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Abstract

Over most of the second half of the twentieth century, much of the curriculum debate in

Computer Science assumed programming was the fundamental tool of the discipline,

and a key subject of debate was the first programming language. By 2020, the focus

had changed to one of emphasizing the fundamentals first, and developing skills related

to coding later in the curriculum. The intent was to ensure that real fundamentals were

taught first, reducing the need for frequent curriculum upheavals in introductory

courses, where stability was most important. Also, the new curriculum ordering was

intended to break away from the hacker culture which is hard to avoid with students

who learn programming before they have developed design and abstraction skills. This

paper presents a proposal for Curriculum 2020, in which the order of topics is designed

to produce graduates with a solid theoretical foundation, for whom programming is

almost a clerical task. The basic educational philosophy is called abstraction-first.

Students are first introduced to abstraction as a client of predesigned abstractions, and

gradually led to the point of designing their own abstractions. Theoretical foundations

are introduced first, followed by practical application—also following the abstraction-

first philosophy.

1. Introduction

ACM/IEEE Curriculum ’91 [ACM 1991] is recognized today as the most important

change in our conception of computer science as a discipline not for what it said, but for

what it left unsaid.

Unlike earlier curriculum standards, although it suggested specific courses, the

main content of the document was knowledge units (KUs), which could in principle be

used in any order.
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A result of this new flexibility was a wave of experiments with variations on

curriculum order over the next 20 years. This document summarizes the direction most

widely accepted at the time of the 2020 Curriculum review, and contains a suggested

curriculum summarizing that direction.

The biggest achievement resulting from curriculum work since 1991 has been the

agreement on what the real fundamentals of the discipline are. Remarkably, in a

discipline characterized by exponential performance advances across many areas, the

Curriculum 2020 committee found little to change since Curriculum 2010. Most of

those changes were in the relatively advanced courses, which is what one would expect

of a mature engineering discipline. We have to compare this position with curriculum

debates of the last century, when one of the most common issues was the first

programming language, a debate which is of little interest today.

Since the changes have been relatively small, this document only contains a

summary of the major issues raised in Curriculum 2010, and focuses on the changes.

However, a retrospective of key milestones in the software industry is also provided, as

background to the development of curricula since 2000.

In order to provide a framework for the Curriculum, the next section of this paper

contains a brief review of the history of Computer Science as an Engineering discipline,

with a discussion of the basis for the current abstraction-first approach to education.

Section 3 recounts some events of the previous 20 years which influenced curricula

over that time, and Section 4 contains the curriculum with brief annotations. Section 5

contains more detail of the new areas. Section 6 concludes the document with an overall

discussion.

2. Computer Science as Engineering

It is now widely recognized that Computer Science followed the classic sequence of

pre-engineering to engineering, just as happened in other engineering disciplines.

For example, before Newton’s laws were in widespread use in areas like

shipbuilding, major disasters could occur because there was no scientific basis for

predicting whether a given design would work [Baber 1997a]. Today, any established

engineering discipline is based on such fundamentals and any routine piece of work is

mostly predictable in terms of technical issues (if not human issues).

An important step in the path towards establishing Computer Science as a proper

engineering discipline was a proper understanding of what the fundamentals were—for

example, that formal logic underlies much of the discipline. Indeed, some complained

towards the end of the last century that the starting point of Computer Science should be

based on the work of pioneering mathematicians like Alan Turing [Goldweber et al.

1997]. While there were certainly those who emphasized a mathematical approach to
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introducing Computer Science as opposed to the other extreme of Computer Science as

programming [Berztiss 1987, Gries 1991], this was very much a minority view.

The final big step came in realizing that the theoretical component of Computer

Science, as with other engineering disciplines, can be presented in an introductory way.

The key insight which was applied to putting theory into its proper place is that other

sciences—especially as taught in engineering curricula—do not emphasize higher-level

problem-solving skills in introductory courses. A classic distinction was between the

Computer Science approach of teaching programming (which essentially is a design

skill) before teaching theorem proving in formal logic (which is a relatively mechanical

skill). Theory in Computer Science was widely considered to be “difficult” because it

was taught as a problem-solving skill. Compare this with a classic engineering

curriculum where theory was taught without reference to solving real-world problems

(though such problems may be used as examples, they were not solved from scratch).

