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Abstract

The RAMpage memory hierarchy is an alternative
memory organization which addresses the growing
CPU-DRAM speed gap, by replacing the lowest-level
cache by an SRAM main memory. This paper presents
some modifications to the RAMpage hierarchy. More
aggressive first level cache implementations are shown
to improve performance of the RAMpage model, when
context switches were taken on misses to DRAM.

1 INTRODUCTION

The RAMpage model has been proposed [11, 10] as an al-
ternative to the conventional memory hierarchy model of
one or more levels of cache, with a DRAM main mem-
ory and disk-based backing store for the virtual memory
system. In the RAMpage model, the lowest-level cache is
replaced by an SRAM main memory, and DRAM becomes
the first-level paging device, which is backed by a second-
level disk paging device.

This paper investigates a wider range of first-level
cache (L1) variations than in previous work. Larger L1
caches are investigated, as well as variations in block (line)
size and associativity.

Earlier work used a relatively small L1 cache and did
not investigate variations in L1 organization. While it
could be argued that for any reasonable workload, DRAM
traffic (which would not vary significantly across L1 varia-
tions) is the variable of greatest interest when designing the
lowest-level cache, it is important to be sure that results are
not a consequence of some artifact of details of a specific
L1 design.

As with previous work, trace-based simulation is used.
The same SPEC92-based traces are used; as in previ-
ous work, simulating a multiprogramming workload by
interleaving sections of these traces is sufficient to exer-
cise the simulated memory hierarchy. In this paper, both
the instruction (L1i) and data (L1d) caches varied from
16Kbytes to 256KB. The block size was varied from 32
to 128 bytes, and associativity varied up to 8-way.

The results show that RAMpage retains a clear advan-
tage across these variations, and that improvements to the

L1 organization generally result in a stronger improvement
in the RAMpage model with context switches on misses
than for a conventional 2-level cache.

The remainder of this paper starts with a brief survey
of related work. Section 3 provides a little more detail of
the approach, and results are presented in Section 4. Fi-
nally, Section 5 sums up the findings and outlines future
work.

2 Related Work

2.1 Introduction

Since the mid-1980s, CPU speeds have been improving at
an average of 55% per year, while DRAM latency has only
been improving at 7% per year [5]. This growing speed
gap has resulted in the view that we are approaching a
“memory wall”, in which future speed improvement will
be dictated by DRAM speed improvement [13].

Caches have traditionally been used to bridge the
CPU-DRAM speed gap. This section summarizes some
improvements to the design of caches, as well as attempts
at hiding basic latency of DRAM by more sophisticated
organization. To place the RAMpage strategy in context,
other software-based strategies are reviewed.

2.2 Improvements to Caches

Adding associativity makes it more difficult to achieve
fast hits, while reducing the number of misses; increasing
block size reduces misses while making each miss more
expensive [5]. Another improvement which can reduce
misses without making it harder to achieve fast hits is a
victim cache, a small additional cache of recently replaced
blocks [7].

Others have investigated alternatives to full associativ-
ity, including column-associative caches [1], which allow
an alternative location for a block without the overhead of
associativity in the best case.

Approaches to implementing associativity cheaply can
be considered to be competing alternatives. However, in-
creasing associativity only defers the memory wall.

A comparable approach to taking a context switch on
a miss is simultaneous multithreading (SMT) [12]. SMT



could in principle be implemented on top of RAMpage.

2.3 Improvements to DRAM

While the underlying trend in cycle time for DRAM re-
mains unchanged, it is possible to hide some of the la-
tency by exploiting typical reference patterns. For exam-
ple, a cache miss – the most common way of referenc-
ing DRAM from the CPU – references multiple sequential
bytes. Since it is easier to achieve high bandwidth than
low latency, both in general and specifically for DRAM
[5], DRAM designers have offered various modes which
allow multiple sequential accesses to be faster on average
than a single random access. These include synchronous
DRAM (SDRAM) and Rambus [4].

While latency is a key problem, bandwidth off chip is
another significant issue which limits speed of transfers be-
tween DRAM and the faster parts of the memory hierarchy
[9]. One approach to addressing this problem is to include
DRAM on the processor chip – the IRAM (for “intelligent”
RAM) approach [8].

RAMpage can exploit these improvements. Bigger
SRAM pages benefit from the streaming properties of
SDRAM and Rambus, and an IRAM system could page
fault off-chip to a bigger DRAM.

2.4 Software-Based Approaches

Designers of both DRAM and cache hierarchies have
mostly focused efforts on hardware-based improvements.
Changes in cache architecture can generally be hidden
from the operating system, since the cache is managed in
hardware. The same is true of most variants on DRAM.

