
A Distributed Systems Approach to Secure

Internet Mail∗

Philip Machanick

School of ITEE

University of Queensland, St Lucia

Qld 4072, Australia

philip@itee.uq.edu.au

Abstract

One of the obstacles to improved security of the Internet is ad hoc development

of technologies with different design goals and different security goals. This paper

proposes reconceptualizing the Internet as a secure distributed system, focusing

specifically on the application layer. The notion is to replace specific functionality

by an equivalent, based on principles discovered in research on distributed sys-

tems in the decades since the initial development of the Internet. Because of the

problems in retrofitting new technology across millions of clients and servers, any

options with prospects of success must support backward compatibility. This paper

outlines a possible new architecture for internet-based mail which would replace

existing protocols by a more secure framework. To maintain backward compata-

bility, initial implementation could offer a web browser-based front end, but the

longer-term approach would be to implement the system using appropriate models

of replication.

keywords: Internet security, privacy, email, distributed systems, distributed file

system

1 INTRODUCTION

This paper proposes an overhaul of existing Internet technologies by introducing a new

infrastructure for distributed applications, starting from a secure distributed file store.

Internet services were devised in a networked world, with the emphasis on commu-

nication protocols. Distributed systems start from the principle that the network is

transparent to the extent that performance makes transparency possible [Tanenbaum

and van Steen 2002], with emphasis on processes and data management. Network

protocols form a lower-level layer, rather than an aspect of the user experience. The

focus in this paper is on how the new model could be structured, as a starting point

for defining a new Internet architecture. The proposed new model could then become

the basis for a new approach to security. To make the discussion concrete, a possible

replacement for email is outlined.

A big problem with existing Internet infrastructure is that it grew out of an era

when there were relatively few users, who were a largely trusted community. For

∗To appear in Computers & Security; copyright c©Elsevier 2005

1



example, sendmail was originally implemented to cover almost all aspects of email

from user interactions to application-layer protocols. The sendmail program ran as

root (super user), with various trapdoors for debugging [Landwehr et al. 1994] – an

approach which could not be used in devising a new Internet application today. Further,

mail has grown with ad hoc additions such as attachments, HTML formatting and

scripting, all of which introduce security and privacy problems.

This paper proposes that the Internet be reconceptualised as a distributed system of

loosely-co-operating processes, with a uniform model for document storage – whether

they are seen as email, web pages or other more general content. The Internet can, of

course, be seen as such a model in its current form, but the goal here is to redesign

services so that they are a closer fit to a design intended to achieve security, while

supporting further growth. The intent is that most existing services should be possible

to reimplement in a more secure framework, with backward compatibility.

The approach here is to identify reasonable abstractions which could become the

basis for a design, with some detail to show how it could be implemented. Specifically,

a new model for mail is proposed, based on a distributed computing strategy. This new

model could be implemented initially using a web front end, and gradually migrated

to a more secure platform, which could become the base for more general services, in

line with the proposed unified document model.

The remainder of this paper outlines the background to the problem, followed by a

conceptual design. In conclusion, the practicality of the idea is evaluated, and possibil-

ities for further work outlined.

2 BACKGROUND

2.1 Introduction

To provide a basis for the proposed design, it is useful to review some of the security

and privacy problems with existing Internet services. These problems are largely a

consequence of the fact that the Internet has grown organically from a starting point

where security and privacy were not significant concerns, to a situation where it is a

major infrastructure for commerce and personal communication. Further, it is useful

to understand general approaches to distributed system design, as a basis for choosing

suitable abstractions and principles for the proposed design.

This section briefly surveys known problems with relevant aspects of Internet se-

curity, then switches focus to distributed system models, specifically aimed at possible

alternatives for popular Internet services such as email and the world-wide-web.

2.2 Internet Security

Internet security problems broadly speaking fall into two categories: insecure imple-

mentation of servers or clients (application layer), and insecure network protocols

(lower layers).

Security presents a large number of problems at all layers of protocols [Bellovin

et al. 2003]. The fact that a glossary of Internet security terminology runs to 191 pages

[Shirey 2000] is some indication of the magnitude of the problem.

This paper focuses on replacing the existing insecure application layer, and assumes

that security at lower layers will not be a more serious problem in the proposed model

2



than in existing approaches. The focus here is therefore on security problems with

clients and servers.

