
Design Principles for Contactile Computing

Philip Machanick
Department of Computer Science
Rhodes University, Grahamstown

6140, South Africa
p.machanick@ru.ac.za

ABSTRACT
Contactile computing is a proposed new paradigm in which
sensors and communications are integrated into a system
model that integrates real-time support with conventional
application support. The motivation for the model is the
growth of mobile devices with varying degrees of sensor ca-
pability and varying levels of processing power. For smart
phones with various sensors, a sophisticated operating sys-
tem is warranted by the complexity of the resources being
managed. At the same time, existing operating systems
tend to be strong either in real-time support, or in conven-
tional application support, not both. This paper proposes
a preliminary design for a contactile system, based on in-
sights from microkernel systems like L4ka and Minix 3,
which have illustrated how designs with dissimilar layers
may be pieced together.

Categories and Subject Descriptors
D.4.7 [OPERATING SYSTEMS]: Real-time systems
and embedded systems—mobile computing, highly inter-
active computing

General Terms
Human Factors

Keywords
sensors, mobile computing, real-time system, human-
computer interaction

1. INTRODUCTION
A fly performs amazing avionic feats with only a few hun-
dred neurons, whereas a state-of-the-art military super-
sonic aircraft uses over a million lines of code to approx-
imate this behaviour. How does a fly do it? A clue is in
the fact that it has 80,000 sensors [16]. Meanwhile the
conventional computer world is stagnating: Moore’s Law
is providing us with increasing challenges in doing some-
thing useful with the increasingly cheap performance of
commodity processors. Challenges include the memory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAICSIT ’11, October 3-5, Cape Town, South Africa
Copyright 2011 ACM 978-1-4503-0878-6/11/10 ...$10.00.

wall (the growing CPU-DRAM speed gap), using multi-
processor architectures and overcoming network latency.

One may argue that innovation in the conventional com-
puting market is stagnating but mobile devices such as
phones and games are proliferating with interesting de-
signs like the Nintendo Wii, which uses an accelerometer
in a hand-held device to implement a user interface which
interprets movement, and smart phones with a range of
interesting capabilities. However, each of these devices is
designed for a narrow purpose and hence to a narrow vi-
sion. What is missing is a broader view of the kind of
platform which can be used to implement not only these
features, but a wider array of sensor-enabled applications
in a device with a variety of communication interfaces.

All of these issues suggest exploring new approaches to
system design. This paper presents a starting point for
designing a mobile, sensor-rich platform. To give the idea
a name, the name contactile computing is introduced. The
word contactile is meant to convey a sense of tactile (per-
ceptible by touch) and contact (interfaces to the outside
world). The intended device will have senses other than
touch, but other potential names like sensory computing
[2] have already been taken.

Some of the ideas here are not new: real-time kernels
have been around for a long time, and microkernel op-
erating systems, after a hiatus, are back. However, the
growth of hardware sophistication available in small-scale
portable devices suggests re-examing architectural deci-
sions of the past. Can, for example, the concepts of de-
vice drivers and real-time applications be merged, given
they have similarities? Can the concept of conventional
application-layer support be layered on top of a real-time
kernel, rather than implementing a messy compromise to
support both? A sensor-rich mobile platform is not the
only case where some of these questions may be relevant,
but provides a concrete example to focus design trade-offs.

The remainder of this paper is structured as follows.
Section 2 reviews related work. Section 3 discusses how
a contactile platform could be designed, and section 4 il-
lustrates how such a platform could be used. The paper
wraps up with conclusions.

2. BACKGROUND
Related work includes context-aware computing, smart
phones, special-purpose devices and small-scale sensor de-
vices in sensor networks. Sensor-enabled devices also have
a following in the field of artificial intelligence. Each of
these areas in considered in turn, noting any overlaps.

2.1 Context-Aware Computing
In context-aware computing, devices adapt their be-
haviour to external stimuli. Context-aware computing is

306

similar to contactile computing in responding to external
stimuli. It differs in that contactile computing places re-
action to sensors at the centre of system design.

Context-aware computing can include smart environ-
ments, in which objects in the environment can interact
with a mobile device [3], an idea further discussed be-
low as related to smart phones. The general idea is that
the environment has devices with some logic, memory and
communication capability.

Earlier work on context-aware computing has assumed
communications protocols would be used to convey con-
text [10]. This is by contrast with the contactile idea,
where sensors would provide a significant amount of con-
text information. More recent work on context awareness
has included sensor data such as visual information [9].
The contactile idea takes this further in the form of a
more general platform that can apply to the traditional
concept of context-aware computing.

