandwidth was supported. At the same time, using many paths
instead of large buffers to accommodate a high load minimized
latency.

This architecture was very successful, judging both from the
performance it delivered and the duration of its dominance of
the industry.

B. Design for DRAM as a Peripheral

So, what can we learn from this in designing future DRAM
subsystems?

First, we should try to minimize additional latencies intro-
duced by competing for the interconnect, by providing alterna-
tive paths. Second, we should design more intelligent mem-
ory controllers, to optimise competing requests. Finally, we
should attempt to exploit device characteristics to minimize la-
tency where possible. In a change from the days of the IBM
design, current market realities dictate that using commodity
DRAM and SRAM components should be the aim, since these
components are ciritical to cost, and lack of economy of scale
and any other overheads for custom components may result in
a design failing to achieve general acceptance.

Let’s now consider how a hierarchical architecture can be
built with the desired properties. First, as with the IBM disk ar-
chitecture, memory controllers should have some intelligence,
and attempt to route competing requests to minimize delays. In
addition, the controllers should have some knowledge of rela-
tive speeds of components of the system. For example, rela-
tively close to the CPU, a memory module could be made up

processors

memory 
controllerDRAM SRAM

processors

memory 
controller SRAM

B

memory 
controllerDRAM SRAM

memory 
controller DRAM

C
DRAM

A
memory 
controller

Fig. 1. A CPU and memory hierarchy arrangement showing variations on
a hierarchy of controllers and memory modules.The memory controller can
interface to a memory module, a processor module containing one or more
processors, or another memory controller (including a different design, e.g., to
interface to an I/O bus).

of SRAM. The controller hierarchy would attempt to cache re-
quests in this faster module. The difference from a conven-
tional off-chip cache is that more intelligence could be applied
to managing the contents, much as with software management
of caches [1, 5] or the RAMpage SRAM main memory [11].

In Figure 1, two alternative arrangements of processors and
memory are shown. The first has one module of SRAM and
one module of DRAM attached to the processor module (which
could contain multiple processors as well as cache). The second
is a larger hierarchy with multiple levels of DRAM and SRAM.
SRAM further from the processor would not be accessed as fast,
but would still be faster than DRAM.

The somewhat random layout of the larger example is in-
tended to illustrate a layout adantage of this model. Since there
is no shared bus between all DRAM components, more choices
as to board layout become possible. Further, since there is no
shared bus, the path from the closest memory controller to the
CPU can be made as short as possible, to minimize transmission
delays. Taking this a step further, the interconnection layout in
general can emphasize short paths between components espe-
cially those close to the CPU (those further may be permitted
a longer path, with a corresponding increase in latency). The
connection of the first memory controller to the CPU should
be much faster than the rest of the interconnect since it would
otherwise be a bottleneck. This faster interconnect would need
to be designed to tighter tolerances than a conventional bus,
but this could be achieved by putting this first controller and
the processor module in a single package or multichip module
(MCM) – as with some off-chip cache designs, like the Pentium
II.

Figure 2 illustrates how an MCM could be packaged, with a
processor module and a memory controller packaged together,
and three interfaces to the memory controller going outside the
package. It would also be possible to put one or two memory
modules (e.g., an L3 cache) in the MCM package as a design
option.

If there were alternative paths to the CPU, resulting in a
higher aggregate bandwidth, RAM references could be routed



3

CPU

L1

CPU

L1

memory 
controller

L2

Fig. 2. A CPU and memory controller module in a single multichip module
package.For purpose of illustration, a 2-processor chip multiprocessor with a
shared L2 cache is shown, but the detail of the processor packaging is largely
irrelevant to the memory interconnect being proposed in this paper.

through alternative paths, without requiring as high a bandwidth
interconnect at all levels. For example, if the DRAM labeledA
in Figure 1 has already started a transfer when the SRAM at
B starts a transfer,B can go ahead, because the only part of
the route it has in common is the fast interconnect linking the
closest memory controller to the CPU. If in the meantime the
DRAM at C needs to start a transfer, it can go ahead without
conflict with the existing transfers.

Clearly, for all this to make sense, it should be possible to
partition traffic between components of the hierarchy with al-
ternative routes to the CPU. With a chip multiprocessor [13], it
would, for example, be an option to allocate RAM used by each
processor to a different RAM chip.

The next point to consider is what should go in the mem-
ory controllers. A processor core has become a relatively cheap
component. For example, the latest generation of Xilinx FP-
GAs comes with the option of up to 4 microprocessor cores1

integrated into an FPGA chip. It seems reasonable therefore
that a memory controller should include a microprocessor core,
which could manage placement of pages and optimal routing of
requests through the memory system. However, managing page
placement and routing of requests purely in software will add
to latencies, especially when the memory subsystem is heav-
ily loaded. To cover heavy load, hardware routing of requests
would be preferable. Depending on available chip space, a hy-
brid solution with hardware routing and software which opti-
mizes routing tables or other state information at times of low
load should be possible.

It would be useful to separate control and data paths, to max-
imize opportunities for parallelism. Using a relatively narrow
data bus would make this feasible, at the expense of requiring
extra bus transactions. However, Rambus has shown that driv-
ing a narrow bus at high speed is a feasible option [2]. In this
design, the short interconnects should make design of a high
clock speed on a narrow bus easier than for Rambus.

Finally, the memory controllers should take advantage of the
property of DRAM that an access takes time to set up, but se-

1Seehttp://www.xilinx.com/ipcenter/ for some options.

quential references can be fast, given burst modes of current
DRAM implementations like SDRAM and Rambus [3]. Refer-
ences from different RAM modules should be pipelined, with
transfers using the time when another module is waiting for its
addressing to be set up.

Given the network-like features of the design, it is named
RAMnet.