Some examples of application-layer problems include:

• buffer overflow problems – usually a result of overwriting the return stack to

point to code to set up an attack [Park and Lee 2004]

• stealing passwords – e.g., by a dictionary attack [Pinkas and Sander 2002]

• worms – transmitted via networks; there have been times when major network

outages have been caused by worms, and they have turned out to be one of the

most ubiquitous security threats, spreading rapidly to new applications and plat-

forms [Weaver et al. 2003]

If we focus our attention specifically on email, a widespread security problem arises

from attachments, which can have malicious semantics. A big privacy problem arises

with junk mail – spam [Sipior et al. 2004] – because once an email address is publicly

known, it costs almost nothing to send to it. Further, since there is no authentication of

senders, a spammer can safely send millions of copies of an email without fear of an

(possibly) inadvertent denial of service attack on their server by angry recipients.

Attachments have other inconveniences. For example, if there is collaboration on

editing a document, communicating updates in attachments results in multiple copies,

which can be hard to manage.

While these problems can be addressed by ever-more sophisticated strategies for

detecting worms [Zouand et al. 2004] and applying security patches, it is worth pursu-

ing alternative architectures which avoid the underlying problems.

2.3 Distributed File System Models

There are many distributed computing models to choose from. However, it is useful to

limit the options to those which are reasonably close to the existing Internet, to make

backward compatibility a reasonable prospect. Specifically, models for distributed file

systems are a useful starting point. While distributed processing models could play a

role, for purpose of this paper, distributed file systems will provide enough principles.

A distributed file system has significantly greater latency problems than a purely

local file system. For this reason, disconnected operation and replication are useful.

Disconnected operation allows work to continue when the network goes down, with a

reintegration phase when connectivity is restored [Kistler and Satyanarayanan 1992].

Managing access rights across a distributed file system requires mechanisms to

grant and withdraw rights. One approach is the use of capabilities. If access rights

are seen as forming an access control matrix (rows are rights, columns are objects), a

capability can be thought of as a row of the table, representing a specific set of rights to

a list of objects. The Amoeba distributed system implemented capabilities as a 128-bit

number, including not only the identity of the object and its rights, but where to find it,

and check bits to prevent forgery [Tanenbaum et al. 1990].

If capabilities are combined with authentication [Sirbu and Chuang 1997], it be-

comes possible to implement a distributed file store in which access control is man-

aged with a small number of mechanisms, simple enough that verification becomes an

option.

That is not to say that security in distributed file systems is trivial. There are many

issues to be worked through, such as trust [Aberer and Despotovic 2001], which apply

3



in a worldwide system available to all users, which add further to the problems already

known in distributed systems design.

However, the fact that the problems can be isolated into one subsystem is an attrac-

tive advance on the existing model, where all clients and services potentially contain

security holes (both in the client or server software, and in any other aspect of the

system).

2.4 Summary

This section has briefly reviewed Internet security problems, and distributed file sys-

tems, to provide some background for a proposed approach to Internet applications.

The coverage is not intended to be comprehensive, but rather to provide a base

for moving away from the current strategy to one where problems should be more

contained.

3 THE PROBLEM

3.1 Introduction

The key issue being addressed in this paper is how to get the effect of existing Internet

services in a consistent model with less potential for security holes. The approach is to

reconceptualize existing services as a distributed system, rather than a loosely-coupled

collection of protocols and services.

The less specific the model, the more likely it is to be general. Nonetheless, it is

useful to make the design principles concrete with an example. The chosen example,

email, is a ubiquitous service which increasingly interacts with other services (through

HTML formatting, scripting and links to web pages), so it is a useful starting point.

Principles and abstractions which work well with this example – provided they are not

tied very specifically to email functionality – are likely to work in a range of other

cases.

The remainder of this section outlines some features of email, and ends with a

summary of problems with the existing model.

3.2 Mail Example

The intention here is to illustrate principles, rather than to arrive at a comprehensive

design, so a few key aspects of email functionality are considered, including some

features currently problematic. A full design would have to examine a range of typical

uses of email, as well as a range of new possibilities opened up by a redesign.

The remainder of this section briefly outlines some aspects of email, then examines

how the equivalent functionality could be implemented using a distributed systems

model.

3.2.1 Mail Functionality

Email can be thought of at two levels: underlying protocols, and user-level features.

Since the goal is to look at a reimplementation on a different infrastructure, the focus

here is on user-level features.

Features common to a range or email clients include

4



• compose a message – increasingly often with features to support formatted text

(usually HTML, though there are other formats in use, such as RTF)

• attach a document – often without constraints as to the document type. The effect

usually is to create a new copy of a document embedded in the message, which

has to be extracted when the message is received or read

• send a message – with or without facilities to queue messages to be sent later

• check for new mail – with or without periodic automatic checking

• fetch or mirror mail – depending on the client and server type, mail may be a

local copy, or be removed permanently from a server

• view headers – with or without threading to group related messages

This feature list, while not exhaustive, is enough to isolate a few problems worth

tackling.

