Computer Science 202
2003

Introduction to the
Structured Query Language (SQL)

Barry Irwin August 2003 Rhodes University: CS202 Databases

Objectives

@ To learn the SQL data definition:
CREATE

@ To learn the basic SQL data
management language: INSERT,
UPDATE, and DELETE

2 To learn the basic SQL data querying
language: SELECT

Barry Iwin August 2003 Rhodes University: CS202 Databases 2

SQL Basics

@What is SQL?

= Structured Query Language
2 SQL Syntax
@ Using SQL

Barry Iwin August 2003 Rhodes University: CS202 Databases

SQL Syntax

@ SQL input consists of a sequence of commands.
A command is composed of a sequence of
tokens, terminated by a semicolon (*;"). Which
tokens are valid depends on the syntax of the
particular command.

@ A token can be a key word, an identifier, a
quoted identifier, a literal (or constant), or a
special character symbol. Tokens are normally
separated by white space (space, tab, new line)

@ Additionally, comments can occur in SQL input.
They are not tokens, they are effectively
equivalent to white space.

Barry Iwin August 2003 Rhodes University: CS202 Databases 4

Key Words & Identifiers

@ key words - Tokens such as SELECT,
UPDATE, or VALUES are examples of,
words that have a fixed meaning in the
SQL language.

@ Identifiers - They identify names of tables,
columns, or other database objects,
depending on the command they are used
in. Therefore they are sometimes simply
called “names”.

Barry Inwin August 2003 Rhodes University: CS202 Databases 5

Key Words & Identifiers (1)

@ Identifier and key word names are case
insensitive. The following statements are
all equivalent

» UPDATE MY_TABLE SET A =5;
= UPDaTE my_TabLE SeT a =5;

@ A convention often used is to write key
words in upper case and names in lower
case, e.g:
= UPDATE my_table SET a = 5;

Barry Iwin August 2003 Rhodes University: CS202 Databases 6

Key Words & Identifiers (1)

@ Quoting

@ quoted identifier — an identifier created
when the token is enclosed in quotes ()

@ Can be used to use built in RESERVED
words as identifiers

@ SELECT “select” FROM my_table;

Barry Irwin August 2003 Rhodes University: CS202 Databases 7

Comments

2 Two type of comments can be used , much as in C and
other similar languages

@ For single line comments, a double dash can be used.
This treats everything following the dashes until the end
of line as a comment

= -- This is a standard SQ.92 comment

@ Alternatively C-style block comments can be used for
commenting mulfiple lines.

= /* multiline comrent
begins with /* and extends
to the matching
occurrence of */. */

= Nesting is allowed in the SQL99 spec.

Barry Iwin August 2003 Rhodes University: CS202 Databases 8

SQL - TABLES

@ Tables hold the Data within a relational
database
@ Tables are used to build the relationships
2 Objectives:
= Creating Tables
= Modifying Tables
= Deleting Tables

Barry Inwin August 2003 Rhodes University: CS202 Databases 9

Creating Tables

CREATE TABLE -- define a new table

CREATE TABLE table_name (

{ column_name data_type [DEFAULT default_expr]
[CONSTRAINT [NOT NULL | NULL | UNIQUE |
PRIMARY KEY]]

[..1]

}

Barry Iwin August 2003 Rhodes University: CS202 Databases 10

CREATE TABLE example

CREATE TABLE fil s
(code CHARACTER(5) PRI MARY KEY,
title CHARACTER VARYI NG(40) NOT NULL,
dat e_prod DATE,
ki nd CHAR(10),
length | NTEGER);

Barry Inwin August 2003 Rhodes University: CS202 Databases 11

Inserting Information

@ INSERT -- create new rows in a table

INSERT INTO table [(column [, ...])]
VALUES ({ expression [, ...])

