
Teaching Without Technology

Philip Machanick
Department of Computer Science

Rhodes Univerity
Grahamstown

p.machanick@ru.ac.za

ABSTRACT
Technology is touted as a solution to problems in educa-
tion. But is it? I report here on experiences with dropping
use of slides in lectures and returning to working on the
board. The apparent result is more interactive, engaged
classes. Unfortunately there are too many other variables
to make the experiences here definitive. The purpose of
this paper is to provoke discussion on whether technology
is overused in teaching when the goals of improving stu-
dent engagement and general effectiveness of learning can
be met many ways. Technology is not necessarily bad,
but making it the starting point risks locking out non-
technological options.

Categories and Subject Descriptors
K.3.2 [Computing Milieux]: Computer and Informa-
tion Science Education—Computer Science Education

Keywords
Teaching methods, learning, active learning

1. INTRODUCTION
A widespread presumption is that technology has to

improve education. Physicist Richard Feynman used to
speak of “cargo cult science” [4]. By this he meant things
that have the appearance of science but lack the critical el-
ements that differentiate science from superstition – such
as the superstition of South Sea Islanders who made their
impression of the trappings of technology in the hope that
it would attract “cargo” – goods they had seen brought in
during wartime by planes. Despite the appearances of
airports and so on, no cargo arrived. As Feynman saw it,
science has to stand up to critical evaluation, which means
studying all evidence, not only that which supports your
hypothesis.

As computer scientists, we want to believe that apply-
ing technology to teaching will improve it – but does it?
In recent years, I have started backtracking from this posi-
tion because I find that imposing technology between the
teacher and the class creates a barrier. Worse, it creates
an inflexibility that old-fashioned chalk-and-talk can eas-
ily beat. In this paper, I present some experiences. In the
spirit of Feynman, I do not claim these as definitive but
present them to challenge the conventional wisdom – to
claim a scientific outcome requires a study for which the

Copyright is held by the owner/author(s).
SACLA 2014, 25-26 June, Port Elizabeth, South Africa
.

data is not yet available. The experiences I report are nec-
essarily anecdotal because there are too many variables in
the examples I use to find definitive causes for particular
effects.

I start with some background – my personal experiences
backed up by education research. From there I outline ex-
periences with a current second-year computer architec-
ture course, and end with some ideas to take forward.

2. BACKGROUND
My experience of lecturing goes back to when over-

head projectors were commonplace but not universally ac-
cepted because they required hand-written slides, which
took time to prepare, and required neat handwriting to
be legible. With the advent of the low-cost laser printer
in the mid-1980s, I was an early adopter of copying laser-
printed slides onto transparencies. Presenting like that
looked more professional than writing with chalk, saved
re-preparation in subsequent deliveries of courses and it
was technology and technology is what we do.

Since presentation tools appeared, I have used a wide
range. Aside from the ubiquitous PowerPoint, I have used
PDFs, Apple’s Keynote and even web pages to present.
All of that of course takes significant time to prepare, and
makes lecturing that much more like entertainment.

Yet, does all this really aid learning? Self-efficacy [1,
5] has long been recognised as a prerequisite for coping
behaviour. It is true that a teaching method that may
excite self-confidence by making the material seem eas-
ier may prompt a perception of self efficacy – but what
happens when that perception is punctured by reality?

Also, there is evidence that it is not applying technol-
ogy as such to education that makes a difference, but
using more effective methods that works. For example,
algorithm animators may seem to enhance learning but
do not necessarily do so any more than effective paper-
based methods [2]. In general such methods appear to
give best results when they require engagement by stu-
dents [6], though the exact details of how visualisation and
animation tools actually aid education remains a topic for
research [13].

Much educational research in computer science in the
past has focused on cognitive models. The social con-
struction model of learning changes the focus from what
is learnt to how knowledge is created and shared. The
social construction model implies an active approach to
learning, as learners discover what it is to be a member
of a particular community of practice [10]. One approach
to achieving learning in the social construction model is
action learning, which goes in cycles of planning, action,
reflection and analysis, leading to re-evaluating the project
and starting another cycle [9].

