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Abstract

The RAMpage memory hierarchy addresses the growing concern about the memory wall – the
possibility that the CPU-DRAM speed gap will ultimately limit the benefits of rapid improvement in
CPU speed. Reducing references to DRAM is an increasingly desirable goal as CPU speed improves
relative to DRAM. As the cost of a DRAM reference increases, it makes increasing sense to consider
options like pinning crucial parts of the operating system in at least the lowest-level cache, and to
consider possibilities like context switches on references to DRAM. All these factors combine to
make it increasingly desirable to treat DRAM as a paging device, while moving the main memory
a level up to the lowest level of SRAM. The RAMpage hierarchy relegates DRAM to the role of a
first-level paging device. Results presented here are for a preliminary simulation of the RAMpage
hierarchy, and show that, if current memory system and CPU trends continue, the RAMpage strategy
will become increasingly viable. Even with current miss costs and without implementing all features
favourable to the RAMpage hierarchy, simulations show that it is possible to achieve run times up to
25% faster than those for a conventional hierarchy. Furthermore, RAMpage scales up better than the
conventional hierarchy (as simulated) in that performance degrades less as DRAM reference costs
increase.
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1 Introduction

There has been much discussion in recent years of the “memory wall” [WM95, Joh95, Wil95] – a con-

sequence of a growing CPU-DRAM speed gap [HJ91, BD94].

One approach to dealing with this growing CPU-DRAM speed gap is to focus on strategies for

reducing misses, even if those strategies make each miss cost more. For example, work on software-

controlled caches in the past [CSB86] may be more revelant today than when it was first done, given the

increased cost of misses. However, even strategies for reducing misses run up against the problem that

miss costs in thousands of instructions are hard to amortize even with very low miss rates.
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While current CPU and DRAM speeds may not yet be in the league where DRAM should be con-

sidered a slow peripheral, it is worth considering the possibility that current trends will continue long

enough that miss costs to DRAM will eventually be in the range of thousands of instructions.

If current trends persist, it starts to become worth considering options such as taking a context switch

on a cache miss. Further, as misses become more expensive, it becomes worth exploring techniques for

locking critical data or code in the lowest-level cache.

Taken to their logical conclusion, strategies like software-controlled caches, locking given data or

code in the lowest level of cache and context switches on misses imply managing the lowest-level cache

as a paged memory.

The approach proposed in this paper, the RAMpage hierarchy, is one in which the lowest-level cache

(typically made of static RAM, SRAM) is instead considered to be the main memory, and DRAM is

considered to be a first-level (L1) paging device. In the RAMpage model, disk becomes a second-level

(L2) paging device.

The RAMpage hierarchy differs from the conventional hierarchy in the way specific levels of the

hierarchy are managed; the total amount of hardware is not necessarily significantly different. It is

possible that improvements to the basic RAMpage design will require additional hardware, but the same

is true of enhancements to a basic cache architecture.

The RAMpage hierarchy will require some modifications to the operating system, since an additional

level of paging is introduced. Given the significantly lowermiss costs from SRAM toDRAM, as opposed

to from DRAM to disk, the optimal page size at the new level will be smaller than traditional page sizes.

Also, the faster access time to DRAM as compared with disk implies that trade-offs such as a more

complex replacement algorithm versus more misses will differ in the SRAM-DRAM level as compared

with the DRAM-disk level.

On the positive side, then, the RAMpage approach offers the potential to address the memory wall

without extra hardware cost. The downside is that changes to the operating system are required (i.e.,

adopting a RAMpage architecture cannot be done simply by changing the hardware). Fortunately, these

changes are relatively minor – the paging implementation can follow standard principles with minor

differences to take into account the parameters of faults from SRAM to DRAM.

Figure 1 illustrates the traditional versus the RAMpage hierarchy. The major components (as illus-

trated here) are the same; detailed implementation differs.