Barry Iwin August 2003 Rhodes University: CS202 Databases 12

Example Using INSERT

INSERT INTO
student (studID, lastname, firsthame)
VALUES (/9510563 , ‘Irwin’ , ‘Barry’);

Barry Irwin August 2003 Rhodes University: CS202 Databases 13

Removing Information

@DELETE -- delete rows of a table
DELETE FROM table [WHERE condition]

DELETE FROM
student WHERE studID='9510563’ ;

Barry Iwin August 2003 Rhodes University: CS202 Databases 14

Updating information

2@UPDATE -- update rows of a table

@UPDATE [ONLY]table SET column =
expression [, ...] [FROM fromlist] [
WHERE condition]

UPDATE films SET kind = 'Dramatic’
WHERE kind = 'Drama’;

Barry Inwin August 2003 Rhodes University: CS202 Databases 15

Retrieving Information

@ SELECT -- retrieve rows from a table or view
@ Command Summary
=« SELECT *|expression FROM from_item][, ...]
[WHERE condition]
[GROUP BY expression]
[ORDER BY expression [ASC | DESC]
[LIMIT { count | ALL }]

Barry Iwin August 2003 Rhodes University: CS202 Databases 16

Using the SELECT statement

@Basic Use
@SELECT * FROM EMP;

Barry Inwin August 2003 Rhodes Universit ity: CS202 Databases 17

Using SELECT (2)

@ Table aliasing

@ SELECT f.title, f.did, d.name, f.date_prod,
f.kind FROM distributors d, films f WHERE
f.did = d.did

Barry Iwin August 2003 Rhodes University: CS202 Databases 18

SQL Arithmetic

@ One can use arithmetic functions within a
SQL SELECT statement

Barry Inwin August 2003 Rhodes University: CS202 Databases 19

Logical Functions within SQL

@ Standard Boolean logic functions can be
used within queries
@NOT is a particularly useful function and
can be used to negate other operations
@ OPERATIORS
« AND
= OR
« NOT

Barry Iwin August 2003 Rhodes University: CS202 Databases

Logical Functions within SQL

A B AANDB |AORB
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
FALSE FALSE FALSE FALSE
TRUE NULL NULL TRUE
FALSE NULL FALSE NULL
NULL NULL NULL NULL

See PostgreSQL Function Ref Section 6.1

Barry Inwin August 2003 Rhodes University: CS202 Databases 21

Logical Functions within SQL

A NOT A
TRUE FALSE
FALSE TRUE
NULL NULL

See PostgreSQL Function Ref Section 6.1

Barry Iwin August 2003 Rhodes University: CS202 Databases

Comparison Operators

Operator Description
< Less Than
> Greater Than
<= Less Than or Equal
>= Greater Than or Equal
= Equal
I=or <> Not Equal

See PostgreS?L Function Ref Section 6.2
Barry Irwin August 2003 Rhodes UniverSity: CS202 Databases 23

Comparison Operators

2 In addition to the comparison operators,
the BETWEEN construct is available.

a BETWEEN x AND y
is equivalent to
a>=xANDa<=y
a NOT BETWEEN x AND y
is equivalent to
a<xORa>y

Barry Iwin August 2003 Rhodes University: CS202 Databases

Comparison Operators

@ Comparison operations are BINARY
= Operate on TWO operands
» a<B ---isvalid
= A<B<C ---is NOT valid
@A Boolean cannot be > or < than C
@ To check whether a value is or is not null,
use the constructs
= expression IS NULL
= expression IS NOT NULL

Barry Irwin August 2003 Rhodes University: CS202 Databases 25

Testing Boolean Conditions

@ Boolean values can also be tested using
the constructs
= expression IS TRUE
= expression IS NOT TRUE
= expression IS FALSE
= expression IS NOT FALSE

Barry Iwin August 2003 Rhodes University: CS202 Databases 26

Aggregate Function Operators

@ MIN()

= minimum value of expression across all input values
@ MAX()

= maximum value of expression across all input values
@ SUM()
@ COUNT(*) - counts ALL input values
@ COUNT (expression) — counts only non NULL
2@ AVG()

Barry Inwin August 2003 Rhodes University: CS202 Databases 27

Pattern Matching

2LIKE
= string LIKE pattern
= string NOT LIKE pattern

@ If pattern does not contain wildcard signs
then LIKE acts like the equals operator.

@ An underscore () in pattern matches any
single character

@ A percent sign (%) matches any string of
zero or more characters.

