Computer Science 202

Transaction Management and
Concurrency Control

Barry Irwin August 2003 Rhodes University CS202: Databases

Objectives

@ To learn what a transaction is.

@ To learn how an incomplete transaction can yield an
inconsistent database.

@ To learn how an inconsistent database can be avoided
through proper transaction management.
@ To learn what concurrency control is.

@ To learn how concurrency control failure affects a
database.

@ To learn how concurrency control is accomplished.
@ To learn what database recovery management is.

@ To understand the use of transaction logs in recovery
management.

Barry Iwin August 2003 Rhodes University CS202: Databases

~

What is a Transaction?

@ A logical unit of work on a database
= Read (select) and write (Update/insert/delete)

@ Database request is equivalent to a single SQL
statement

@ A transaction can consist of many DB Requests

@ A transaction must be completed, or must be
aborted

@ Consistency of a database is paramount
@ DB should be maintained in a consistent state

Barry Iwin August 2003 Rhodes University CS202: Databases

Example Transaction
Amount in stock = X

Inifial state <Consistent state>

Barry Iwin August 2003 Rhodes University CS202 : Databases 4

So what's the problem?

@To ensure consistency

= A Transaction must start with the DB in a
known state

= The transaction must complete and leave the
DB in a known state
@ A transaction is likely to modify DB
contents

= Protection must be given for the areas of the
DB that the transaction works with.

Barry Irwin August 2003 Rhodes University CS202: Databases

Transaction Evaluation (1)

@ Examine current account balance

SELECT ACC_NUM ACC_BALANCE
FROM CHECKACC
WHERE ACC_NUM = ‘ 0908110638’ ;

@ Consistent state after transaction
@ No changes made to Database

Barry Iwin August 2003 Rhodes University CS202 : Databases 6

Transaction Evaluation (1)

@ Register credit sale of 100 units of product X to customer
Y for R500

UPDATE PRCDUCT

SET PROD_QOH = PROD QCH - 100

WWHERE PROD_CODE = * X ;

UPDATE ACCT RECEI VABLE

SET ACCT_BALANCE = ACCT_BALANCE + 500

WHERE ACCT_NUM = ‘'Y,

@ Consistent state only if both transactions are fully
completed .)

@ DBMS doesn'’t guarantee that the semantic meaning of a
transaction represents real-world event

Barry Irwin August 2003 Rhodes University CS202: Databases 7

Transaction Properties

@ Atomicity
= All parts of must be completed OR none
= Indivisible Work unit
@ Durability
= On completion DB is in a consistent state
@ Serializability
= Concurrent execution of multiple transactions

= Concurrency can mean that transactions are handled
ina serial manner

@ Isolation

= Data used in a transaction cannot be used by another
un till the first completes

Barry Iwin August 2003 Rhodes University CS202: Databases 8

Database Properties

@ Single User

= Automatically ensures serializability and isolation, by
design (only single user)

= Durability & Atomicity need to be provided by the
DBMS

@ Multi User
= Multiple concurrent transactions
= DBMS must enforce serializability and isolation
= Provide concurrency control management

Barry Inwin August 2003 Rhodes University CS202 : Databases 9

SQL Transaction Management

@ Transaction support
« COMMIT
= ROLLBACK
@ User initiated transaction sequence must
continue until:
=« COMMIT statement is reached
= ROLLBACK statement is reached
= End of a program reached (COMMIT)
= Abnormal program termination (ROLLBACK)

Barry Iwin August 2003 Rhodes University CS202 : Databases 10

SQL Example

BEG N TRANSACTI ON, --Not ALL support TH'S

UPDATE PRCDUCT
SET PROD_QOH = PROD QCH - 100
VWHERE PRCD OODE = ' X' ;

UPDATE ACCT_RECEI VABLE
SET ACCT_BALANCE = ACCT_BALANCE + 500
WHERE ACCT_NUM = 'Y ;

COWM T;

Barry Inwin August 2003 Rhodes University CS202 : Databases 11

Transaction Log

@ Transaction log keeps track of all updates
affecting the database

@ Log is maintained by the DBMS

@ Used for DB recovery in the event of a
ROLLBACK

@ Can be used by some DBMS for recovery
following a crash

@ Used to help ensure Durability of
Transactions

Barry Iwin August 2003 Rhodes University CS202 : Databases 12

Transaction Log

@ Transaction log holds information to allow
a recovery

EEEE OPERATON, _m ATTRIBUTE VMUE

Null START * Start transaction
352 101 341 363 UPDATE PRODUCT 345TYX PROD_QOH 243 143
363 101 352 365 UPDATE ACCT RECEIVABLE 60120010 ACCT BALANCE 1200 4700
365 101 363 Null COMMIT **** End transaction
TRLID = Transaction log record 1D PTR = Pointer to a transaction log record 1D

TRXNUM = Transaction number
(Note: The transaction number is automatically assigned by the DBMS.)