In this paper, a preliminary investigation of the RAMpage hierarchy, in which measurements are

made using trace-driven simulation, is presented. Several simplifications are made to reduce the number
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Figure 1: A Standard Hierarchy vs. a RAMpage Hierarchy

of variables in comparing the RAMpage hierarchy to a conventional two-level cache hierarchy. For ex-

ample, context switches are not accurately modelled, nor are context swicthes taken on misses. However,

a mix of programs is measured, to give an indication of how working sets of a multiprogramming mix

develop over time. Also, a trace of a simple page replacement algorithm is used to simulate the costs of

replacement in the RAMpage case.

The major aim of the paper is to show that, with the kinds of miss costs that are becoming common

today, the RAMpage approach is viable even without pushing it to maximum advantage.

Preliminary findings are promising – taking into account that more attention needs to be paid to

detailed simulation. If current trends continue, the RAMpage approach appears to be viable now, even

without special hardware support. With extra investment in areas like hardware-supported page tables,

the RAMpage approach could be even more attractive.

The remainder of this paper expands on issues raised so far, and presents results of measurement.

The next section provides more background on trends, standard memory hierarchies in use today, and

the implications of trends on such standard cache-based hierarchies. The following section briefly sum-

marises related work, including software-managed caches and attempts at reducing the impact of the

CPU-DRAM gap. After that is a more detailed description of the RAMpage architecture, followed by a
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section describing the experimental methodology and results. The final section presents conclusions.

2 Background

2.1 Introduction

Since the mid-1980s, when load-store (RISC) microprocessors became common, the trend in CPU speed

improvement has been 50% to 100% per year, while DRAM speed improvement has only been 7% per

year [HP95], leading to a doubling of DRAM reference costs, relative to CPU speed, every 6.2 years

[BD94].

While there have been many attempts at reducing or hiding the costs of DRAM references [SF91,

CB92, Jou90, BD94], if current trends continue, it will not be long before miss costs of thousands of

instructions are commonplace. For example, it is possible to buy a DEC Alpha system today running at

500MHz with a peak instruction issue rate of 4 instructions per cycle, or an instruction per 0.5ns. At the

same time, a typical cache miss cost today is of the order of 200ns. While miss costs are not an exact

function of the CPU-DRAM speed gap (improved DRAM organization and bus design for example can

reduce miss costs), the trend in the CPU-DRAM speed gap indicates that miss costs of thousands of

instructions can be expected in the near future.

The remainder of this section presents a brief overview of standard cache-based hierarchies with

virtual memory, and examines implications of the growing CPU-DRAM speed gap.

2.2 Standard Hierarchy

To put the research presented in this paper into perspective, here is a brief overview of common features

of current architectures [HP95]. No attempt is made at covering all possible variations; the focus here is

on issues to take into account when comparing RAMpage with a conventional hierarchy.

Typically, systems have one or more levels of cache – most recent designs have two, but three levels

are likely to become commonplace as the CPU-DRAM speed gap widens. A cache is organized into

blocks (also called lines). A cache reference which hits in the cache essentially divides into three phases:

indexing – determining where in the cache to look

tag check – determining whether the referenced block is present (and possibly updating its status)

selection within block – do the read or write on the portion of the block referenced by the CPU

The CPU issues virtual addresses, which are translated somewhere during the cache reference pro-

cess. A TLB (translation lookaside buffer) caches page translations, and is used where possible to do
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page translation within the cache reference cycle. In recent years, architectures have tended to use the

virtual address on an index operation, and the physical address in the tags [KH92a], to allow more time

for the address translation, though few have gone as far as to use completely virtually addressed caches

[CSB86].

There are many other details of caches which could be considered [Smi82, PHH88]. Of most interest

here are replacement strategies in caches, and the role of the TLB.

Caches are generally organized with a varying degree of associativity. No reasonably-sized cache is

fully associative1: the situation where any block can be placed anywhere in the cache. Speed and cost

constraints drive cache designers towards a direct-mapped cache, where a given block is always found in

the same place. A compromise is an -way associative cache. If cache size is , and , there

are possible locations for placement of a given block, in an -way associative cache. The associativity

of a cache impacts on the replacement strategy. If the cache is direct-mapped, replacement is trivial. The

higher the associativity, the more useful it is to have a more sophisticated approach to replacement, as

there are more choices of blocks not to replace.