Barry Iwin August 2003 Rhodes University: CS202 Databases 28

Pattern Matching Examples

Some examples:
@'abc' LIKE 'abc' true
@'abc' LIKE 'a%' true
@'abc’' LIKE' b ' true
@'abc' LIKE 'c' false
@'abc' LIKE 'c%' false
@'abc' LIKE ‘%b_' true

Barry Inwin August 2003 Rhodes Universit ity: CS202 Databases 29

Advanced Pattern Matching

2SIMILARTO

@ Part of the newer SQL99 specification.
LIKE is definded in SQL92

@ string SIMILAR TO pattern [ESCAPE
escape-character]

@string NOT SIMILAR TO pattern [ESCAPE
escape-character]

Barry Iwin August 2003 Rhodes University: CS202 Databases 30

Advanced Pattern Matching Il

Examples:

@'abc’ SIMILAR TO 'abc’ true
@'abc' SIMILAR TO 'a’ false
@'abc' SIMILAR TO '%(b|d)%' true
@'abc' SIMILAR TO '(b|c)%' false

Barry Irwin August 2003 Rhodes University: CS202 Databases 31

SQL arithmetic

@ Examples

SELECT studentid, pracmark, testmark,
(pracmark +testmark) AS classmark
FROM

studentdata

Barry Iwin August 2003 Rhodes University: CS202 Databases 32

ORDER BY

2ORDER BY expression [ASC | DESC |
USING operator] [, ...]

@ An ORDER BY item can be the name a
column or it can be an arbitrary expression
formed from input-column values.

@ SELECT title, date_prod + 1 AS newlen
FROM films ORDER BY newlen;

Barry Inwin August 2003 Rhodes University: CS202 Databases 33

GROUP BY

2@ GROUP BY specifies a grouped table
derived by the application of this clause:

2@GROUP BY expression |, ...]

2 GROUP BY will condense into a single
row all selected rows that share the same
values for the grouped columns.

@ Aggregate functions are computed across
all rows making up each group, producing
a separate value for each group

Barry Iwin August 2003 Rhodes University: CS202 Databases 34

LIMIT

@ LIMIT {count | ALL } OFFSET start

= where count specifies the maximum number of rows to return, and start
specifies the number of rows to skip before starting to return rows.

L]

LIMIT allows you to retrieve just a portion of the rows that are

generated by the rest of the query.

If a limit count is given, no more than that many rows will be

returned.

If an offset is given, that many rows will be skipped before starting to

return rows.

@ When using LIMIT, it is a good idea to use an ORDER BY clause

that constrains the result rows into a unique order. Otherwise you

will get an unpredictable subset of the query's rows

= Eg. you may be as_kin%for the tenth through twentieth rows, but tenth

throlgh twentieth in what ordering? You don't know what ordering
unless you specify ORDER BY.

L]

L]

Barry Inwin August 2003 Rhodes University: CS202 Databases 35

SQL Data Types

Type Name Aliases Description

boolean Bool, logical Boolean (T/F)

bytea binary data

character varying(n) variable-length character string
varchar(n)

character(n) char(n) fixed-length char string

date calendar date (year, month, day)

integer int, int4 signed four-byte integer

numeric [(p, s)] decimal [(p,s)] |exact numeric with selectable

precision

smallint int2 signed two-byte integer

text variable-length character string

serial serial4 autoincrementing four-byte integer

See PostgreSQL User Guide Ch 5
Barry Irwin August 2003 Rhodes University: CS5202 Databases 36

Esoteric Data Types

@box rectangular box in 2D plane

@cidr IP network address

@circle circle in 2D plane

2inet IP host address

@macaddr MAC address

@ polygon closed geometric path in 2D
plane

pary Iin Augusi2003 g0 pSLRTEUT P RBRRER 5 s

SQL Compatibility

@ The following generic types are generally
supported across all SQL implementations

@ bit, bit varying, boolean, char, character
varying, character, varchar, date, double
precision, integer, interval, numeric,
decimal, real, smallint, time, timestamp

Barry Iwin August 2003 Rhodes University: CS202 Databases 38

Numeric Data Types

@ Integer

= store whole numbers, without fractional
components

= The type integer is the usual choice

= best balance between range, storage size,
and performance.

