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Abstract

In an age of zero-day exploits and increased on-line attacks on computing infrastructure,
operational security practitioners are becoming increasingly aware of the value of the
information captured in log events. Analysis of these events is critical during incident
response, forensic investigations related to network breaches, hacking attacks and data
leaks. Such analysis has led to the discipline of Security Event Analysis, also known as
Log Analysis.

There are several challenges when dealing with events, foremost being the increased vol-
umes at which events are often generated and stored. Furthermore, events are often
captured as unstructured data, with very little consistency in the formats or contents of
the events.

In this environment, security analysts and implementers of Log Management (LM) or
Security Information and Event Management (SIEM) systems face the daunting task of
identifying, classifying and disambiguating massive volumes of events in order for security
analysis and automation to proceed.

Latent Semantic Mapping (LSM) is a proven paradigm shown to be an effective method
of, among other things, enabling word clustering, document clustering, topic clustering
and semantic inference.

This research is an investigation into the practical application of LSM in the discipline of
Security Event Analysis, showing the value of using LSM to assist practitioners in iden-
tifying types of events, classifying events as belonging to certain sources or technologies
and disambiguating different events from each other.

The culmination of this research presents adaptations to traditional natural language pro-
cessing techniques that resulted in improved efficacy of LSM when dealing with Security
Event Analysis.

This research provides strong evidence supporting the wider adoption and use of LSM,
as well as further investigation into Security Event Analysis assisted by LSM and other
natural language or computer-learning processing techniques.
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Chapter 1

Introduction

1.1 Problem Statement

We live in a connected world. A vast amount of commercial and private activity takes
place each and every second on millions of computers spanning the globe, all connected
through the Internet. In this world, consumers, vendors and criminals are separated from
each other only by mere milliseconds, each extending their presence through the use of
radio, copper and fibre-optic networks transmitting their signals near or at the speed of
light.

Unfortunately, making sense of all of this information, this Big Data (Manyika et al.,
2011), is increasingly becoming more of a challenge. Thousands of transactions per second
may contain both good and bad intent, valid transactions as well as intentionally malicious
transactions conveying the perpetrator’s attempts to commit fraud, exfiltrate sensitive or
secret data or attack a target system’s vulnerabilities with specially crafted exploits.

All of this activity exists as temporary electronic constructs within millions of pieces of
silicon which are, in their very nature, fleeting. They are the building blocks for business,
entertainment, industrial and many other processes.

Unless committed to some form of record in non-volatile storage mechanisms — be it a
log file capturing transaction information produced by some middleware, or a specialised
security device generating records based on actively inspected network traffic as the traffic
traverses its network interfaces — it is likely difficult, if not impossible, to investigate
subsequently, with sufficient context, what has taken place.

1
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In recent years, the incident rate of attacks and malicious activity perpetrated via elec-
tronic means has increased drastically. The number of publicly disclosed incidents has
reached an all-time1 high, with few reasons to believe that we will anytime soon see a
diminishing of this trend.

Cyber attacks have a global impact and span many different industries. Consider, for
example, the highly regarded Verizon RISK Team’s Verizon 2012 Data Breach Investiga-
tions Report (Baker et al., 2012) for a very good analysis of data breaches investigated in
cooperation with the Australian Federal Police, Dutch National High Tech Crime Unit,
Irish Reporting and Information Security Service, Police Central e-Crime Unit and United
States Secret Service.

As noted in Verizon’s 2012 report, the importance of electronic records to aid inves-
tigations cannot be emphasised enough. A careful reading of the text will show that
real-world incident response almost always involves log analysis. Incident response teams
rely heavily on log analysis to provide necessary insights and enable remediation, litiga-
tion or prosecution to proceed. Verizon’s report dedicates a section “Of Logs, Needles,
and Haystacks-Part Deux” (Baker et al., 2012, p. 54) to log analysis practice.

Over and above the need for log analysis to enable post-breach incident response, real-
time monitoring of events is becoming an operational reality for numerous businesses and
institutions. Within certain industries and sectors, information and the systems that host
it are just too sensitive to allow for problems or attacks to go unnoticed; incident response
time must be reduced in these cases to diminish harmful business impact. This highlights
the vital importance of event generation and log collection even more, but it also points to
the vital need for software and hardware to enable the automatic classification, correlation
and recognition of both good and bad behaviours on the monitored systems.

In 2008, renowned information security pundit Richard Bejtlich reiterated that the first
and foremost element of a “Defensible Network Architecture” is that it should be “Mon-
itored” (Bejtlich, 2008). It is an unfortunate reality that unless records are kept or, to
use the vernacular, logging and auditing are enabled, it would be close to impossible for
automated systems to do real-time analysis and enable alerting and automated response.
A monitored network relies on close cooperation throughout the entire system’s archi-
tecture. Systems need to generate events; these events in turn must be collected and
interpreted correctly, after which software and processes need to be in place to enable the
desired operational insight and response.

1Data Loss Statistics, http://datalossdb.org/statistics
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Traditionally, events have been generated and captured into log files to enable trou-
bleshooting of production issues. This is due to the fact that it is trivial for developers
to add logging to their software and reflect the inner state of the software which would
normally have been opaque without tools such as debuggers. Software developers now reg-
ularly adopt logging to capture and retain security and audit-related events, events which
provide invaluable information to Information Security Practitioners. Not only can a log
provide a record of actions that have occurred, but it can also serve as digital evidence
in a legal context. Seasoned professionals like the Verizon RISK Team have invaluable
experience in log analysis and are frequently able to ‘stitch together’ a clear narrative of
the events that took place by correlating different log sources into a common narrative,
primarily by using the timestamps captured within the events.

The events captured from business critical systems and infrastructure logs are often the
only means of detecting more insidious types of attacks, attacks for example that exploit
business logic flaws or are designed to be as stealthy and furtive as possible. The recent
discovery of long-running specially crafted attacks against very specific targets has given
rise to the term ‘Advanced Persistent Threat’ (APT) (Binde et al., 2011; Silva et al.,
2011; Tarala, 2011). These attacks often involve zero-day (0day) exploits (Frei et al.,
2006), exploits that have not been seen before in the wild and often bypass blacklist-based
scanning and detection technologies such as Anti-Virus or Intrusion Detection Systems.
The attacks are rarely detected while in progress, but the evidence thereof often remains
captured in events that were collected throughout the infrastructure and applications.

Due to advances in hardware and software, the ability to collect and monitor events on a
large scale has become practical in the recent decade. Improvements in algorithms, such as
the use of Map Reduce (Lämmel, 2008), in combination with modern, powerful hardware,
allow us to collect, store and search more event data than ever before; improvements also
allow us to retrieve and search the events in ever decreasing time. The systems continue to
evolve and we have seen the emergence of Security Information and Event Management
(SIEM) systems that are being integrated as a standard part of security operations in
businesses and institutions.

SIEM is a collection of software components or appliances with the purpose of facilitat-
ing enterprise-wide event collection, normalisation and correlation of all security-relevant
events and as such, enables operational security processes such as alerting, reporting and
response. Additionally, SIEM allows operational security teams to detect and react to
incidents and breaches in real-time or as close to real-time as possible.

SIEM implementers have a massive challenge on their hands when it comes to data ac-
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quisition. SIEM relies upon the normalisation of events in order to enable the systems to
interpret their meaning correctly, but these events are scattered throughout the enterprise
and have many different formats.

Because of the massive volume of events that can be collected within an organisation with
modern software and hardware, it is impractical for a security practitioner to personally
interpret these events in full. However, analysts such as the Verizon RISK Team have tools
and methodologies designed specifically to deal with these challenges. SIEM systems, for
example, provide plug-ins or add-ons to interpret event data and enable automation of
event normalisation. SIEM systems are covered in more detail in chapter 2.

This research deals with the significant problems of event identification, classification and
disambiguation. Thousands or even millions of systems generate events from hundreds
or thousands of kinds of software, each with potentially unique event structures and
contents. Not only are security analysts faced with the daunting task of interpreting this
information at never-seen-before volumes during incident response, their available tools
such as SIEM may not provide all the necessary relevant plug-ins for the variety of events
that their systems could generate.

Traditionally, security analysts would be forced to fall back on scripting and specialised
software, using familiar utilities such as grep2, awk3 and sed4 to assist with the analysis
of the data or, if available, use SIEM add-ons and other types of specialised software.

1.2 Objectives of the Research

The objective of this research is to evaluate whether or not Latent Semantic Mapping
(LSM) could be another valuable utility available to event specialists. There is an un-
deniable need for utilities, methodologies and other technologies that can assist in the
processing of large volumes of event information, not just to enable search but also to
assist in the classification, identification and disambiguation of such events. The pa-
per entitled “A Comparison of Approaches to Determine Topic Similarity of Weblogs for
Privacy Protection” (Wu, 2011) contains a clear definition of LSM:

“Latent Semantic Mapping (LSM) is a way to find ‘semantic’ similarities be-
tween words and documents. Two words are ‘similar’ if they appear with the

2grep, http://www.gnu.org/software/grep
3GNU Implementation of awk, http://www.gnu.org/software/gawk
4sed, the Streams Editor, http://www.gnu.org/software/sed
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same or similar other words in a set of training documents. For example, base-
ball and pitcher are similar, while baseball and orchestra are probably quite
different. Two documents are ‘similar’ if they contain lots of similar words.”

LSM (Bellegarda, 2008) is a generalisation of the Latent Semantic Analysis (LSA) paradigm
often used in the field of Information Retrieval, discussed in detail in “Latent Semantic
Mapping - Principles & Applications” section 2.3. Dr. Jerome R. Bellegarda, an Apple
Distinguished Scientist in Speech & Language Technologies, recognised that the paradigm
applies to fields other than Information Retrieval and coined this particular term. LSM
has in fact been successfully deployed in a wide variety of use-cases ranging from anti-
spam measures in the Mail application on MacOS 10 (Bellegarda, 2008, p. 33) to voice
synthesis and voice recognition, and even in DNA research.

This research is an attempt to apply LSM to computer-generated events, particularly
focussed on challenges such as the classification, identification and disambiguation of
different events from each other. The hypothesis is that there is an underlying latent
semantic structure to events. In other words, there are patterns in the words, symbols
and numbers that may not be immediately obvious to humans. These patterns, such
as the co-occurrence of words and symbols within certain types of events, are exposed
through the application of LSM and can then be used to associate events with a shared
meaning (such as all logon events, regardless of which system generated them) with each
other.

This research will also attempt to determine the level of effort required for a security
analyst or SIEM implementer to use out-of-the-box LSM utilities, whether or not the recall
performance of the tool is sufficient, and whether or not it is deployable at a reasonable
scale.

Three use-cases will be evaluated which represent the perspective of either a security
analyst or a SIEM implementer. The research will replicate real-world scenarios through
the use of the LSM toolset supplied with MacOS 10.8 which has a command-line interface
and API. Several data sources will be evaluated to closely mimic the challenges faced by
analysts and implementers.

The research also includes the results obtained from the use of custom software compo-
nents developed as a part of the research process.
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1.3 Assumptions and Limitations

This body of work is produced to be consumed by a person familiar with common Com-
puter Science terms and phrases and having a firm understanding of data processing
concepts. It is also assumed that the reader has a robust understanding of Information
Security, the technologies involved, as well as its role in supporting operational security
workflow and procedures. This is of particular relevance where the research deals with
SIEM and the roles that logging and event collection play in operational security.

This text does not serve as an exhaustive treatment of LSM; however, an attempt is
made to ensure a practical understanding of the technology and its applicability to the
research. For detailed treatment and description of the mathematical underpinnings of
the paradigm, the reader is referred to “Latent Semantic Mapping - Principles & Appli-
cations” (Bellegarda, 2008).

From mathematical and theoretical perspectives, this work could perhaps be regarded as
a relatively shallow exploration of the workings of LSM. Rather, the research focussed on
applying the paradigm through the combination of off-the-shelf components, reviewed in
more detail in section 3.3.

This research simulates scenarios encountered by security analysts and SIEM imple-
menters, mimicking the environment through representative test data obtained from pro-
duction and lab environments. As data plays an important part of the testing, this
research will evaluate the performance of LSM on representative and varied data. In
real-world scenarios, as illustrated in the introduction, the data may be varied, unique
or even proprietary, and confidential; with this in mind, and even though this research
will exercise the concepts and use-cases vigorously, LSM may still result in unanticipated
behaviour with new data sets.

It is also noted that this research does not serve as a comparative analysis of LSM against
other types of classifiers such as Bayes Classifiers commonly found in junk e-mail filter
deployments.

1.4 Document Conventions

The following terms are used throughout this document and warrant further definition in
the context of this research:
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event

An ‘event’ is the smallest collection of data, the smallest meaningful composition of in-
dividual units, this research deals with. The individual units may consist of numbers,
punctuation or words. ‘Event’ is the chosen term to represent a single log entry or line
in a log file. Events can be contained within a single line of a log file, such as with sys-
log events, or may consist of multiple lines and a hundred or more words, such as with
Windows Event Log5 events.

A vigorous attempt has been made to refer to these compositions as ‘events’ consistently
throughout this work; there may, however, be inclusions of phrases such as ‘log entry’,
‘log message’ or ‘message’ within certain sections, terms with which the reader may be
familiar.

event source

An ‘event source’ is an actual collection of events, normally found in the form of a log
file but also could be API based, such as with Windows Event Log. There can be many
different event sources, each emitting events. In large enterprises, it would not be unusual
to have thousands of event sources. In information retrieval terms, an event source would
be analogous to a corpus of documents.

sourcetype

In the context of this research, we refer to the kind of event source as a ‘sourcetype’,
the set of types of events generated by an event source. This is a term borrowed from
Splunk6, a product with which the researcher is very familiar.

Examples of different sourcetypes are “Dovecot IMAP” and “Bind”, where the “Dovecot
IMAP” sourcetype would refer to the collection of different kinds of events (or eventtypes,
discussed next) created by an instance of the Dovecot IMAP server7.

It should be noted that a sourcetype often contains the events generated by a single ap-
plication, but sometimes may span multiple applications such as with “Windows Security

5Windows Event Log, http://msdn.microsoft.com/en-us/library/windows/desktop/aa385780.aspx
6Splunk Inc., http://www.splunk.com
7Dovecot IMAP, http://www.dovecot.org
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Events” collected in the Windows Security Eventlog. Sourcetypes are a logical grouping
mechanism. Further illustrative examples can be seen in Table 1.1.

Table 1.1: Example Sourcetypes

Sourcetype Name Description

Bind All types of events generated by the BIND
DNS Server, typically contains events such as
logon, spooler messages and errors

Dovecot IMAP All types of events, including logon, logon
failed and other types of messages generated
by the Dovecot IMAP daemon

Windows Security Events Security related events generated by a
Microsoft Windows operating system or
application executed on it

iSeries Audit Journal Audit related events generated by software
executed on an IBM iSeries host

eventtype

The term ‘Eventtype’ is used within this research to illustrate the type of event. Whereas
sourcetype is the complete set or a subset of events associated with an event source,
eventtype deals with the classification of the actual event, so a sourcetype may contain
many different eventtypes. Eventtypes address the action or outcome described by an
event. Many different sourcetypes may generate the same eventtypes even though the
structure of the events may differ depending on the sourcetype’s implementation details.
Examples of eventtypes can be seen in Table 1.2.