TLB misses can account for a significant portion of execution time. Some studies have shown that

operating system code in particular accounts for a large portion of TLB miss costs [NUS 93].

It has also been observed that code which uses large numbers of small data structures randomly

scattered over memory can have a high number of TLB misses even if cache misses are low. Such a

reference pattern is likely to be common in object-oriented code, especially where no special attention is

paid to where objects are placed in memory [CGHM93].

In the best case, a TLB miss can be handled from a page table entry in L1 cache; in the worst case, a

missing TLB entry may only be present on disk.

2.3 Implications of Trends

The growing CPU-DRAM speed gap has various implications for memory system designers.

One important implication is that misses should be reduced as far as possible. Although DRAM

references are still much faster than disk references, some of the logic which applies to page faults starts

to become an issue for DRAM references. For example, a more expensive replacement strategy in the

lowest level of SRAM can be justified if it is more than offset by the reduction in misses. Also, it becomes

useful to pin critical resources in the last SRAM level above DRAM.

The way a cache is organized, it is difficult to pin specific blocks into the cache, especially if there

is a low degree of associativity. In the extreme case of a direct-mapped cache, pinning anything into the
1A small cache like a TLB is often fully associative.
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cache means that any other block that maps to the same location can never be present in the cache.

While increasing associativity can address both miss reduction and making it possible to pin blocks

in the cache, increasing associativity increases hit time [HP95]. Furthermore, pinning blocks in a cache

would require either an extra tag bit (more hardware) or some other extra overhead on choosing a candi-

date for replacement.

Concerns of running into the memory wall need to take into account all aspects of the memory

hierarchy which may access DRAM – not just the caches but also the TLB.

Page table entries likely to be needed soon but which cannot be accommodated in the TLB are an

example of data which could profitably be pinned into the lowest SRAM level. Another example is code

and data structures in the operating system for handling context switches.

Ultimately, the only way to deal with the memory wall is to find other work to do on a miss – in other

words, to move towards context switches on misses.

Taking all these points into account, there is a strong case for investigating the RAMpage strategy.

3 RelatedWork

3.1 Introduction

The possiblility that the growing CPU-DRAM speed gap will eventually result in computer systems run-

ning into the memory wall makes it useful to re-evaluate past approaches which may still be applicable,

or which may now be more applicable than when they were first investigated.

The remainder of this section briefly summarizes previous work on software-managed caches, and

goes on to consider a range of approaches to reducing the impact of the CPU-DRAM speed gap.

3.2 Software-Managed Caches

In the 1980s, there was some work on software-managed caches [CSB86]. Software managed caches

have the potential to reduce misses by more intelligent replacement than is feasible with hardware-

managed caches. As with the RAMpage model, the trade-off is higher replacement costs.

In the 1980s, miss costs were not high enough to make software-managed caches viable. Also, CISC

architectures in common use at the time had relatively high costs of traps to the kernel. More recent load-

store designs, such as the MIPS architecture, make it possible to do a light-weight trap to the kernel, i.e.,

a trap does not automatically dump the entire machine state on the stack [KH92a].

The RAMpage model is potentially more viable than the previous approaches to software-managed

caches for several reasons. It goes further towards treating the lowest level of SRAM as a fully software-

managed level, i.e., a paged memory, with benefits outlined in Section 4. It also benefits from the increase
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in the CPU-DRAM speed gap since the work on software-managed caches, as well as the potential for

relatively low-cost traps in modern CPUs.

3.3 Reducing the Impact of the CPU-DRAM Gap

There has been considerable attention directed at reducing the impact of the growing CPU-DRAM speed

gap; only a short summary is presented here. Broadly, approaches can be divided into hardware and

software strategies.

Hardware strategies can be divided into three major categories; a few examples are given here to

illustrate the general principles:

reducing miss costs – variations on DRAM organization including some cache on the DRAMchip,

or approaches to capitilize on locality (fast page mode, EDO, etc.); more sophisticated buses; more

heavily interleaved RAM

reducing number of misses – more associativity, larger caches

hiding miss costs– victim caches to hold recently replaced data [Jou90]; non-blocking caches

[CB92] to support prefetch or continued out-of-order execution

Software strategies include compiler optimizations [BGS94], algorithm analysis which takes misses

into account [LRW91], application restructuring [CGM91], and using page placement to reduce conflict

misses [BLRC94, KH92b].