= The smallint type is generally only used if
disk space is at a premium.

= The bigint type should only be used if the
integer range is not sufficient

Barry Inwin August 2003 Rhodes University: CS202 Databases 39

Numeric Data Types

@ Arbitrary Precision Numbers

= The scale of a numeric is the count of decimal digits
in the fractional part, to the right of the decimal point.

= The precision of a numeric is the total count of
significant digits in the whole number, that is, the
number of digits to both sides of the decimal point.

= So the number 23.5141 has a precision of 6 and a
scale of 4. Integers can be considered to have a scale
of zero.

Barry Iwin August 2003 Rhodes University: CS202 Databases 40

Numerical Data Types

@ Numeric
= The type numeric can store numbers with up to 1,000
digits
= |t is especially recommended for storing monetary
amounts and other quantities where exactness is
required.

= numeric type is very slow compared to the floating-
point types

= Both the precision and the scale of the numeric type
can be configured.

NUMERI C(pr eci si on, scal e)

NUMERI C(pr eci si on) - selects a scale of 0.

Barry Inwin August 2003 Rhodes University: CS202 Databases 41

Numerical Data Types

@ Floating Point

= Data t¥pes real and double precision are inexact,
variable -precision numeric types.

= Inexact means that some values cannot be converted
exactly to the internal format and are stored as
approximations, so that storing and printing back out
a value may show slight discrepancies.

@If you require exact storage and calculations (such as for
monetary amounts), use the numeric type instead.

@If you want to do complicated calculations with these types
for anything important, you should evaluate the
implementation carefully.

@Comparing two floating -point values for equality may or may
not work as expected

Barry Iwin August 2003 Rhodes University: CS202 Databases 42

Numerical Data Types

@ Serials

= Not a true type, but convenient for setting up identifier columns (similar
to the AUTO_INCREMENT property supported by some other
databases).

CREATE TABLE tablename (
colname SERIAL
)i

@ This creates an integer column and arranged for its default values to
be assigned from a sequence generator.
A NOT NULL constraint is applied to ensure that a null value cannot
be explicitly inserted
In most cases you would also want to attach a UNIQUE or
PRIMARY KEY constraint to prevent duplicate values from being
inserted by accident, but this is not automatic.

L]

L]

Barry Irwin August 2003 Rhodes University: CS202 Databases 43

Character Data Types

@ SQL defines two primary character types:

= character varying(n)
= character(n)

2 Both types store strings up to n characters in length.

@ An attempt to store a longer string into a column of these
types will result in an error, unless the excess characters
are all spaces, in which case the string will be truncated
to the maximum length.

2 If the string to be stored is shorter than the declared
length, values of type character will be space-padded;
values of type character varying will simply store the
shorter string.

Barry Iwin August 2003 Rhodes University: CS202 Databases 44

Date/Time Data Types

January 8, 1999 unambiguous

1999-01-08 ISO-8601 format

1/8/1999 ; 8/1/1999 | U.S.vs European mode

1999.008 ; 99008 year and day of year

19990108 ISO-8601 year, month, day
990108 ISO-8601 year, month, day
J2451187 Julian day

January 8, 99 BC year 99 before the
Common Era

BTy T ATGUST 200 RIOUES ONIVETSTy TS 207 DaTanase: L

Date/Time Data Types

@ Timestamp
= Holds both date and time
= 4713 BC - 1465001 AD
= 1 microsecond / 14 digits
@ Date
= Holds dates only
= 4713 BC -> 32767 AD
= lday
2 Time
= times of day only
= 00:00:00.00 > 23:59:59.99
= 1 microsecond