Barry Irwin August 2003 Rhodes University CS202: Databases 13

Concurrency Control

@ Ensures serializability of transactions
@ Protects against problems that could arise
from simultaneous execution
= Data Integrity
= Consistency
@ Handles
= Lost Updates
= Uncommitted Data
= Inconsistent Data Retrievals

Barry Iwin August 2003 Rhodes University CS202: Databases 14

Concurrency Issues

@ Lost Updates
= An update is lost and the result is Erroneous data
being retrieved
@ Uncommitted Data
» Two concurrent transactions
= T1 Rolls back after T2 Has already accessed updated
information
@ Inconsistent Retrievals
= Usually with Aggregation functions
= T2 performs an aggregation while T1 is Updating
values

Barry Inwin August 2003 Rhodes University CS202 : Databases 15

Lost Updates

Normal Transaction
T S 7 S S —— T

1 Read PROD_QOH 35

2 i PROD_QOH = 35 + 100

3 T Write PROD_QOH 135

4 T2 Read PROD_QOH 135

H T2 PROD_QOH = 135 - 30

6 T2 Write PROD_QOH 105
Barry Iwin August 2003 Rhodes University CS202: Databases 16

Lost Updates

Lost Update results in Error

T . S e L
1 Read PROD_QOH
2 T2 Read PROD_QOH 35
3 m PROD_QOH = 35 + 100
4 2 PROD_QOH = 35 - 30
5 m Write: PROD_QOH (Lost update) 135
6 12 Write PROD_QOH
Barry Irwin August 2003 Rhodes University CS202 : Databases 17

Uncommitted Data

Correct Processing
ﬂ_m_

m Read PROD_QOH 35
2 T PROD_QOH = 35 + 100
3 m Write PROD_QOH 135
4 il +4444ROLLBACK *#+++ 35
5 T Read PROD_QOH 35
6 i PROD_QOH = 35 - 30
7 T Wiite PROD_QOH 5
Barry Irwin August 2003 Rhodes University CS202 : Databases 18

Uncommitted Data

Problems resulting from Uncommitted Data

ECEEEE et e e | eroret v
1 m Read PROD_QOH 35
2 il PROD_QOH = 35 + 100
3 mn Wite PROD_QOH 135
4 i Read PROD_QOH. 135
(Read uncommitted data)
5 2 PROD_QOH = 135 - 30
6 AR (=== ROLLBACK ***+* 3
7 7l Wite PROD_QOH 105
Barry Irwin August 2003 Rhodes University CS202: Databases 19

Inconsistent Data Retrieval

Retrieval during an Update

SELECT SUM(PROD_QOH) UPDATE PRODUCT
FROM PRODUCT SET PROD_QOH = PROD_QOH + 30
WHERE PROD_CODE = "125TY2'
UPDATE PRODUCT
SET PROD_QOH = PROD_QOH - 30
WHERE PROD_CODE = "345TYX'

COMMIT;

Barry Iwin August 2003 Rhodes University CS202: Databases 20

Inconsistent Data Retrieval

Resultant Output

B | T
PROD_CODE PROD_QOH PROD_QOH
104XCV 100 100
TIOYGH 120 120
125TYZ 70 (70 + 30)—=100
345TYX 35 (35-300 — = 5
350TYX 100 100
355TYX 30 30
Total 455 455
Barry Irwin August 2003 Rhodes University CS202 : Databases 21

The Scheduler

@ Scheduler provides overall management of the
concurrency process
@ Ordering of transactions - serializability
@ Ordering based on Control Algorithms
= Locking
= Time stamping
@ Why Not use FIFO ordering ?
= NOT effective use of CPU
= Poor Response times

Barry Iwin August 2003 Rhodes University CS202: Databases 22

Conflicting Operations

T
Read Read f———= No conflict

Read Write
Wiite Read Conflicting operations
Write Wiite

Barry Inwin August 2003 Rhodes University CS202 : Databases 23

Locking Methods

@ A Lock guarantees exclusive access to a
DB object

@ Prevents access to inconsistent Data
@ Automatically managed by DBMS

@A Lock Manager process is responsible for
all Locking within the DB

@ Lock Granularity can have a big effect on
performance

Barry Iwin August 2003 Rhodes University CS202 : Databases 24

Locking granularity

@ The Level at which the locks are applied

» Database Level
= Table Level
= Page Level
= Row Level
= Field Level
@ Locks can be of two types
= Binary
» Shared/Exclusive