Table 1.2: Example Access Control Eventtypes

Eventtype Description

logon All events that relate to the outcome of an attempted logon
to an operating system, application or other services

logon success The subset of logon events that describe a successful logon
event

logon failed The subset of logon events that describe a failed logon event
account created Events recording the successful creation of a user account in

an application, directory service or on an operating system
account locked An event that reflects that an account has been locked and

may not be used again until unlocked by an administrator or
some other process, such as a timer



1.4. DOCUMENT CONVENTIONS 9

category

As will be evident from the Literature Review, LSM constructs maps with one or more
categories or semantic anchors. In this research, within the appropriate context, ‘category’
refers to the LSM Command Line Interface (CLI) and API treatment of LSM semantic
anchors.

categorisation

In the context of this research, ‘categorisation’ is defined as the process whereby an event
is evaluated against an LSM map and assigned to an LSM semantic anchor or category.

classification

‘Classification’ is the process which results in events being correctly associated with the
correct sourcetype or eventtype.

disambiguation

‘Disambiguation’ within the context of this research refers to the ability of a security
practitioner to differentiate events from each other, an integral part of the identification
process and normally requiring some domain knowledge of the events involved. With
some eventtypes, disambiguation could be challenging without proper counter examples.
The research will attempt to use LSM to disambiguate large collections of events.

identification

‘Identification’, an integral part of the process that results in classification, can be defined
as a method of ensuring that the subject is the entity that it claims to be (Harris, 2012).
In the context of this research, identification is the result of the process whereby an event
has been identified as a certain pre-determined eventtype or sourcetype. For example, an
event within a new data set may be identified as a “logon” eventtype.
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normalisation

‘Normalisation’ deals with the syntactic structure of an event (Marty, 2007). The nor-
malisation process, an important enabler for reporting, is critical for SIEM to function
correctly. Within this context, normalisation describes the process whereby fields such as
a source IP address or username are extracted from an event. This may be achieved by the
use of regular expressions evaluated against the event or by other programmatic means.
Regular expression matching and other types of processing are also used to enrich event
information with more descriptive, normalised terms, often referenced from a taxonomy.

The fields extracted as a part of the normalisation process are moved through various
mathematical and statistical processes to produce metrics such as a risk score, a proba-
bility for attack or something as simple as a total count of failed logons broken down by
username.

A normalised successful logon event may be tagged as ‘access control’, ‘success’, or ‘action’
and have the username, source and destination fields extracted.

collector software

In chapter 2 the term ‘collector software’ is used to describe software that collects events
generated by applications or operating systems which in turn transmits the events to an
LM system or SIEM. Collector software normally does not generate events, although some
collector software may generate events based on activity taking place within applications.
OSSEC8, a Host Intrusion Detection System, is an example of a collector software that
forwards operating security events but also generates events – such as notifications that
critical files have been changed – based on changes occurring on the host operating system.

event specialists

The term ‘event specialist’ signifies an individual who has an interest in security events
in the context of the disciplines of LM or SIEM. Two roles, security analyst and SIEM
implementer, have been collapsed into this term where the distinction of the type of event
consumer is unimportant.

Security Event Analysis and SIEM implementation challenges are discussed in more detail
in the next chapter.

8OSSEC, http://www.ossec.net
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1.5 Document Structure

The remainder of this work contains four chapters that are structured as follows:

• Chapter 2 presents the foundations of this research. A more thorough discussion of
the background leading to this research is presented, as well as an introduction to
LSM that serves to establish the fundamentals needed to interpret the experimental
work and subsequent results.

• Chapter 3 presents more detail regarding the design of the experiments, the data
collected and analysed, as well as development undertaken to facilitate the execution
of the experiments. The chapter also contains section 3.4 in which the experiments
associated with the three selected use-cases are discussed in detail. An analysis
of the results from each use-case experiment can also be found at the end of each
use-case section.

• Chapter 4 reflects on the results presented in chapter 3. The discussion includes a
revisit of the successes achieved, the metrics selected to evaluate the results, as well
as an examination of the procedures used within the experiments.

• Chapter 5 contains the conclusions derived from the research. Research goals are
revisited and the work that was performed is reflected upon. Possible future research
that may be derived from this work is suggested.

The document concludes with an appendix containing a list of use-cases that were not
addressed within the context of this research.



Chapter 2

Literature Review

This chapter will review in greater detail the core concepts and source material upon
which this research is based. It consists of three distinct parts:

Section 2.1 of the Literature Review examines core concepts – events, event sources and
event collections – and the role they play in enabling the operational security processes
of an organisation.

Section 2.2 of the Literature Review deals with Security Event Analysis. In this sec-
tion closer attention is given to the operational security process, procedures followed by
security analysts and SIEM. It will also include a review of challenges related to event
normalisation, correlation and the running of functional large-scale security monitoring
systems.

Section 2.3 of the Literature Review focusses briefly on the Natural Language Processing
field where LSA and then Latent Semantic Mapping (LSM) made their original appear-
ances. This is followed by a more detailed introduction to LSM.

2.1 Security Events

Events are used to convey a message to the user or administrator regarding some state that
has arisen within the software about which the developer needs to make the administrator
or user aware.

12
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An event, for example, could simply convey the message that the software successfully
started, or an event may be generated by the operating system serving as a notification
that an application terminated abruptly.

Stated another way, an event is a type of record that is generated and possibly retained
on behalf of operating systems and applications for debugging, monitoring or auditing
purposes used by developers, administrators and other consumers of event data such as
Windows Security Events1 (Kent and Souppaya, 2006).

Most events have an associated timestamp. Effective analysis and response often depend
on the essential context that is created by analysis based on time. There is a substantial
difference between the two following observations: “We had a database failure and we
had a network failure” versus “We had a network failure; then we had a database failure”.
Although possibly falsely correlated in the second statement, an experienced analyst would
triage the multiple failures more effectively and investigate the network failures first during
an investigation, as this may have been the sole reason for the database failures. The
absence of the time-based correlation could result in the database team searching for
problems where no permanent issues may actually exist (Kent and Souppaya, 2006). Due
to this special property, log files are often classified as time-series data to differentiate
them from other types of normalised and structured data found in relational database
systems (Sorkin, 2009).

On modern operating systems, a great deal of attention is given to logging and auditing.
The event sources are often the primary means through which administrators troubleshoot
operational issues. Events provide invaluable feedback to developers regarding runtime
state or failure points within the code. Recent developments have led to the creation of
massively parallel data processing engines that enable real-time or near real-time analysis
of event-based data to enable business analytics, application performance management
and to provide operational insight to their infrastructure for companies that rely on in-
formation technology for conducting their day-to-day business (Borthakur et al., 2011).

Events contained in log files or event sources such as Microsoft Windows Event Log are the
principal mechanisms through which software relay audit and other security-related in-
formation back to security analysts and personnel involved in operational security. These
events relay both seemingly benign state changes (a possible indicator of a breach in
change management processes), and malicious activity (such as an unauthorised user

1Description of security events in Windows Vista and in Windows Server 2008, http://
support.microsoft.com/kb/947226
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attempting to alter or delete information in a database table). An entire industry has de-
veloped around this field, constructing tools and products that deal with these events and
facilitate real-time or near real-time correlation and response (Marty, 2011; Rowlingson,
2004).

The importance of these events is reflected by the care that goes into their collection. As
timestamps are provided, operating systems are carefully synchronised with time servers,
typically using NTP (Bagwill et al., 1995); events are regularly transported through secure
transport to dedicated hardware and software in a practice known as ‘Log Management’.
Log Management systems and SIEM systems often support the capability to cryptograph-
ically sign events or blocks of events and store them securely. This, combined with the
care taken during collection, enables the relevant events to be used as digital evidence
and serves as evidence in a legal context (Tarala, 2011).

Events are produced from a wide variety of event sources, and the storage of events
also differs according to available hardware, software and the use-case for which they are
being collected. What follows is a brief investigation of popular event sources; it should,
however, be noted that this list is by no means exhaustive, as events can be generated by
any software and be in any format.

The simplest event stores are ‘plain’ log files; most experienced administrators and de-
velopers can appreciate the utility presented by simple log files consisting of just text.
A wide variety of command-line tools exist to facilitate searching and manipulating the
event data. Examples of these tools on Unix are cat, sed, awk and grep. Text editors such
as vi2 or emacs3 are often used to facilitate easy navigation and search. One of the major
challenges with this approach, however, is that most of the tools do not rely on indexing
or other methods to provide search speed improvements and thus the user’s search time is
closely correlated to the size of the data set, or in other words, the tools might not scale
well if the data sets become too big.

Log files are often generated directly from code, but since its creation in the 1980s, Sys-
log (Koivunen, 2010, p. 12) has been the de-facto logging mechanism on Unix systems.
Syslog was a de-facto standard for many years but eventually turned into an Internet
Engineering Task Force Request for comment (IETF RFC). The current version of the
Syslog standard is RFC5424 (Syslog, 2012). Popular modern implementations of the
Syslog software are Syslog-NG4 and rsyslog5.

2Vim, http://www.vim.org
3GNU Emacs, http://www.gnu.org/software/emacs
4Syslog-NG, http://www.balabit.com/network-security/syslog-ng
5rsyslog, http://www.rsyslog.com
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It should be noted that apart from creating and managing log files on Unix or Linux host
by facilitating the capture and storage of events generated by software running locally
on those systems, Syslog is often deployed to facilitate the capture and storage of events
generated by other systems on the network. Originally, all Syslog event traffic was in the
form of Syslog protocol messages transmitted to a Syslog server accepting network traffic
on UDP port 514. Modern Syslog implementations also support TCP based transport as
well as Transport Layer Security (TLS). TCP plays a pivotal role in signalling to the event
source that the Syslog server may not be available or not accepting Syslog traffic due to
an error condition on the server. There exists no similar transport layer mechanism with
UDP. TLS is critical to ensure the confidentiality and integrity of Syslog traffic. Secure
Socket Layer (SSL) Certificates are also often used to authenticate event sources to the
Syslog server (Kent and Souppaya, 2006).

Syslog event sources often take the form of embedded systems such as network infrastruc-
ture devices. However, these firewalls, switches or routers often have very limited internal
storage and rely on a Syslog server for extended event storage capacity.

Simple Network Management Protocol (SNMP) is another legacy protocol that is often
used by embedded and other systems to send events to a centralised network management
console. SNMP version 3, the latest version of the protocol, is defined in IETF RFC’s
3411 to 3418 (SMNP, 2012). It should be noted that SNMP versions 1 and 2c are still very
popular and in widespread use. SNMP events are referred to as ‘traps’ as they are sent
by various network and infrastructure devices to a ‘trap’ server where they are collected
and stored.

On the Windows platform, the system standard event source is called Windows Event
Log6. Originally there were three standard log destinations: the Application, System and
Security logs. Modern versions of Windows have added additional log destinations to
accommodate specialised retention policies for events such as those related to Microsoft
Active Directory replication. The Windows Event Log is searched primarily through an
interface provided by the operating system, but events can also be accessed through APIs
provided by the operating system. Additionally, several third-party collector products
have been created to facilitate the collection and storage of Windows Event Log events in
Log Management systems and SIEMs. Snare7, one such product, collects Windows Event
Log information and transmits it to a Syslog server using the Syslog protocol.

Internally, Windows Event Log events are stored in a proprietary data store; when these
6Windows Event Log, http://msdn.microsoft.com/en-us/library/windows/desktop/aa385780.aspx
7Snare, http://www.intersectalliance.com
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events are collected and transmitted, the formats of the events are determined by the
collector software. As such, a standard Windows event may have several different formats
depending on the design decisions of the developers of the collector software (Karlzén,
2008).

Events collected from within database systems also share some of the characteristics of
Windows Event Logs in that the format of the event is often determined by the developer
of the relevant collector software (Nair, 2008). Events are often collected from internal au-
dit tables using a provided API; on most relational database management systems, access
to such tables is provided through some version of the Structured Query Language (SQL)
protocol. Several database vendors also provide software and capabilities to export such
events into files. Microsoft SQL Server provides several mechanisms for event collection:
internal audit tables, export through a proprietary ‘trace’ format or event through Win-
dows Event Log. Each of these mechanisms could provide events for the same information
with differing formats.

Mainframes and other legacy systems like the IBM iSeries provide further challenges in
that they may require specialised skills to enable collection of logs. Due to their heavy
use in financial institutions, the auditing and logging mechanisms on these platforms are
mature, often capable of very fine-grained event generation.

In modern system architectures, there could be many different so-called software layers.
At a high level these are often divided into three major sections: 1) the presentation
layer; 2) the middleware or application layer; and 3) the database or storage layer. Large
modern applications often have multiple software components at each of these layers,
connected by complex network architectures. A typical Internet banking application, for
example, may have tens or hundreds of web-servers serving as the primary user interface,
and a middleware layer consisting of multiple application servers which in turn interface
with identity stores, databases and even mainframes. Each piece of software in these
layers, and its corresponding network fabric, could produce tens or hundreds of events per
second. It is not uncommon for such an architecture to generate tens of gigabytes worth
of events per day (Fry, 2011).

Some or all of these events may be stored temporarily within log files and other stores
on the host operating systems, although mature deployments tend to limit such usage
and rather seek to centralise event collection on a Log Management infrastructure. This
centralisation allows for more flexibility when it comes to search, correlation and the
archiving of the data. Syslog is a popular choice for the centralisation of the network
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infrastructure events. File synchronisation and batch uploads via scripting are often
also brought to bear for a file-based strategy, although file-based strategies often fail to
scale when events are needed for real-time scenarios or operational monitoring. The files
are mainly retained for compliance and archive purposes with some use taking place to
facilitate troubleshooting and fault finding (Kent and Souppaya, 2006; Rowlingson, 2004).

Events can also be stored in traditional RDBMS, although this tends to require up-
front normalisation (Josephes, 2005). The advantages of this type of approach are that
data retrieval is often faster and that some indexing is also possible. This becomes very
important when log volumes are high. A typical scenario may involve the extraction of key
fields such as source and destination network address information, a strategy which works
well for mature organisations where workflow has been well-established and key fields
covering most reporting and search needs have already been identified. The strategy may
be referred to as a data reduction strategy, as the original event may be discarded and only
key fields get stored. A thorough understanding of the event source needs to accompany
such a strategy as unidentified eventtypes may be erroneously discarded. The advantage
of this strategy, though, is that with a well-designed database and mature workflow and
reporting requirements, the recall performance of such a system is unrivalled.

There are also specialised event stores like Splunk and other schema-less time-series
databases (Bitincka et al., 2010) such as Sumo Logic8 and OpenTSDB9. Within such
a store, the original text representation of an event is retained and indexed according
to time. Keyword-based indexing also contributes to measurable improvements in search
times. There are definite advantages to this strategy, such as the retention of the original
event text and also the search performance.

Other mechanisms exist, ranging from large-scale compute clusters storing events within
Hadoop Distributed File System (HDFS) and using Hadoop (Borthakur et al., 2011;
Jacob, 2012; Lämmel, 2008) to process it, through to hybrid solutions that combine file-
based, database-based or time-series database-based strategies.

There are a large number of devices, applications and operating systems that generate
events which are then collected and retained using various mechanisms as previously
described. The formats and content of these events depend on multiple factors including
the whim of the developer, the style guidelines developed by the software’s architects, the
nuances of the event source API or design decisions made by developers of event collector
software and the subsequent event stores.

8Sumo Logic, http://www.sumologic.com
9OpenTSDB, http://opentsdb.net
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Each component may introduce changes to the format of the event, and as mentioned
before, it is not uncommon for a single event to have multiple formats depending on the
collector software and storage. For example, most Syslog server implementations will
prepend any received event with a timestamp, date and other meta-data configured by
the Syslog administrator. In scenarios where Syslog information is forwarded from one
host to another, it is not uncommon to end up with an event that has multiple timestamps
and dates, with different timestamp and date formats.