A typical engineering curriculum in a four-year degree contained very little specific to a

given branch of engineering in its initial stages, whereas Computer Science was almost

the opposite: students were introduced to programming early, and the theory of

programming late if at all [Baber 1997b].

A typical example of the difference between pre-engineering Computer Science and

more established engineering disciplines is the way proof by induction used to be taught

in Computer Science. If introduced at all, it was typically introduced in the form of

finding a proof in an area such as algorithm analysis, where the formulation of the

proof was not known in advance. Techniques such as finding closed forms of

recurrence relations would be needed to decided what to prove. By comparison,

students in other disciplines would have been taught proof by induction by being given

a result to prove, a much easier problem to solve.

Many earlier attempts at placing theory in computer science either took the view

that it was too hard and therefore should be done late if at all, with an opposing view

that layered a heavy theoretical emphasis on the course but did not recognize the need to

place design and abstraction skills later in the curriculum. A key realization among

computer science education researchers early this century was that both schools were

wrong, and that moving to a more classic “engineering” ordering of topics would make

it more natural to introduce theory at an early stage of the curriculum.

Once this insight was in place, it became necessary to reconsider the order of topics

in a curriculum. The idea of an abstraction-first order started to develop late in the

century [Machanick 1998a]. The idea of the abstraction-first model was to start by

introducing students to concepts without requiring them to develop design skills. Thus,

algorithm analysis was introduced without a requirement to design programs. Class

libraries were introduced as virtual machines for building software before
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implementation detail was introduced. Theory was introduced in the form of proofs

where what was to be proved was already known.

With this new orientation, it became possible to make the early part of the

curriculum relatively fixed, and to move the technology-specific areas to later. Two

useful consequences resulted from this change. A body of experience could be built up

in teaching introductory material, the time when students were most often lost, and

trend-dependent equipment purchases could be restricted to later years of study—as in

other engineering disciplines.

A key insight in the transition to a modern-style engineering curriculum then was

that the theory component of CS101 should be at the same level of difficulty as for

example Calculus 101.

3. Key Events of the Early 21st Century

A few events have shaped our understanding of what the fundamentals of Computer

Science really are, over the 20 years preceding the Curriculum 2020 process. Most

significant of these is what has come to be known as the Millennium Muddle. Also

influential however was the impact of widespread introduction of video on demand

(VoD), subsequent to the roll-out of High Definition Television (HDTV). Finally, a

significant issue is the underlying economics of system support, which changed our

model of software development. This final issue is often referred to as the Bazaar

Bungle.

This section first presents background on each of the Millennium Muddle VoD and

the Bazaar Bungle, then outlines the lessons learned from both, in particular as they

impacted upon curriculum issues.

3.1 The Millennium Muddle

As the year 2000 approached, there were increasing predictions of chaos resulting from

what was then variously termed the Year 2K problem, the Millennium Bug, the Year

2000 Bug, and other variants on those names. The problem was seen as arising from

old programs in which the year had been encoded as two digits, and which would do

incorrect date arithmetic after the last two digits changed to zero. Note carefully, here

we do not talk of the “new millennium” for reasons which are no doubt familiar to most

readers but which will be explained shortly.

A large amount of effort was spent, with costs impossible to calculate, since many

of the programs affected were very old and likely would have been replaced anyway.

When the year 2000 arrived, a relatively small number of programs fell over, and mass

chaos did not ensue as many had predicted—though the cost of fixing the problem was

undoubtedly higher than would have been the case had it been fixed earlier.
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However, later in the year, a surprising number of systems did fall over, including

major sections of the internet, the worldwide network in common use at the time. This

occurred on 29 February 2000, because many programmers had not correctly

implemented the test for leap years, in which a century divisible by 400 is a leap year.

The problem was extremely widespread because so many programs had been rewritten

to fix the Year 2000 problem without sufficient time to test them as thoroughly as might

otherwise have been the case. Coincidentally, the resulting date errors interacted with

routing software widely used at the time on the internet, resulting in significant outages.

In April of the same year, another disastrous series of crashes occurred when the shift

to daylight savings was made in the northern hemisphere, for similar reasons.