Barry Irwin August 2003 Rhodes University CS202: Databases

Database Level

@ Entire Database is locked

@ Prevents use of any other tables by
transactions T2, T3.... until T1 has
completed

@Very Slow performance

Barry Iwin August 2003 Rhodes University CS202: Databases 26

Database Level

Time Payroll Database
Tionsaction 1 (T1)
(Update Table A)
1 Lockdatabase ——»
request

2 Locked«—— OK——

6 Unlocked

Barry Iwin August 2003 Rhodes University CS202: Databases

-~

Transaction 2 (12)
(Update Table B)

Lock
database
request

WAIT

OK — Locked

Unlocked

Table Level

@ Locks are applied to specific tables

@ T2 can access tables within the DB
provided that they are not locked by T1

@ Better performance than DB Level locks

@ Can still be problematic with multiple
accesses to a Table

@ Slowdown even if T2 and T1 are
accessing different portions of a table.

Barry Iwin August 2003 Rhodes University CS202 : Databases 28

Table Level

Payroll Database
fable A

=
@

Transaction 1 (T1)
(Update Row 5)

Lock table A request——

Locked «—— OK.

locked
(end of transaction 1)

©®wo o awn—«—3F

Barry Irwin August 2003 Rhodes University CS202: Databases

Tonsacion 2 (12)
(Update Row 30)

Lock table A
~+ request

WAIT

—OK —>Locked

Unlocked
(end of fransaction 2)

Page Level

@ Locks are specific to a physical disk page

@ Disk page is equivalent to a storage block
on disk

@ Size of page is dependant on underlying
HW, OS and File system
» 4K, 8K, 16K , 32K

@ T2 cannot access a page locked by T1

@ T2 CAN access the same table if the
portion needed is in a different disk page

Barry Iwin August 2003 Rhodes University CS202 : Databases 30

Page Level

e

Transaction 1 (T1) el e Transaction 2 (12)
(Updote Table A) e (Updote Tabie A)

~<——— Lock page 2 request
— OK—» Locked

Locked +—— OK —

~——— Lock page 1 request
- Wait

m

! Lock page 1 request ——
2

3

4

B 1

6 —O0K— Locked
i

Row Level

@ Non restrictive locking mechanism

@ Locks are restricted to the particular ROW
that T1, may be using. T2 May access the
rest of the DB.

@ Higher granularity results in increased
overhead

Unlock page 1
(end of transaction) Unlock page 1 and 2
(end of transaction)
Page number
Barry Irwin August 2003 Rhodes University CS202 : Databases 31 Barry Irwin August 2003 Rhodes University CS202 : Databases 32
N g @ Allows Transactions to access the same
ime Transaction 1 (T1) 7lfi7,, Transaction 2 (T2) row
l (Update row 1) Table A (Update row 2)
1 Lockrow | tequest—— a @ Provides locking on fields within the row
2 ‘-— Lock page 2 request
0K —
s E e @ Extremely high overhead
] Unlock row 1
6 (end of transaction) Uniock raw 2
(end of transaction)
Row number
Barry Irwin August 2003 Rhodes University CS202 : Databases 33 Barry Irwin August 2003 Rhodes University CS202 : Databases 34

Binary Locks

@Only has two states
= Locked
= Unlocked

@ Applies to all levels of granularity
2 DBMS manages the locking process
@ Binary locks are generally exclusive

Barry Inwin August 2003 Rhodes University CS202 : Databases 35

Binary Locks

st R
1 T Lock PRODUCT
2 T Read PROD_QOH 35
3 I PROD_QOH = 35 + 100
4 T Write PROD_QOH 135
5 T Unlock PRODUCT
6 T2 Lock PRODUCT
7 T2 Read PROD_QOH 135
8 T2 PROD_QOH = 135 - 30
9 T2 Write PROD_QOH 105
10 T2 Unlock PRODUCT
Barry Inwin August 2003 Rhodes University CS202: Databases 36

Shared/Exclusive Locks

@ Exclusive Locks
= Only the locking transaction has access
= Used for write operations