This situation presents a major challenge to event specialists. For effective analysis and
accurate reporting, fields need to be reliably extracted from events; parsers can some-
times break when even simple changes are introduced in the syntactic composition of an
event (Karlzén, 2008; Swift, 2006). An event consumer can very easily be faced with tens
or hundreds of different event formats within any medium or large environment.

Efforts are underway to establish log format standards. Arcsight, for example, has a
standard called Common Event Format (CEF )10 that standardises security event formats
for collection in its line of products. The standard includes a common set of fields but
lacks a fully-fledged, publicly available taxonomy of words with which to describe different
eventtypes. CEF is designed to be a cross vendor log format, with the format specification
available upon request.

CEF has an established install base as a fundamental part of any Arcsight deployment,
but CEF has had very limited uptake in the field, although to be fair, the standard is still
maturing.

Another open standard that is under active development, sponsored by the MITRE Cor-
poration, is Common Event Expression (CEE)11. CEE describes the format to be used for
events and allows for extensibility on the part of software developers. It is accompanied
by other efforts such as the CEE Dictionary and Event Taxonomy (CDET)12, a taxonomy
that provides common words and phrases to assist in categorising events into eventtypes.

Efforts such as CEE, which is designed to facilitate identification, classification and cate-
gorisation, could make a massive contribution to the field as they could drastically reduce
the complexity and time needed for the normalisation and collection processes.

In the absence of standards-based events or without the availability of software to assist
in the process of normalisation, an event specialist may have no choice but to manually

10Arcsight: Common Event Format, http://www.arcsight.com/solutions/solutions-cef
11Common Event Expression, http://cee.mitre.org/about
12CEE Dictionary and Event Taxonomy, http://cee.mitre.org/language/event.html
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identify, classify, categorise and then normalise events. This will likely be an extremely
daunting tasks, even with only a handful of eventtypes to deal with, because the com-
plexity is not only affected by the formats and various types of events, it will be further
compounded by additional complexities encountered with the tools available to the indi-
vidual. SIEM implementers have no choice but to normalise all relevant events and assure
the availability of the necessary fields to the software to enable automation. This process
is somewhat eased by collectors and adaptors shipped with the products that should cover
the most common event sources (Shenk, 2010).

The syntactic structure of events can also vary widely. Syslog events are mostly contained
within a single line of a log file. The complete event normally needs to fit into a UDP
packet, thus limiting the size and possible content that such an event could contain. It
is not uncommon to encounter multi-line event formats, although these are rarely trans-
ported via or stored in Syslog. Log files from application middleware, such as events
generated by Java13, may sometimes mimic the Syslog format but typically also contain
large multi-line events with stack-trace and other debugging information. Event con-
sumers need to be cognisant of the fact that traditional Unix command-line-based strate-
gies may fail when dealing with these log sources. In production, these events tend to be
encapsulated within Extensible Markup Language (XML) or JavaScript Object Notation
(JSON) type messages or stored in proprietary structures within traditional RDBMS or
time-series data stores.

Event formats may also differ between various versions of software. Furthermore, software
vendors may not subscribe to a common event format across their product range; it is,
therefore, not uncommon for event formats to vary widely between different software
products from even a single vendor.

SIEM systems and other automated alerting and reporting engines are highly suscepti-
ble to false-negative reporting when software updates change the format of the events.
Report fields may no longer be captured as before, a big problem for any product that
follows a data reduction strategy and does not archive or retain the original events after
parsing. This susceptibility could create a desperate situation when critical updates to
infrastructure or operating system software need to be delayed for testing and patching
of the monitoring infrastructure to accommodate new event formats.

13Java Logging Technology, http://docs.oracle.com/javase/6/docs/technotes/guides/logging/
index.html
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03/11/10 01:12:01 PM

LogName=Security

SourceName=Security

EventCode=540

EventType=8

Type=Success Audit

ComputerName=SERVER2003DC02

User=SYSTEM

Sid=S-1-5-18

SidType=1

Category=2

CategoryString=Logon/Logoff

RecordNumber=699765

Message=Successful Network Logon:

User Name: SERVER2003DC02$

Domain: 2003DOMAIN

Logon ID: (0x0,0x2F0B5729)

Logon Type:3

Logon Process: Kerberos

Authentication Package: Kerberos

Workstation Name: 

Logon GUID: {815e01af-999a-9d76-97c5-4f724dc0583d}

Caller User Name: -

Caller Domain: -

Caller Logon ID: -

Caller Process ID: -

Transited Services: -

Source Network Address: 10.0.1.202

Source Port: 4660

Figure 2.1: Sample Splunk Logon Success Event
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PROD-MFS1.acmetech.com
MSWinEventLog
4 Security
233 Fri Sep 04 18:35:32 2009
540 Security
ANONYMOUS LOGON
Well Known Group
Success Audit
PROD-MFS1 Logon/Logoff

Successful Network Logon:     User Name:      Domain:      Logon 
ID: (0x0,0x10DB01F2)     Logon Type: 3     Logon Process: NtLmSsp      
Authentication Package: NTLM     Workstation Name: FCDC01     Logon GUID: -     
Caller User Name: -     Caller Domain: -     Caller Logon ID: -     Caller 
Process ID: -     Transited Services: -     Source Network Address: 10.1.1.42     
Source Port: 0    

204
Figure 2.2: Sample Snare Logon Success Event

Sep 18 11:08:35 ncorpnode1 EvntSLog: 
Fri Sep 18 11:08:35 2009
12231849 NCORPNODE1
Success Audit
540 Security
Security Logon/Logoff  
ACME\iversa Successful Network Logon:    User Name: iversa    Domain:  ACME    

Logon ID:  (0x0,0xFD8FB053)    Logon Type: 3    Logon Process: NtLmSsp     
Authentication Package: NTLM    Workstation Name: FINANCE108    Logon GUID: -    
Caller User Name: -    Caller Domain: -    Caller Logon ID: -    Caller Process 
ID: -    Transited Services: -    Source Network Address: 10.20.72.149    Source 
Port: 0  

Figure 2.3: Sample Monitorware Logon Success Event

Sep 18 04:02:10 acmescout1 ossec: Alert Level: 3; Rule: 5501 - Login session 
opened.; Location: (acmescout3) 10.20.4.123->/var/log/auth.log;  Sep 18 04:02:09 
acmescout3 su\[20178\]: pam_unix(su:session): session opened for user cactidat by 
(uid=0)

Figure 2.4: Sample OSSEC Logon Success Event
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Figures 2.1 to 2.4 show examples of different events of the same eventtype (a successful
logon). It is evident from these figures that the same information may be represented
in many different ways. The first three examples are for exactly the same eventtype,
540 (Microsoft, 2012), which indicates a successful logon to a Windows domain, as wit-
nessed by the strings “540 Security” in Monitorware14, Figure 2.3, and Snare, Figure 2.2,
as well as “EventCode=540” in Splunk, Figure 2.1. It can clearly be seen, however, that
the format of these events differs widely due to implementation differences on the side of
the collector software. An example of a non-Windows logon success event collected using
OSSEC is shown in Figure 2.4.

2.2 Security Event Analysis

Monitoring is one of the most critical aspects to operational security. In a world of zero-
day threats, an active understanding of a network’s characteristics and usage patterns is
critical; if accomplished, unknown threats can be detected through processes that enable
anomaly detection. Understanding how an IT infrastructure gets used, what is normal
and expected, is absolutely critical. Monitoring enables this type of real-world operational
understanding of an environment.

Monitoring can be achieved through many means:

Application performance monitoring is often critical to running large-scale service-oriented
architecture systems. Events can be gathered from within hypervisors hosting virtualised
environments – from deep packet inspection, application logs and many other sources –
and analysed in tools such as Splunk and CA APM15.

Infrastructure monitoring deals mainly with operating systems and networking devices
to ensure uptime and uninterrupted service. Events of this nature are often collected
using SNMP directly from operating systems through operating system self-reporting or
collector software installed on the systems. Popular systems include Microsoft SCOM16

and simpler tools such as MRTG17.
14Monitorware, http://www.monitorware.com/en
15CA Application Performance Management, http://www.ca.com/us/application-performance-

management.aspx
16System Center Operations Manager, http://www.microsoft.com/en-in/server-cloud/system-center/

operations-manager.aspx
17MRTG - The Multi Router Traffic Grapher, http://oss.oetiker.ch/mrtg
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Analytics is also possible through careful correlation of various applications and monitor-
ing of events (often enriched by business logic events generated specifically for the purpose
of conveying extra information to the analytics processes). Analytics enables businesses
not just to achieve insight into their infrastructure for the purposes of troubleshooting
and fault-finding or performance planning, but also to obtain real-time or near real-time
insight into the current state of their business. This is a very exciting capability upon
which executives and business managers rely heavily in environments where business is
primarily enabled through the use of IT infrastructure, such as with online retailers.

With analytics, events from a web server, enriched with data from an enterprise resource
planning (ERP)18 system such as SAP can show an executive in real-time what his cus-
tomers are purchasing or the most popular items available through the site over a specified
time period.

Events from these processes form part of a larger, effective operational security program.
Operational security may archive and store events generated by applications and middle-
ware for compliance purposes, or use the events in fraud investigations. Forensics rely
heavily on the events being available and trustworthy (Shenk, 2010).

Over and above these traditional use-cases, well-understood and accurately interpreted
events give unprecedented security insight for unknown threats. A sudden spike in CPU
utilisation on an otherwise idle machine may be an indicator of a breach or of a malware
infection.

A shift in transaction patterns may indicate a business logic exploit in progress. Hundreds
of small transactions from a wide geographic area targeting the same account, where in
the past transactions were centred around a limited geographical footprint, is one example
of such a pattern. This very specific type of detection is possible when events are enriched
with data such as geo-ip location (Chew et al., 2008; Hayden, 2010; Payne, 2006).

Data has become more valuable as the dependence on computerised commerce has in-
creased. Personally identifiable information is very sensitive and often protected by vari-
ous agreements and laws. Unless specifically monitoring for unauthorised or unanticipated
use of a database hosting such information, the only hint that it might have been copied
could be a sudden increase in egress network traffic from an unanticipated host. By
recording network utilisation, these kinds of traffic-based anomalies can be detected.

18See SAP HANA, http://www.sap.com/solutions/technology/in-memory-computing-platform/hana/
overview/index.epx
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Monitoring of system use and audit events may bring multiple best-practice or policy
violations to light. Best practice dictates that privileged accounts and service accounts be
monitored; privileged accounts, however, should never be used in production. Operation
security monitoring can discover events such as interactive logons using service accounts,
account sharing or logon with and use of privileged accounts.

One of the most basic monitoring scenarios, and one of the few types of reports that do
not require any event normalisation, is verifying the presence of events. If an event source
suddenly stops emitting events, one would not need excessive detail about the content of
the events to initiate troubleshooting. Certainly, a configuration change or system failure
may have caused this change. However, it is ironic to note that many organisations do
not have even this most basic monitoring capability due to logging and auditing not being
configured or enabled in the first place (Baker et al., 2012).

This leads us to the first and foremost challenge for operational security monitoring,
or for that matter, any monitoring or post-incident analysis. In order to be detected,
event generation needs to be enabled and events need to be collected and retained. It
may seem a trivial point, but as learned through practical experience, this frequently
turns out to be very challenging. First, multiple hurdles must be overcome, ranging
from convincing businesses or the relevant system owners to enable event generation, to
overcoming technical hurdles caused by the implementation or development of collector
software (Chuvakin et al., 2010).

Secondly, sensible centralisation and retention policies go hand-in-hand with event acqui-
sition. Security analysts may need to revert to highly specialised forensic software and
recovery methods in an attempt to piece together the narrative of an incident, if it is at
all possible (Tarala, 2011).

Another simple type of analysis, accomplished without the need for normalisation, requires
the measurement of the volume of the events. If, for example, a web server generates web
access logs that are rotated and archived daily, and the normal size of such logs are
around 20MB log per day, a sudden spike to 200MB or more may direct an analyst or
administrator to more closely examine the content of such files. Line counts or event
counts may also prove to be useful (Baker et al., 2012).

With the use of scripting to handle multi-line events, or by focussing on single-line event
sources, an analyst may also use search tools such as grep or awk to search for certain
keywords or for particular patterns. Searching can be combined with event counts to
produce reports: for example, the number of events with the words ‘failed logon’ occurring
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in a log file for a single day. In order for such a report to be accurate, an analyst would need
to be familiar with and confident in the content log files. Without proper normalisation,
the items may quite easily be misclassified. For example, an attacker may attempt a logon
with the username ‘logon success’. Naive log search could very easily lead to misreporting
on an occurrence like this (Benton et al., 2006).

A more robust approach would be to search for certain patterns using tools that support
query constructs like regular expressions (Goyvaerts and Levithan, 2009). This definitely
requires some familiarity with the events within the event source and brushes up against
what would be required during the normalisation process.

Where experience or familiarity with an event source is lacking, an analyst or implementer
would need access to robust product documentation, although this may not be available
in great detail for all products’ logging and auditing mechanisms. It should also be noted
that what is written does not always reflect the true composition of events. Windows
Event Log is an excellent example of a well-documented standard, at least with regards to
the System and Security logs, where implementation details within the collector software
may still produce unforeseen problems with the normalisation process.

In most instances, however, an event specialist needs to revert to normalisation to make
sense of information captured in events.

It may be the case that an analyst or implementer is dealing with an event source that
is common, well-understood and stable for some period of time. For example, before
Microsoft Windows 2008, when dealing with Windows NT 2000 and 2003 based systems,
an analyst could rely on searching for event code 528 and 540 to monitor successful logon
events on Windows systems. In such an environment, the probability that commercially
off-the-shelf software exists to assist in the normalisation of these events would be rela-
tively high. This software would be in the form of adaptors, plug-ins or add-ons for SIEM
or Log Management systems or other parsing software. There was, however, a period
after the release of Windows Vista and the introduction of the event with event code 4624
that such software may have produced false positives19.

It must be underscored that there is truly no substitute for experience, training and access
to complete up-to-date documentation when dealing with normalisation. In the example
above, an analyst without up-to-date knowledge of Windows Event Logs could very well

19Description of security events in Windows Vista and in Windows Server 2008, http://
support.microsoft.com/kb/947226
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have missed the new event code and not accounted for successful logons from Windows
Vista, Windows Server 2008 and upwards (Chuvakin, 2010).

A worthwhile and sometimes essential first step in the normalisation process is timestamp
recognition. Timestamps come in multiple formats and may or may not include millisec-
ond accuracy, time-zone information, the year that the event was generated as well as
a slew of other pertinent information. Time truly brings event information to life, as
can be witnessed in Figure 2.5, allowing for correlation between different event sources
and enabling the narrative of an incident to be reconstructed. A timeline, for instance,
might clearly illustrate the effect on an outgoing email queue when a network link went
down (Stearley et al., 2010).
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Figure 2.5: Time Series Visualisation

After successfully handling timestamp information, an analyst may need to extract certain
fields from an event. Common fields in a security context would include items such as
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usernames, hostnames, source or destination IP addresses. Once extracted, an analyst
can create metrics such as the following: on average, users connect to the web fronted
10 times per day, while user Alice connected to the web fronted 200 times a minute for
a period of 20 minutes. This anomaly would definitely be a cause for investigation: Was
there a brute force attack using Alice’s account? Was there some business impact during
the period? Is Alice’s incident a red-herring or misconfiguration? Did something else
noteworthy or anomalous occur during the same period?