Software-based approaches on the other hand may re-
quire operating system modification. In some cases, the
software may be hidden in architecture extensions (e.g.,
PALcode in the Alpha processor [2]).

In the 1980s, there was some work on software-based
cache management, with emphasis on reduction of misses
in a shared-memory system [3]. More recent work on man-
aging the interface between cache and DRAM in software
has focused on address translation [6].

These other software-based approaches have not gone
as far as treating the lowest level of cache as a fully
software-managed paged memory.

3 Experimental Approach

As with previous work, trace-driven simulation is used to
compare a RAMpage machine with a 2-level cache hier-
archy, in which both L2 in the conventional hierarchy and
the RAMpage SRAM main memory are 4Mbytes.

Configurations start from previous work [11, 10],
in which instruction issue rates represent speeds of cur-
rent designs which issue multiple instructions per cycle.
Pipeline stalls for causes other than cache misses are not
simulated, so an issue rate (for example) of 8 GHz could
represent a 1 GHz processor which issues 8 instructions per

clock, or a 2 GHz processor which issues 4 instructions per
clock.

Simulations were carried out on three different hierar-
chy configurations, specifically RAMpage with and with-
out context switches on misses and a standard or conven-
tional 2-level cache hierarchy. Several trade-offs within
the first-level cache were investigated for each hierarchy.
Accordingly, each of the following sections presents the
results of a particular tradeoff explored.

What we expect to see is that, as L1 improves, the gap
between any variations in L2 should be less significant.
However, overall, the fraction of time spent in DRAM
should be higher, since L1 is faster than L2, and total
DRAM references should not vary significantly (since in-
clusion is maintained between L1 and L2). Given that the
time spent in DRAM would otherwise be higher, context
switches on misses should be a greater win as L1 improves.

4 Results

4.1 Introduction

This section presents results and highlights important find-
ings, particularly the way in which RAMpage with context
switches on misses gains most from improvements to the
L1 cache.

The following section presents results obtained by
varying the size of the L1-cache and the instruction issue
rate. Section 4.3 examines the effect of varying the block
or line size across the different cache sizes. Section 4.4
shows the effect of more associative L1 implementations.

4.2 L1 size variation

L1i and L1d cache sizes were varied from 16 KB to 256
KB each, resulting in total cache sizes from 32 KB to 512
KB. A block size of 32 bytes and direct-mapping was used
throughout, while instruction issue rates were varied from
1 GHz to 8 GHz.

As predicted in Section 3, the fraction of time spent in
DRAM increases as L1 hits increase.

Figures 1 to 6 highlight this trend. Also, as predicted
in Section 3, as total L1 size is increased, the proportion of
execution time in L1 increases for every issue rate shown.
(TLB and L1d hits are fully pipelined, so they only account
for a small fraction of total execution time.)

Comparing issue rates, the standard hierarchy spends
just under 10% of execution time in the DRAM level at
1 GHz (Figure 1), while it spends about 40% of execution
time in DRAM with an issue rate of 8 GHz (Figure 2).

However, the RAMpage hierarchy with no context
switches on misses fares only slightly better as Figures
3 and 4 show. Only when context switches are taken on
misses to DRAM are the benefits of the RAMpage ap-
proach realised. Under 1% of total execution time is spent
at the DRAM level for a 1 GHz issue rate (Figure 5) and
this amount does not rise as the instruction issue rate is
pushed up to 8 GHz (Figure 6).
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Figure 1: Standard Hierarchy: 1 GHz Issue rate. Fraction
of time spent in each level of the hierarchy.
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Figure 2: Standard Hierarchy: 8 GHz issue rate
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Figure 3: RAMpage hierarchy, no context switches on
misses: 1 GHz issue rate
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Figure 4: RAMpage hierarchy, no context switches on
misses: 8 GHz issue rate
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Figure 5: RAMpage hierarchy with context switches on
misses: 1 GHz issue rate
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Figure 6: RAMpage hierarchy with context switches on
misses: 8 GHz issue rate



As expected, larger caches decrease execution times
due to the reduction in capacity misses. Table 1 shows
simulated execution times. However, improvements in per-
formance decrease as cache sizes get larger.

All of these observations are as predicted in Section 3:
as L1 improves, in the limit, all references which would
otherwise be found in L2 will be found in L1.