Barry Iwin August 2003 Rhodes University: CS202 Databases 46

Boolean Data Types

2 TRUE @ FALSE
't @'f

@ 'true’ @ 'false’
'y en

2 'yes' 2 'no’
2'r 20

Barry Inwin August 2003 Rhodes University: CS202 Databases 47

Queries across Multiple Tables

@ Joins
= Inner
= QOuter
= Left/Right

Barry Iwin August 2003 Rhodes University: CS202 Databases 48

Example of a Join
@ SELECT f.title, f.did, d.name, f.date_prod,

f.kind FROM distributors d, films f WHERE
f.did = d.did

Barry Irwin August 2003 Rhodes University: CS202 Databases 49

Altering Tables

@ Add columns

@ Remove columns

@ Add constraints

@ Remove constraints
@ Change default values
@ Rename columns

@ Rename tables

Barry Iwin August 2003 Rhodes University: CS202 Databases 50

Altering Tables: ALTER command

@ ALTER TABLE table [*] ADD [COLUMN]
column type [column_constraint [...]]

@ ALTER TABLE table [*] DROP [COLUMN]
column [RESTRICT | CASCADE]

@ ALTER TABLE table[*] ALTER [COLUMN]
column { SET | DROP } NOT NULL

@ ALTER TABLE table [*] RENAME [COLUMN]
column TO new_column

@ ALTER TABLE table RENAME TO new_table

Barry Inwin August 2003 Rhodes University: CS202 Databases 51

ALTER COMMAND

@ALTER TABLE products ADD COLUMN
description text;

2 ALTER TABLE products DROP COLUMN
description;

@ALTER TABLE products RENAME
COLUMN product_no TO
product_number;

@ALTER TABLE products RENAME TO
items;

Barry Iwin August 2003 Rhodes University: CS202 Databases 52

Creating Tables (2)

@SELECT INTO -- create a new table from
the results of a query

SELECT expression [AS output_name][, ...]
INTO TABLE new_table

[FROM from_item [, ...]] [WHERE condition] [
GROUP BY expression

Barry Inwin August 2003 Rhodes University: CS202 Databases 53

Views

@ What are views ?

= Views are not separate copies of the data in the
table(s) or view(s) from which they're derived. In fact,
views are called virtual tables because they do not
exist as independent entities in the database as "real"
tables do. (The ANSI term for a view is a viewed
table; a native database table is a base table.) You
can query views much as you query tables. Modifying
data through views is restricted, however

@ How are Views used?
= Creating a view based on a SELECT statement gives
you an easy way to examine and handle just the data
you (or others) need—no more, no less. In effect, a
view "freezes" a SELECT statement.

Barry Iwin August 2003 Rhodes University: CS202 Databases 54

Creating views

@ CREATE [OR REPLACE] VIEW view
[(column name list)] AS SELECT query
@ View
= The name (optionally schema-qualified) of a view to be created.
@ column name list
= An optional list of names to be used for columns of the view. If

given, these names override the column names that would be
deduced from the SQL query.

@ Query

= An SQL query (that is, a SELECT statement) which will provide
the columns and rows of the view.

Refer to SELECT for more information about valid arguments.

Barry Irwin August 2003 Rhodes University: CS202 Databases 55

Select Revisited

SELECT *| expression FROM from_item [, ...]
[WHERE condition]
[GROUP BY expression]
[ORDER BY expression [ASC | DESC]
[LIMIT { count | ALL }]

Barry Iwin August 2003 Rhodes University: CS202 Databases 56

CREATE VIEW

2@ CREATE VIEW defines a view of a query.
The view is not physically materialized.
Instead, a query rewrite rule (an ON
SELECT rule) is automatically generated
to support SELECT operations on views.

Barry Inwin August 2003 Rhodes University: CS202 Databases 57

CREATE OR REPLACE VIEW

@ CREATE OR REPLACE VIEW is similar,
but if a view of the same name already
exists, it is replaced. You can only replace
a view with a new query that generates the
identical set of columns (i.e., same column
names and data types).

Barry Iwin August 2003 Rhodes University: CS202 Databases 58

More on Views

@ Currently, views are read only: the system will
not allow an insert, update, or delete on a view.
You can get the effect of an updatable view by
creating rules that rewrite inserts, etc. on the
view into appropriate actions on other tables.
For more information see CREATE RULE.

@ Use the DROP VIEW statement to drop views.