All of these strategies run up against one major fundamental problem: they are at best hiding the

underlying trend, not changing it. At some point, a miss to DRAM has to be taken, and when it occurs,

if current trends continue, the memory wall remains an issue. The RAMpage approach, with its potential

for taking a context switch on a miss, offers the option of a detour around the memory wall.

4 The RAMpage Architecture

4.1 Introduction

Given the problems caused by the increasing CPU-DRAM speed gap, it is useful to attempt to find a

solution that takes us further than previous approaches.

To summarize the issues raised in Subsection 2.3, it is possible to trade fewer misses for a higher

replacement cost, and it would be useful if more operating system traffic could be kept to the SRAM

levels of the hierarchy – including TLB misses and context switch code. By making it easier to manage

what is at least in the lowest level of SRAM, it should become possible to avoid the worse cases of
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behaviour of TLB misses (at least in the case where a reference to DRAM or disk is not otherwise

required).

Another point to consider is whether it is possible to arrive at a simpler strategy for hits, as compared

with a TLB lookup and a cache reference. The result could be faster hits.

Finally, given the growing cost of DRAM references, it may be useful to have the option of taking a

context switch on a miss to DRAM. This is not as fanciful as it may at first appear: early virtual memory

system’s page fault costs were not much different from current miss costs to DRAM2.

All these issues lead to the idea of the RAMpage architecture – a revision of the conventional hier-

archy in which main memory moves up a level to the lowest level of SRAM, while DRAM becomes the

L1 paging device. Disk becomes the L2 paging device.

A major design issue here is to address the problem of high TLB miss costs. In particular, it is a

concern that a hit in any SRAM level should not be slowed down by a slow TLB miss. While TLB miss

costs may appear to be secondary to the other issues raised, there is little point in improving other aspects

of the memory hierarchy, only to have TLB misses remain a bottleneck.

The remainder of this section provides more detail of the RAMpage architecture, followed by some

implementation detail. Since this paper aims to investigate feasibility, detail is not developed as fully as

if an implementation were currently proposed.

4.2 RAMpage Architecture Fundamentals

It is important to note that a basic RAMpage architecture need not cost more than a conventional cache-

based architecture. The major components are the same. It is possible that additional hardware will

be justifiable to improve performance, but the same is true of a cache: a simple, basic design can be

enhanced by adding extra hardware, such as a victim cache to hold recently replaced blocks [Jou90]. In

fact, the equivalent concept to a victim cache is commonly implemented in paged systems without extra

hardware (recently replaced pages are kept on a standby page list; the page which was on the list longest

is the one actually discarded [Cro97]).

To expand on Figure 1, the major difference at the hardware level is that the RAMpage architecture

does not use cache tags in the lowest level of SRAM. However, whether there is a net increase or decrease

in SRAM used for page tables as opposed to tags depends on the page size of the RAMpage system, an

issue which is taken up in Section 5, where results are presented. The approach here is to use the same

amount of SRAM in all simulations, to avoid having cost as a major issue.
2Astonishing though it may seem, in the 1950s, drum memories were being produced with sub-millisecond access times:

see for example http://www.cc.gatech.edu/gvu/people/Faculty/Randy.Carpenter/folklore/dec92-v1n2.html .
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At the software level, the major difference between RAMpage and conventional architectures is that

an additional level of page table is needed.

Since the physical address space of the SRAM main memory is relatively small compared with the

total address space, a sparse page table approach is needed. In this work, an inverted page table [HH93]

is used to map the entire SRAM main memory to virtual addresses.

It is useful to ensure that the part of the page table needed for any hit to any SRAM level is in the

SRAM main memory. Even if the inverted page table needs to do more work for a lookup than a forward

page table, the worse cases of fetching a page table entry from DRAM or from disk will never occur for

a reference which hits in one of the SRAM levels.

In the RAMpage model, a hit in any SRAM level, in the best case (in terms of TLB behaviour),

proceeds from a TLB hit to a reference in either one of the the SRAM levels memory. In the worst case,

a hit in an SRAM level requires that a TLB miss be handled from the lowest level of SRAM.

