
Teaching Operating Systems: Just enough
abstraction

Philip Machanick

Department of Computer Science
Rhodes University

p.machanick@ru.ac.za

Abstract. There are two major approaches to teaching operating sys-
tems: conceptual and detailed. I explore the middle ground with an ap-
proach designed to equip students with the tools to explore detail later
as the need arises, without requiring the time and grasp of detail needed
to understand a full OS implementation. To meet those goals, I apply
various strategies to di↵erent concepts, for example, faking the detail
and using techniques from computer architecture simulation. The course
aims to give students a better sense of how things work than a concep-
tual approach without the time required for a full implementation-based
course.

1 Introduction

Operating systems (OS) courses divide roughly into a general survey of OS
features and variations – a conceptual approach – and those that dive into detail.
The latter category includes use of a real OS (usually these days one with free
source such as the Linux kernel), or an OS designed specifically for teaching and
research such as MINIX [23].

At Rhodes University (South Africa’s smallest research-intensive university),
the third year OS module in a Computer Science major takes 4 weeks each with
5 lectures and one practical (of 3 hours), and students usually take two third-
year subjects, allowing 20 hours per subject per week. Timetabled contact time
of 8 hours leaves 12 hours a week for independent work. That is insu�cient time
to go into much detail of a full-scale or even cut-back OS such as MINIX.

Since most programming courses at Rhodes are taught using higher-level
languages that manage memory and abstract away all the details of the machine,
one of my goals in the OS module is to reinforce exposure to the machine layer
and notions like machine addresses, only seen in a small part of our curriculum.
Finally, learning really requires some exposure to how professionals in the real
world work [11] – so some aspect of developing code typical of OS internals is
necessary for a real understanding of the area.

The approach I describe here attempts to achieve some of the benefits of
a full-scale implementation-oriented OS course without the time commitment
required to do so. Strategies used include:

SACLA 2016

check http://homes.cs.ru.ac.za/philip/Publications/_SACLA/OSjustEnoughAbstr-2016-abst.html for published version

preprint

to appear in CCIS 642, Springer-Verlag



– faking part of the system – e.g, to illustrate file system variations like a file
allocation table (FAT) [5] or inodes [13], I implement RAM-based structures
illustrating how the disk-based pointers would be organized

– architecture simulation techniques – trace-driven simulation [24] allows a
small part of a system to be simulated provided a trace of memory accesses
is available to drive the simulation

In the remainder of this paper, I provide background to relevant educational
theory and other approaches to teaching operating systems. I go on to explain
the design of my course followed by more detail. I share experience from running
the course this way and wrap up with conclusions.

2 Background

Earlier theories of learning focused on cognition. The constructivist model, for
example, inspired by the work of Piaget [18], was based on di↵erent levels of
sophistication of building mental models [3], similarly to Bloom’s Taxonomy,
which ranks di↵erent levels of problem solving in terms of sophistication [10].
Social constructivism adds to constructivism the notion that there is a social
aspect in learning – that construction of knowledge, while a cognitive process,
is influenced by interactions with others [7]. The social construction model goes
a step further and divorces learning from cognitive models, focusing instead on
how knowledge is created by social interaction [11,4].

Whether we accept a cognitive view of learning or change our focus to a purely
social model, the consensus is that learning requires doing – a strong argument
against a pure survey approach. Understanding an OS requires overcoming a
number of misconceptions [16]; it is hard to see how such misconceptions can be
overcome without a strongly practical component to an OS course.

In the early 2000s, instructional operating systems such as Nachos, Topsy and
Yalnix were designed to abstract key concepts to simplify teaching [2]; Pintos
is more recent [17]. Some teach the Linux kernel [15,8,6] and others Windows
internals [21]. All these whole-system approaches require significant time to learn
the basics before getting into detail.

3 Course Design

For the Rhodes OS course, the approach I take is to cover major ideas in lectures
and drill down to implementation in practicals. I provide detailed notes [12] and
work through examples and concepts in class, interspersed with C programming
techniques with the aim of preparing the class for the next practical exercise.

Main headings follow a typical OS course outline:

– The Kernel
• system calls and interprocess communication (IPC)
• what goes in kernel vs. user space – microkernels vs. monolithic kernels



• what the kernel does
– Schedulers

• theoretical approaches
• practical approaches
• examples: Windows and Linux schedulers

– IO and Files – including inodes and FAT file organiation
• device interface
• files and devices
• performance – including speed as well as reliability and fault tolerance
• protection and security
• other device types

– Memory – mostly virtual memory (VM) using pages
• history and rationale for memory management
• key concepts of VM
• more advanced concepts
• examples including real machines and translation lookaside bu↵ers (TLBs)

– Parallel Programming – including Pthreads, UNIX-style processes and IPC
• concepts
• launching
• sharing and communication
• synchronization
• distributed systems and the cloud
• parallel programming hazards

All of this can relatively easily be covered with a survey approach; there are good
OS texts that do just that [23,22]. The challenge is how to approach these topics
in more depth without a full implementation of an OS – or more specifically, in
a relatively short time.