There has been significant work on infrastructure for
context-aware computing including middleware [5, 7], il-
lustrating the general maturity of the field. This project
assumes this broader infrastructure work will continue,
but is not essential to the deliverables.

2.2 Smart Phones
Smart phones are evolving to include some functionality
that could form part of a contactile platform, such as cam-
eras, touch screens, rotation sensing and a proximity sen-
sors. They may also includes various modes of communi-
cation including wireless internet. Mobile phones are im-
plemented with a variety of operating systems, including
specialist systems like Symbian and versions of full-scale
operating systems such as Linux and Windows [14], or
platforms based on UNIX-like underpinnings such as Ap-
ple’s iOs [1] and Google’s Android. Such devices, while
illustrating what can be put into a small package, are
constrained by being designed primarily as phones with
extra features, rather than as a general-purpose sensor-
enabled platform (even if devices like the iPad are based
on a similar platform).

Growing sophistication of phones can also be matched
by smart environments, with which phones interact [11].
This latter idea is somewhat different to the contactile
idea in that the environment contains devices that use a
mobile phone as a tool for communicating with a user; the
contactile idea is based on sensing the environment (more
intelligence in the device, less in the environment).

2.3 Sensor Networks
There has been significant work on infrastructure for sen-
sor networks, including middleware [6] – with some over-
laps with work on context-aware computing. However, the
emphasis in sensor networks is on smaller-scale devices,
with most work focused on low power approaches to clas-
sic problems such as network routing [15] and processor
design [17].

Sensor networks are based on largely immobile sensors
that may be in the environment for a long time without the
opportunity to charge of replace batteries, and therefore
do not aim at the same niche as contactile computing, a
mobile device of significant computing power.

2.4 Related Operating Systems
The L4ka microkernel has been used as a basis for a mo-
bile phone platform, in which the microkernel handles
security-sensitive functionality, and a version of Linux
runs on top of the microkernel, to provide conventional

application services [8]. The L4ka approach is a useful ex-
ample of how to integrate conventional applications with a
specialist kernel, but L4ka has no native application layer.

Real-time extensions exist in general-purpose operating
systems such as Linux [12]. However, the assumption un-
derlying such extensions is that the real-time activities
will be a small fraction of the total workload, and so the
overall system is not optimised to real-time requirements.

There are free real-time kernels, such as FreeRTOS1,
which are oriented towards pure real-time applications,
i.e., without support for conventional applications.

Other real-time kernels are generally proprietary (e.g.,
QNX Neutrino RTOS2), and hence not suitable platforms
for research. LynxOS-SE from LynuxWorks3 is reasonably
close to the required functionality in allowing virtual ma-
chines to run in different modes (native POSIX- compli-
ant, Linux compatible binaries or native hard real time).
However, a large fraction of the system is proprietary, and
does not permit exploration of new models of system im-
plementation, such as implementing device drivers as a
special case of a real-time application.

2.5 Summary
There is a wide variety of work on sensor devices, both
as lightweight networks of sensors, and sensors on larger
devices. The growth of the sophisticated mobile devices
in the form of smart phones and PDAs has created a niche
large enough to justify a general-purpose platform tailored
to this niche. The growing use of sensors on such devices
suggests that a real-time platform designed to integrate
sensors into a general programming model would suit a
wide variety of applications and devices.

3. DESIGN PRINCIPLES
The major idea of a contactile device is to provide strong
operating system support for sensors, some of which may
have a hard real-time aspect, i.e., if they are not responded
to in time, the system is broken. At the same time, as a
general platform, it should provide strong support for a
conventional application layer, one designed to maximise
leverage from existing tool chains and popular applica-
tions. The latter is an important pragmatic principle – if
writing applications is too hard, no one will develop for
the platform, unless it is a very strong fit to a niche.

Further, the real-time aspect should not be a totally
separate concept from normal application space, and there
should be some flexibility in deciding whether to situate
specific functionality in the real-time or the conventional
layer. For example, telephony is a real-time application,
but the most time-critical elements arise from delays on
the network, and the occasional loss of information is tol-
erable, so adapting existing voice over IP solutions to the
application layer would be a reasonable choice – they al-
ready exist, and work well enough. On the other hand, for
a small, hand-held low-power device, it may make more
sense to implement telephony on the real-time side, so a
slower processor would achieve acceptable results.

To allow this kind of design flexibility, it should be pos-
sible to invoke real-time functionality from the “conven-
tional” layer and vice-versa. For this reason, the system
should support communication modes that cross the lay-
ers; the most obvious is a messaging primitive or interpro-
cess communication (IPC).