While a direct-mapped cache may be able to match the RAMpage architecture on hit cost, we argue

that our organization is simpler and therefore easier to make fast in the best case, and the worst case is

also better.

Once associativity is introduced into the cache, it becomes even harder to achieve a fast hit time.

By comparison, the RAMpage approach is fully associative, which should reduce misses, yet is simpler

in the case of a hit than even a direct-mapped cache. The cost is that replacements are more expensive

than with a conventional cache architecture, as replacements are handled in software – in the style of a

conventional paging implementation.

The RAMpage approach is slower on a TLB miss compared with a conventional architecture’s best-

case TLB miss, where the required page table entry is cached. In this case, the slower lookup of the

RAMpage inverted page table results in lower performance for the RAMpage hierarchy.

The other areas where RAMpage will take a performance hit are in handling replacements and

misses. Replacements are slower than with a cache since a software approach is used. Misses are

slower since a page needs to be larger than typical cache blocks, as is illustrated in Section 5.

4.3 Preliminary Implementation Detail

Cache levels above the SRAM main memory are organized the same way in the RAMpage model as in

conventional memory hierarchies.

The lowest SRAM level is organized like a conventionalDRAM pagedmemory, except some changes

are made to take into account the fact that the SRAM level is relatively small as compared to DRAM,

and misses to DRAM are relatively quick as compared to page faults to disk. Also, some attention is paid
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to reducing TLB miss costs, especially where the reference concerned does not require access to DRAM

or disk.

An inverted page table is used to implement page translation as, in this way, it can be guaranteed

that any page present in the SRAM main memory is mapped in the portion of the page table present in

SRAM main memory. A conventional forward-mapped table for a hierarchy where the main memory is

relatively small would in any case have to be modified to take into account the relatively small portion of

the total virtual address space resident in the main memory.

Compared with a cache, an SRAM main memory does not require a cache tag index operation,

checking for a hit, or extracting the appropriate sub-block. Once a TLB translation has been performed,

the appropriate reference can be performed directly. While cache indexing and TLB lookup can be

performed concurrently in a virtually indexed cache, checking for a hit and subblock extraction are over-

heads in the conventional model which are avoided in the RAMpage model. For simplicity, the simula-

tion implemented for this work does not model the speed difference between RAMpage and cache hits.

However, the greater simplicity of the RAMpage model should aid the hardware designer in improving

performance of hits.

RAMpage replacements are handled using a simple text book clock page replacement algorithm

[Cro97, MOO87]. The philosophy is that a simple approach with minimal cost, at the expense of slightly

more misses, is the right approach while miss costs are still relatively low. As miss costs to DRAM

increase, more sophisticated replacement strategies will be justified.

For purposes of this work, the L2 paging device – the disk – is not implemented, as this level of the

hierarchy does not differ from that of a conventional cache-based architecture.

It is possible – depending on the page size – that an additional level of page table may need more

memory than cache tags. The trade offs are further explored in Section 5. It should be noted however

that page table entries would be present anyway in the lowest level of cache, so the trade-off is hard to

determine in general. In the conventional cache-based system, these page table entries would only be

for paging in the DRAM and disk levels, whereas in the RAMpage model, page table entries for both

levels of paging might be present in the SRAM main memory. However, most page translations in the

RAMpage model are likely to be for pages resident in the SRAM main memory; the L2 page translations

are not needed for example to service TLB misses, except in the case where there is also a miss from

SRAM to DRAM or disk.
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5 Experimental Evaluation

5.1 Introduction

Since there are many variables in a memory hierarchy which could confuse evaluation of the RAMpage

alternative, the RAMpage implementation and a cache-based hierarchy used for comparison have been

kept as simple as possible.

To simplify variation in the hierarchy, trace-based simulation is used. Traces are drawn from SPEC

benchmarks3. Each trace is approximately 1-million references. A total of 20 traces is used, with a mix

of floating point and integer code. 1-million traces is not much to simulate a realistic working set, so

we produced longer traces with an approximation to trace stitching [AHH88], by using the same trace

repeatedly. Since this technique is obviously of limited accuracy, we do not rely heavily on these longer

traces to draw conclusions.