The approach I take is to implement small fragments of an OS that can be
designed, implemented and tested independently so that a whole OS does not
need to exist or be understood to do practical work. I describe here two major
approaches: implementing a small, simplified subset of functionality in a way
that can be tested in isolation and using trace-driven simulation to implement
functionality that would normally be driven by execution of user-level code.

I also illustrate user-level functionality by showing how to use system calls
and standard libraries that implement functionality that illustrates core concepts
like synchronization and parallel programming.

3.1 Small Subset

File system concepts can be implemented at least to some extent without the
whole OS. The key concepts I want to illustrate in the course are the way the file
system can be layered (as in a UNIX-style file system with a virtual file system
on top of which the actual file system is implemented) and the pointer structure
of an inode or FAT file system.



typedef struct FS_attributes {
char fstype[FSTYPEN]; // type of FS
blocksize_t blocksize;
blockpointer_t numblocks;
blockpointer_t maxfiles;
blockpointer_t bitmapSize; // in blocks
blockpointer_t directory; // must be followed by first_fileptr
blockpointer_t first_fileptr; // must be followed by freespacelist
blockpointer_t freespacelist; // must be followed by first_data_block
blockpointer_t first_data_block;
blockpointer_t mappedblocks; // minus attributes, directories, etc.

} FS_attributes;

Fig. 1. Highly simplified VFS structure. It includes just enough detail to find blocks
that are either system overheads such as directories or file blocks.

3.2 Trace-Driven Simulation

To implement trace-driven simulation, I generate traces using Pin [9], which I
use to generate a trace file out of a user-level executable containing a record of
instructions fetched (as their address) and addresses read and written. To ap-
proximate the e↵ect of interrupts, I add into the trace files artificially-generated
records of interrupts, each with the latency of handling the interrupt.

3.3 User-Level Examples

Synchronization, process launching and threads, while good to understand at the
kernel level, are hard enough at the user level that I consider it adequate to use
user-level coding for these examples. Areas covered include Pthreads [14], UNIX-
style fork and various modes of IPC (shared memory, memory maps and pipes).
I also review various synchronization primitives including mutexes, spinlocks and
barriers – including e�ciency and implementation issues. The class does practical
work to implement examples that are designed to illuminate principles.

4 Course Detail

To illustrate how all this works in practice, I provide examples of practical prob-
lems set, covering the various techniques. For a simplified subset that can be
tested in isolation, I use the example of implementation of a file system. For
trace-driven simulation, I use two examples: scheduling and VM. Finally, I illus-
trate the use of user-level examples with parallel programming.

4.1 Small Subset: File System

To illustrate how a file system is implemented, I provide code that crudely ap-
proximates to the split between a virtual and actual file system. A virtual file



struct Inode {
// attributes: permissions and path
char path[NAMELENGTH]; // byte 0 nonzero if a valid inode
unsigned int permissions;
unsigned int size;
FS_t *filesystem;
blocksize_t blocksize; // property of file system but fixed once set
blockpointer_t direct_pointers[NUMBERDIRECT]; // size must be constant
blockpointer_t single_indirect_pointers; // points to FS pointer block

};

Fig. 2. Simplified inode. I omit many details (e.g., timestamps, link count).

system (VFS) was originally designed to hide implementation details such as
whether the file system is local or remote [20]; in my approximation to this, a
low-level file system implements block operations on a device simulated in RAM
that can be used without needing to know where blocks are stored, capturing
the essence of a VFS without the complexity. This simplified VFS (Fig. 1) allows
implementing operations on an inode-based system to create, remove or extend
a file – or doing the same using FAT. A bitmap representing free or allocated
blocks provides exercises in bitwise operations. Conceptual challenges students
must deal with include understanding that file system pointers are not the same
as memory pointers (they refer to device blocks, not bytes in main memory) and
that data structures used to represent files can be complex to navigate.

Figure 2 illustrates my minimalist inode structure. It contains a pointer to
a data structure defining the VFS in which it is contained; all other “pointers”
are disk block numbers, as determined by the VFS. The VFS knows that a file
system contains certain overheads – directories, top-level file pointers – and the
actual file system initializes it with sizes of these overheads.