Barry Inwin August 2003 Rhodes University: CS202 Databases 59

View Example

Create a view consisting of all Comedy films:

CREATE VIEW kinds AS
SELECT *
FROM films
WHERE kind = 'Comedy";

SELECT * FROM kinds;

code | title did |date kind len

UA502 | Bananas 105 |1971-07-13 Comedy 01:22

C_701 | There's a Girl |107 |1970-06-11 Comedy 01:36
in my Soup

Barry Iwin August 2003 Rhodes University: CS202 Databases 60

Removing Views

@ DROP VIEW name [, ...]
[CASCADE | RESTRICT]

2 Name
» The name (optionally schema-qualified) of an existing view.
@ CASCADE

= Automatically drop objects that depend on the view (such as
other views).

@ RESTRICT

= Refuse to drop the view if there are any dependent objects. This
is the default.

Barry Irwin August 2003 Rhodes University: CS202 Databases 61

Indexes

2@Why Use indexes ?

@ Benefits of Indexes?

= Faster Queries

= Can be used to help enforce constraints
@ Disadvantages

= Require additional system resources

= Can take time to update

Barry Iwin August 2003 Rhodes University: CS202 Databases 62

Index Creation

Given a table with the following definition

CREATE TABLE emp (
empno integer,
ename character(30),
job character(30),
mgr integer,
hiredate date NOT NULL,
sal numeric(6,2),
comm numeric(4,0),
deptinteger

)

Barry Inwin August 2003 Rhodes University: CS202 Databases 63

Index Creation

@ User Application requires a lot of queries
of the form:

SELECT ename, job FROM emp
WHERE mgr = constant;

@ Create an Index
CREATE INDEX emp_mgr_index
ON emp (mgr);

Barry Iwin August 2003 Rhodes University: CS202 Databases 64

Index Removal
@ To remove an index, use the DROP

INDEX command.
= DROP INDEX emp_mgr_index ;

@ Indexes can be added to and removed
from tables at any time.

Barry Inwin August 2003 Rhodes University: CS202 Databases 65

Indexes and the DBMS

@ Once the index is created, no further intervention
is required

@ DMBS will use the index when it thinks it would
be more efficient than a sequential table scan.

@ When an index is created, the DBMS has to
keep it synchronized with the table. This adds
overhead to data manipulation operations.

@ Indexes that are non-essential or do not get
used at all should be removed.

@ A query or data manipulation command can use
at most one index per table.

Barry Iwin August 2003 Rhodes University: CS202 Databases 66

Indexing Performance

@ Indexes can benefit UPDATEs and
DELETESs with search conditions.

@Indexes can also be used in join queries.

@ An index defined on a column that is part
of a join condition can significantly speed
up queries with joins.

Barry Irwin August 2003 Rhodes University: CS202 Databases 67

Multicolumn Indexes

@ An index can be defined on more than one column.
@ For example, if you have a table of this form:
CREATE TABLE test2 (
major int,
minor int,
name varchar

)i
@ SELECT name FROM test2 WHERE major = constant
AND minor = constant;
@ CREATE INDEX test2_mm_idx ON test2 (major, minor);
@ Multicolumn indexes can only be used if the clauses
involving the indexed columns are joined with AND.

@ SELECT name FROM test2 WHERE major = constant
OR minor = constant;

Barry Iwin August 2003 Rhodes University: CS202 Databases 68

Unique Indexes

@ Indexes may also be used to enforce uniqueness of a column's
va’ue, or the uniqueness of the combined values of more than one
column.

@ CREATE UNIQUE INDEX name ON table (column [, ...]);

@ When an index is declared unique, multiple table rows with equal
indexed values will not be allowed. NULL values are not considered
equal.

@ PostgreSQL automatically creates unique indexes when a table is
declared with a unique constraint or a primary key, on the columns
that make up the primary key or uni?ue columns (a multicolumn
index, if appropriate), to enforce that constraint.

@ A unique index can be added to a table at any later time, to add a
unique constraint.

@ Note: The preferred way to add a unique constraint to a table is
ALTER TABLE ... ADD CONSTRAINT. The use of indexesto
enforce unique constraints could be considered an implementation
detail that should not be accessed directly.