First, composing a message assumes knowledge of the recipient’s capabilities, un-

less plain text format is used. If nothing is know about the reader, a plain-text version

may be necessary with the formatted version appended as an “attachment”.

Attachments pose enough problems to itemize:

• copy semantics – should editing the original document after attaching it to an

email, but before it is sent, result in the original or the changed version being

sent? If you change a document after sending it, do you always remember to

resend it to everyone who was sent the original?

• multi-author documents – sending email attachments to multiple authors work-

ing on a common document results in difficulties in tracking versions

• multiple copies – sending an attachment to multiple recipients results in possibly

unnecessary duplication

It would be easy to identify more problems, but these should be enough to go on.

Sending a message conceals a potential problem many users run into: there is no

way to unsend a message once it has left your system (or, if you’re lucky, a server on

your own network).

Checking for new mail does not expose any serious problems. However, it does

illustrate one aspect of mail which is useful to preserve: its asynchronous nature.

Viewing headers in a summarized form again is a useful feature which is worth

preserving. However, it would also be useful to be able to use a summarized form of a

message to prevent fetching unwanted content (e.g., from recipients unknown to a user

whose address is meant to be private). More generally, it would be useful to be able

to authenticate senders (e.g., only accept messages from known senders, only accept

messages from senders who can answer specific questions).

To summarize new requirements which arise out of this brief analysis:

1. composition – composing email with some knowledge of the recipient could

reduce the need for unnecessarily sending it in multiple formats

2. attachments – a model for including documents in email

(a) without unnecessary duplication

5



(b) with reasonable copy semantics would be a useful improvement

(c) supporting versioning for multiuser documents would also be useful

3. sending – support for unsending mail (completely if unread; informing the re-

cipient it’s been withdrawn otherwise) would be useful

4. authenticating and filtering senders – the sender should be able to choose from

whom to receive messages

All of this functionality needs to be implemented in a secure framework. To do so,

application of standard distributed systems design principles should be a good starting

point.

3.2.2 Problems with Existing Model

The existing model runs into security problems primarily because it is not based on a

notion of a secure distributed file store. When someone sends you an email, you are

essentially giving them write access to your file system, which allows them to store a

document (the email) plus the possibility of other documents (attachments) which may

have unexpected semantics (running a program, executing a program contained in an

attachment, running a script).

Privacy problems arise from the highly asynchronous nature of email: there need

not be any connection at all between sender and recipient to initiate an email or to

receive it. Consequently, it is not practical to authenticate senders. In the early days of

the Internet when networks latencies were high, authentication was not an option. Even

with generally lower latencies, authentication could pose a problem in the presence of

temporary outages.

In what follows, a design is proposed which aims to solve both of these problems.

4 Distributed Systems Model

The idea explored here is to reconceptualize email (and potentially other services) as

operations on a secure distributed file store. Sending an email corresponds to granting

a (possibly) remote user permission to see a specific object on your part of the file

system. Receiving an email corresponds to receiving this permission, and reading the

email corresponds to using this permission to read the offered object.

The emphasis is taken away from messaging (a network-centric approach) to how

information is stored transparently across a network (a distributed-systems approach).

For the model to be practical, receiving and reading an email would have to be

implemented so that it became a local transaction – at least on a network closer than

the sender, in the case where the two parties were very far apart.

A major benefit of going this route is that the receiver is no longer in effect giv-

ing possibly unknown outsiders write permission to their own file system. Handling

attachments can also potentially be made more convenient.

The remainder of this section explores how this idea can be made concrete. First,

suitable abstractions are outlined, followed by a discussion of how the distributed file

store could be realised. An extention of the idea of distributed coordination is pro-

posed, along with notification, to tie everything together. Finally, the key issues are

summarized.

6



4.1 Abstractions

The abstraction most significant to differentiating the new approach is that of seeing

email operations as operations on a distributed file store. Let’s examine how the re-

quirements of the new system are addressed by a distributed file store:

1. composition – there is the potential to query the recipient for allowable formats if

the recipient is willing to make this information available; otherwise, a fallback

position of either plain text or multiple formats is no worse than the existing

model

2. attachments – addressed by including them as additional objects published to the

recipient

(a) duplication will only occur as needed for performance

(b) the “sent” object could be a pointer or reference to the original (with read-

only access), hence reflecting changes

(c) versioning for multi-author documents could be supported with existing

versioning tools, which becomes much easier when the “attachment” is a

reference to the original, rather than a copy

3. sending – unsending becomes trivial; previously granted access rights can be

revoked (though the practical effect of revocation assumes the message hasn’t

been read or copied)

4. authenticating and filtering senders – since the sender has to provide a capability

with access rights to the object, the sender’s identity could be encoded in the

capability

The potential benefits appear to be sufficient to explore how the concept could be

implemented practically.