L1i and L1d Size 1 GHz 2 GHz 4 GHz 8 GHz

16 KB 1.322 0.709 0.401 0.248
1.276 0.670 0.370 0.220
1.229 0.623 0.302 0.152

32 KB 1.193 0.644 0.370 0.232
1.141 0.619 0.346 0.207
1.094 0.556 0.276 0.139

64 KB 1.127 0.611 0.353 0.224
1.082 0.592 0.330 0.200
1.022 0.516 0.258 0.131

128 KB 1.082 0.588 0.342 0.218
1.061 0.580 0.325 0.197
0.988 0.508 0.248 0.128

256 KB 1.058 0.577 0.336 0.216
1.042 0.571 0.320 0.195
0.978 0.489 0.245 0.124

Table 1: Cache size vs. issue rate. Each row shows sim-
ulated execution times (s) for standard hierarchy (top),
RAMpage with no context switches on misses (middle) and
RAMpage with context switches on misses (bottom).

4.3 Variations in L1 Block Size

Variations in L1 block (line) size present no surprises.
Given the observations from increases in cache size, it is
no surprise that the biggest improvements seen are with
RAMpage with context switches on misses.

Times in Table 2 show significant improvements for
RAMpage with context switches on misses (e.g., in the
8 GHz case, about 18% for the best case, 32byte L1 blocks)
as L1 improves. By contrast, the improvement for RAM-
page with no context switches on misses (Table 3) is under
12% for the best case at 8 GHz, compared with almost 14%
for the best case of the conventional hierarchy (Table 4).

4.4 Associativity-speed Tradeoff

We should expect to see similar results with increasing as-
sociativity: the gap between the conventional and RAM-
page hierarchy without context switches on misses should
decrease, but the advantage in context switches on misses
should increase. These effects can be seen in Tables 5 to 7.

Tables 5 shows how RAMpage with context switches
on misses improves with more associativity in L1. Again,
consider 8 GHz. The improvement in going from a direct-
mapped 16KB cache to an 8-way associative 256KB cache
(combined capacity of L1i and L1d) is 19%.

L1i and L1d 1 GHz 2 GHz 4 GHz 8 GHz

16 KB

32 bytes 1.229 0.623 0.302 0.152
64 bytes 1.348 0.701 0.347 0.171
128 bytes 1.731 0.855 0.438 0.213

32 KB

32 bytes 1.094 0.556 0.276 0.139
64 bytes 1.144 0.611 0.290 0.148
128 bytes 1.425 0.655 0.347 0.162

64 KB

32 bytes 1.022 0.516 0.258 0.131
64 bytes 1.094 0.522 0.265 0.133
128 bytes 1.167 0.554 0.277 0.140

128 KB

32 bytes 0.988 0.508 0.248 0.128
64 bytes 0.998 0.495 0.250 0.127
128 bytes 1.026 0.512 0.261 0.131

256 KB

32 bytes 0.978 0.489 0.245 0.124
64 bytes 0.964 0.486 0.244 0.127
128 bytes 0.980 0.492 0.244 0.124

Table 2: RAMpage Hierarchy variations by block size.
Context switches on misses.

L1i and L1d 1 GHz 2 GHz 4 GHz 8 GHz

16 KB

32 bytes 1.276 0.670 0.370 0.220
64 bytes 1.398 0.716 0.392 0.232
128 bytes 1.725 0.839 0.451 0.263

32 KB

32 bytes 1.141 0.619 0.346 0.207
64 bytes 1.189 0.641 0.356 0.213
128 bytes 1.356 0.705 0.391 0.229

64 KB

32 bytes 1.082 0.592 0.330 0.200
64 bytes 1.089 0.592 0.330 0.200
128 bytes 1.140 0.614 0.340 0.206

128 KB

32 bytes 1.061 0.580 0.325 0.197
64 bytes 1.054 0.576 0.323 0.196
128 bytes 1.076 0.583 0.327 0.199

256 KB

32 bytes 1.042 0.571 0.320 0.195
64 bytes 1.027 0.564 0.317 0.194
128 bytes 1.037 0.568 0.318 0.194

Table 3: RAMpage Hierarchy variations by block size. No
context switches on misses.

The comparable figure for RAMpage without context
switches on misses (Table 6) is again under 12%, while that
for the conventional hierarchy (Table 7) is almost 14%.



L1i and L1d 1 GHz 2 GHz 4 GHz 8 GHz

16 KB

32 bytes 1.322 0.709 0.401 0.248
64 bytes 1.457 0.776 0.436 0.265
128 bytes 1.805 0.950 0.523 0.309

32 KB

32 bytes 1.193 0.644 0.370 0.232
64 bytes 1.256 0.676 0.385 0.240
128 bytes 1.449 0.772 0.434 0.264

64 KB

32 bytes 1.127 0.611 0.353 0.224
64 bytes 1.147 0.621 0.358 0.226
128 bytes 1.235 0.665 0.380 0.238

128 KB

32 bytes 1.082 0.588 0.342 0.218
64 bytes 1.078 0.587 0.341 0.218
128 bytes 1.112 0.604 0.350 0.222

256 KB

32 bytes 1.058 0.577 0.336 0.216
64 bytes 1.047 0.571 0.333 0.214
128 bytes 1.061 0.578 0.337 0.216

Table 4: Standard Hierarchy variations by block size.