Finally, at the end of 2000, it appeared that all major problems had been cleared

up, when another group of problems manifested themselves. For a reason not made

clear at the time, Microsoft, then the biggest software company, had a feature in one of

their operating systems which calculated the number of the current millennium and used

this number in an internal patch to fix the Year 2000 problem. There was an error in this

software whereby the new millennium was (correctly) picked up as starting in 2001 in

some areas, but incorrectly as starting in 2000 in other areas. As a result of subtle

interactions between these bugs, the problem was not picked up until the start of the

year 2001, when all the affected software crashed.

A final problem resulted when a number of systems which had been rewritten to

repair bugs in handling Year 2000 problems crashed in April when daylight savings

time started in the northern hemisphere. The daylight savings bugs in some cases had

always been present but had not manifested before other code was changed, and in

other cases were introduced as a result of major rewrites of legacy applications, in

which handling daylight savings was previously correct.

3.2 Video on Demand

The introduction of high definition television (HDTV) in the early part of the century

coincided with a growth in demand for video on demand (VoD). VoD required very

high network bandwidth, and in early designs, did not scale well with increasing

numbers of users. The growth in demand for VoD spurred a major growth in the

importance of networks as an area of research, since a mass-market technology has a

much higher momentum behind it than a technology aimed at a smaller (for example,

technical) market.

Up to the early part of this century, the two major drivers of technology innovation

had been processor speed and memory density. While it had earlier been predicted that

the limiting factor on processor speed and improvements in memory density would be

the physics of the process technology of the time [Wilkes 1995]. However, by 2010, it
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had become clear that the major limiting factor in further progress was moving

sufficient data to the processor to justify improvements in speed. Similarly, increases in

memory density were increasingly of less interest because very large data sets resulted

in memory traffic dominating performance. Instead, the focus moved to making

increasing use of high network bandwidth, a commodity easily scaled up firstly by the

universal move to fiber optics, and secondly by the fact that bandwidth can easily be

added by using a wider pipe (or multiple pipes).

A combination then of consumer market pressures and technology trends led to a

decreasing emphasis on arcane details of computer instruction set-oriented architecture

research, and an increasing emphasis in the architecture field on networking issues.

This switch led to an increasing importance in algorithm analysis in the hardware field,

as issues like network routing draw heavily on analysis of graph algorithms.

Other areas which grew importance included queuing theory (particularly as latency

over long-haul networks is a major problem) and simulation.

3.4 The Bazaar Bungle

A highly influential paper which first appeared in 1997 with subsequent revisions in

later years described two alternative software development models as the cathedral and

the bazaar [Raymond 1997]. This paper led Netscape, a major supplier in those days of

internet services, to offer a significant portion of the source code of their software free.

The paper argued that the traditional development culture was like a cathedral (it was

never made clear exactly what the analogy was here) in that it was controlled by some

central architect, with strict limits on when the outside world could see it, and in how

much detail. Raymond argued that another model, that used to develop the Linux

operating system, which he called the bazaar model, was better. The fundamental idea

was release early and release everything including source. In the bazaar model, the

entire world becomes a talent pool, and having the source open makes it possible to

uncover bugs as early as possible.

Several companies followed the Netscape lead in opening their source code, and in

the ensuing chaos, some useful lessons were learned.

First, the cost of support is an important component of the lifetime cost of any

computer system. In the open source model, the “bazaar” becomes people selling

support. Since this is where the money is, there is little incentive to produce software

that is easy to understand. Those major software vendors that stayed outside the open

source world were forced to compete with every hacker in the world in matching the

open software for features, without the benefit of worldwide review of their source.

Consequently, conventional commercial software became more and more cumbersome

and feature-laden, and more and more unreliable. At the same time, free software, while
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increasingly popular, was also increasingly developed on the “bazaar” model, resulting

in a significant growth in the complexity of free software.

Up to 2007, the trend in software appeared to be increasingly towards greater

complexity of the product, and increasing fractions of budgets being spent on

maintenance, training and support, to the extent that even companies which were still

charging for software were frequently deriving 70% or more of their revenues from

these sources, rather than from sale of their product.

While this change in software development strategy created a new industry in

support gurus, it also created an opportunity for lighter-weight computers with very

simple, easy-to-use software. An early prototype of this trend, the Apple Macintosh,

was a limited success in countering the trend towards complexity in that it promoted

ease of use as a design goal, but it too suffered from increasingly complex software

being developed for it.