20

Putting all this together, the goal should be finding the
most effective method for engaging the students and en-
couraging them to learn to work like practitioners in their
field. Presenting neat slides with carefully-contrived ani-
mations is nowhere close to what they will ultimately do
in their place of work, whether in applying their discipline
or in an academic setting. Given that the students are a
distance from where they need to be, there has to be a
balance between pulling them out of their comfort zone
and maintaining their confidence (their self efficacy).

2.1 The Start
In 2012, I started experimenting with something new. I

had a new small Honours class in Computer Architecture
and my favourite book [7] had become far too expensive,
so I wrote extensive notes, over 100 pages. You might
say this is not so new: people have been doing this since
the quill pen. But what was different was I relegated the
computer to the background. Not since PowerPoint and
friends appeared have I used the computer as an accessory,
where I could pull it out to show off a web page, to run a
snippet of code or to highlight an example in the notes.

It was a liberating experience.
I could present at the natural pace of the class. If an

example needed more explanation, I could elaborate. If
they got it straight off, I could skip detail. If I found they
were getting bored, I could add in something I hadn’t
planned. To me it appeared to work well, though since I
have no baseline for comparison (I previously taught this
course in a different country), the 2012 Honours class is
more anecdote than evidence.

Some of this of course can be done with slides. But
slides box you into a mindset where there is just so much
material you have prepared in elegant style with anima-
tions. You get wrapped up into presenting and lose con-
tact with your class. In the race to get through your
carefully-prepared material you risk getting ahead of them.
That is not so bad with a small Honours class but with
larger undergraduate classes, I was starting to develop a
concern that over-prepared lectures were not working.

Concurrently with the 2012 Honours class, I had a second-
year (CS2) C++ course where the class really struggled
– C++ is a large, complex language, and the aim of the
course was to introduce low-level concepts that C++ in-
herits from C as well as the increased complexity of the
C++ class and template system. Since this was a more
introductory class, I had carefully-prepared slides using
animations and graphics. Compared with the Honours
class, I found it more difficult to pace lectures right and
to ensure that the class had the core concepts straight. At
Rhodes, undergraduate courses are run in relatively inten-
sive mode, with a single module run on its own rather than
concurrently with others. This C++ course was run over
4 weeks, making it difficult to give students enough time
to absorb difficult background in time to do anything in-
teresting. Using computer presentations was no help –
with so much to get through, it was hard to avoid the
temptation to go charging ahead even when the class was
obviously not keeping up.

2.2 More Recently
In 2014, I inherited a CS2 computer architecture course.

The previously-prescribed book [12], also a classic of its
type, was becoming far too expensive – almost R800 when
I last checked. So I decided to apply lessons from the
Honours class. We had at the same time decided to replace
the C++ course by a C course, so I integrated the two

Figure 1: SPIM with tree example loaded

courses. The architecture course introduces the machine
layer using C as pseudocode, and the C course picks up
from there, dipping down to machine code as necessary to
explain features. This too is not an original idea, though
an available book using this approach [11] is also quite
expensive, reinforcing my decision to write my own book.

In common with the previous version of the architecture
course, I use the SPIM MIPS simulator [8] because the
MIPS instruction set is one of the simplest in a real ma-
chine in wide use, and SPIM in its latest incarnation, im-
plemented using the Qt toolkit [3], is reasonably portable,
making it possible to run examples on most available equip-
ment. SPIM as illustrated in figure 1 shows the loaded
program and its machine code equivalent, and allows reg-
isters and memory to be inspected and altered. Memory
on the whole is hard to inspect because the layout varies
as non-zero values appear (regions that are all zero are
compacted).

The presentation style is very old-fashioned. I work out
at the start of the week what should go into the Wednes-
day afternoon prac, and work through the notes1 to ensure
we have covered enough ground to get the prac started.
Every now and then I hit a point where demonstrating
in SPIM becomes useful, and fire up the computer. The
students have taken to the approach more than they real-
ize. As noted in section 3, the students if asked would be
happier with a more classic approach. However the results
are generally good, and the class remained engaged.