Barry Inwin August 2003 Rhodes University: CS202 Databases 69

Index Performance Testing

@ Difficult to formulate a general procedure
for determining which indexes to set up.

@ A good deal of experimentation will be
necessary in most cases.

Barry Iwin August 2003 Rhodes University: CS202 Databases 70

Index Performance Testing

@ Use real data for experimentation. Using test data for setting up
indelzlxes will tell you what indexes you need for the test data, but that
s all.

@ |tis especially fatal to use proportionally reduced data sets. While
selecting 1000 out of 100000 rows could be a candidate for an
index, selecting 1 out of 100 rows will hardly be, because the 100
rows will probably fit within a single disk page, and there is no plan
that can beat sequentially fetching 1 disk page.

@ Be careful when making up test data, which is often unavoidable
when the application is not in production use yet. Values that are
very similar, completely random, or inserted in sorted order will skew
the statistics away from the distribution that real data would have.

Barry Inwin August 2003 Rhodes University: CS202 Databases 71

Advanced Indexes

@& PostgreSQL provides several index types:
= B-tree
= Rtree
- GIST
» Hash.
Each index type is more appropriate for a particular query type because of
the algorithm it uses.
By default, the CREATE INDEX command will create a B-tree index
@ The PostgreSQL query optimizer will consider using a B-tree index
whenever an indexed column is involved in a comparison using one of
these operators:
< <=, =, 52, >
@ R-tree indexes are especially suited for spatial data. The PostgreSQL query
optimizer will consider using an R-tree index whenever an indexed column
is involved in a comparison using one of these operators:
. <<, 8%, 85,55, @, ~=, &&
@ The query optimizer will consider using a hash index whenever an indexed
column is involved in a comparison using the = operator.

L

Barry Iwin August 2003 Rhodes University: CS202 Databases 72

Specifying Index Types

@To create an R-tree index:
=« CREATE INDEX name ON table USING
RTREE (column);
@ Creating a hash index:

= CREATE INDEX name ON table USING
HASH (column);

Database Backups

Why not use standard filesystem tools?
The database server must be shut down in order to get a usable
backup.
Needless to say that you also need to shut down the server before
restoring the data.
Temptation to try to back up or restore only certain individual tables
or databases from their respective files or directories.
= This will not work because only a portion of the information is contained
here.
= The other half is in the commit log files which contain the commit status
of all transactions.
@ Also note that the file system backup will not necessarily be smaller
than an SQL dump.
@ FS backup will most likely be larger. (pg_dump does not need to
dump the contents of indexes for example, just the commands to
recreate them.)

T @ o9

Barry Inwin August 2003 Rhodes University: CS202 Databases 73 Barry Irwin August 2003 Rhodes University: CS202 Databases 74
Backups Restore
=] SQL Dump @ The text files created by pg_dump are intended to be

@ The idea behind the SQL-dump method is
to generate a text file with SQL commands
that, when fed back to the server, will
recreate the database in the same state as
it was at the time of the dump.

@ PostgreSQL provides the utility program
pg_dump for this purpose.

pg_dump dbname > outfile

read in by the psql program.
psql dbname < infile

@ infile is produced by the pg_dump command.

@ he database dbname will not be created by this
command

@ If the objects in the original database were owned by
different users, then the dump will instruct psql to
connect as each affected user in turn and then create
the relevant objects. This way the original ownership is
preserved.

@ All users must already exist, and furthermore that you
must be allowed to connect as each of them.

Barry Irwin August 2003 Rhodes University: CS202 Databases 75 Barry Irwin August 2003 Rhodes University: CS202 Databases 76
Plumbing
@ pg_dump -h hostl dbname | psql -h host2
dbname

@ Use compressed dumps. Use your favorite
compression program, for example gzip.
= pg_dump dbname | gzip > filename.gz
@ Reload with:
createdb dbname
gunzip -c filename.gz | psql dbname
or
cat filename.gz | gunzip | psql dbname

Barry Inwin August 2003 Rhodes University: CS202 Databases 77

