
 

Abstract-Warehouse-scale computing supports cloud-
based services such as shared disk space, computation 
services and social networks. Although warehouse-scale 
computing is inexpensive per user, the cost to entry is 
high, and the pressures to generate revenues to cover 
costs leads service providers to pursue monetizing 
services aggressively. In this paper, we explore some 
ideas for removing the need for central servers by 
exploiting peer-to-peer technologies. 
 

Index Terms—distributed systems, cloud, peer-to-peer 

I. INTRODUCTION 
Large-scale services such as shared file systems (Google 

Drive, Apple iCloud, Dropbox and Microsoft’s OneDrive) 
and on-demand computation resources (such as Amazon’s 
Elastic Compute Cloud, or EC2) have started to proliferate 
with the generic “cloud” label. Such services build on 
infrastructure originally created to support large-scale 
services such as Google search, Amazon’s bookstore and 
Facebook. Many of these large-scale services – Google’s 
search, Facebook and Twitter to name a few – are free to 
use, but have a commercial aspect in that their creators use 
user traffic to generate revenue streams such as advertising. 

Despite impressive gains in implementation of such 
services [Mishra et al. 2010], they fall far short of the 
promise of distributed computing. They lack a transparent 
namespace – most such services still look more like 
networked services with names that appear to relate to a 
particular server, even if there is some virtualization behind 
the scenes. Scalability is implemented by large-scale 
resources in a small number of places, rather than by placing 
resources near the users. Cost is not shared over the users, 
except in the indirect sense that a large user base makes for 
a more attractive target for advertisers. The last point also 
points to one of the weaknesses of this sort of service from 
the user point of view: if you are seen as the product, as was 
famously said of Facebook [8], “your” service provider 
constantly is under pressure to monetize you. 

While some services inherently are salable – e.g., 
Amazon’s EC2 generates revenues directly [12] – providing 
services that users do not expect to pay for should be based 
on shared cost-sharing, rather than on free services paid for 
by advertising. Otherwise, the temptation to monetize 
invasion of privacy is too high. 

In this paper, we explore the extent to which an existing 
shared-cost model, peer-to-peer (P2P) file-sharing, can 
adapt to a wider range of services. We start with specific 
services, then generalize to wider possibilities. 

The remainder of this paper is structured as follows. 
Section II summarizes previous work, including approaches 
to scalability and distributed computing, as well as P2P 
technologies. Section III outlines how some simple services 
can be implemented using P2P, including existing work and 
our own ideas, and Section IV contains conclusions. 

II. BACKGROUND 
In this section we briefly review the relationship between 

distributed computing and the cloud, which is a poor 
approximation to the intent of distributed services, and the 
broader concept of scalable services.  

A. Distributed Computing and the Cloud 
Distributed computing in its general form implies a 

number of properties [14]: 
• location-transparent naming – a name of an entity should 

be related to its logical purpose or relationship to other 
entities, not where it is situated 

• locality-independent resources – whether a resource is 
local, on a local network or in a more remote location is a 
performance detail, and should not be an inherent 
property of any resource 

• decentralized scalable infrastructure – a system should be 
able to work over a wide geographic region, which also 
implies an appropriate level of security. 
Cloud-based services violate basic properties of 

distributed computing. To the user, it is clear that there is an 
external server, and hence, a distinction between purely 
local resources and cloud-based services. Names are 
therefore not full location-transparent. Further, cloud 
services require connection to a server (even if limited 
offline activity may be allowed), making network 
connection essential rather than a performance detail. 
Scalability is achieved by concentrating resources in 
warehouses of computers [3], rather than by distributing 
resources widely. 

B. Scalable Services 
In general, how can services be scaled up? Some of the 

scalability problem is in scaling up large-scale computation; 
the general case is hard because some problems are not 
partitionable [1]. Here we constrain ourselves to services 
where computation is not large-scale; even so we have 
problems of scaling up naming. Traditionally, name-scaling 
has been a function of middleware [2]. We can however 
isolate scalable naming as a single concept as, for example, 
in distributed hash tables (DHT)  [13, 9], which are widely 
used in P2P systems (though some have argued that sharing 
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in P2P systems is inherently scalable [5] without DHTs). 
In general, scalable services should not depend on the 

number of users to be viable and – even better – should 
become more viable as the number of users increases. 

III. SIMPLE P2P-BASED SHARED SERVICES 
A number of services layered on P2P already exist. For 

example, Skype voice over IP (VoIP) is layered on a 
proprietary P2P protocol [4]. BASS is a scalable video on 
demand service based on Bittorrent [6]. 

More recently, the Bittorrent Sync application 
programming interface (BTS API) has been released1, 
allowing applications to be layered on top of the Bittorrent 
Sync service [7], which provides secure P2P file sharing. 
Applications that use the BTS API include Vole2, a twitter-
like service that shares the underlying files using BTS rather 
than a central server, and SyncNet3, which implements a 
web server by distributing the files across clients. 

These services indicate the general possibility of breaking 
dependence on central servers. 

Our work builds on these foundations. We are 
investigating the extent to which you can completely break 
away from networked services and implement true 
distributed services based on P2P protocols. Our starting 
point is implementing a twitter-like service on top of the 
BTS API, using Java for portability – thereby eliminating 
the web browser. We will follow with a service more like 
Facebook, then look into how services like email can be 
made to work in a purely distributed fashion [10]. 

Implementation of a twitter-like application built on the 
BTS API should be very simple. Users wanting to share 
updates exchange their encryption keys (these could be 
mapped to usernames or handles) to allow other users to 
request and download their updates. A simple GUI sets such 
a program apart from traditional, web-based applications. 
Otherwise, BitTorrent Sync handles most of the operation. 

IV. CONCLUSIONS 
Distributed computing is a powerful idea that has 

somehow got lost in a network-centric world. Warehouse-
scale computing uses distributed computing concepts 
internally, including highly scalable distributed file systems, 
yet the interface presented to the user uses network-like 
names, even if the actual resource named may be disguised. 

The proposal presented here is to implement true 
distributed services without servers, based on P2P 
technology. The extent to which such services can be 
implemented is part of our investigation; if we can 
implement a significant range of such services, we can 
reduce the need for central resources, and hence the pressure 
to monetize services even when it is inappropriate to do so. 

Further, if these ideas work, not only can they scale very 
well, but they have a very low barrier to entry. 
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