Field extraction may be achieved in several different ways depending on the platform
and the event specialist’s available tools. In a SIEM implementation scenario, the SIEM
implementer is normally constrained by the framework provided by the SIEM software.
While Regular Expressions (Goyvaerts and Levithan, 2009) named fields are often used,
custom query languages may also be developed for use of the products. The complexity
of the extraction process has a large impact on the implementation complexity of SIEM:
if specialised programming skills are needed, each new eventtype for each event source
may require real effort to normalise (Secmon, 2012). In a data reduction scenario, such
as when loading fields into a RDBMS or into an SIEM powered by an RDBMS, it may be
necessary to expend extra time and effort to ensure all possible iterations of eventtypes
within an event source are covered to not accidentally discard data that may be required
later.

Mar 31 23:48:20 mx dovecot: imap-login: Login: user=<dxadmin>, method=PLAIN, 
rip=192.168.2.10, lip=192.168.1.10, TLS

[field_extraction]
regex = (?P<timestamp>\w{3}\s\d{2}\s\d{2}:\d{2}:\d{2})[^=]
+=\<(?P<username>[^\>]+)\>(?:[^=]+=){2}(?P<src_ip>(\d{1,3}
\.){3}\d{1,3}),\slip=(?P<dest_ip>(\d{1,3}\.){3}\d{1,3}),
\s(?P<type>\w{3}){0,1}

Figure 2.6: Example Field Extraction Using Regular Expressions

When dealing with log-file based events or a time-series data store where the original event
text is retained, an event specialist may only need to extract a handful of fields relevant
to the current metric under investigation. This greatly reduces the potential workload:
as all fields do not have to be catered for, additional fields may be brought to bear at
a later stage and used against the stored original events. This drastically reduces the
implementation time for such systems, but the risk still exists that not all relevant events
were normalised to cover for all variations of an eventtype in an event source (Splunk,
2012).
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The challenge of normalisation is increased drastically at scale. A handful of events may
easily be normalised as illustrated, for example, in Figure 2.6. This regular expression
would result in the fields described in Table 2.1.

Table 2.1: Field Extraction Results

Field Value

timestamp Mar 31 23:48:20

username dxadmin

src_ip 192.168.2.10

dest_ip 192.168.1.10

type TLS

To extract destination address and username information from a Dovecot IMAP address,
in the example extracted as the fields username and dest_ip, may require relatively
little effort from an analyst. However, what if an update to the software introduces new
event variation to the ecosystem? Or even more probable, what if the analyst is in a
heterogeneous environment with multiple operating systems and applications, and the
task at hand is to extract username and destination fields from all events of the eventtype
successful logon, regardless of event source?

2.2.1 Incident Response

What follows is a brief look at some of the actions a security analyst may follow when
doing incident response, provided in order to illustrate the manual process that an event
specialist may need to follow and to explore how key technologies affect workflow. These
examples focus on searching and interrogating available events and do not deal with
ancillary processes to incident investigation such as proper handling of digital evidence.
The reader is referred to (Cichonski et al., 2012; Federal Communications Commission,
2002) for more detail on the larger process.

The following approaches are also product or technology agnostic and represent strategies
rather than step-by-step technical guides. We assume that the analyst is experienced and
knows the eventtypes and event sources that are targeted.

To start, an analyst may do ad-hoc searching of known keywords in the space. For
example, when dealing with successful logon events, an analyst may search for words such
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as ‘logon’, ‘login’, ‘connected’, ‘success’, ‘accepted’, ‘granted’, and ‘allowed’. There is
certainly a definite risk that the sought after events may not contain these words, and
also that the set of events available to the analyst may not be representative of all the
variations of this eventtype.

Blacklists may also be deployed to eliminate events from search results that are true
negatives. Several constructs exist in query languages to assist an analyst; for example a
query such as ‘NOT failure’ may present the analyst with a result set containing a smaller
set of events that need to be processed, having eliminated any events that definitely may
be excluded.

Once keyword search and blacklists have reduced the number of possible events, manual
inspection and iteration may be required. An analyst may manually iterate through
the available events if time and set size allows; however, it is not uncommon on large
production systems to still have hundreds, thousands or possibly even millions of events
to inspect.

Visualisation is another incredibly powerful tool that an analyst may use. In the absence
of exact knowledge of the content or structure of events, a pattern within in the data may
reveal itself and assist the analyst in further minimising the possible search set, such as
looking only at events within the same time range as a sudden spike in volume in the
remote access server log events. For example, in Figure 2.5 the sudden spike in volume
on the Sunday may indicate that an attack took place.

Regular Expressions may also be brought to bear. If, for example, an analyst recognises
that most logon events have some form of “user Alice logged on successfully” or “access
denied for user Alice”, a regular expression (regex) pattern may help refine the search.

In the face of very large volumes of events and the resultant need to search multiple years’
worth of application data, an analyst may have no choice but rely on sampling of the data,
guided by experience and skill. It may not be practical or possible to inspect all candidate
event data; sampling, driven by visualisation, will likely be the preferred strategy.

An analyst may also refer to other professionals, to the administrators of the system or
to product documentation to obtain additional information regarding eventtypes for an
event source.

Careful documentation should be created and maintained as understanding of the event
source in question develops. Outliers and anomalies may reveal themselves during an
analysis and will need to be accounted for.
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If an environment is properly monitored and patterns associated with its systems well un-
derstood, unusual behaviour may readily be identified, tremendously assisting in reducing
the search set size with which the analysts must contend.

Lastly, using tools and products to assist in the identification of well-known eventtypes al-
lows an analyst to leverage off the domain knowledge and experience of other professionals
and developers, vastly improving the potential quality of the results.

2.2.2 SIEM

Security Information and Event Management (SIEM) systems such as HP Arcsight20,
McAfee NitroSecurity21 and RSA Envision22 attempt to accomplish event aggregation and
correlation on a large scale. A typical SIEM deployment consists of a centralised data store
and correlation engine. The correlation engine analyses events in real-time or near real-
time to detect security events. The central console may also support extensive alerting,
reporting and monitoring functions. A SIEM deployment relies heavily on normalisation
of events to extract the correct fields upon which the correlation engine depend (Shenk,
2010).

In the SANS paper “Implementing the 20 Critical Controls with Security Information and
Event Management (SIEM) Systems” (Tarala, 2011), the need for SIEM to act as the
central aggregator and ‘brain’ for event information is highlighted. SIEM is a valuable
enabler of the 20 Critical Controls.

It is not uncommon to find several instances of collector software, possibly even ranging
into the hundreds to thousands, to facilitate the extraction and secure transport of events
from event sources to the SIEM data store and correlation engine. Event normalisation can
take place either at the central SIEM through the use of add-ons or plug-ins that transform
the data and store it within a database, or as run-time components that transform raw
event text into normalised data during reporting or correlation processing. Events may
also be transformed into the necessary normalised forms through the collector software.

Automated systems such as SIEM rely on accurate normalisation and classification of all
target log files and events. These systems rely on a large investment of analyst, imple-
menter and developer time to reliably classify and normalise the feeding event sources.

20HP Arcsight Security Intelligence, http://www.hpenterprisesecurity.com/products/hp-arcsight-
security-intelligence

21McAfee NitroSecurity, http://www.nitrosecurity.com
22RSA Envision, http://www.emc.com/security/rsa-envision.htm



31

Event Collector

Security 
Events

Disk

Event Receiver

Reports
Dashboards

SIEM

AlertsSearch

Data Store

Normalise Data

Correlate 
Events

Analyse 
Events

Figure 2.7: Diagram of a typical SIEM architecture



2.2. SECURITY EVENT ANALYSIS 32

The system becomes vulnerable to change as rules and expressions that were employed
to classify or normalise events might not work on new versions of software or on events
within the data that were not available to developers at the time of initial normalisation
process (Secmon, 2012; Splunk, 2012).

SIEM is a growing market: more and more businesses and enterprises are realising the
value of visibility and the benefits of monitoring when it comes to operational security.
SIEM can provide powerful insight not previously possible, especially in a large environ-
ment. Though SIEM may potentially be superseded by products that cater for more
than just security reporting as more and more businesses realise the value of event data,
SIEM capabilities can be integrated into larger systems that provide real-time operational
intelligence based on event data from a wide variety of sources.

SIEM implementers face most of the same challenges that security analysts face when
dealing with new or unknown types of data, except that there is a solid chance that
the normalisation burden would be greatly increased for implementers. For effective
automated correlation, alerting and reporting to take place, a SIEM needs to have all
essential events normalised; this burden is lightened slightly by the availability of bundled
plug-ins or add-ons. Large enterprises, however, are quite likely to have bespoke and
legacy applications for which no off-the-shelf normalisation may be available (Karlzén,
2008).

As has been discussed, working with event data at scale could prove to be very challenging
for event specialists. Experience, skill and tools help to reduce this burden, but the
process is still arduous and lengthy. Although this research is conducted from the slightly
restricted and restrained point of view of event specialists, the above challenges are not
unique to those professions. In fact, challenges apply to network operations dealing with
heterogeneous networking environments, operational support and software development.
It is the case, though, that this research focusses on professions that are likely to encounter
these challenges with a higher frequency.

Regardless of role or responsibility, the questions that the individual faces still remain:
Did we identify, classify, categorise and normalise all relevant events from all the in-scope
event sources? Is the reporting and alerting accurate? Do they take the complete picture
into account?

An extremely thorough process may still be thwarted by outlying events not being avail-
able in sample data during development, during implementation or during analysis. Soft-
ware updates on event sources or collector software may bring unforeseen changes in
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formats or introduce new kinds of events. Small scale or tightly controlled and regulated
environments may achieve success, but the unfortunate reality is that people are limited
in their capacity to deal with these challenges at scale.

2.3 Latent Semantic Mapping

As stated previously in the introduction, this research is an investigation of the viability of
LSM in assisting event specialists with many of the challenges they face when dealing with
events, in particular when dealing with classification, identification and disambiguation
of different events from each other.

Latent Semantic Mapping (LSM), as with Latent Semantic Analysis (LSA), operates
under the assumption that there is some form of underlying latent semantic structure to
a meaningful collection of data and that this structure is partially obscured by word order
and word choices of the author (Bellegarda, 2008). Through the application of LSM, we
can derive a vector representation of concepts and data which allow us to associate data
based on this underlying structure.

Before LSM is investigated in more detail, a quick look at natural language processing and
information retrieval is in order; this will be followed by a closer exploration of how the
LSM paradigm operates; followed by background information assisting in the formulation
of the experiments and refinement of the required approach for this research. The chapter
is concluded with a discussion about similar technologies and bodies of work.

2.3.1 What is NLP

Natural Language Processing (NLP) is a well-established field in computer science. With
origins that can be traced back to the 1950s, NLP deals largely with the study of computer
interaction with human language. Latent Semantic Analysis, the precursor to Latent
Semantic Mapping, forms part of the NLP field. Techniques and insights gleaned from
NLP are highly relevant to this research.

One such technique is the process of Stemming which is in widespread use with information
retrieval systems. Readers may already have encountered stemming in their day-to-day
use of search engines such as Google as it is a process through which similar words
are correlated together. For example, a search for ‘bicycle’ may also search for web
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pages containing words such as ‘bicycles’, ‘bicycles’ or ‘cycle’. This increases the recall
performance of search engines by allowing for a degree of freedom with the construction
of search queries (Uyar, 2009).

Another NLP process that is within the scope of the research is the use of stop words.
Stop word processes are often used to eliminate common words such as ‘a’, ‘the’ or ‘that’
from a text to avoid these common words from impacting statistically on analysis. This
is particularly relevant with paradigms such as LSA as common words might attract an
undue statistical bias away from the semantic content that conveys the meaning of the
document (Manning et al., 2008).

2.3.2 What is LSM

Latent Semantic Analysis (LSA) (Landauer et al., 1998), also referred to as Latent Se-
mantic Indexing(LSI) (Deerwester et al., 1990), is a well-understood technique used in
Information Retrieval (IR) to improve the recall performance of large IR systems, and
in particular to deal with the problem arising from users searching for or attempting to
retrieve data based on conceptual content. Traditional search relies on a close match be-
tween the search phrase and the document content. LSA operates under the assumption
that there is an underlying latent semantic structure to the document and that word order
or word choice may obscure some of that structure (Bellegarda, 2008).

Algorithms are brought to bear on the content of the document, resulting in a parameter
description of the content and documents that allow application of different retrieval
techniques which may be more flexible or still be accurate enough when users are not
familiar with the exact word structure or style of the documents for which they are
searching.

LSA tends to deal with the underlying semantic characteristics of a composition and is
not meant to deal with the syntactic nature of such a composition; it has been very
successful in word clustering, document or topic clustering (Gotoh and Renals, 1997),
language modelling (Bellegarda, 1998), automated call routing and automatic inference
for spoken interface control (Bellegarda, 2005a, 2008).

Latent Semantic Mapping is a change of terminology from LSA to underline the use of
its general properties and not just the IR applications. Jerome R. Bellegarda describes it
best in his monograph Latent Semantic Mapping - Principles & Applications (Bellegarda,
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2008). LSM is “a data-driven framework for modelling globally meaningful relationships
implicit in large volumes of data”. It is an extension of LSA to more than just information
retrieval dealing with large corpuses of documents: the monograph deals with the defini-
tion of LSM, its relationship to LSA, and it contains examples of the use of technology in
the field.

For further scrutiny of the implementation details of the LSM algorithms, the reader
is referred to this monograph. The text covers the mathematical underpinnings of the
paradigm in great detail and goes to great length to provide examples and case-studies of
its use. This research examines the implementation and use details around the paradigm
and as such will not be exploring the performance characteristics or the inner workings
of the paradigm.

There are three main characteristics of LSM that are of interest for the purposes of this
thesis:

1. the capability that enables discrete entities (words and documents) to be mapped
onto a multi-dimensional, continuous, vector space (also referred to as an n-dimensional
space or n-space);

2. the fact that this mapping is determined by global correlation patterns; and

3. that dimensionality reduction is an integral part of the process (Bellegarda, 2008).

LSM should thus allow the mapping of units within events such as words, tokens and
punctuation and their related compositions - the events themselves - into a continuous
vector space that captures correlation patterns between these events’ reduced dimension-
ality form. This vector-space is referred to as the LSM ‘map’; after training an LSM ‘map’
with the relevant or appropriate training data, several clustering and closeness-measure
techniques are available to evaluate new collections against existing maps or further ma-
nipulate the maps in order to refine the data and produce associations.

It is important to note that LSM relates very superficially to the true semantic nature of
the compositions as it is predominantly paradigm-based on the co-occurrences of words
within compositions. As such, there is no true understanding or attempt to understand
actual natural language, even though the paradigm is extensively used within Natural
Language Processing.
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Figure 2.8: Latent Semantic Mapping

Classification

Let there be three compositions - A, B and C - as shown in Table 2.2

Table 2.2: Simple Compositions

Composition Units

A The cat and the hat
B Little boy blue
C Green eggs and ham

The LSM API or CLI is used to generate the co-occurrence matrix through a process
also referred to as ‘term frequency, inverse document frequency’ (tf-idf) (Salton et al.,
1975, p. 615). The process involves counting the occurrences of words in the individual
compositions versus the number of times that the words appear in the entire training
set. This results in a ‘bag of words’ in which the word order is ignored (Bellegarda,
2005a, p. 3) (Tang et al., 2003, p. 176) and creates a vector space model of the terms
and compositions. The major disadvantage of relying solely on tf-idf is that the vectors
resulting from the computation when dealing with large scale data sets are very sparse,
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extremely large and unrelated to one another. A representation can be seen in Table 2.3.