4.2 Trace-Driven Simulation: scheduling and virtual memory

Pin allows me to produce trace files that mark memory addresses as one of read
(“R”), write (“W”) or instruction fetch (“I”). I add in fake interrupts at regular
intervals, each of fixed latency (“X”; the number in the file in this case is the
latency, not an address). Here is an example of an extract from a trace file:

I 0xb78882a0
W 0xbfd913d4
X 0x3E8
R 0xbfd91564

In this example, there is an interrupt with latency (in clock ticks) 0x3E8 =
100010. Each instruction fetch is assumed to add 1 clock tick. If I am not simu-
lating memory hierarchy, reads and writes are fully pipelined (add no latency).

To create a workload, my simulator reads in a list of trace file names that
represent a process per trace file.



Scheduling To keep things simple I assume that all interrupts are only pro-
cessed once a waiting process reaches the head of a single wait queue. To simulate
scheduling, it is only necessary to process instruction fetches and interrupts from
the trace file; memory reads and writes are ignored. If a process is interrupted,
it goes to the wait queue until it reaches the head of the wait queue and after
than becomes ready only after its latency has expired. This framework allows
comparison of variations, e.g., round-robin scheduling and multilevel feedback
queues (as in Windows [19] and some versions of Linux [1]).

While avoiding the true complexity of a scheduler, in the spirit of “just
enough abstraction”, students see the main issues.

Virtual Memory VM is even harder to code at the true hardware level than
scheduling, since implementation has to match hardware functionality closely.
Trace-driven simulation simplifies exploring variations like alternative page table
structures and the functioning of a TLB. By including reasonable numbers for
latency of operations, even if the detail is not fully simulated, it is possible
to illustrate the performance impact of design choices. In addition, giving the
students an example and asking them to implement a variation makes it possible
for them to get a sense of how a real system is implemented.

Given a single-level page table, implementing a two-level page table provides
a reasonably challenging programming example. Another example of similar lev-
els of di�culty and insights is evaluating the e↵ect of a TLB.

4.3 User-Level: parallel programming

Finally, to illustrate concepts related to processes, threads and IPC, user-level
programming can provide good insights. Examples I use include:

– threads vs. processes – given an example of one, recode using the other
– shared memory vs. memory maps – again, recode in the other type
– synchronization – focus on a subset of types of options (barrier, mutex, etc.)
– IPC primitives – coding using pipes adds another dimension

To fit the limited time, I vary what is covered in lectures vs. in practicals.

5 Experience

My experience of explaining concepts like multilevel page tables and TLBs in
lectures is that they are very di�cult concepts to grasp in the abstract. Parallel
programming is another area where doing is really required to learn. Some areas
like scheduling are easier to learn conceptually, though conceptual texts present
scheduling in a theoretical way unrelated to real OS design [22]. A case study of
Linux scheduler evolution is more interesting and also exposes students to the
debate about free versus proprietary software (why did Linux evolve so fast, while
the Windows scheduler has not changed much in overall design since Windows



NT?). It is di�cult to make this sort of debate come to life without the students
having a feel for how things are actually implemented.

That students battle with low-level concepts like pointers is not a reason to
avoid them. If they must learn them somewhere, an OS course – at the interface
between hardware and software – is a logical place to introduce them. An OS
course also illustrates how pointers can di↵er in di↵erent layers of the system
(file system pointers refer to disk blocks not bytes in memory).

6 Conclusion

The real test of any course is whether it helps the students grow – and that can
be hard to measure in the short term particularly with a final-year course. The
class generally finds the course challenging, as we move rapidly to new concepts
and they are drawing on a very limited prior exposure to low-level coding in C
(one 3-week module in second year). However it would be a lot more challenging
were the course to be based on a real fully-implemented OS.

Students who have taken the course and return after a few years with reports
on its usefulness will be the real test of the value of the approach; the course
has not been running long enough in its current form for such an evaluation.
My own experience is that students taught using this just enough abstraction
approach have a better appreciation of implementation and design issues than
those taught using a purely theoretical approach.

As the course evolves, I plan on varying the detail – changing for example
where I use the three strategies (small subset, trace-driven simulations) and user-
level coding – to find the right mix. In the meantime I invite others grappling
with finding the right balance between abstraction and detail to share ideas.