C. Advantages of the RAMnet Design

The design contains some elements of existing designs, par-
ticularly Rambus [2]. Like Rambus, it uses a relatively narrow
interconnect to save cost. Also like Rambus, it supports multi-
ple RAM transactions being pipelined, if they do not conflict.
Unlike Rambus, it can use commodity RAM chips and pack-
aging, and is designed to scale up without significant design
changes.

Like IRAM [8], it proposes placing more intelligence close
to DRAM, but that intelligence (in the memory controller) is
intended to route responses to requests for DRAM more ef-
ficiently, rather than to move processing to DRAM. The ad-
vantage in the RAMnet approach is that it decouples CPU and
DRAM implementation. If a processor is used in the memory
controllers, it need not run the same instruction set as the main
CPU module (and in fact would be transparent to the CPU mod-
ule).

Scalability is a key consideration in the design. It is impor-
tant that “scalable” designs scale to small configurations as well
as large, so that they potentially have a mass market, to under-
write development costs. The minimal version of this design is
one with a single memory controller, and one to three SRAM or
DRAM modules. Such a design should in principle be compa-
rable in cost to standard RAM designs, provided that the con-
troller cost could be kept low.

The biggest win in the design for the implementor is that it
avoids the need for a long high-speed bus. All interconnects are
short, and only the connection between the memory controller
closest to the CPU and the processor needs to be relatively fast.
As discussed before, that interconnect could removed from the
board design by packaging it in an MCM with the processor
module.

IV. CONCLUSION

This paper has presented some ideas for implementing a scal-
able RAM system, RAMnet, based on ideas from a highly scal-
able disk system. The major design considerations are min-
imizing board-level interconnect distance, providing a variety
of options for minimizing latency including alternative paths
through the hierarchy and pipelining operations where possible,
and providing flexible support for a range of different price-
performance trade-offs.

Clearly, if market acceptance is to be facilitated, the design
should look as close as possible, from the CPU’s perspective, to
an ordinary DRAM. Organizing which memory contents goes
where, therefore, should ideally be the task of the controllers,
without any special information from the CPU or CPUs. In-
vestigation of how to achieve this goal would be an important



4

research goal in validating the practicality of the design.
Further, the design of a suitable switching strategy which

would minimize latency, yet support software intervention,
would be another key issue to be investigated.

While significant details remain to be worked out, the RAM-
net idea appears to be feasible, and the potential benefits make
it worth working through the missing details.

REFERENCES

[1] D.R. Cheriton, G. Slavenburg, and P. Boyle. Software-
controlled caches in the VMP multiprocessor. InProc.
13th Int. Symp. on Computer Architecture (ISCA ’86),
pages 366–374, Tokyo, June 1986.

[2] R. Crisp. Direct Rambus technology: The new main
memory standard. IEEE Micro, 17(6):18–28, Novem-
ber/December 1997.

[3] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. Perfor-
mance comparison of contemporary DRAM architectures.
In Proc. 26th Annual Int. Symp. on Computer Architec-
ture, pages 222–233, Atlanta, Georgia, May 1999.

[4] B. Davis, T. Mudge, B. Jacob, and V. Cuppu. DDR2 and
low latency variants. InSolving the Memory Wall Problem
Workshop, Vancouver, Canada, June 2000. In conjunction
with 26th Annual lnt. Symp. on Computer Architecture.

[5] Erik G. Hallnor and Steven K. Reinhardt. A fully as-
sociative software-managed cache design. InProc. 27th
Annual Int. Symp. on Computer Architecture, pages 107–
116, Vancouver, BC, 2000.

[6] J.L. Hennessy and D.A. Patterson.Computer Architec-
ture: A Quantitative Approach. Morgan Kauffmann, San
Francisco, CA, 1st edition, 1990.

[7] Hideto Hidaka, Yoshio Matsuda, Mikio Asakura, and
Kazuyasu Fujishima. The Cache DRAM architecture:
A DRAM with an on-chip cache memory.IEEE Micro,
10(2):14–25, March/April 1990.

[8] C.E. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson,
K. Asanovíc, N. Cardwell, R. Fromm, J Golbus, B. Grib-
stad, K. Keeton, R. Thomas, N. Treuhaft, and K. Yelick.
Scalable processors in the billion-transistor era: IRAM.
Computer, 30(9):75–78, September 1997.

[9] J.L. Lo, J.S. Emer, H.M. Levy, R.L. Stamm, and
D.M. Tullsen. Converting thread-level parallelism
to instruction-level parallelism via simultaneous multi-
threading.ACM Trans. on Computer Systems, 15(3):322–
354, August 1997.

[10] P. Machanick. Scalability of the RAMpage memory hier-
archy. South African Computer Journal, (25):68–73, Au-
gust 2000.

[11] P. Machanick, P. Salverda, and L. Pompe. Hardware-
software trade-offs in a Direct Rambus implementation of
the RAMpage memory hierarchy. InProc. 8th Int. Conf.
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-VIII), pages 105–114,
San Jose, CA, October 1998.

[12] Gordon E. Moore. Cramming more components onto in-
tegrated circuits. Electronics, 38(8):114–117, 19 April
1965.

[13] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond,
Ken Wilson, and Kunyung Chang. The case for a single-
chip multiprocessor. InProc. 7th Int. Conf. on Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS-7), pages 2–11, Cambridge, MA, Octo-
ber 1996.

[14] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy.
Simultaneous multithreading: maximizing on-chip paral-
lelism. InProc. 22nd Annual Int. Symp. on Computer Ar-
chitecture (ISCA ’95), pages 392–403, S. Margherita Lig-
ure, Italy, June 1995.

[15] W.A. Wulf and S.A. McKee. Hitting the memory wall:
Implications of the obvious.Computer Architecture News,
23(1):20–24, March 1995.