L1i and L1d 1 GHz 2 GHz 4 GHz 8 GHz

16 KB

1-way 1.229 0.623 0.302 0.152
2-way 1.120 0.563 0.281 0.142
4-way 1.099 0.551 0.275 0.138
8-way 1.069 0.537 0.269 0.137

32 KB

1-way 1.094 0.556 0.276 0.139
2-way 1.040 0.524 0.262 0.132
4-way 1.033 0.516 0.258 0.130
8-way 1.028 0.514 0.258 0.130

64 KB

1-way 1.022 0.516 0.258 0.131
2-way 0.998 0.501 0.250 0.127
4-way 0.994 0.497 0.248 0.126
8-way 0.991 0.498 0.248 0.126

128 KB

1-way 0.988 0.508 0.248 0.128
2-way 0.978 0.489 0.246 0.124
4-way 0.974 0.487 0.244 0.124
8-way 0.976 0.486 0.243 0.124

256 KB

1-way 0.978 0.489 0.245 0.124
2-way 0.969 0.481 0.241 0.123
4-way 0.963 0.482 0.240 0.123
8-way 0.963 0.481 0.240 0.123

Table 5: RAMpage (L1 associativity). Switches on misses.

L1i and L1d 1 GHz 2 GHz 4 GHz 8 GHz

16 KB

1-way 1.276 0.670 0.370 0.220
2-way 1.172 0.626 0.348 0.209
4-way 1.145 0.613 0.341 0.206
8-way 1.136 0.610 0.340 0.205

32 KB

1-way 1.141 0.619 0.346 0.207
2-way 1.093 0.593 0.331 0.201
4-way 1.083 0.589 0.330 0.200
8-way 1.082 0.588 0.329 0.199

64 KB

1-way 1.082 0.592 0.330 0.200
2-way 1.060 0.580 0.325 0.197
4-way 1.057 0.578 0.324 0.197
8-way 1.056 0.578 0.324 0.197

128 KB

1-way 1.061 0.580 0.325 0.197
2-way 1.045 0.573 0.321 0.196
4-way 1.042 0.572 0.321 0.195
8-way 1.042 0.572 0.321 0.195

256 KB

1-way 1.042 0.571 0.320 0.195
2-way 1.034 0.568 0.319 0.194
4-way 1.032 0.567 0.318 0.194
8-way 1.032 0.567 0.318 0.194

Table 6: RAMpage (L1 associativity). No context switches
on misses.

5 Conclusions

Improving L1 reduces the importance of L2, and doesn’t
addess the memory wall. A more aggressive L1 reduces
the fraction of time spent in L2, but not actual time spent
in DRAM. In fact, if L1 is more effective (to the limit of
L2’s effect), the fraction of time spent in DRAM increases.

Improvements to L1 reduce the value of RAMpage
without context switches on misses, but increase the value
of RAMpage with context switches on misses, which
matches the finding of previous work, that context switches
on misses are the most promising aspect of RAMpage.

The effect of TLB improvements is our next evalua-
tion. Once a full range of measurements is complete, a
more comprehensive simulation is planned. Finally, build-
ing a RAMpage machine is planned.

Given the growing scale of the memory wall problem,
RAMpage is an approach showing increasing promise.
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L1i and L1d 1 GHz 2 GHz 4 GHz 8 GHz

16 KB

1 way 1.322 0.709 0.401 0.248
2-way 1.205 0.650 0.373 0.234
4-way 1.178 0.637 0.366 0.230
8-way 1.149 0.622 0.358 0.227

32 KB

1-way 1.193 0.644 0.370 0.232
2-way 1.132 0.614 0.354 0.225
4-way 1.114 0.604 0.350 0.222
8-way 1.108 0.602 0.348 0.222

64 KB

1-way 1.127 0.611 0.353 0.224
2-way 1.082 0.589 0.342 0.218
4-way 1.076 0.586 0.340 0.218
8-way 1.073 0.584 0.339 0.217

128 KB

1-way 1.082 0.588 0.342 0.218
2-way 1.062 0.579 0.337 0.216
4-way 1.058 0.577 0.336 0.215
8-way 1.057 0.576 0.335 0.215

256 KB

1-way 1.058 0.577 0.336 0.216
2-way 1.048 0.571 0.333 0.214
4-way 1.047 0.571 0.333 0.214
8-way 1.046 0.571 0.333 0.214

Table 7: Standard Hierarchy (L1 associativity).
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