Traces from each benchmark are interleaved, with a fixed number of references from each before

switching to another, to simulate a multiprogramming workload. We have made no attempt at simulating

the cost of context switches (other than the impact on contents of each level of the memory hierarchy).

The remainder of this section details specifics of the architectures as implemented for measurement,

followed by measurement and discussion of the results.

5.2 Simulated Architectures

The simulated CPU cycle time is 2ns (500MHz). For simplicity, we have not simulated a superscalar

architecture, nor have we attempted to take into account pipeline interactions with the memory system

(other than stalls for misses).

The TLB is identical in both memory hierarchies. It is software managed, fully associative and

contains 64 virtual to physical address translations which are shared between code and data references.

TLB hits require a single processor cycle, and misses are managed by software which retrieves the

required translation from the page table.

Both hierarchies employ the same primary cache organization. The on-chip cache is physically

addressed, split (16Kbytes each for the I- and D-caches) and direct mapped. A write back strategy with a

write allocate miss policy is adopted. Block size is fixed at 32bytes, with a full block fetched on a miss.

Dirty misses cause the entire block to be written back to the next level. Both the I- and D-caches cycle

at the same rate as the CPU, with read hits taking one cycle and write hits requiring two. Misses incur

processor stalls until the required block has been loaded.
3A selection of 20 traces from SPEC benchmarks produced by Mark Hill was used, from the FTP location
ftp://tracebase.nmsu.edu/pub/traces/uni/r3000/pdt/ .
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The L2 cache in the standard hierarchy is external, physically addressed and unified. It is direct

mapped and write back with a write allocate miss policy. Cache size is fixed at 4 Mbytes with block size

varied from 128bytes. Like the primary cache, full blocks are fetched on a miss and dirty misses result in

the entire block being written back to DRAM. Cycle time is set at 30ns, and so 1 secondary cache cycle

= 15 CPU cycles. Read hits require a single secondary cache cycle, and write hits twice that amount.

An inclusion property between L1 and L2 caches is maintained (i.e., the L1 cache is a subset of the L2

cache, other than that some L1 blocks may be dirty with respect to L2).

Main memory in the RAMpage model has the same total capacity as the secondary cache in the

baseline system with 128byte blocks; this includes the space taken up by the L2 tags. It is assumed that

each tag in the L2 cache requires 4bytes of storage, and so the 32K frames (each 128bytes) require a

total of 32K 4bytes = 128Kbytes of storage. Hence, the total capacity of the secondary cache is 4.125

Mbytes. Page size is varied in powers of two from 128bytes to 4096bytes. Inclusion is also maintained

between the L2 cache and the SRAM main memory.

Adjacent layers of the hierarchies are connected by a 30ns bus which is 32bytes wide. Thus, transfer

of a cache block between the L1 and the L2 cache (or SRAM main memory) requires a single bus cycle;

transferring a block between L2 (or SRAM main memory) and DRAM requires requires four or more

bus cycles (depending on block size).

An infinite DRAM is simulated, in which all data and code is preloaded, to avoid the need to simulate

accesses to disk.

DRAM latencies are varied at 50 cycle increments from 65 cycles for reads and 60 cycles for writes,

to 315 cycles for reads and 310 cycles for writes.

5.3 Results

In this subsection, results of trace-driven simulation are presented. These results are intended to provide

a first cut at evaluating the RAMpage hierarchy, by comparison with a simple cache-based hierarchy.

Results are presented with a range of block (line or page) sizes in the lowest-level SRAM (L2-cache,

or main memory, depending on the model being evaluated).

Table 1 contains simulated run times of both a conventional cache hierarchy and a RAMpage hier-

archy. In each case block size at the L2 (or SRAM main memory) level is varied, and memory speed is

varied. Run times are given in simulation time, rather than wall clock units.