Singular Value Decomposition (SVD) (Jolliffe, 2002) is then used to reduce the co-occurrence
matrix to a set of dense singular vectors (Bellegarda, 2008, p.11) which retains most of the
properties of the original co-occurrence matrix and which is a very efficient representation
of the original matrix in terms of size and reduced dimensionality (Landauer and Dumais,
1997).

Table 2.3: Basic LSM Map

1 2 3 Words

2 0 0 the
1 0 0 cat
1 0 1 and
1 0 0 hat
0 1 0 little
0 1 0 boy
0 1 0 blue
0 0 1 green
0 0 1 eggs
0 0 1 ham

After SVD, the compositions are now associated with three distinct categories - 1, 2 and
3 - and the map is ready for evaluation. Another major advantage of SVD is that it en-
ables closeness measures on the singular vectors that represent the units and compositions
within the n-space. Within the LSM paradigm, as illustrated in Figure 2.8, concepts rep-
resented by these vectors that are related will measure closer to one another as compared
to unrelated concepts (Bellegarda, 2008, p. 12). The correlation between closeness in LSM
space and meaningful relatedness within documents has been verified extensively (Berry
et al., 1995)

A distance measure of composition C in Table 2.2, “Green eggs and ham”, against the map
represented in Table 2.3, results in the LSM distance measures represented in Table 2.4.

Table 2.4: LSM Distance Measure 1

Category Distance

3 0.493705
1 0.259421
2 0.246874

As can be seen in Table 2.4, composition C is closest to category 3 which correlates
with the training data. The distance measure of the LSM API and command-line output
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results in a floating point value that represents the distance of n-space to the semantic
anchor of the category. The semantic anchor is the n-space representation of the category
and is sometimes used in place of LSM category. With the LSM API, the floating point
values for the different categories add up to 1.0, with a larger number showing that the
evaluation data is closer to the category.

Of interest in this example is the fact that composition C is not cleanly associated with
category 3 although it is close enough for us to draw that conclusion. This is due to the
co-occurrence of the word ‘and’ in both composition A and composition C.

Clustering

An LSM vector space model (n-space) can contain several dimensions and multiple se-
mantic anchors. Anchors themselves can also be clustered together within the n-space to
reduce the number of categories (Bellegarda et al., 1996; Bellegarda, 2005b; Wicĳowski
and Ziółko, 2010). A simple illustration of such a reduction is shown in Figure 2.9
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Figure 2.9: LSM Clustering

Let there be the same compositions A, B and C as shown in Table 2.2
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Compositions are repeatedly added to an LSM map in random fashion, resulting in a map
that contains the following matrix after 12 iterations as described in Table 2.5

Table 2.5: Larger LSM Map

1 2 3 4 5 6 7 8 9 10 11 12 Words

2 0 0 0 0 0 2 0 2 0 0 2 the
1 0 0 0 0 0 1 0 1 0 0 1 cat
1 0 1 1 0 1 1 1 1 0 0 1 and
1 0 0 0 0 0 1 0 1 0 0 1 hat
0 1 0 0 1 0 0 0 0 1 1 0 little
0 1 0 0 1 0 0 0 0 1 1 0 boy
0 1 0 0 1 0 0 0 0 1 1 0 blue
0 0 1 1 0 1 0 1 0 0 0 0 green
0 0 1 1 0 1 0 1 0 0 0 0 eggs
0 0 1 1 0 1 0 1 0 0 0 0 ham

K-means clustering is then used to reduce the number of categories, resulting in a map
closely resembling the original map described in Table 2.6

Table 2.6: Clustered LSM Map

1 2 3 Words

8 0 0 the
4 0 0 cat
4 0 4 and
4 0 0 hat
0 4 0 little
0 4 0 boy
0 4 0 blue
0 0 4 green
0 0 4 eggs
0 0 4 ham

A distance measure of composition C against this map results in Table 2.7
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Table 2.7: LSM Distance Measure 2

Category Distance

3 0.493705
1 0.259421
2 0.246874

Of interest in this example is how LSM was used to reduce the number of categories in
the map; this capability allows for identification of similar compositions without any prior
knowledge of the content of such compositions.

For this research, compositions will be events and units will be comprised of words, tokens
and punctuation that comprise those events. The capabilities in this chapter, such as
LSM distance measurements and clustering, will be used in the use-cases that follow in
chapter 3.

LSM Examples

LSM has seen many tests and uses applied to a wide variety of different domains; however,
due to an acute absence of previous study pertaining to information security, this research
sought to explore this particular vital area. LSA has had its roots in information retrieval,
with extensive research having been conducted regarding its use in the IR field (Deerwester
et al., 1990). In the domain of information retrieval, the units are words and compositions
are documents.

With its use in text summarisation (Gong and Liu, 2001), the units that are dealt with are
again words, but this time the compositions are sentences. The LSM evaluation attempts
to suggest a most relevant sentence, or group of sentences, to best represent a text.

In Bellegarda (2005b) and Bellegarda (2008), various use-cases for LSM have been brought
to light. In the use-case of junk email filtering, the units are words and symbols and the
compositions are emails. LSM is shown to perform on par with alternative solutions used
within the same domain such as Bayesian classification and other strategies. In the junk
email filtering use-case, two LSM categories are used: ‘spam’ and ‘not spam’. LSM has
been successfully applied as a part of the anti-spam measures within Mac OS X Mail.app
for almost a decade. Additionally, LSM is used in conjunction with other technologies
and is not relied upon solely for classification, although it certainly plays a valuable role.
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The same texts describe the use-cases of speech recognition where the units are letter
n-tuples and the compositions are words, as well as speech synthesis where the units are
pitch periods and the compositions are time-slices.

Within a paradigm named LaSSI, or Latent Semantic Structure Indexing, the concepts are
used to rank molecules according to similarity. The units for this use-case are descriptors
and the compositions are molecules, leading to the construction of a descriptor-molecule
matrix (Hull et al., 2001).

In Kazakow (2008), LSM is used on structured data to do ontology matching; the concepts
are applied to structure data within databases, using values within object for units and
the objects in the ontology as the compositions.

These use-cases illustrate LSM use in domains that are far removed from the original IR
environment for which LSA was developed, underscoring the amending of terminology
from LSA to LSM.

LSA plays a role in word sense disambiguation (Van de Cruys and Apidianaki, 2011)
where a discussion follows concerning how to relate words and topics within a corpus of
documents to derive at a ‘word sense’ for terms. This approach assists with disambiguation
of terms to relevant topics (i.e. ‘chip’ in computer science versus ‘chip’ in baking/chocolate
chip).

Although beyond the scope of this research, Tang et al. (2003) discusses the ability to
scale Latent Semantic Indexing (LSI) to multiple nodes to enable powerful peer-to-peer
(P2P) searching capabilities. The work is potentially applicable to future research where
LSM scaling characteristics within large-scale log management or SIEM systems are in-
vestigated. One of the critical challenges with both log management and SIEM is that
they often have to deal with massive volumes. The paper has good information related
to system scalability, divisibility of the search problem, alternative strategies for informa-
tion retrieval and information on updating the indexes, a major challenge as it impacts
continual training of the LSM maps.

Finally, in Lobo and de Matos (2010), the researchers use LSM to organise and tag a
corpus of fairy tale stories. The approach is language independent and automatically
defines the number of clusters (mapped to topics and tags) within the set of documents.
Within that research, the units are again words and the compositions are documents.
This serves as a good introduction to the use of clustering and LSM.
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Caveats

As a part of the Literature Review, some of the material highlighted potential issues when
dealing with LSM, in particular, that LSM could be sensitive to composition style and
polysemy (Bellegarda, 2005b), with polysemy meaning that units may convey multiple
meanings. In the event of natural language, polysemy means that compositions that
are closely related may be hard to classify as not within the same category. This is
witnessed in Use-Case 1 section 3.5 and can be partially managed through the use of
pre-processing (Bellegarda, 2008; Kazakow, 2008).

The ‘bag of units’ approach also results in retrieval issues where word order or unit order
are important. This is prevalent in domains such as user interface control using spoken
language (Bellegarda and Silverman, 2003) and is discussed in (Bellegarda, 2008, p. 41).
The introduction of bi-grams and tri-grams assist in capturing more local context in the
creation of LSM maps. Bi-grams are used throughout this research and are discussed in
more detail in section 3.5.

For discussion in this research, SVD is also an offline-only process. This means that
continuous updating of the vector space is not possible at present; this, however, does not
affect the use-cases in the research and therefore was not explored further.

For this research, a great deal of attention was given to pre-processing as a part of the
work and is discussed in more detail in subsection 3.3.4. Pre-processing is used as a
measure to offset the effects of polysemy and the impact that style mismatch can have
between training and evaluation data (Bellegarda, 2008). Careful training data selection
and preparation plus pre-processing is used widely with LSA and LSM (Bellegarda et al.,
2003; Deerwester et al., 1990; Kazakow, 2008; Landauer et al., 1998).

Common pre-processing strategies include the use of stop words (Lobo and de Matos,
2010; Manning et al., 2008; Wu, 2011), stemming (Deerwester et al., 1990; Uyar, 2009;
Wu, 2011) and lexicalisation. Stop words and stemming were used in this research. Lexi-
calisation, a process whereby names are treated as single words (‘Stephan Buys’ becomes
‘StephanBuys’, ‘Rhodes University’ becomes ‘RhodesUniversity’) (Wu, 2011), was not
used in this research, as it presupposes a familiarity with the domain of the training data.
Wherever possible, tokenisation was used as a substitute to generalise text and number
sequences such as IP addresses.

It must be kept in mind that LSM is data driven (Bellegarda, 2005b, p. 79). The impact
of the training data, its style and phenomena such as polysemy could have a substantial
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impact on the quality of results and were thus continually brought into consideration
for this research. Training data selection needs to be approached carefully (Bellegarda,
2005a) and as far as possible, be representative of the full breadth of the domain, as
balanced as possible in each category and of sufficient volume.

LSM and LSA are almost always implemented as a component of a larger strategy (Bel-
legarda, 2008; Deerwester et al., 1990). This work follows those recommendations as can
be seen in chapter 3.

2.4 Summary

This chapter introduced Security Event Analysis and Latent Semantic Mapping in more
detail. A discussion regarding the importance of Security Event Analysis commenced in
thechapter 1. Within this chapter, the narrative presented a more detailed discussion of
the fundamental building block of this research: the event. The discussion then examined
the role that security events play in enabling operational security practice and event
analysis, concluding in their role and use when operational security practice is automated
in the form of technologies such as SIEM. Finally, a high-level introduction to Latent
Semantic Mapping, its fundamental features and concepts, as well as established successes
in practice, was then provided.



Chapter 3

Experimental Design and Execution

Chapter 3 deals with the details related to the design of the experiments as well their
execution and an analysis of their results.

The chapter starts with section 3.1, an introduction to the approach that was followed
during experimentation, as well as the limitations that applied in the context of this
research.

Section 3.2 relates the procedures followed to obtain the data needed for the experiments,
the challenges that were faced during data collection as well as details of the eventual
data selected for use within the three use-cases that were examined.

Section 3.3 contains details related to the initial exploration of the paradigm which in-
cluded the use of off-the-shelf components but eventually lead to the development of more
sophisticated software. During this process, important insights were also achieved with
regards to the application of the LSM paradigm to events and this is given additional
attention in the section.

Sections 3.5 to 3.7 contains the experiments for each of the addressed use-cases. Each
use-case section discusses the design of the experiments, the details of the execution of
the experiments, the findings that were anticipated from the experiments as well as the
results that were obtained from the experiments. Each use-case section ends with a brief
discussion of its experimental results.

44
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3.1 Approach

For this research, three experiments were conducted in order to test whether or not LSM
could provide a valuable contribution to the efforts of event specialists as a part of the
suite of tools that are available in the areas of log management and SIEM, as well as for
incident response or forensic analysis.

Three use-cases, each representative of activities faced with challenges for event specialists,
were investigated and several experiments were conducted to test the utility of LSM within
these use-cases.

The experiments and their variations were not meant to be an exhaustive analysis of the
use of LSM but rather an exploration of the technical implementation details. These
experiments were meant to be an exploration of the possible use-cases for the use of LSM
within the realm of log management and SIEM; specifically, how LSM could be applied
by an analyst or operator working with the before-mentioned systems. The research,
therefore, did not deal with other aspects of LSM such as the performance characteristics
of the paradigm.

The experiments aimed to exercise LSM with sufficient training and evaluation data, but
these were scaled down as compared to vast large enterprise log management practices.
The software developed for this research was created specifically to facilitate the experi-
ments, not designed to be robust and scalable for integration into large log management
practices.

LSM will be evaluated for its usability when facing the challenges of identification, clas-
sification and disambiguation, challenges covered in the use-cases found in section 3.5 to
section 3.7.

3.2 Data Description

This research considers the challenges faced by event specialists when having to deal with
challenges such as classification, identification and disambiguation of events. In section 2.1
there is a detailed discussion of the need for this event data and the role that it plays
in security operations. The research attempted to determine if LSM was a practical
and useful tool when dealing with log management and SIEM implementation challenges
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as well as the challenges faced during forensic investigations and incident response. To
conduct the research and obtain verifiable results, sufficient event data needed to be
collected.

Data collection for this research proved to be surprisingly challenging: as opposed to
finding packet data12, logs are often treated as sensitive information. From cases such as
in 2006 (Shen, 2012) when the company AOL Inc. came under wide criticism and legal
scrutiny for publicly releasing a large collection of search log data, public disclosure of log
data has become something that large entities shun and avoid (Hafner, 2006). Over and
above the relevant scarcity of publicly available log sample data, the research depended on
obtaining a large variety of log eventtypes. It would not have been sufficient to attempt
the research against a small collection of source and eventtypes as the consequent variety
in log structure and format would have limited the real-world applicability of the research.

Several institutions and individuals within the information security industry were con-
tacted in an effort to obtain logs, but a concern about the potentially sensitive nature
of information within the events led to several abrupt dead ends. In the end, some log
samples were secured from other sample sources, logs from a public network, and some
logs from systems at the university. More details regarding the logs follow later in this
section.

For the purposes of the research, event data from multiple sources were required. Quantity
did not have a large impact on the experiments although sufficient quantities were needed
to allow for proper interpretation of results. This research falls within the domain of
information security research and as such, an attempt was made to collect security relevant
events and log files, and an attempt was made to obtain as many access control related
events as possible for the purposes of conducting the experiments related to Use-Case 1,
found in section 3.5.

Splunk was used as the event store for all event samples and log files collected for the
research. The total collection size within Splunk topped off at around 40,000,000 events.
It is an engine for IT data, which in itself does not generate any events but created a
time-series index of events that made searching and retrieval easy and facilitated the
export of events into the formats needed for the experiments. Splunk has great support
for multi-line events such as Windows Event Log events and alleviated the need for special
management of multi-line files.

1OpenPacket.org, https://www.openpacket.org
2The Cooperative Association for Internet Data Analysis, http://caida.org
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Splunk supports four types of file exports: raw file, comma separated value (CSV), JSON,
and XML. Raw file support would have required special handling of multi-line events
within the software developed for this research. Multi-line event encapsulation within
CSV is also extremely error prone, particularly if the events themselves also contain
commas.

JSON was selected as the preferred export format for training data as it is relatively
simple to parse; multiple C++ parser libraries exist and JSON serialises multi-line events
without the need for additional processing or handling. The software developed for the
research, named LSMPP (discussed in section 3.3), supported either JSON files, single
event per file (mostly prepared manually through copy-and-paste), or traditional single
event per line log files.