4.2 File Store

Figure 1: Distributed File System

7



Figure 1 illustrates the general idea of the distributed file store. Parts of the logical

file store may be replicated at end points for efficiency, but it is logically a single file

system.

For the file store idea to be practical, performance and security are critical issues to

address. Since sending a message to someone implies that they will need read access to

it, a push-based replication model, which, for example, has been shown to be efficient

for web caching [Chen et al. 2003], is an obvious implementation strategy. While the

recipient will be logically reading something in someone else’s file store, it obviously

needs to be cached locally for efficiency. Optimisations would be needed to cover cases

like highly mobile users.

While implementation of such a scheme has potential for security holes, isolating

the problem down to implementing a distributed, replicated file store reduces the range

of potential problems. As compared with the existing email infrastructure, the problem

is significantly reduced. In its existing form, email has the potential for security prob-

lems in eavesdropping, as well as contaminating the local file system of the recipient.

Eavesdropping can be dealt with in the distributed file store by encrypting data, and

using secure capabilities for enabling access.

Sending an email in the proposed model becomes a matter of sending a capability

providing access to an object or objects in the file store to the recipient. The capability,

in addition to the usual access rights, could contain a subject line, and the identity of

the sender. The capability model should include features like encryption of capabilities,

use-once capabilities, and revocable rights.

A file system such as Coda [Kistler and Satyanarayanan 1992], which has support

for replication and disconnected operation, would be suitable as a basis for an initial

implementation.

Figure 2 shows the sequence of steps in sending and receiving an email. The sender

composes the mail, and sending it means sending a capability to the recipient. The

recipient’s nearest replica server may choose to replicate the original object before the

recipient sees that there is an incoming message (which would look like the existing

model), but this is not necessary. Only when the recipient actually wants to view the

message would it be really necessary to replicate the content.

Figure 2: Basic Architecture

This basic model is general enough to support the abstractions needed for a range of

message policies. For example, unsending a message can be accomplished by revoking

a capability. Versioning in multiuser documents can be implemented by providing a

version control system on top of the distributed file store, with capabilities issued to

participants in creation or editing of a multiuser document.

8



4.3 Coordination and Notification

Coordination generally encompasses syncrhonization and communication [Tolksdorf

and Glaubitz 2001]. However, in a distributed system over the entire Internet, the

underlying idea of coordination – a separate abstraction for high-latency operations –

can apply to other aspects of the design. Some examples

• entry to and exit from a multiuser document editing group

• managing locations of replicas

• managing distribution of security notifications

This idea is not, however, essential to the notion of re-conceptualizing the Inter-

net as a distributed system. Coordination is introduced here to illustrate the range of

ideas which could be drawn in to Internet services, from the general pool of distributed

systems ideas.

A notification system such as that of Elvin [Sutton et al. 2001] could be used to

inform users of new mail. Again, the detail is not critical to the model, but illustrates

the range of options opened up by moving to a distributed-systems view of Internet

mail.

4.4 Putting it All Together

Reconceptualizing the Internet as a platform based on a secure distributed file system

opens up a range of possibilities for implementation, as well as having the potential to

focus application-layer security problems into one subsystem.

The specific example of email illustrates the possibilities. Sending or unsending

can be accomplished by giving out or revoking capabilites, with replication providing

the mechanism for moving content closer to the recipient.

If email is split into sending a capability and retrieving the identified object, it

becomes possible to send the recipient a specific document format (e.g., plain text, or

HTML, depending on the recipient’s preferences). The capability could point to all

variants, and the recipient could choose which to receive.

A full implementation of the model would require mail clients to be replaced by

software which used the distributed file store. As a phasing-in step, a web-based client

could be provide access to the system for users without the new software. This ap-

proach to phasing the new model in would allow email to be replaced rapidly.

5 CONCLUSIONS

5.1 Summary

Implementing email via a replicated, distributed file store using capabilities to “send”

messages is the major idea proposed here. The emphasis is on how to store messages

and inform recipients of their existence, rather than on network protocols.

The proposed new architecture is not claimed to solve all security problems, but to

provide a general abstraction for a range of Internet applications. While only mail is

illustrated, the same basic mechanism could be used to publish documents of any kind.