Course content is biased towards MIPS assembly cod-
ing, with some cover of digital logic, number systems (in-
cluding floating point) and performance. Since the goal
is to elucidate high-level languages from the machine up,
MIPS coding emphasises translation from C-like code to
machine code, working through constructs from basic ALU
operations via control structures to function calls and re-
cursion. Data structures include arrays and C-style structs.
While my material includes machine-level implementation
of objects with inheritance, dispatch tables are one layer
of complexity too much for the available time, so I did not
go that far in the course. Nonetheless, we have covered
a lot of ground, and the real test of the course will be
how well the class copes with later courses that draw on
understanding of lower-level concepts.

3. EXPERIENCES
1
http://homes.cs.ru.ac.za/philip/Courses/CS2-arch-C/

21

0"
1"
2"
3"
4"
5"
6"
7"
8"
9"
10"

very"low" low" medium" high" very"high"

prior!
current!

Figure 2: Self Efficacy: before and after – the ver-
tical axis of all graphs is number of students

We have a substantial number of CS2 repeats from 2013,
a year with a higher than average failure rate, and the atti-
tude seen last year when a large fraction of students gave
up early and handed in nothing is not being repeated.
Measuring 2104 CS2 against CS2 of 2013 therefore could
be misleading, particularly as the group that arrived the
following year has a totally different attitude that is un-
likely to be related to any of my courses. Another variable
is the introduction of a new first year in 2013 in which the
Information Systems and Computer Science classes were
split, creating space for a more focused first year.

In the 2014 CS2 class, the number of students failing to
hand in is so low that I could give them individual atten-
tion. Since week 2, members of the class have voluntarily
shown up for an extra weekend prac session. The first
time, they organised this themselves. At the end of week
3, I joined in and the session that started at 2pm carried
on for 4 hours.

In view of the uncontrollable variables, I have not at-
tempted a formal study but rather present subjective im-
pressions backed by an unscientific survey taken by 12
members of the class. Since the participants are self-
selected with no controls for their representivity these re-
sponses can only be taken as a rough indication of the
class’s perceptions.

First, figure 2 is an indication of self-efficacy. The two
data sets are the students’ responses respectively on their
confidence in their abilities before the course started, and
at the time of the survey, about 3 weeks into the course.
There is a clear shift of the peak of the distribution to-
wards lower self-efficacy for the “current” data set. This
shift is not surprising for a course that aimed to take stu-
dents out of their comfort zone. Provided the shift does
not discourage them in future courses, it is not necessarily
a problem.

A perception students often have (no matter what you
tell them) is that lectures are where most learning occurs.
When lectures appear not to have the expected teach-
ing effect they become disconcerted. There is plenty of
evidence that learning is not passive; in a course where
students are pushed towards active learning how do they
react?

Figure 3 illustrates attitudes to the value of lectures
with respect to preparation for practicals, versus the value
of practicals for understanding lecture material. The dis-
tributions clearly differ. The students rate their practical

0"

2"

4"

6"

8"

10"

very"low" low" medium" high" very"high"

lectures to pracs!
pracs to lectures!

Figure 3: Value of lectures to pracs and vice-versa

0"

2"

4"

6"

8"

10"

very"low" low" medium" high" very"high"

Help already known CS!
Overall learning!

Figure 4: Perceptions of learning

sessions much higher for aiding understanding than the
lectures. How does this reflect on the teaching strategy?
My approach of building up to the next prac by the end
of the Wednesday lecture may leave the class a bit off-
balance by the time they reach the lab because they have
the building blocks, but are expected to put them together
themselves. The fact that they feel they are learning a lot
from the pracs reflects the exact effect intended. Yet to
the students, it appears that the lectures have not been
sufficiently effective.

Finally, how well do the students think they are doing?
Figure 4 illustrates responses to questions about how well
the material learnt helps with areas of computer science
they already know, and how well they are doing overall in
learning from the course. Again, we see a split. The sur-
vey group is not really sure how much the course aids with
other areas, with a peak at the midpoint of the options,
while the level of perceived learning is bimodal, with some
feeling they are learning a lot, and others rating overall
learning low. The main benefits of the course will be to
later topics including the follow-up C course and in their
third year the operating systems and compilers courses.
For this reason, it is not surprising there is some doubt
as to the value of the course to other areas already cov-
ered. The bimodal distribution in students’ perception of
learning may be a consequence of taking the survey con-
currently with the most difficult prac.

