What if DRAM is a Slow Peripheral?

Philip Machanick
School of IT and Electrical Engineering
University of Queensland
Brisbane, QLD 4072
Australia
Email: philip@itee.uq.edu.au

Abstract—The memory wall is approaching: the time when in- memory access cycle has growing latency with respect to the
creases in processor speed will be masked by the high penalty Ofprocessor.
misses to DRAM. It would seem that the time when we must re- One approach which does address latency, but only off-chip

gard DRAM as a slow peripheral is some way off. But, given the o . - .
possibility that the inherent latency problem of DRAM may notbe d€12ys, is integrating a processor with DRAM on a chip, the

solved, that possibility needs to be addressed. This paper presents/RAM approach [8]. IRAM does not eliminate the underly-
some thoughts on how future DRAM may be organized, in the ing latency trend, and has other drawbacks, including linking

form of the proposed RAMnet architecture. RAMnet aims to pro- CPU and DRAM implementation, very different areas of de-

vide alternative paths between processor and RAM, with a hier- giq \which have not always been well done simultaneously by
archy of controllers with sufficient intelligence to optimize routing the same vendor

through the hierarchy. Key design goals include minimizing paths .
between components, and use of commodity components wherever Improvements to caches, too, will not solve the problem.
possible. Even a large (4MByte) fully-associative L2 cache only masks

Keywords—memory wall, DRAM interconnect, DRAM latency, the effect of the memory wall to a limited extent, and does
RAMnet memory architecture not scale significantly better in the face of the growing CPU-
DRAM speed gap than a less aggressive L2 cache [10]. Ap-
|. INTRODUCTION proaches to improve associativity in conventional caches [5],
The memory wall was first publicized in 1995 [15], andt,herefore, will only stave off the problem, not mgke it go away.
since then, processor speed improvement has continued to foll he problem we have to face is th_at the_re_ will always be at
low Moore’s Law (doubling the components available everast some references to DRAM which will incur the full la-
year [12], resulting in a 50—100% speed improvement per yedfcy of @ DRAM operation. We can minimize this number,
while DRAM cycle time has continued to improve relativelyPUt: 0nce minimized, it becomes a limit on CPU performance
slowly (7% per year). improvement.
In 2002, it was possible to purchase a commodity processor
with a clock speed in excess of 2GHz, and the most aggressive I1l. APROPOSAL RAMNET

commodity designs were 9-way superscalar. The average peakiearly, if there will always be some DRAM references
throughput rate of high-end commodity designs was better thgRose latency can't be hidden, we need to look at strategies
5 instructions per nanosecond, while commodity DRAM hagsed elsewhere to deal with latencies too high to ignore. The
a cycle time of around 30-40ns, resulting in miss penalties &®vious place to look is in the memory hierarchy — hence the
DRAM in the hundreds of lost instructions. RAMpage model [11], which proposes to move the whole hi-
Clearly, these numbers are not as significant as the costg@irchy up a level, with the lowest-level SRAM functioning as
a disk access (5-10 milliseconds) or waiting for the netwogkain memory, and DRAM a paging device (backed up by disk
(also in the milliseconds), but DRAM is starting to display thes 3 2nd-level paging device).
attributes of a peripheral — enough latency to do other workraMpage gets its best results by taking context switches on
while waiting for it — rather than a tightly integrated componerisses to DRAM [10], and other approaches to having alterna-
of the CPU subsystem. tive work available for the processor, like simultaneous multi-
This paper reviews the problem briefly, proposes a solutigfeading (SMT), have the potential to see similar gains [14, 9].
in the form of the RAMnet architecture, and ends with Somgence, the only assumption made here is that the difficulties

conclusions, including thoughts about future work. of bridging the CPU-DRAM speed gap will require that more
than one instruction stream be active at a time and there could
Il. THE PROBLEM consequently be competing requests for DRAM.

System designers continue to assume that DRAM can béNhile DRAM latencies remain orders of magnitude faster
fixed by small tweaks to the design. We have seen variotign disk latency, it is instructive to consider the way in which
models for adding cache to DRAM [7, 4], as well as variougisk latencies have been minimized historically in high-end sys-
approaches at increasing throughput from DRAM [2, 4]. Howtems. Perhaps some of these ideas could be useful for future
ever, none of these approaches address the problem that aD&IAM designs.