References

1. Aas, J.: Understanding the Linux 2.6. 8.1 CPU scheduler. Tech. rep., Silicon Graph-
ics, Inc. (2005), http://joshaas.net/linux/linux_cpu_scheduler.pdf

2. Anderson, C.L., Nguyen, M.: A survey of contemporary instructional operating
systems for use in undergraduate courses. J. Comput. Sci. Coll. 21(1), 183–190
(Oct 2005), http://dl.acm.org/citation.cfm?id=1088791.1088822

3. Ben-Ari, M.: Constructivism in computer science education. In: Proc. 29th SIGCSE
Tech. Symp. on Computer Science Education. pp. 257–261. SIGCSE ’98, ACM,
New York, NY, USA (1998)

4. Bijker, W.E., Hughes, T.P., Pinch, T., Douglas, D.G.: The social construction of
technological systems: New directions in the sociology and history of technology.
MIT press (2012)

5. Chen, J.B., Endo, Y., Chan, K., Mazières, D., Dias, A., Seltzer, M., Smith, M.D.:
The measured performance of personal computer operating systems. ACM Trans.
Comput. Syst. 14(1), 3–40 (Feb 1996)

6. Dall, C., Nieh, J.: Teaching operating systems using code review. In: Proc. 45th
ACM Tech. Symp. on Computer Science Education. pp. 549–554. SIGCSE ’14,
ACM (2014)

http://joshaas.net/linux/linux_cpu_scheduler.pdf
http://dl.acm.org/citation.cfm?id=1088791.1088822


7. Kim, B.: Social constructivism. Emerging perspectives on learning, teaching, and
technology 1(1), 16 (2001)

8. Laadan, O., Nieh, J., Viennot, N.: Structured Linux kernel projects for teaching
operating systems concepts. In: Proceedings of the 42nd ACM Tech. Symp. on
Computer Science Education. pp. 287–292. SIGCSE ’11 (2011)

9. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: Building customized program analysis tools with
dynamic instrumentation. In: Proc. 2005 ACM SIGPLAN Conf. on Programming
Language Design and Implementation. pp. 190–200. PLDI ’05 (2005)

10. Machanick, P.: Experience of applying Bloom’s Taxonomy in three courses. In:
Proc. Southern African Computer Lecturers’ Association Conf. pp. 135–144 (2000)

11. Machanick, P.: A social construction approach to computer science education.
Computer Science Education 17(1), 1–20 (2007)

12. Machanick, P.: 2OS: more programming from the machine up. Rhodes Univer-
sity, Grahamstown (2016), http://homes.cs.ru.ac.za/philip/Courses/CS3-OS/
Cs3ToOS.pdf

13. McKusick, M.K., Joy, W.N., Le✏er, S.J., Fabry, R.S.: A fast file system for UNIX.
ACM Trans. Comput. Syst. 2(3), 181–197 (Aug 1984)

14. Nichols, B., Buttlar, D., Farrell, J.: Pthreads programming: A POSIX standard for
better multiprocessing. O’Reilly, Sebastopol, CA (1996)

15. Nieh, J., Vaill, C.: Experiences teaching operating systems using virtual platforms
and Linux. In: Proc. 36th SIGCSE Tech. Symp. on Computer Science Education.
pp. 520–524. SIGCSE ’05 (2005)

16. Pamplona, S., Medinilla, N., Flores, P.: Exploring misconceptions of operating
systems in an online course. In: Proc. 13th Koli Calling Int. Conf. on Computing
Education Research. pp. 77–86. Koli Calling ’13 (2013)

17. Pfa↵, B., Romano, A., Back, G.: The Pintos instructional operating system kernel.
In: Proc. 40th ACM Tech. Symp. on Computer Science Education. pp. 453–457.
SIGCSE ’09 (2009)

18. Piaget, J.: The Construction of Reality in the Child. Routledge, Milton Park (1954)
19. Pietrek, M.: Inside the Windows scheduler. Dr. Dobb’s J. 17(8), 64–71 (August

1992), http://dl.acm.org/citation.cfm?id=134643.134652
20. Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., Lyon, B.: Design and imple-

mentation of the Sun network filesystem. In: Proc. Summer USENIX Conf. pp.
119–130 (1985)

21. Schmidt, A., Polze, A., Probert, D.: Teaching operating systems: Windows kernel
projects. In: Proceedings of the 41st ACM Technical Symposium on Computer
Science Education. pp. 490–494. SIGCSE ’10 (2010)

22. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts. Wiley, Har-
low, Essex, 9th edn. (2012)

23. Tanenbaum, A.: Modern Operating Systems. Pearson, Harlow, Essex, 4th edn.
(2014)

24. Uhlig, R.A., Mudge, T.N.: Trace-driven memory simulation: A survey. ACM Com-
put. Surv. 29(2), 128–170 (Jun 1997)

http://homes.cs.ru.ac.za/philip/Courses/CS3-OS/Cs3ToOS.pdf
http://homes.cs.ru.ac.za/philip/Courses/CS3-OS/Cs3ToOS.pdf
http://dl.acm.org/citation.cfm?id=134643.134652

	Teaching Operating Systems: Just enough abstraction