3.2.1 Data Collection

A collection of logs from Interop Las Vegas 20123 was provided by Mr. Michael Wilde
of Splunk Inc. Interop is a large multi-vendor conference featuring numerous technology
vendors plus many prospective customers and technology decision-makers. Interop, held
at least once a year for more than 20 years now, takes place in a variety of venues.
One of its main attractions is InteropNet, a temporary carrier-grade network created for
the duration of the conference to allow vendors to demonstrate their products in a live
environment and prove inter-operability with complementing technologies.

Splunk Inc. has been providing logging and search capability to InteropNet since 2005.
The data in the research dataset was captured during the period 4 May 2012 to 10 May
2012.

The data set – 262,262 events captured using the Syslog protocol – consists of single-
line events from multiple technologies. The exact details of the events, their generating
technologies or their structure are not known to the researcher, which makes it ideal for
use in use-cases that simulate the situation often faced by a post-incident or forensic log
analyst.

Bind DNS, Postfix MTA as well as Dovecot IMAP events were provided by Dr. Barry
Irwin, the researcher’s supervisor. Active Directory and Zenworks logs were provided by
Michael Irwin, an employee of Rhodes University.

3Interop Las Vegas, http://www.interop.com/lasvegas
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A wide variety of accessible log sample data was used to create data and examples for the
research which deals with log management and SIEM; the sample events included sources
such as F5, Cisco, Fortinet and many others.

Events were also generated on the researcher’s own infrastructure including events from
a host of services and software that can be found in the MacOS environment; as far as
possible, though, the events were limited to security and system related events.

3.2.2 Data Selection

The sample events were used to generate data sets for training of the LSM classifier as well
as evaluation using the LSM classifier. Where needed, special events were sought out for
training purposes or a random, reduced set of events were used where certain behaviours
of LSM needed testing. A discussion on these generated data sets follows in this section.

The research depended more on the variety of event compositions than on the quantity of
the events; thus, it was deemed sufficient when the larger collection of events was reduced
to allow for practical experimentation and evaluation to proceed.

More details related to the training data and evaluation data are provided within the
Use-Case Detail section in section 3.4.

3.3 Architecture and Processing

This research focusses on the practical use and potential value of LSM to security practi-
tioners such as event specialists. To enable the use-case experiments, an LSM processing
framework had to be established.

All evaluation and development was completed on the researcher’s Macbook Pro personal
computer running MacOS 10.7, later upgraded to MacOS 10.8. There was no choice of
platform as the LSM API and command-line interface (CLI) is implemented exclusively on
the MacOS platform. This research did not attempt to delve into the algorithmic nature of
the paradigm so alternative platforms and implementations were not investigated in depth.
The subsection that follows presents a closer look at the early experiments conducted as
a part of the research and the subsequent evolution of the processing model.
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3.3.1 Early Iterations

Initial experimentation was completed with the LSM CLI4. The LSM CLI allows for the
creation, clustering and evaluation of LSM maps, enabling researchers and developers to
become familiar with the paradigm, to enjoy full access to the range of LSM capabilities,
and to be provided with a reference platform when custom API- based code is developed.
The LSM CLI was used extensively at the start of the research but proved to be challenging
later when integration, pre-processing and analysis became important. However, later in
the research cycle, the LSM CLI proved invaluable in understanding and testing LSM
API code implementations and their results.

Early in the research, the value of being able to seamlessly load and pre-process training
and evaluation data was realised. It also became very apparent that an effective means
to link results back to the originating training and evaluation events would be necessary,
particularly with LSM maps created with pre-processed events. Early attempts were made
to integrate LSM CLI with Splunk, but the approach suffered from multiple issues at the
integration points. One major problem, for example, was the management and linking of
output data and temporary data. Each experiment run would result in more output files
and temporary data to manage, as well as increased data used within Splunk. Splunk
proved to be valuable when analysing initial results, but the approach was ultimately
abandoned.

Next, an investigation was made into possible alternatives to the MacOS LSM API and
CLI, with the evaluation of interesting projects such as Pattern5 and other Python-based
frameworks. These alternatives almost exclusively focussed on LSA, not LSM, but as
discussed in the Literature Review in subsection 2.3.2 there are no fundamental differences
between LSM and LSA; LSM mostly just extends the scope of possible uses of the LSA
paradigm. None of the investigated frameworks, however, offered the same performance
or completeness in functionality as the MacOS LSM API. This unfortunately implies
that, at least for now, this research can primarily be conducted only on a Macintosh
platform. However, there appears to be no impediment apart from time and effort –
and its associated costs – that would prevent the development of fast, comprehensive,
alternative implementations on other operating system platforms.

Development was started to enable use of an Objective-C based LSM classifier using the
LSM API. The bulk of the understanding of the problem domain was achieved using this

4lsm(1) Mac OS X Manual Page, http://developer.apple.com/library/mac/#documentation/Darwin/
Reference/ManPages/man1/lsm.1.html

5Pattern, http://www.clips.ua.ac.be/pages/pattern
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software. A memory resident approach to data management was adopted to allow for
easier management of results as well as to assure greater repeatability of experiment runs.
Due to the exploratory nature of the work, the source code became quite unmanageable
as its size increased. Ultimately, similarly to how the early CLI and Splunk integra-
tion attempts led to insight into the challenges of output and input management, the
Objective-C code brought insight to another major challenge with the evaluation of the
results: it became very apparent that more care would be needed in the design of the
data structures to better enable linking and analysis, in particular, the ability to link
evaluation strings, which are pre-processed, back to their original raw strings, as well as
the ability to efficiently and consistently analyse the events after processing (for example
the ability to sort, filter and display the relevant information to the user). It needs to be
noted that in most use-cases the evaluation event count exceeded 1000 and that manual
or iterative data analysis became challenging at that scale.

The final experiments were completed with the culmination of the software development
process; this final version of the LSM classifier and surrounding processing architecture
was named LSMPP. It took into account the lessons learnt from the CLI, Python plus
Splunk and Objective-C prototypes.

The project was developed using C++11 and Core Foundation API (C language). The
primary goal of the project was to allow for greater detail in analysis and correlation
capabilities while maintaining native speeds. One of the challenges encountered during
the experimentation was the correlation of the end-product of the training data and results
with the original training data in its raw form. The LSMPP project allowed us to establish
memory-based bindings between the training data, its pre-processed end-products and the
subsequent results from the LSM Core Foundation API.

The LSM Core Foundation C API (LSM API) is developed and maintained by Apple Inc.
A more in-depth treatment of the LSM API can be found in the discussion of Use-Case
1, section 3.5.

The software allows fine-grained control over the corpus of training data and how it is
processed with the LSM API. A detailed discussion of the software architecture follows
in subsection 3.3.2. The performance of the software also compares favourably with the
Objective-C implementation and has a massive speed advantage over the Python plus
Splunk as well as the CLI based approach.



3.3. ARCHITECTURE AND PROCESSING 51

3.3.2 Processing Model
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Figure 3.1: Standard Processing Model

The LSMPP software follows the processing architecture illustrated in Figure 3.1. The
first aspect of the architecture dealt with the handling of the training and evaluation data.

3.3.3 Training and Evaluation Corpuses

In this architecture, all training and evaluation data is kept memory resident to facilitate
linking and analysis. The data model is depicted in Figure 3.2 and highlights the most im-
portant capabilities: the ability to store the original, raw, event strings (raw_data) as well
as the post pre-processing variations of the events prepared for training (training_data),
its associated LSM category (lsm_category) and event variations for evaluation (evalua-
tion_data).

All event data was stored within a Collection class which could be traced back to the
original source file (Source) and the sourcetype of data in that collection (type), for
example “Windows Security Log” or “Dovecot IMAP”. All collections were associated with
a Corpus which provided a mechanism for the software to retrieve all Collection objects.

Due to the memory resident nature of the architecture, the size of the training and eval-
uation data sets is somewhat limited. This limitation, though, did not detract from the
utility of the experiments as the tests relied more on quality and type of training data as
opposed to the quantity thereof.
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Figure 3.2: Event Data Class Diagrams

3.3.4 Pre-processing

When a pre-processor is defined, all events are processed by a set of user-defined regular
expression substitutions. These regular expression substitutions can be combined in mul-
tiple fashions, but ultimately a strategy called the “AdvancedRegexStrategy” was used
which combined all of the regular expression substitutions into a single processing run, a
description of which can be found in subsection 3.5.2.

Lessons learnt in constructing the pre-processor became a valuable aspect of the research.
With LSM, the goal is to operate on the underlying latent semantic structure of a com-
position, an ‘event’. In the case of this research it turned out, however, that strategies
suitable for other natural language processing may not be applicable to compositions such
as events.

The use of stop words commonplace in natural language processing and other applications
of LSA and LSM can be seen in Iwata et al. (2008), Lobo and de Matos (2010) and
Puffinware (2010). Common stop words include articles and prepositions such as ‘the’,
‘a’, ‘an’, ‘about’, ‘with’, ‘from’ and many other regularly occurring words. Within natural
language processing makes intuitive sense that the word ‘the’ creates a superfluous link
between the two sentences: “the ball is the colour brown” and “the boy sat on the river
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Figure 3.3: Event Pre-processor

bank”. Naive implementations of LSA and LSM would associate these sentence based on
the co-occurrence of the word ‘the’ even though the sentences do not share any meaning.
With short sentences, the word frequency of ‘the’ in the total training set of this example
is relatively high.

The first versions of the pre-processor diligently stripped out articles, prepositions and
other regularly occurring words and patterns. However, this had little effect on the train-
ing and evaluation data as these particularly identified words occur relatively infrequently,
and thus results were poor.

More aggressive stopping was applied in an attempt to increase the quality of the results
– eliminating allnumber and punctuation as well as stop words. It was expected that the
English words and strings within an event would deliver sufficient latent semantic meaning,
but it had incredibly bad accuracy. Closer investigation revealed matches between IMAP
logon events illustrated in Figure 3.4 and Bind events illustrated in Figure 3.5. The events
were matching based on the co-occurrence of the word ‘imap’. In both cases, much of the
structure and meaning in the events were lost.

Stemming is a technique often deployed in information retrieval to convert words to their
root words, including the dropping of suffixes and using lookup tables. In the software
it would mean the conversion of words such as ‘failed’ and ‘failing’ to the word ‘fail’
and using only the word ‘fail’ during pre-processing. Stemming was a natural fit for the
experiments.
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Mar 31 23:48:20 mx dovecot: imap-login: Login: user=<dxadmin>, method=PLAIN, 
rip=192.168.2.10, lip=192.168.1.10, TLS
->
mx dovecot imap login Login use dxadmin method PLAIN
rip lip TLS

Figure 3.4: Dovecot IMAP Logon Event : Raw -> Processed

12-Aug-2010 03:59:49.170 queries: info: client 192.168.0.1#48433: query: 
imap.server.example IN A -
->
queries info client query imap server example IN A

Figure 3.5: Bind DNS Query Event : Raw -> Processed

To improve the quality of the results, an attempt was made to identify other regularly
occurring keywords and names; however, this process was abandoned due to the sheer
volume of events and the large variation of words and names. It was also deemed very
impractical for an event specialist as it necessitated extensive searching and data analysis
even before LSM could be brought to bear. Lexicalisation, as discussed in section 2.3 also
depends on the identification of frequently occurring terms and was abandoned in favour
of the analogous process of tokenisation through regular expression substitution that the
pre-processor used.

As the goal of the research is to identify whether or not there is a practical use for LSM
for security practitioners, extensive manual pre-processing was deemed to be a dead end.

Aggressive use of stop words plus number and symbol elimination also appeared to shorten
the events and lose an unreasonable amount of the underlying semantic meaning, as can
be seen in Figure 3.5.

3.3.5 Events are not normal documents

LSM research was interrupted at this stage and a closer look at the training data followed.
A closer examination of the problem the research determined to solve and a rethink of the
meaning of compositions in terms of the research led to the most valuable pre-processing
insight in the research.

It was realised that treating events as traditional documents was erroneous. Events, as
discussed in section 2.1, are machine data. Although it is largely unstructured, it is not
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natural language; event formats are limited and eventtypes within a sourcetype often
share structural elements such as punctuation with one another. The LSMPP software
specifically makes provision in its pre-processor to retain and tokenise as much of the
latent semantic structure of events as possible. Common patterns such as IP addresses and
FQDNs were tokenised instead of discarded and the end result was a closer representation
of the latent structure of the message, which in turn should have been better processed and
used by the LSM classifier. It can also be noted that all stop word lists were abandoned
but that stemming strategies were retained.

Mar 31 23:48:20 mx dovecot: imap-login: Login: user=<dxadmin>, method=PLAIN, 
rip=192.168.2.10, lip=192.168.1.10, TLS
->
dateToken mx dovecot COL suspectNameToken COL logon COL user EQ LT sbuys GT 
CM method EQ PLAIN CM rip EQ ip4Token CM lip EQ ip4Token CM TLS

Figure 3.6: Final Processing Strategy

An example of the results of this work can be seen in Figure 3.3. This “AdvancedRegexS-
trategy” was used for all use-case evaluations. A closer look at the post-processed event
shows that punctuation and timestamps now form a part of the latent semantic structure
of the event. It was reasoned that the sequence of words, as well as the unique composi-
tion of words and punctuation tokens, would provide a sufficient ‘fingerprint’ for LSM to
work more effectively.

3.3.6 LSM Processes

Figure 3.7 illustrates the structure of the LSM classifier, interaction with events and the
results. A detailed explanation of LSM API internals and their interaction within the
classifier is provided during the treatment of the first use-case in subsection 3.5.3.

The LSMPP LSM classifier seamlessly supports dimensionality settings, training and
evaluation mode switching, automatically linking the current training category back to
training events as well as creating a link between LSM results and the evaluated event.

Once an LSM map has been created, the classifier can also handle clustering when re-
quested by the user.
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Figure 3.7: LSM Classifier Internals
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3.3.7 Post-processing and Analysis

filterResultsByCategory()
filterResultsByScore()
sortFilteredResults()
displayResults()
displayDetailedResults()

filtered_events
events_for_analysis
event_counter

Analysis

Operations

associated_corpus_list
associated_lsm_classifier

Evaluation Container

11
provides data

Figure 3.8: Analysis Class

Finally, the LSMPP software deals with the analysis and display of the result data. The
analysis class responsible for this is depicted in Figure 3.8; it is used to filter, sort and
display the results. Filtering may include actions such as excluding results that are under
a certain LSM score, equating to less certainty in the context of the paradigm.

Additionally, summarisation and user output is handled by the analysis class: the output
is formatted for post-processing and analysis by 3rd party tools such as Excel. The final
analysis is done by the user based on the output of the LSMPP software.

3.4 Use-Case Detail

Identification, categorisation and disambiguation of event data, as discussed in the Lit-
erature Review, are some of the most prevalent challenges that event specialists face in
production environments. The quality of the event parsing has a large impact on the
efficacy of a log management system or SIEM, as well as the level of confidence that can
be bestowed upon reports and dashboards - often the only instrumentation available to
information security managers and business owners.

The use-cases that follow in this chapter are selected to test LSM in scenarios likely to
occur within a security monitoring practice or that practitioners and analysts are likely
to encounter when engaging in forensics and incident response.
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Table 3.1: Use-Case Index

Use-Case Test Location Deals With

1 Detect a Trained Eventtype section 3.5 Identification
2 Detect Multiple Sourcetypes from a Single

Stream
section 3.6 Classification

3 Detect Different Sourcetypes and Eventtypes
Using Clustering

section 3.7 Disambiguation

Table 3.1 shows the use-cases that are addressed in this research. These use-cases cover
the core functionality of LSM and can lead to many derivative use-cases. A listing of
derivative use-cases can be found in Appendix A, Table A.1.