The trend in the early part of the century was towards a growing divergence

between business and home computers, despite the pressure to run similar software at

home. At first the trend manifested as set top boxes but with the growing sophistication

of services like VoD, set top boxes started increasingly to resemble fully-fledged

computers. While an early attempt at a minimal computer, termed the Network

Computer (NC) was not a success, the proliferation of set top boxes created and

opening for a new class of computer, the thin client (TC), capable of running limited

software locally, but with emphasis on exploiting high network bandwidth. The

adoption of the TC model at businesses was slow, until a large amount of simple,

distributed software became available.

The original NC model had revolved around a language called Java, but support

for Java collapsed as a result of a number of expensive lawsuits aimed at maintaining

the standard as the property of a specific computer manufacturer. Instead, the dominant

trend has become one of specifying interfaces clearly and precisely, so that a given unit

of software can be seen as a black box. The language used has become unimportant, as

long as the interface specifications are met. To guarantee that interface specifications are

met, where reliability is important, formal proofs have increasingly been required over

the last two decades. However, a more important realization has been that a

programming language should make it easy to specify interfaces correctly. As a result,

languages with features like automatic memory management (no pointers or aliases, but

with garbage collection), mathematically precise semantics and support for well-defined

interfaces have become increasingly popular.

Ironically, hiding detail and specifying interfaces precisely was one of the hard-

won lessons in the early years of software engineering. In the twentieth anniversary

edition of his influential book of essays on software engineering, Fred Brooks
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conceded that information hiding was a better strategy than openness, the position he

had taken in the original edition of his book [Brooks 1995]. Somehow, this hard-won

lesson was lost when software moved from a centrally-controlled enterprise to a cottage

industry on the internet.

It was only with the big software crash of 2007, when many major software

vendors collapsed under their own weight, in their attempts at building up ever-growing

feature lists to drown the competition, that the trend to large, bloated programs ended.

The free software movement played a role in this trend in that the internet facilitated the

construction of huge, complex programs by disorganized teams of volunteers, which

large software vendors attempted to counter by producing huge, complex programs

under controlled conditions.

In the last 10 years, with network bandwidth the major growth factor in the

computer industry, the trend to simplicity in software has continued, as it has become a

convenient model to distribute functionality. Large-scale data has come to be maintained

on servers around the world, whereas latency of the network requires end-user

interaction be controlled by local software. Moreover, businesses which have followed

the simplicity trend have generally had much lower costs than those following the

bazaar model, as a result of which, large-scale monolithic software has been on the

retreat over the last decade. In retrospect, it becomes clear that problems in previous

generations of software, such as the millennium muddle, were a result of over-large

monolithic systems, with no clear interface specifications between their components.

3.3 Major Issues Impacting Curriculum Design

The Bazaar Bungle—as it has come to be known, the move to ever-more complex

software with more and more emphasis on charging for support rather than for the

software itself—led to some of the more significant changes proposed in Curriculum

2010. The most important of these changes was a move towards specification of

interfaces at an early stage of the curriculum, with particular emphasis on viewing

software components as black boxes. This change was in line with the philosophy of

abstraction-first teaching, and led to an increasing perception that teaching programming

first was not the correct introduction to computer science.

The Millennium Muddle was a further data point in the process which led to

Curriculum 2010. Had software been composed of small modules with well-defined

interfaces, it would have been much easier to isolate the effect of changes (for example,

correcting the millennium bug should not have had an impact of parts of a program

which implemented daylight savings).

Finally the impact of new technologies like video on demand on the nature of

computing has increased emphasis on distributed computing, in which small units of
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computation are spread out over a network. The importance of networking has grown

and along with it, the underlying theory of graph algorithms, as well as queuing theory.

Given the move to abstraction-first learning, the Curriculum 2010 committee felt that

increased emphasis on discrete mathematics as a precursor to programming was

warranted.

4. Curriculum Proposal

Curricula in this century have emphasized topics in a given order—now that an order

has been generally accepted. The following summarizes the accepted order, with few

changes since the previous published curriculum. Note however that the order is

specified in generic terms and there is a lot of flexibility as to what goes into each

knowledge unit.