The remainder of this section examines how IBM designed
a disk system for scalability and low latency, goes on to intro-
duce an analogous approach to designing a RAM subsystem,

and ends with a discussion of the proposed new architecture. }
DRAM

processors|

memory
controller

memory
controller

A. IBM Mainframe Disk System

Let’s look at the IBM mainframe disk system [6], as an exam-
ple of a classic design of a low-latency peripheral architecture.

The dominant philosophy was to choose latency over
throughput wherever a trade-off had to be made. The reason
for this was the view (often found to be valid in practice) that
it's much easier to improve throughput by adding hardware than
to reduce latency. To put it in another way, you can buy band-
width, but you have to design for latency.

The subsystem was divided into the following hierarsg 1. A cpu and memory hierarchy arrangement showing variations on

chies: a hierarchy of controllers and memory modul&he memory controller can
. . ipterface to a memory module, a processor module containing one or more
« control - the hierarchy of controllers provided a r.ange d;frocessors, or another memory controller (including a different design, e.g., to
alternative paths between memory and I/O devices, aingrface to an I/O bus).

controlled the timing of transfers

« data — the hierarchy of connections was the path over)
which data moved of SRAM. The controller hierarchy would attempt to cache re-

The hierarchy was designed to be highly scalable: each S[gggsts in this faster module. The difference from a conven-

tion of the hierarchy could contain up to 64 drives, and the IB pnal off-chip cache is that more intelligence could be applied

. managing the contents, much as with software management
ggiod/ﬁ\?gsCPU could have up to 6 such sections, for a tOtaI(()gtfcaches [1, 5] or the RAMpage SRAM main memory [11].

High expandability and low latency are hard to achieve si- In Figure 1, two alternative arrangements of processors and

) memory are shown. The first has one module of SRAM and
multaneously; IBM achieved this by use of hierarchical paths .
. . .. one module of DRAM attached to the processor module (which
to connect many devices. This, plus all the parallelism inher- i .
X . . .could contain multiple processors as well as cache). The second

ent in the hierarchy, allowed simultaneous transfers, so hlg

bandwidth was supported. At the same time, using many pa a larger hierarchy with multiple levels of DRAM and SRAM.

. : oL AM further from the processor would not be accessed as fast,
:gtséiig of large buffers to accommodate a high load m|n|m|z%ﬂt would still be faster than DRAM.

) . R, The somewhat random layout of the larger example is in-
This architecture was very successful, judging both from the . . '
. tended to illustrate a layout adantage of this model. Since there
performance it delivered and the duration of its dominance 0 :
the industry. IS no shared bus between all DRAM components, more choices

as to board layout become possible. Further, since there is no
shared bus, the path from the closest memory controller to the

B. Design for DRAM as a Peripheral CPU can be made as short as possible, to minimize transmission
So, what can we learn from this in designing future DRAMIielays. Taking this a step further, the interconnection layout in
subsystems? general can emphasize short paths between components espe-

First, we should try to minimize additional latencies introeially those close to the CPU (those further may be permitted
duced by competing for the interconnect, by providing alterna-longer path, with a corresponding increase in latency). The
tive paths. Second, we should design more intelligent mewsnnection of the first memory controller to the CPU should
ory controllers, to optimise competing requests. Finally, wige much faster than the rest of the interconnect since it would
should attempt to exploit device characteristics to minimize latherwise be a bottleneck. This faster interconnect would need
tency where possible. In a change from the days of the IB¥ be designed to tighter tolerances than a conventional bus,
design, current market realities dictate that using commodityt this could be achieved by putting this first controller and
DRAM and SRAM components should be the aim, since thetiee processor module in a single package or multichip module
components are ciritical to cost, and lack of economy of scallelCM) — as with some off-chip cache designs, like the Pentium
and any other overheads for custom components may resultlin
a design failing to achieve general acceptance. Figure 2 illustrates how an MCM could be packaged, with a

Let's now consider how a hierarchical architecture can h@ocessor module and a memory controller packaged together,
built with the desired properties. First, as with the IBM disk arand three interfaces to the memory controller going outside the
chitecture, memory controllers should have some intelligengeckage. It would also be possible to put one or two memory
and attempt to route competing requests to minimize delays.mmodules (e.g., an L3 cache) in the MCM package as a design
addition, the controllers should have some knowledge of relaption.
tive speeds of components of the system. For example, relalf there were alternative paths to the CPU, resulting in a
tively close to the CPU, a memory module could be made inigher aggregate bandwidth, RAM references could be routed

T ; quential references can be fast, given burst modes of current
| | DRAM implementations like SDRAM and Rambus [3]. Refer-
ences from different RAM modules should be pipelined, with
transfers using the time when another module is waiting for its
addressing to be set up.