It is interesting to observe that simulated times for the best block (or page) size for both hierarchies

differ generally by about 1%. However, the block size for which the best performance occurs differs

markedly between the RAMpage and cache-based architectures. The conventional architecture achieves
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DRAM Speed 128bytes 256bytes 512bytes 1024bytes 2048bytes 4096bytes
rd: 65; wr: 60 71 101 033 72 079 551 74 144 325 77 871 338 85 153 856 100 005 393

85 858 027 76 754 297 73 294 034 71 524 452 73 991 456 79 562 784
rd: 115; wr: 110 77 159 433 78 919 151 82 329 925 88 574 382 100 305 856 124 523 793

90 714 428 82 032 697 79 154 034 78 260 452 83 565 856 92 253 984
rd: 165; wr: 160 83 262 569 85 823 916 90 454 725 99 093 738 115 457 856 148 830 528

95 582 228 87 311 097 85 014 034 84 996 452 93 140 256 104 945 184
rd: 215; wr: 210 89 311 769 92 663 916 98 641 125 109 803 182 130 609 856 173 437 524

100 450 028 92 589 497 90 874 034 91 732 452 102 714 656 117 636 384
rd: 265; wr: 260 95 298 633 99 503 916 106 827 525 120 417 582 145 761 856 197 911 124

105 317 828 97 867 897 96 734 034 98 468 452 112 289 056 130 327 584
rd: 315; wr: 310 101 410 169 106 343 916 115 072 325 131 031 982 160 913 856 222 384 724

110 185 628 103 146 297 102 594 034 105 204 452 121 863 456 143 018 784

Table 1: Hierarchy Performance. Total processor cycles after 20 million references, with varyingDRAM
speed and L2 page/block size, and context switches every 100000 references. Values for the standard
hierarchy appear in the upper portion of each row, and those for the new hierarchy in the lower.

its best performance for the smallest block size used here, whereas RAMpage achieves the best perfor-

mance for a 512byte page for slower miss costs, and a 1024 byte page for faster miss costs.

These numbers are to some extent an artifact of the simulation: no account has been taken of memory

system enhancements which reduce the cost of subsequent references to DRAM, after the initial reference

of a sequence of contiguous references. While all cases will be improved by a more realistic DRAM

simulation, the RAMpage architecture will be improved more since it performs better on larger blocks

(pages).

L2 page/block size Standard Hierarchy RAMpage Hierarchy
Reads Writes Reads Writes

128bytes 106 052 14 396 97 356 0
256bytes 118 256 18 536 105 568 0
512bytes 138 640 25 072 117 200 0
1024bytes 173 920 38 304 133 984 0
2048bytes 238 592 64 448 168 128 23 360
4096bytes 369 536 120 832 204 416 49 408

Table 2: Total DRAM references (counted as number of bus transactions) incurred by the two hierarchies
after simulation of 20-million references.

Table 2 illustrates how increasing the L2 block size or SRAM page size impacts on number of DRAM

references. Of particular interest is that for the relatively small traces used here, there are no write backs

at all in the RAMpage case, for smaller page sizes. Only with page sizes of 2K or more are there write

backs, which confirms that the clock algorithm is more efficient in selecting appropriate candidates for

write backs than is a simple direct-mapped cache.

The number of references here is not a direct indicator of performance, as even with our inefficient

bus, multiple references forming a single miss or write back take less time than the equivalent number
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Figure 2: TLB Hit Rate. The TLB behaviour is the same for all block sizes of the conventional hierarchy.

of single references. Thus, the larger block or page sizes gain as long as increased number of references

per miss is offset by the greater efficiency of handling multiple references for a given transaction.

A more significant factor as page size increases is the reduction in TLB misses, which is the largest

factor in the improved performance of the RAMpage model for larger page sizes.

As can be seen in Figure 2, TLB hits increase significantly in the RAMpage case, as page size

increases. However, TLB hits remain constant on the standard hierarchy as block size changes.

It should be noted that the TLBmiss rates are not directly comparable across the two architectures. Of

more interest is the actual TLB miss cost, since the RAMpage architecture is designed to accommodate

all page translations within SRAM (provided the page concerned is in SRAM). Figure 2 illustrates how

the new hierarchy performs badly with small pages. With small pages, there are many TLB misses. The

data as given here shows TLB misses in terms of extra references generated by the TLB miss handler. A

smaller fraction of the extra references for the RAMpage case go to DRAM, so the higher number of extra

references generated by the TLB miss handler for page sizes of 512bytes and above is not significant.