How does this actually translate to performance? Fig-
ure 5 is an extraordinary distribution and did not arise be-
cause the course was super-easy. The final prac required
getting to grips with implementation of recursion, param-
eter passing, accessing components of a structured data
type and loading a multi-file program into memory.

22

0"

5"

10"

15"

20"

25"

30"

35"

40"

45"

50"

<"40%" 40%" 50%" 60%" 70%" 75%"

prac 1! prac 2! prac 3! prac 4! test!

Figure 5: Class mark distribution – each horizontal
axis label represents the minimum mark for that
category, except “<40%”

How much of this is down to the new approach? Given
the big differences since 2013 – new first year the prior
year, more engaged class, a different lecturer – drawing
specific conclusions is not justifiable. However, dropping
computer presentation can’t have done much harm with
such strong results. In 30 years of lecturing, I have never
had a class with so many first class passes.

4. SUMMARY
With all the variables at play, drawing conclusions is

not plausible – unless I am to move into cargo cult terri-
tory. Nonetheless experiences with the approach are useful
to report for others to take up the challenge of measuring
course improvement strategies without starting with tech-
nology. With more data points, we can actually do some
science.

Given that we cannot easily compare the current second-
year class with any other group, my experiences with this
group at best provide a starting point for research in sce-
narios where test and control groups actually are compa-
rable.

My argument here is for thinking about how to improve
learning before we think about technology. If technology
can aid in learning, good. But simply applying technol-
ogy with no learning model in mind carries risks like giv-
ing students a false impression of learning, or leaving the
class behind because it is too tempting to use up all the
prepared material.

For me the most valuable outcome in writing my own
book was being in command of the material in a way that
is hard to achieve if you work with a book written by
someone else. The fact that the book we abandoned was
written by two industry leaders (Dave Patterson led the
Berkely RISC project, inspiration for the SPARC archi-
tecture, and John Hennessy was the chief designer of the
MIPS instruction set) was not a big cost to the students
– neither of these very fine people is, after all, available to
answer their questions.

5. REFERENCES
[1] A. Bandura. Self-efficacy: toward a unifying theory

of behavioral change. Psychological review,
84(2):191, 1977.

[2] M. D. Byrne, R. Catrambone, and J. T. Stasko.
Evaluating animations as student aids in learning
computer algorithms. Computers & education,
33(4):253–278, 1999.

[3] M. Dalheimer. Programming with Qt: Writing
Portable GUI Applications on Unix and Win32.
O’Reilly, Köln, 2nd edition, 2002.

[4] R. P. Feynman. Cargo cult science. Engineering and
Science, 37(7):10–13, 1974.

[5] V. Galpin, I. Sanders, H. Turner, and B. Venter.
Computer self-efficacy, gender, and educational
background in south africa. IEEE Technology and
Society Magazine, 22(3):43–48, 2003.

[6] S. Grissom, M. F. McNally, and T. Naps. Algorithm
visualization in cs education: comparing levels of
student engagement. In Proceedings of the 2003
ACM symposium on Software visualization, pages
87–94. ACM, 2003.

[7] J. Hennessy and D. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kauffmann, San Francisco, CA, 5th edition, 2012.

[8] J. R. Larus. SPIM S20: A MIPS R2000 simulator.
Center for Parallel Optimization, Computer
Sciences Department, University of Wisconsin, 1990.

[9] P. Machanick. Peer assessment for action learning of
data structures and algorithms. In Proceedings of
the 7th Australasian conference on Computing
education-Volume 42, pages 73–82. Australian
Computer Society, Inc., 2005.

[10] P. Machanick. A social construction approach to
computer science education. Computer Science
Education, 17(1):1–20, 2007.

[11] Y. Patt and S. Patel. Introduction to Computing
Systems: From bits & gates to C & beyond.
McGraw-Hill, New York, NY, 2nd edition, 2004.

[12] D. Patterson and J. Hennessy. Computer
Organisation and Design: The Hardware/Software
Interface. Morgan Kauffmann, San Francisco, CA, 4
edition, 2011.

[13] J. Urquiza-Fuentes and J. Á. Velázquez-Iturbide.
Toward the effective use of educational program
animations: The roles of student’s engagement and
topic complexity. Computers & Education,
67:178–192, 2013.

23