Given the network-like features of the design, it is named
RAMnet

“I“I C. Advantages of the RAMnet Design

’7 The design contains some elements of existing designs, par-
S . ﬁ ,,,,,,,,,,,,,,,,, i ticularly Rambus [2]. Like Rambus, it uses a relatively narrow

interconnect to save cost. Also like Rambus, it supports multi-
ple RAM transactions being pipelined, if they do not conflict.
Unlike Rambus, it can use commodity RAM chips and pack-

package For purpose of illustration, a 2-processor chip multiprocessor with a?gmg’ and is deSIQned to scale up without S|gn|f|cant deSIQn

shared L2 cache is shown, but the detail of the processor packaging is |arg€DaD995- . _ _ .
irrelevant to the memory interconnect being proposed in this paper. Like IRAM [8], it proposes placmg more |nte|||gence close
to DRAM, but that intelligence (in the memory controller) is

through alternative paths, without requiring as high abandwidllré[.ended to route responses to requests for DRAM more ef-

. . iently, rather than to move processing to DRAM. The ad-
interconnect at all levels. For example, if the DRAM labeled . . .
in Figure 1 has already started a transfer when the SRAMVI:?ELntage in the RAMnet approach is that it decouples CPU and

AM implementation. If a processor is used in the memor
B starts a transferB can go ahead, because the only part g P P y

. . . i 2 controllers, it need not run the same instruction set as the main
the route it has in common is the fast interconnect linking tI*l,vePU module (and in fact would be transparent to the CPU mod-
closest memory controller to the CPU. If in the meantime thu e) P
DRAM at (' needs to start a transfer, it can go ahead withou Scalability is a key consideration in the design. It is impor-

conflict with the existing transfers. ant that “scalable” designs scale to small configurations as well
Clearly, for all this to make sense, it should be possible {0 g 9

partition traffic between components of the hierarchy with > large, so that they potentially have a mass market, to under-

ternative routes to the CPU. With a chip multiprocessor [13],‘f¥r'te Qevelo_pment costs. The minimal version of this design is
: ne with a single memory controller, and one to three SRAM or
would, for example, be an option to allocate RAM used by ea . N
) . AM modules. Such a design should in principle be compa-
processor to a different RAM chip. : . :
. : . . rable in cost to standard RAM designs, provided that the con-
The next point to consider is what should go in the mem-

ory controllers. A processor core has become a relativel Chetgoller cost could be kept low.
Y AP y he biggest win in the design for the implementor is that it

component. For example, the latest generation of Xilinx FP-

GAs comes with the option of up to 4 microprocessor C,oregvmds the need for a long high-speed bus. All interconnects are

integrated into an FPGA chip. It seems reasonable therefghort’ and only the connection between the memory controller

e .
. . c'iosest to the CPU and the processor needs to be relatively fast.
that a memory controller should include a microprocessor co

re. . i
. . . ,% discussed before, that interconnect could removed from the
which could manage placement of pages and optimal routing,0

requests through the memory system. However, managing pgogrd design by packaging it in an MCM with the processor

placement and routing of requests purely in software will a dule.
to latencies, especially when the memory subsystem is heav-
ily loaded. To cover heavy load, hardware routing of requests IV. CONCLUSION

would be preferable. Depending on available chip space, a hy-_l_h_ h ted i for imol i |
brid solution with hardware routing and software which opti- IS paper has presented some ideas forimpiementing a scal-

mizes routing tables or other state information at times of Io le RAM system, RAMnet,.based on |deas.from a highly SC"’?"
: able disk system. The major design considerations are min-
load should be possible. imizina board-level int ¢ dist idi it
It would be useful to separate control and data paths, to mé(?n_lzmtg oafr -level in .ercoln?ec IS a;ngg, prclutw m?. a vartﬁ y
imize opportunities for parallelism. Using a relatively narroy °P 'ﬁ?ﬁ ‘;F m|n|Ln|zm?j a erll_cy inciu 'ntg a err;]a Ve pa 'bS;
data bus would make this feasible, at the expense of requirlrl}i] 3”9 _s |efr|arc_b|y an plpet |fn|ng opera 'Or;sdv.\f'_f ere E)os_s,l e,
extra bus transactions. However, Rambus has shown that d ot provi Ingt ix' ?f support for a range of different price-
ing a narrow bus at high speed is a feasible option [2]. In tppgriormance trade-ofis.