Instead of hyperlinks, capabilities could be made public, to create an equivalent effect

to web pages, for example.

9



5.2 Way Ahead

The next obvious step is to implement a prototype of the proposed architecture as as

proof of concept. However, it will not be a useful idea on its own without a roll-out

model so that existing mail can be accommodated.

The next steps therefore are not only to implement a version of the proposal, but to

investigate ways it can be integrated with conventional email, if only as a phasing-in

measure. One option would be to have servers which could convert email to the new

format. The message could be written into the shared space and the recipient notified,

but only after the sender was asked to verify their identity. Even if this verification step

was trivial, much spam would be eliminated.

Another option already outlined would be to have a web-based interface to the sys-

tem. Attempts at emailing subscribers who have abandoned email could be redirected

to the web-based front end (which could include information on how to start using the

new system).

More detail of phasing in models needs to be considered to make the scheme viable

as, despite its flaws, email is too pervasive to replace overnight.

5.3 Overall Conclusions

Spam, worms, denial of service attacks and malicious attachments are just some of the

problems with email in its current form.

The proposed model may not solve all these problems, but distributed systems ideas

which have evolved over several decades are worth exploring as an alternative. Whether

the model outlined here is the best starting point or not is not the big issue: the impor-

tant issue is to evolve designers’ thinking away from a networked mindset to a dis-

tributed systems mindset. If this can be achieved, several decades of research can be

used as a basis for modernising Internet applications.

References

Aberer, K. and Despotovic, Z. (2001). Managing trust in a peer-2-peer information
system. In Proceedings of the tenth international conference on Information and
knowledge management, pages 310–317, Atlanta, GA. ACM Press.

Bellovin, S., Schiller, J., and Kaufman, C. (2003). RFC 3631:security mechanisms for
the internet. WWW Document.

Chen, Y., Qiu, L., Chen, W., Nguyen, L., and Katz, R. (2003). Efficient and adap-
tive web replication using content clustering. IEEE Journal on Selected Areas in
Communications, 21(6):979–994.

Kistler, J. J. and Satyanarayanan, M. (1992). Disconnected operation in the Coda file
system. ACM Trans. Comput. Syst., 10(1):3–25.

Landwehr, C. E., Bull, A. R., McDermott, J. P., and Choi, W. S. (1994). A taxonomy
of computer program security flaws. ACM Comput. Surv., 26(3):211–254.

Park, Y.-J. and Lee, G. (2004). Repairing return address stack for buffer overflow pro-
tection. In Proceedings of the first conference on computing frontiers on Computing
frontiers, pages 335–342. ACM Press.

Pinkas, B. and Sander, T. (2002). Securing passwords against dictionary attacks. In
Proceedings of the 9th ACM conference on Computer and communications security,
pages 161–170. ACM Press.

10



Shirey, R. (2000). RFC 2828: Internet security glossary. WWW Document.

Sipior, J. C., Ward, B. T., and Bonner, P. G. (2004). Should spam be on the menu?
Commun. ACM, 47(6):59–63.

Sirbu, M. A. and Chuang, J. C.-I. (1997). Distributed authentication in kerberos using
public key cryptography. In Internet Society 1997 Symposium on Network and Dis-
tributed System Security. http://www.ini.cmu.edu/netbill/pubs/pkda.pdf.

Sutton, P., Arkins, R., and Segall, B. (2001). Supporting disconnectedness – transparent
information delivery for mobile and invisible computing. In Proc. 1st International
Symposium on Cluster Computing and the Grid, pages 277–285, Brisbane, Australia.

Tanenbaum, A. S., van Renesse, R., van Staveren, H., Sharp, G. J., and Mullender, S. J.
(1990). Experiences with the amoeba distributed operating system. Commun. ACM,
33(12):46–63.

Tanenbaum, A. S. and van Steen, M. (2002). Distributed Systems: Principles and
Paradigms. Prentice-Hall, Upper Saddle River, NJ.

Tolksdorf, R. and Glaubitz, D. (2001). XMLSpaces for coordination in web-based sys-
tems. In Proc. Tenth IEEE Int. Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, pages 322–327, Cambridge, MA.

Weaver, N., Paxson, V., Staniford, S., and Cunningham, R. (2003). A taxonomy of
computer worms. In Proceedings of the 2003 ACM workshop on Rapid Malcode,
pages 11–18. ACM Press.

Zouand, C. C., Gong, W., and Towsley, D. (2004). Feedback Email Worm Defense
System for Enterprise Networks. Technical Report TR-04-CSE-05, University of
Massachusetts, Amherst.

11