Figure 1 illustrates a conceptual design for a contactile
device. The software architecture (1(b)) follows closely

1
http://www.freertos.org/ 2http://www.qnx.com 3http://www.lynuxworks.com/

307

(a) Hardware (b) Software

Figure 1: Conceptual Design. Sensors and Interface are possibilities: specific options should form part of

a detailed design.

����������	
�����

�	
������
����������

������
����������	
�
	��
��	�����

�	
������
	��
��	�����

(a) Conventional

�	
����������

����������	
�����

������
����������	
�
	��
��	�����

�	
������
	��
��	�����

(b) Contactile

Figure 2: Conventional versus Contactile Design. L4ka-Linux is closer to the contactile design but doesn’t

support inter-layer applications.

from the hardware architecture (1(a)). Arrows in the soft-
ware layer correspond to IPC information flows. The real-
time and conventional kernels are aware of each other and
communicate as shown. A consequence of this design is
that device drivers may be put in the real-time layer, and
hence have a consistent semantics for interacting with the
rest of the system. As with the Minix 3 kernel, all the ma-
jor subsystems can in principle be isolated from each other
for reliability [4]. Also following Minix 3 design principles,
any real-time response can be divided into that which has
to be close to the hardware, and an application layer.

Minix 3 approaches system calls by dividing them into
a user-level API, implemented as servers invoked via IPC
or messages through the kernel, and kernel calls, which in-
voke functions only the kernel can perform. This division
applied to real-time results in the following:

• kernel layer – low-level implementation of hardware-
specific aspects of a device driver

• service layer – the rest of the real-time component
of the application

• application layer – part of the application that does
not require real-time guarantees (e.g., user interface)

As with Minix 3 device drivers, the real-time kernel
layer would be isolated from other parts of the system,
and would therefore be limited to interfacing to the hard-
ware related to the real-time service.

Figure 2 illustrates how the proposed architecture for
a contactile device differs from a conventional operating

system designed to run standard applications, with a real-
time aspect. The conventional operating system (2(a))
includes real-time support within a conventional kernel,
where it must introduce compromises, versus the contac-
tile model, where real-time is at the bottom layer (2(b)).
Although the layers are separate, the contactile model al-
lows inter-layer communication. Data flows are routed
through the conventional kernel, to maintain partitioning.

What of the programming model? For the conventional
layer could be similar to the Minix 3 kernel, with applica-
tions isolated from each other, and system functions im-
plemented in servers outside the kernel. The big change
proposed is having a separate real-time kernel, which be-
comes a base not only for new real-time functionality, but
also creating new device drivers. This real-time kernel
would have a subset of the rights of the conventional ker-
nel, but would get the first bite at handling interrupts.

4. CASE STUDY
To put it all together, a case study illustrating the combi-
nation of features required for a contactile platform is use-
ful. The example chosen includes a need for real-time re-
sponses to sensors, and conventional applications: a smart
phone for emergency services.

The specification of the phone is illustrated in Figure 3.
Some of the features (internet access, note pad) would be
most easily implemented on a UNIX-like platform, using
standard tools and technologies. Voice over IP can also
be implemented on a UNIX-like platform (the real-time
requirements are not stringent enough to be a problem

308

Figure 3: Basic Phone Specification. There could

be more features; this list illustrates the principles.

except on a heavily loaded machine). The GPS function-
ality too can be implemented in a standard application
layer. Safety-related sensors on the other hand are best
implemented in a hard real-time system (even if the la-
tency requirements are not challenging) because missing
a measurement could be life-threatening.

For this example, implementation on a contactile plat-
form would include a“conventional”application layer sup-
porting telephony, GPS, internet access and other stan-
dard kinds of application, like text editors. Safety-critical
sensors would be implemented in the real-time layer. It
is also possible to mix the functionality of the layers. For
example, an effect of a CO2 sensor exceeding a threshold
could be to contact another member of the team by auto-
matically initiating a phone call; the phone call would be
in the “conventional” layer.

Why is a conventional operating system not ideal in this
scenario? A non-real-time kernel such as Linux supports
a conventional application layer. However, rapid response
to external events requiring a hard real-time scheduler is
difficult to retrofit onto a kernel not designed that way.
On the other hand, a pure real-time kernel like FreeRTOS
lacks the functionality and mature tool chains of a UNIX-
like system for conventional applications.

5. CONCLUSIONS
The case study is but one example of a contactile comput-
ing application. It illustrates the essential problem: the
need for a platform specific to computing with a significant
number of sensors integrated into the user experience.