3.5 Use-Case 1: Detect a Trained Eventtype

A common challenge faced by SIEM implementers is assuring that they have identified all
the possible variations of an eventtype occurring in the system. In order for correlation
rules, such as detecting brute-force logon attempts, to function properly, the SIEM system
needs to be made aware of all the relevant logon events. This may seem simple but in
practice it can often prove to be quite challenging.

The aim of this experiment was to see if LSM can assist the SIEM implementer in iden-
tifying allsuccessful logon events within the test data set.

To accomplish this goal, nineteen “logon success” events from different sourcetypes were
used to train the LSM classifier. These events were split into four distinct, randomly
selected groups and evaluated against a collection of 1000 test events. A successful run
would then return similar or closely related events.

In the first variation of this experiment, an attempt was made to train only successful logon
events and run all tests. Unfortunately, LSM does not allow for single-category evaluation
and this attempt was consequently unsuccessful. As discussed in subsection 2.3.2, the LSM
API provides a weighted list of categories with associated scores. The scores from the
results always sum to 1.0 and as such, single category maps always return a 1.0 weighted
result score to the provided evaluation data.

In the second variation of the experiment, a collection of counter samples was provided
to the training phase. This counter sample collection was created by randomly selecting
log events that were not successful logon events.
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3.5.1 Design

The process followed in this use-case is described in diagram Figure 3.9. The diagram
illustrates the distinct processing phases which were followed, discussed in more detail in
the section that follows. This section opens with a description of the Training Events and
Counter Samples followed by a detailed description of the pre-processing phase and its use
of the “AdvancedRegexStrategy” pre-processing mechanism. The chapter then continues
with a detailed look at the steps followed for training and preparing the LSM classifier.
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Figure 3.9: Use-Case 1 High Level Process Flowchart

The first processing step was the preparation of the relevant Training Events and Counter
Samples. The training data collection contained nineteen logon events from different
sources that were split into four different sets as shown in Table 3.2. This data was
collected and prepared manually into individual files based on searches conducted on the
data obtained for the research. Search terms such as ‘logon’, ‘login’ and ‘authenticate’
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led to relevant results after which the training data was saved to the files described in the
sample data table. An example of one of the events can be seen in Figure 3.10.

Sep 18 09:09:01 ncorpnode1 EvntSLog: Fri Sep 18 09:09:01 2009
12221022 NCORPNODE1 Success Audit 528 Security Security 
Logon/Logoff ACME\dxadmin 
Successful Logon:    
User Name: dxadmin 
Domain:  ACME    Logon ID:(0x0,0xFCB92BD2)    Logon Type: 10    
Logon Process: User32 Authentication Package: Negotiate    
Workstation Name: NCORPNODE1    
Logon GUID: {a4ec27ab-7aa5-8349-d751-7d987ee58a7f}    
Caller User Name: NCORPNODE1$   Caller Domain: ACME    
Caller Logon ID: (0x0,0x3E7)    Caller Process ID: 25436    
Transited Services: -    
Source Network Address: 192.168.0.1 Source Port: 52491 

Figure 3.10: 528_ntsyslog_logon_success.txt

Counter samples were prepared by skimming through the research data set and selecting
nineteen events that were not successful logon events.

The first phase is illustrated in diagram Figure 3.9 The training data events were loaded
into memory after which pre-processing was applied to every loaded event. A detailed
description of the pre-processing steps follows.
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Table 3.2: Use-Case 1 Training Events

Set Filename Description

1 4624_logon_winsec_success.txt A successful logon event to a Windows 2008
domain controller using the Kerberos
protocol. The event code for this event is 4624

528_ntsyslog_logon_success.txt A successful logon event from a Windows NT
domain controller. The event code for this
event is 528

528_winsec_auth_success.txt A successful logon event from a Windows 2000
or 2003 domain controller. The event code for
this event is 528

540_ntsyslog_logon_success.txt A successful network logon event from
Windows NT. The event code for this event is
540

dovecot_logon_success.txt A successful login to a Dovecot IMAP server
2 f5_firepass_syslog.txt A logon event from an F5 device collected

using syslog
fortinet_auth_success.txt A successful login event to a Fortinet device

for the establishedment of a SSL VPN tunnel
kerberos_auth_success_winsec.txt A successful network logon event from a

Windows 2003 domain controller. The event
code for this event is 540

mac_osx_syspref_auth_success.txt A successful authorisation for a system
process on a Mac OSX system

ossec_dovecot_auth_success.txt A successful Dovecot IMAP login event
collected using OSSEC

3 ossec_pam_unix_logon_success.txt A successful login to a Unix system collected
using OSSEC

ossec_syslog_ftp_success.txt A successful login to a FTP server collected
using OSSEC

pam_auth_su_seccess.txt An event reflecting successful authentication
using PAM

interactive_osx_auth_success.txt A successful login to a SSH session
postgresql_success.txt An reflecting successful authorisation of a

connection to a PostgreSQL server
4 screensharing_auth_success.txt A successful logon to a screen sharing session

on a Mac OSX system
ssh_key_success_logon.txt A successful logon to ssh using public and

private keys
su_to_root_successfull.txt Successful su by a user
S540_ntsyslog_logon_success.txt A successful logon to Windows NT Domain

collected using Snare
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3.5.2 The Advanced Regex Strategy

During the research, various pre-processing strategies were considered as discussed in
section 3.3. For the purpose of the final experimental evaluations, a strategy named
“AdvancedRegexStrategy” was used as it is a strategy involving more than 30 individ-
ual regular expression substitutions to produce a tokenised, semantically representative
version of the event data. The strategy is illustrated in Figure 3.12.

The process initiates with a raw event of which dovecot_logon_success.txt (Figure 3.11)
is an example. The event proceeds through several regular expression substitutions il-
lustrated in the diagram in Figure 3.12 to produce the event illustrated in Figure 3.13.
Each step in the diagram Figure 3.12 illustrates the starting state of the event as well as
its resulting substitutions, highlighted in bold text, after regular expression substitutions
were applied.

Mar 31 23:48:20 mx dovecot: imap-login: Login: user=<dxadmin>, method=PLAIN, 
rip=192.168.2.10, lip=192.168.1.10, TLS

Figure 3.11: dovecot_logon_success.txt

This first set of regular expressions, “Date and Time Pre-processing” in Figure 3.12, dealt
with timestamps. Extensive effort was spent on identifying a wide variety of date and
time formats prevalent in the training and evaluation data. Although not guaranteed to
be exhaustive, the resulting regular expressions were able to successfully substitute all
date and time strings in the data that were identified. All detected timestamps were
replaced with dateToken tokens.

Examples of the various timestamp formats are shown in Table 3.3.

The step “IP Address Pre-processing” involved removing all detected IP addresses in the
event and substituting an ipv4Token token.

The step “Other Pre-processing” included functionality to substitute email addresses, urls,
fully qualified domain names, Microsoft Windows SIDs, numbers and common synonyms.
Synonyms include the substitution off all occurrences of the word login with logon in order
for the LSM classifier to only deal with the word ‘logon’. Words such as ‘successful’ and
‘succeed’ were substituted with ‘success’.

The reader can witness a false positive match in the second to last phase of the pre-
processor where the string ‘imap-login’ gets replaced with a suspectNameToken token. A
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Date and Time 
Preprocess

Mar 31 23:48:20 mx dovecot: imap-
login: Login: user=<dxadmin>, 
method=PLAIN, rip=192.168.2.10, 
lip=192.168.1.10, TLS

dateToken mx dovecot: imap-login: 
Login: user=<dxadmin>, 
method=PLAIN, rip=192.168.2.10, 
lip=192.168.1.10, TLS

IP Address 
Preprocess

dateToken mx dovecot: imap-login: 
Login: user=<dxadmin>, 
method=PLAIN, rip=ipv4Token, 
lip=ipv4Token, TLS

dateToken mx dovecot: imap-login: 
Login: user=<dxadmin>, 
method=PLAIN, rip=ipv4Token, 
lip=ipv4Token, TLS

IP Address 
Preprocess

Other 
Preprocessing

Symbol 
Preprocessing

dateToken mx dovecot COL 
suspectNameToken COL logon COL user 
EQ LT sbuys GT CM method EQ PLAIN 
CM rip EQ ip4Token CM lip EQ 
ip4Token CM TLS

Name 
Preprocessing

dateToken mx dovecot: 
suspectNameToken: logon: 
user=<dxadmin>, method=PLAIN, 
rip=ipv4Token, lip=ipv4Token, TLS

Figure 3.12: AdvancedRegexStrategy

dateToken mx dovecot COL suspectNameToken COL logon COL user EQ LT sbuys GT 
CM method EQ PLAIN CM rip EQ ip4Token CM lip EQ ip4Token CM TLS

Figure 3.13: Preprocessed Event
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Table 3.3: Timestamp Formats

Timestamp Source

Feb 28 15:56:24 Syslog

date=2009–10–29 time=12:26:09 Fortigate

Mon_Jun__1_18:10:01_PDT_2009 Unidentified

2009–06–01 17:44:15.453 Unidentified

[06/10/2012 22:19:13.051] ZenWorks

Fri Sep 18 09:09:01 2009 Windows

regular expression substitution was introduced to detect logon and machine names of the
format ‘john-workstation’; a decision was made to proceed with the evaluation regardless
of this error as it was deemed un-noteworthy in terms of significant semantic difference
to the data for this use-case.

3.5.3 LSM Classifier

All pre-processed training and counter sample data events were loaded into memory and
then passed to the LSM classifier. All Training Events were routed to category 1 of the
LSM Map and all Counter samples were routed to category 2.

The LSM Classifier internal workflow is illustrated in Figure 3.14. The section that follows
guides the reader through the process.

During the map creation phase, the developer can set up to three “LSM Map Option
Flags” in order to control the settings of the LSM map that would be created. These flags
determine whether or not the map should generate bi-grams or tri-grams and whether or
not the contents of the map should be hashed. Hashing is used for maps such as the LSM
map in the Mac OSX unsolicited email filtering service in order to hide the contents of
the map from casual observers at it may contain potentially offensive words that regularly
occur in unsolicited email.

For the purposes of this use-case and for the research in general, it was appropriate to
instruct the classifier to construct bi-grams. As this use-case is dealing with the “logon
success” eventtype, bi-grams are illustrated in Table 3.4. Tri-grams are analogous to
bi-grams and consist of a similar grouping, but consisting of three as opposed to two
words. Tri-grams are illustrated in Table 3.5 and were not used in the final experiments



65

LS
M

 T
ra

in
in

g
LS

M
 E

va
lu

at
io

n

LSMResultCreate

Evaluation Text

LSMResultRef

LSMMapCompile

LSMMapCreate

LSMMapStartTraining

LSM Map 
Option Flags

LSMMapAddCategory

LSMMapAddText

Training Text

Repeat
Repeat

LSM Map

LSMMapSetProperties

LSM Map 
Dimentionality

Repeat

Figure 3.14: LSM Classifier Internals



3.5. USE-CASE 1: DETECT A TRAINED EVENTTYPE 66

of the research as the results obtained from tri-gram-based training did not appear to
substantially affect the results during early experimentation. Furthermore, the results
obtained from bi-gram training were sufficient to meet the goals of the research.

Table 3.4: Bi-grams

Preprocessed Event Bi-Grams

User root logon success user:root root:logon logon:success
Audit Success Event logon failed for user root audit:success success:event event:logon

logon:failed . . .

Table 3.5: Tri-grams

Preprocessed Event Tri-Grams

User root logon success user:root:logon root:logon:success
logon:success

Audit Success Event logon failed for user root audit:success:event success:event:logon
event:logon:failed . . .

As discussed in section 3.3, events are treated as special types of documents, whereas with
natural language processing the ‘bag of words’ model may suffice for many use-cases. Log
events are more sensitive to word order and thus make it important to disambiguate
between the bi-grams “logon:success” and “logon:failed”.

After setting the appropriate flags, the LSM map is created using the LSMMapCreate()
API call. The map is then explicitly set to “LSM Map Dimensionality” of 200, as illus-
trated in LSM Classifier Internals (Figure 3.14), using the LSMMapSetProperties() call.
This increases the compilation performance and is sufficient when dealing with words
mainly from the English dictionary (Kim et al., 2003). Choosing the correct dimension-
ality is a topic that warrants its own research and thus is noted in the conclusions of this
research as possible future research to assist in further refinements of the LSM classifi-
cation performance. Sufficient accuracy was achieved using the chosen dimensionality to
support the conclusions within the research.

The LSM classifier operates in two states as mandated by the API: the training and the
evaluation states. After map creation, the classifier is set to the training state using the
API call LSMStartTraining().

Before any training data can be added to the LSM classifier, a category for that data needs
to be created; for this use-case, an initial category was created for all of the training data
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using the LSMMapAddCategory() call. Categories are internally denoted as integer values
starting at 1.

After the category is created, the classifier can accept training data. The pre-processed
training data gets added to the classifier at this stage; for this particular use-case, this
resulted in between four to nineteen calls to LSMMapAddText(), depending on the training
data set being evaluated.

LSMMapAddCategory() is then called to create category 2, after which the pre-processed
counter sample data is added to the classifier. The diagram shown in Figure 3.14 illustrates
that the above LSMMapAddCategory() and LSMMapAddText() calls may be repeated
multiple times as needed.

The process concludes with a call to LSMMapCompile() which initiates SVD of the sparse
matrix of the training data and results in an LSM map which can be saved to disk and
which is now in the evaluation state.

3.5.4 LSM Evaluation

A CategoryPreprocess

Regex 
Strategy

Start 
Evaluation

End 
Evaluation

Discard 
Event

Display
Event

2

1

Figure 3.15: LSM Evaluation Phase

The evaluation phase is depicted in more detail in Figure 3.15. During the evaluation
phase, all of the evaluation data gets loaded and pre-processed with the “AdvancedRegexS-
trategy” pre-processor as with the training data.

During this phase, the LSM classifier needs to have been set to its evaluation state using
the call LSMMapCompile(). This call is essential and could result in “out of state” errors
in the code if not set appropriately.
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The code then loops through each of the evaluation events and a call to LSMResultCre-
ate() then results in the creation of an LSMResultsRef object which is returned from the
function. The result object is queried for its associated category using the LSMResult-
GetCategory() call.

All events that report a closest match to category 1 are then displayed along with their
original raw content, and the associated LSM score is obtained through a call to LSMRe-
sultGetScore().

3.5.5 Execution Details

Five distinct evaluation runs were programmed and executed, runs which were meant to
test the following when training with a certain set of events:

• that the same kinds of events would be returned in kind, or

• that additional logon success events not in the training set would be returned.

This enabled the research to test if a SIEM implementer can train an LSM classifier with
certain kinds of eventtypes and have LSM return similar events, as well as events of the
same eventtype that were not included in the training data. In theory, this should have
been possible due to the co-occurrence of words such as ‘success’ and ‘logon’ in a wide
variety of ‘logon success’ events.

For this use-case, a dimensionality of 200 and bi-gram creation was chosen for all generated
LSM maps. The same set of counter samples was used for all five evaluation runs.

A training set of 1000 randomly selected events was saved into a file and used for all of
the evaluation runs; additionally, a Dovecot Logon similar in structure to Figure 3.11 was
manually added to line 100 of the test set for verification purposes. Each evaluation run
should at least have returned this event.

3.5.6 Anticipated Findings

It was anticipated that LSM would perform well with this use-case as it is analogous
to the unsolicited email filtering use-case, but it was understood up-front that certain
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properties of events could affect the outcome of the experiment. The major concern was
the relative brevity of events when compared to most email; also, there was a concern
over the availability of sufficient training samples.