Finally, it is of interest to see how performance develops for a longer trace.

Figure 4 illustrates how the new hierarchy starts to become a win once cold start misses are no longer

an issue. This matches our view that the RAMpage architecture should come out ahead without too

much work to optimize it. The data here is for the best cases of each hierarchy: 128byte blocks for the
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15



L2 cache, and 512bytes for the RAMpage model.

Two details are of particular interest. Even though the miss cost is increased by a factor of more

than 4, the RAMpage hierarchy only slows down by about 5%. For the highest miss cost, the RAMpage

hierarchy is about 25% faster than the conventional hierarchy.

However, since this 20-million reference trace was created by stitching together shorter traces, this

data should be treated with some caution.

5.4 Discussion of Results

Despite the simplifications made to limit the variables in this initial work, the data presented here pro-

vides evidence that the RAMpage hierarchy is viable, especially as miss costs increase.

If the longer traces are typical of real runs, even with miss costs seen on some current machines, the

simplified RAMpage architecture simulated here comes out ahead.

While TLBmisses are a significant overhead in the new architecture, the simulation results show that,

provided the page size is large enough, the extra number of TLB misses is not high enough to offset the

gain in having most TLB misses serviced from SRAM. While large page sizes may cause extra overhead

on misses, they also save overhead on page table size; fine-tuning details of this kind will require more

detailed simulation, including a more realistic model of the memory system.

6 Conclusions

6.1 Introduction

The RAMpage work presented here is a beginning. Initial results indicate that it is worth further research-

ing the RAMpage approach. This concluding section summarizes the major issues and results contained

in this paper, then goes on to outline planned future work. In conclusion, the results are put into context.

6.2 Summary

The RAMpage memory hierarchy offers a way around the memory wall, by making it possible to do con-

text switches on misses. This paper has shown that even without taking context switches on misses, the

underlying infrastructure of the RAMpage approach has competitive performance with a simple conven-

tional L2 cache-based system. Both the cache implementation and the RAMpage implementation could

have many improvements made to them to make themmore realistic, but the basic principle demonstrated

in this paper is that the RAMpage approach is feasible.
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6.3 Future Work

An important issue not addressed in this paper is that of context switches on misses. If miss costs are

high enough (in this case, page faults from SRAM main memory to DRAM), it becomes worth while to

take a context switch on a miss. Work is in progress to investigate the conditions in which it becomes

worth taking a context switch on a miss to DRAM. Additions to the current simulation include more

accurate simulation of context switch code and operating system data structures.

Another project under consideration is hardware support for inverted page tables. In this instance,

the likely focus of the project will be on the use of formal methods to ensure correct implementation,

since the design is likely to be relatively straightforward.

A possible benefit of the RAMpage approach is that object-oriented code will have fewer expensive

TLB misses, given the RAMpage goal of ensuring that all pages currently found at least in part in any

SRAM level have their translation at worst in the SRAM main memory. Users of languages such as

Smalltalk or Java which use automatic memory allocation will particularly benefit from this improve-

ment. Our future work will include investigation of the TLB behaviour of object-oriented code on a

RAMpage versus a conventional cached machine.

Multiprocessor systems introduce another range of problems. To minimize variables in this initial

research, multiprocessor systems are not considered. However, some lessons could be drawn from work

on distributed shared memory (DSM) systems [BCZ90, DKCZ93].

6.4 Final Summary

Overall, the RAMpage approach appears to be promising. Further work is needed to investigate missing

details. However, given initial data presented in this paper, there is reason to continue with further

investigation.

The fact that an improvement of up to 25% was seen over the simple cache architecture is an indica-

tion that the RAMpage approach is viable, even without going to the extent of implementing currently

missing details like context switches on misses. More important, the fact that RAMpage scales up better

than the conventional cache-based architecture as miss costs grow, indicates that the RAMpage strategy

will become more viable if current trends persist.

It somehow seems a more satisfactory metaphor to walk around a wall than to run into it.
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