While other designs, like L4ka with Linux on top, il-
lustrate the general possibilities, none actually implement
the design proposed here. The L4ka-Linux combination
works as two independent systems; L4ka passes all Linux
system calls straight back to the Linux kernel, and the
Linux kernel is not aware of the underlying microkernel.
The contactile approach, on the other hand, requires that
the layers be aware of each other, to allow implementation
of services that combine functionalities.

The growth of and growing convergence between mo-
bile devices and sensors provides support for developing a
platform of this kind.

6. ACKNOWLEDGMENTS
This work was undertaken in the Distributed Multimedia
CoE at Rhodes University, with financial support from
Telkom SA, Comverse, Stortech, Tellabs, Eastel, Bright
Ideas 39 and THRIP.

7. REFERENCES
[1] Apple Computer. iOS Technology Overview. Apple

Computer, 2010.

[2] V. Brajovic and T. Kanade. Sensory computing. In
SPlE Proc. Vol. 4109, Critical Tech. for the Future
of Computing, San Diego, CA, 30 July–4 Aug. 2000.

[3] D. L. de Ipiña, I. Vázquez, D. Garćıa, J. Fernández,
and I. Garćıa. A reflective middleware for
controlling smart objects from mobile devices. In
sOc-EUSAI ’05: Proc. 2005 joint conference on
Smart objects and ambient intelligence, pages
213–218, New York, NY, USA, 2005. ACM Press.

[4] C. Giuffrida, L. Cavallaro, and A. S. Tanenbaum.
We crashed. now what? In Proc. 6th Workshop on
Hot Topics in System Dependability, October 2010.

[5] T. Gu, H. K. Pung, and D. Q. Zhang. A middleware
for building context-aware mobile services. In Proc.
59th IEEE Vehicular Technology Conference VTC
2004, volume 5, pages 2656–2660, May 2004.

[6] S. Hadim and N. Mohamed. Middleware:
Middleware challenges and approaches for wireless
sensor networks. IEEE Distributed Systems Online,
07(3), 2006.

[7] K. Henricksen, J. Indulska, T. McFadden, and
S. Balasubramaniam. Middleware for distributed
context-aware systems. In Proc. Int. Symp. on
Distributed Objects and Applications (DOA), pages
846–863. Springer, 2005.

[8] S.-M. Lee, C.-S. Nam, and T.-Y. L. andDong
Ryeol Shin. The L4 microkernel based mobile
middleware for the multiple virtual machines. In
Proc. Int. Conf. New Trends in Information and
Service Science, 2009. NISS ’09., pages 456–459,
Beijing, 30 June–2 July 2009.

[9] P. M. Luley, L. Paletta, and A. Almer. Visual object
detection from mobile phone imagery for context
awareness. In MobileHCI ’05: Proc. 7th int. conf. on
Human computer interaction with mobile devices &
services, pages 385–386, 2005.

[10] A. Schmidt and H. W. Gellersen. Context-aware
mobile telephony. SIGGROUP Bull., 22(1):19–21,
2001.

[11] F. Siegemund, C. Floerkemeier, and H. Vogt. The
value of handhelds in smart environments. Personal
Ubiquitous Comput., 9(2):69–80, 2005.

[12] W. von Hagen. Real-time and performance
improvements for the 2.6 Linux kernel. Linux J.,
2005(134):8, 2005.

[13] W. Wang, V. Srinivasan, and K.-C. Chua. Using
mobile relays to prolong the lifetime of wireless
sensor networks. In MobiCom ’05: Proc. 11th
annual int. conf. on Mobile Computing and
Networking, pages 270–283, 2005.

[14] B. Weinberg. Mobile phones: the embedded Linux
challenge. Linux J., 2006(148):9, 2006.

[15] G. Xing, C. Lu, R. Pless, and Q. Huang. On greedy
geographic routing algorithms in sensing-covered
networks. In MobiHoc ’04: Proc. 5th ACM int.
symp. on Mobile ad hoc networking and computing,
pages 31–42, 2004.

[16] R. Żbikowski. Fly like a fly. IEEE Spectr.,
42(11):46–51, 2005.

[17] B. Zhai, S. Pant, L. Nazhandali, S. Hanson,
J. Olson, A. Reeves, M. Minuth, R. Helfand,
T. Austin, D. Sylvesterand, and D. Blaauw.
Energy-efficient subthreshold processor design.
IEEE Trans. VLSI Systems, 17(8):1127–1137, Aug
2009.

309