Note that a detailed curriculum is available in the full document to be published

electronically; detail is not specified here as most is unchanged relative to the last

published curriculum.

4.1  Introductory topics

focus: notation and techniques

• no problem analysis by students (but examples supplied), no design or

implementation

• tools of the trade—the what and why (not how) of operating systems,

programming languages, networks and formal methods

• problem-solving—divide and conquer, dynamic programming, systematic

strategies, formal models of problems (all based on studies of given examples)

• basic theory—logic, sets, relations, graphs, trees, proof techniques, recurrences

• models of computation—formal models, including regular sets, formal languages,

automata, Turing machines

4.1 Introduction to Analysis and Design

focus: problems, not on computer solution

• analysis of problems—introduction to solvability, efficiency (including

complexity)

• problems and models of computation—given problem, derive FSM, Turing

machine, etc.

• correctness of designs—given specification and design, prove design matches

specification
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4.2 Design and Implementation

given a design: implementation issues

• efficiency of designs—algorithm and data structure analysis

• empirical verification of analysis—given algorithm analysis and implementation,

verify that run times etc. match analysis

• limits of computing—computability, complexity in more detail

• programming languages and paradigms

4.4 Engineering of Software

focus: correct design and implementation

• reusable components—emphasis on abstraction

• implementing a design—place coding in perspective as the ail-end of the software

process

• advanced implementation—concurrency, OS kernels, networks, databases

• software life cycle—management, professional issues; life cycle models,

retrospective on earlier parts of the course

• specific application areas

• major implementation and design issues

• designing a new  software architecture

5. Major Changes

Since Curriculum 2010, the biggest changes have been in specific application areas and

in software architectures, reflecting advances in high-speed networking and global

inter-process communications models. Fundamentals in 4.1 through 4.3 have largely

been left unchanged.

Most of the changes result from changes predicted as long ago as 1996 [Lewis

1996a, Lewis 1996b], in which global conductivity has increasingly become the largest

resource at the disposal of the computing community, and global-scale compute servers

have become a reality.

Also of interest is the way in which mass-market applications have begun to

leverage off very high-speed interconnects, a trend predicted in the late 1990s

[Machanick 1998b].
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The full report contains more specific information; this section contains a summary

of major changes. The areas summarized here are networking and distributed

computing, and application architectures. Both areas are related to recent technology

innovations.

5.1 Networking and Distributed Computing

Improvements in bandwidth resulting from wide-scale deployment of 2Tbit/s fiber

imply a change in focus in network-related application areas, with wider coverage of

issues in design of mass-market video on demand. Some issues which need to be

introduced include:

• trading bandwidth for latency in information mass-transit systems

• design of distributed applications for global-scale interconnects

• fault tolerance in global-scale distributed applications

A few examples which may be added to illustrate the principles include:

• a home video on demand system: trade-offs between deployability and speed

• interactivity versus bandwidth conservation in large-scale weather modelling

systems

5.2 Application Architectures

Changes in the computing model from a computation-based model to a network-based

model have also resulted in changes in application models. The curriculum committee

therefore proposes that the following new areas be included as examples of application

architectures:

• mass transit-based interconnection (as opposed to classic client-server

architectures)

• interaction-locality models for high bandwidth but high latency distributed systems

(with emphasis on moving latency requirements close to the user)

• distributed object models (to some extent a revival of earlier 20th-century ideas like

Common Object Request Broker Architecture, or CORBA—though modern

languages allow a much simpler infrastructure to achieve the same ends; this is an

example of a trend which has long been predicted [Pancake 1995] but has only

recently been driven by the marketplace)

All of these areas can apply to video on demand and other interactive video areas,

but represent more general computational models and are therefore worth studying as

application architectures.
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6. Conclusions

Compared with Curriculum 2010, there were relatively few changes in Curriculum

2020. Reflecting the development of Computer Science into a proper engineering

discipline, the latest curriculum only needs changes in the later components, where

application-specific knowledge units are dealt with.

It seems likely that future curriculum documents of this century will mainly focus

on refinements of the accepted basic theory, with most changes occurring in the later

knowledge units.

As a result, education research is likely to focus on issues such as classroom and

lab practice, rather than on curriculum.
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