@ Shared Locks

= Concurrent transactions may have READ access to a
locked object

= No conflict provided all transactions are READ

= Cannot be issued if an exclusive lock for the object
exists

Barry Irwin August 2003 Rhodes University CS202: Databases 37

Shared/Exclusive Locks

@ Locking states
=« READ_LOCK
=« WRITE_LOCK
= UNLOCK
@ Locking problems
= Transactions may not be serializable
@Can be solved with TWO-PHASE locking
= Scheduler may create deadlocks

Barry Iwin August 2003 Rhodes University CS202: Databases 38

Two-Phase Locking

@ Growing phase
@ Shrinking phase

@ Governing rules

= Two transactions cannot have conflicting
locks

= No unlock operation can precede a lock
operation in the same transaction

= No data objects are updated until all locks are
obtained

Barry Inwin August 2003 Rhodes University CS202 : Databases 39

Two-Phase Locking

Locked
point
Acquire Release

lock lock
Release
lock

Time 1 b2 3 4 5 6 7 8

Start Operations End

Growing Phase Locked Phase Shrinking Phase

Barry Iwin August 2003 Rhodes University CS202 : Databases 40

Deadlocks

@ Occurs when two transactions are waiting
for the other to unlock data
T1 = Accesses DATA X & DATA'Y
T2 = Accesses DATA Y & DATA X

@ Also known as a ‘deadly embrace’

Barry Inwin August 2003 Rhodes University CS202 : Databases 41

Deadlock Example

0 Data X Data¥

Unlocked Unlocked

1 T1LOCKX) oK Locked Unlocked
12; LOCK(Y) OK Locked Locked
3 T1LOCKY) WAIT Locked Locked
4 T2L0CKX) WAIT Locked Locked
5 TI:LOCKY) WAIT Locked Locked
6 T2LOCKX) WAIT Locked Locked
7 T1:LOCK(Y) WAIT Locked Locked
8 T2L0CKX) WAIT Locked Locked
9 T1:LOCK(Y) WAIT Locked Locked

Barry Iwin August 2003 Rhodes University CS202 : Databases 42

Deadlock Control

@ Deadlock Prevention

= New locks are aborted if there is a likelihood they
would cause a deadlock

= Transaction re-scheduled
@ Deadlock Detection
= DBMS checks DB for deadlocks
= In the case of a deadlock one transaction is aborted
and then restarted
@ Deadlock Avoidance

= Transaction must obtain ALL locks it needs prior to
execution (two -phase locking)

= Much slower due to serialization of transactions

Barry Irwin August 2003 Rhodes University CS202: Databases 43

Time stamping

@ Timestamps can be used to assist with
scheduling algorithms

@ Each transaction is assigned a unique stamp
based on the order of submission to DBMS

@ R/W operations can take place provided they
have the same timestamp

@ Transactions are serialized based on timestamp
order

@ Disadvantages
= Increased admin
= Increased memory (Last read & Last Update)

Barry Iwin August 2003 Rhodes University CS202: Databases 44

Optimistic Methods

@ Assumption that most transactions to do
not conflict

@ Transaction executed without restrictions
until committed
@Phases:
» Read Phase
= Validation Phase
= Write Phase

Barry Inwin August 2003 Rhodes University CS202 : Databases 45

Database Recovery Management

@ Restores a database from an inconsistent
to a previously consistent state

@ Based on the atomic transaction property
@ Level of backup

= Full backup

= Differential

= Transaction log

Barry Iwin August 2003 Rhodes University CS202 : Databases 46

Database Failures

@ Software

= Viruses, Operating System, DBMS
@ Hardware

= Hard disks, Memory, Networks
@ Programming Exemption

= Abnormal termination, premature termination
@ Transaction

= Deadlock results in termination of a transaction
@ External

= Fire, Flood, Theft

Barry Inwin August 2003 Rhodes University CS202 : Databases 47

Transaction Recovery

@ Write-Ahead Logging
= Logs written BEFORE data is modified
@ Redundant transaction logs
= Multiple copies of transaction log maintained
@ Buffers
= Memory buffers lead to faster processing
@ Checkpoints
= Updated buffers committed to disk
= Registered in Transaction log
= Buffers and Physical copies synchronised

Barry Iwin August 2003 Rhodes University CS202 : Databases 48

Transaction Recovery

@ Deferred-write and Deferred-update
= Changes are written to the transaction log
» Database updated after transaction reaches commit
point
@ Write-through
= Immediately updated by during execution
= Before the transaction reaches its commit point
= Transaction log also updated
= Transaction fails, database uses log information
to ROLLBACK

Barry Irwin August 2003 Rhodes University CS202: Databases 49