design, the short interconnects should make design of a hi flearly, if market acceptance is to be facilitated, the design
clock speed on a narrow bus easier than for Rambus sﬂwould look as close as possible, from the CPU’s perspective, to

Finally, the memory controllers should take advantage of t ordinary DRAM. Organizing which memory contents goes

property of DRAM that an access takes time to set up, but S¥1€re. therefore, should ideally be the task of the controllers,
’ without any special information from the CPU or CPUs. In-

L Seehttp:/mww.xilinx.com/ipcenter/ for some options. vestigation of how to achieve this goal would be an important

Fig. 2. A CPU and memory controller module in a single multichip modul

research goal in validating the practicality of the design.

(8]

Further, the design of a suitable switching strategy which
would minimize latency, yet support software intervention,
would be another key issue to be investigated.

While significant details remain to be worked out, the RAM-
net idea appears to be feasible, and the potential benefits mge J.L. Lo, J.S. Emer, H.M. Levy, R.L. Stamm, and
it worth working through the missing details.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

REFERENCES

D.R. Cheriton, G. Slavenburg, and P. Boyle. Softward0]
controlled caches in the VMP multiprocessor. Rroc.

13th Int. Symp. on Computer Architecture (ISCA ’,86)[
pages 366374, Tokyo, June 1986. 11
R. Crisp. Direct Rambus technology: The new main
memory standard. |[EEE Micro, 17(6):18-28, Novem-
ber/December 1997.

V. Cuppu, B. Jacob, B. Davis, and T. Mudge. Perfor-
mance comparison of contemporary DRAM architectures.
In Proc. 26th Annual Int. Symp. on Computer Archited12]
ture, pages 222-233, Atlanta, Georgia, May 1999.

B. Davis, T. Mudge, B. Jacob, and V. Cuppu. DDR2 and
low latency variants. lisolving the Memory Wall Problem [13]
WorkshopVancouver, Canada, June 2000. In conjunction
with 26th Annual Int. Symp. on Computer Architecture.
Erik G. Hallnor and Steven K. Reinhardt. A fully as-
sociative software-managed cache designProc. 27th
Annual Int. Symp. on Computer Architectupages 107—
116, Vancouver, BC, 2000.

J.L. Hennessy and D.A. PattersoiComputer Architec-
ture: A Quantitative ApproachMorgan Kauffmann, San
Francisco, CA, 1st edition, 1990.

Hideto Hidaka, Yoshio Matsuda, Mikio Asakura, and
Kazuyasu Fujishima. The Cache DRAM architecturd1®]
A DRAM with an on-chip cache memorylEEE Micro,
10(2):14-25, March/April 1990.

(14]

] P. Machanick, P. Salverda, and L. Pompe.

C.E. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson,
K. Asanovt, N. Cardwell, R. Fromm, J Golbus, B. Grib-
stad, K. Keeton, R. Thomas, N. Treuhaft, and K. Yelick.
Scalable processors in the billion-transistor era: IRAM.
Computer 30(9):75-78, September 1997.

D.M. Tullsen. Converting thread-level parallelism
to instruction-level parallelism via simultaneous multi-
threading.ACM Trans. on Computer Systen$§(3):322—
354, August 1997.

P. Machanick. Scalability of the RAMpage memory hier-
archy. South African Computer Journgl25):68-73, Au-
gust 2000.

Hardware-
software trade-offs in a Direct Rambus implementation of
the RAMpage memory hierarchy. Proc. 8th Int. Conf.

on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-VIpages 105-114,
San Jose, CA, October 1998.

Gordon E. Moore. Cramming more components onto in-
tegrated circuits. Electronics 38(8):114-117, 19 April
1965.

Kunle Olukotun, Basem A. Nayfeh, Lance Hammond,
Ken Wilson, and Kunyung Chang. The case for a single-
chip multiprocessor. IfProc. 7th Int. Conf. on Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS; Pages 2—-11, Cambridge, MA, Octo-
ber 1996.

Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy.
Simultaneous multithreading: maximizing on-chip paral-
lelism. InProc. 22nd Annual Int. Symp. on Computer Ar-
chitecture (ISCA '95)pages 392-403, S. Margherita Lig-
ure, Italy, June 1995.

W.A. Wulf and S.A. McKee. Hitting the memory wall:
Implications of the obviousComputer Architecture News
23(1):20-24, March 1995.