3.5.7 Results

Table 3.6: Number of Results

Set Count

1 13
2 127
3 133
4 237
Combined 157

Table 3.6 summarises the results of all of the evaluation runs. As can be seen, the
number of results varied drastically depending on the events included in the training
data. The results were the events from the evaluation data that matched category 1 and
were displayed to the user.

Results for Set 1

The results of the evaluation against the first set of data is shown in Table 3.7; as discussed,
only results from category 1 are displayed, events were shortened to 120 characters and
relevant words were highlighted.

When trained with the first set of training events, Set 1 in Table 3.2 the test event “Dovecot
Login” (no. 1) as well as two additional kinds of logon-related events were returned. Of
the two logon eventtypes, only one event (no. 2) was of the “logon success” eventtype.
Events 4 to 7 were all of eventtype “logon failure” and had a similar structure, after which
various other eventtypes were flagged as being in category 1. It can be seen that the
related LSM score, which is the distance measure of the evaluation data to the semantic
anchor of category 1 in the LSM n-dimensional space, decreases steadily as the result
quality decreases.

Of particular interest in this set was that only thirteen results from 1000 events in the
evaluation data were returned, and that, other than the “Dovecot Login” seeded event, all
the results were Microsoft Event Log events. This reflects the fact that Set 1 Table 3.2
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Table 3.7: Set 1 Results Summary

no. score event

1 0.654984 Mar 31 23:48:20 mx dovecot: imap-login: Login: user=<sbuys>,
method=PLAIN, rip=192.168.0.1, lip=192.168.0.1, TLS

2 0.650625 Audit Success,2012/06/07
12:25:28PM,Microsoft-Windows-Security-Auditing,4624,Logon,"An
account was successfully logged. . .

4 0.641888 Audit Success,2012/06/07 12:30:55
PM,Microsoft-Windows-Security-Auditing,4634,Logoff,"An account was
logged off. Subject. . .

6 0.641888 Audit Success,2012/06/07 12:18:25
PM,Microsoft-Windows-Security-Auditing,4634,Logoff,"An account was
logged off. Subject. . .

7 0.639554 . . . ,4634,Logoff,"An account was logged off. Subject: Security ID:
DOMAIN\username Account Name: username Ac. . .

8 0.585295 . . . Auditing,5447,Other Policy Change Events,"A Windows Filtering
Platform filter has been changed. Subject: Security . . .

9 0.571769 Warning,2012/05/24 08:05:24
AM,Microsoft-Windows-Security-Licensing-SLC,12321,None,Token-based
Activation failed.

10 0.567427 . . . Auditing,5447,Other Policy Change Events,"A Windows Filtering
Platform filter has been changed. Subject: Security. . .

13 0.538610 . . . Auditing,4932,Directory Service Replication,"Synchronization of a
replica of an Active Directory naming context has . . .
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also contained four Microsoft Event log training samples. All of the “logon failure” events
were of event code 4634 (An account was logged off6).The the difference of LSM scores
for these events reflects that events 4 to 6 were SYSTEM user logoffs, whereas event 7
was a domain user logoff.

It was encouraging that the logon events all received the highest LSM scores and that
there was a clear correlation between the drop-off in relevancy of the results and the
related LSM scores. The lowest ranking was a Microsoft Active Directory Replication
event and was only related to the training data due to the structure that Windows Event
Log events share, such as often repeated words (Audit Success, Microsoft, etc).

Results for Set 2

The results for the second set of training events were reflected in Table 3.8. As with
the previous results, the table contains a selection of relevant results. Events that were
discussed were highlighted and all events were truncated where necessary.

The training data for Set 2 consisted of events from F5 firepass, Fortinet, Windows Event
Log, Mac OSX as well as a Dovecot Auth Success event, this time in the form of an
OSSEC event as reflected in Set 2 in Table 3.2.

The number of results returned from this training set’s evaluation, 127, differs drastically
from the thirteen results returned for Set 1 as reflected in Table 3.8. Additionally, if the
criteria for this use-case are relaxed from “logon success” events to just “logon” events,
then this evaluation is a major success with only 6 of the 127 (5%) events being false
positives. The false positive results are all ranked lower than the “logon” events when the
results are sorted according to LSM score.

As with Set 1, this illustrated the ability of LSM to provide helpful insights into the
evaluation data with relatively little effort.

In Set 2, many variations of logon failure events are from a common source, Secure Shell
(ssh). Event 110 and 123 illustrate the difference in event structure when a user exists
versus when a user does not exist on a target system. This information is valuable when
detecting brute-force user list attacks versus brute-force password cracking attacks.

6Description of security events in Windows Vista and in Windows Server 2008, http://
support.microsoft.com/kb/947226
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Table 3.8: Set 2 Results Summary

no. score event

1 0.646625 Mar 31 23:48:20 mx dovecot: imap-login: Login: user=<sbuys>,
method=PLAIN, rip=192.168.0.1, lip=192.168.0.1, TLS

84 0.596312 Apr 17 15:28:39 acmefileserver sshd[7734]: Invalid user teacher from
192.168.0.1

91 0.593993 Audit Success,2012/06/07 12:30:55
PM,Microsoft-Windows-Security-Auditing,4634,Logoff,"An account was
logged off. . .

94 0.583235 Audit Success,2012/06/07 12:21:37
PM,Microsoft-Windows-Security-Auditing,4624,Logon,"An account was
successfully logged on. . .

95 0.581767 Warning,2012/05/24 08:05:24
AM,Microsoft-Windows-Security-Licensing-SLC,12321,None,Token-based
Activation failed.

102 0.571452 Apr 17 12:17:01 acmefileserver CRON[3535]: pam_unix(cron:session):
session opened for user root by (uid=0)

104 0.570035 . . . Auditing,5447,Other Policy Change Events,"A Windows Filtering
Platform filter has been changed. Subject: Security. . .

106 0.562977 . . . Auditing,4932,Directory Service Replication,"Synchronization of a
replica of an Active Directory naming context has begun.

107 0.561928 Apr 13 19:24:02 acmepayroll sshd[14139]: pam_unix(sshd:auth):
authentication failure; logname= uid=0 euid=0 tty=ssh ruser=
rhost=DOMAIN user=root**

110 0.559026 Jun 4 14:27:27 dryder sshd[67006]: error: PAM: authentication error for
root from 192.168.0.1

119 0.536631 Apr 14 15:16:52 acmepayroll sshd[10007]: pam_unix(sshd:auth):
authentication failure; logname= uid=0 euid=0 tty=ssh ruser=
rhost=192.168.0.1

123 0.530100 Jun 4 14:42:35 kelvin sshd[56167]: error: PAM: authentication error for
illegal user super from 192.168.0.1

124 0.526152 Apr 17 06:44:45 acmefileserver sshd[31656]: Failed password for invalid
user update from 192.168.0.1 port 58175 ssh2

127 0.515225 Apr 12 12:27:30 acmepayroll sudo: root : TTY=pts/0 ;
PWD=/etc/apache2/sites-enabled ; USER=root ;
COMMAND=/usr/bin/vim convergence_wsgi
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Additionally, messages 110, 119, 123 and 124 are all variations of the same eventtype
(“logon failure”) that differ in structure and wording. Compare the use of “illegal user”
in event 123 versus the use of “invalid user” in event 123. Of importance to a SIEM
implementer here is that extra care needs to be taken to assure that sufficient coverage
of all “logon failure” events are achieved. In order to illustrate, compare the regular
expressions in table Table 3.9.

Table 3.9: Regular Expressions

Label Regular Expression Line Original Event Username

A authentica-
tion\sfailure;.+user=([ˆ\s]+)\s

107 Apr 13 19:24:02 acmepayroll
sshd[14139]:
pam_unix(sshd:auth):
authentication failure;
logname= uid=0 euid=0 tty=ssh
ruser= rhost=DOMAIN
user=root

root

B authentica-
tion\serror\sfor\s([ˆ\s]+)

110 Jun 4 14:27:27 dryder
sshd[67006]: error: PAM:
authentication error for root
from 192.168.0.1

root

C authentica-
tion\sfailure;.+ruser=([ˆ\s]+)\s

119 Apr 14 15:16:52 acmepayroll
sshd[10007]:
pam_unix(sshd:auth):
authentication failure;
logname= uid=0 euid=0 tty=ssh
ruser= rhost=192.168.0.1

-

D illegal\suser\s([ˆ\s]+) 123 Jun 4 14:42:35 kelvin sshd[56167]:
error: PAM: authentication
error for illegal user super from
192.168.0.1

super

E invalid\suser\s([ˆ\s]+) 124 Apr 17 06:44:45 acmefileserver
sshd[31656]: Failed password for
invalid user update from
192.168.0.1 port 58175 ssh2

update

In the event of the use of a correlation engine that employs regular expression matching,
the SIEM implementer would have to define the five patterns defined in Table 3.9 to cover
the five variations of “logon failure” events for the sourcetype “ssh” that we detected with
the evaluation data used in the use-case. This clearly illustrates one significant challenge
faced as well as the beneficial usefulness of LSM within this domain.

When comparing the four variations, only the events in row A, B, C and D from Table 3.9
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contain the word ‘authentication’; the event in row E uses the term ‘failed password’.
None of the events contains the words ‘logon’ or ‘login’. Only A, D and E contain the
word ‘user’. A naive implementation trying to capture usernames may try and match any
string following the word ‘user’; that would, however, fail for events B and C as it would
be susceptible to errors if attackers were to inject the word ‘user’ into the username field.
For example, a match with event B may look like “error for user from”; a naive regular
expression match would then detect the username for this user as the word ‘from’.

The results from this set of training events are encouraging and have already led to several
insights that the SIEM implementer may easily have missed.

Results for Set 3

Table 3.10: Set 3 Results Summary

no. score event

1 0.653261 Apr 17 12:17:01 acmefileserver CRON[3535]: pam_unix(cron:session):
session opened for user root by (uid=0)

. . .

103 0.638141 Apr 17 15:32:36 acmefileserver sshd[10077]: pam_unix(sshd:auth): check
pass; user unknown

. . .

133 0.515131 Apr 12 12:27:30 acmepayroll sudo: root : TTY=pts/0 ;
PWD=/etc/apache2/sites-enabled ; USER=root ;
COMMAND=/usr/bin/vim convergence_wsgi

The training data for Set 3 contained events collected using OSSEC as well as some more
traditional ssh and PAM-based authentication success messages as shown in Set 3 in
Table 3.2. The results for this set are dominated by ssh “logon failure” events, with only
two logon success events.

An exciting find for this set of evaluations is event 133 which captured a successful ‘sudo’
command. This is a clear illustration of the ability of LSM to detect event variations
that did not exist in the training data; as a matter of fact, there are no ‘sudo’ events
in any of the four training sets. By investigating the event structure as produced by
the pre-processor, the most likely reason that event 133 appeared in the results is that
it contained the sequence “user EQ” which resulted in the bi-gram “user:EQ” and also
appeared in the prostgresql_success.txt training data that was included in this training
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run. The associated score for this match is 0.515131 which implies, when compared to the
strongest match event 1, 0.653261, that it was a relatively weak match and could easily
have been missed had any filtering on strength of the matches been in place.

A new variation of ssh logon failure events is also brought to light with event 103 and
similar messages to it.

Disappointingly, the Dovecot Auth Success seeded into the evaluation data test event did
not get classified into category 1 and because of this, was not displayed as a part of the
results for Set 3 even though it contains the word ‘login’ and the word sequence ‘user
EQ’. One hundred percent of the events in this result set are ‘logon’ events, a result not
reflected in the other evaluation runs and indicative of the relative terseness of the results
in the training data.

Results for Set 4

Table 3.11: Set 4 Results Summary

no. score event

1 0.638299 Apr 17 15:34:59 acmefileserver sshd[11228]: Failed password for invalid
user admin from 192.168.0.1 port 56528 ssh2

129 0.599685 Apr 17 12:17:01 acmefileserver CRON[3535]: pam_unix(cron:session):
session opened for user root by (uid=0)

133 0.595744 Audit Success,2012/06/07 12:18:25
PM,Microsoft-Windows-Security-Auditing,4634,Logoff,"An account was
logged off...

134 0.594867 Audit Success,2012/06/07 12:25:28
PM,Microsoft-Windows-Security-Auditing,4624,Logon,"An account was
successfully logged on...

136 0.584847 Mar 31 23:48:20 mx dovecot: imap-login: Login: user=<sbuys>,
method=PLAIN, rip=192.168.0.1, lip=192.168.0.1, TLS

139 0.574475 Apr 16 08:41:13 acmefileserver sshd[16406]: pam_unix(sshd:auth):
authentication failure; logname= uid=0 euid=0 tty=ssh ruser=
rhost=DOMAIN

140 0.568002 May 26 09:41:53 dryder ntpd[800]: kernel time sync status change 6001

237 0.501776 Jul 31 13:30:27 192.168.0.1 [DHCP IP: (192.168.0.1)] to MAC address
CC:08:E0:12:37:5D,

The composition of Set 4 of the training events is shown in Table 3.2. It contained
events from the OSX screen sharing service, key-based successful authentication to ssh,
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the issuance of the su command as well as a Windows successful logon from a Windows
NT System. The results are again largely dominated by ssh events; this is not surprising
based on previous result sets.

Of interest in this set, though, is that all of the top 139 events shown in Table 3.11 are
“logon” events and as such the classifier performs very well. A simple sort of the events
by evaluation score, as with all of the results, clearly delineates the true positive from the
false positive results: the number of false positive events in this run approaches 40% of
the total set of results which numbered 237 events.

Windows Event Log events again appear in the results; this can be attributed to the
inclusion of a Windows NT logon success event in the training data. An encouraging
finding is that the training data contains an event code 540 successful logon event, but
that the evaluation data contains events (133 and 134) from Windows 2008 servers, and
the returned events are of event code 4634 and 4624. This bodes well for the use of LSM
where systems may periodically be upgraded and where the syntactic structure of events
may change, even though the event contents remain mostly similar.

Results for Combined Set

With the final run, all of the training data from Table 3.2 were combined. The 157 results
produced contained most of the results from the previous sets with one notable exception:
the ‘sudo’ command detected in the results of Set 3.

As with the previous runs, the “logon” events had a higher LSM score than most other of
the other events, the remaining 10%, and as such, the events are clearly partitioned for
the end user. The results contained roughly 10% fewer false positives than Set 4. It is
summarised in Table 3.12.
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Table 3.12: Combined Run Results Summary

no. score event

1 0.648782 Mar 31 23:48:20 mx dovecot: imap-login: Login: user=<sbuys>,
method=PLAIN, rip=192.168.0.1, lip=192.168.0.1, TLS

2 0.648370 Audit Success,2012/06/07 12:25:28
PM,Microsoft-Windows-Security-Auditing,4624,Logon,"An account was
successfully logged on. . .

8 0.616020 Jun 4 07:14:11 dryder sshd[34217]: error: PAM: authentication error for
illegal user security from 192.168.0.1

90 0.610023 Apr 17 12:17:01 acmefileserver CRON[3535]: pam_unix(cron:session):
session opened for user root by (uid=0)

91 0.609866 Apr 14 21:48:55 acmepayroll sshd[1827]: pam_unix(sshd:auth):
authentication failure; logname= uid=0 euid=0 tty=ssh ruser=
rhost=192.168.0.1 user=root

96 0.608430 Apr 17 15:34:59 acmefileserver sshd[11228]: Failed password for invalid
user admin from 192.168.0.1 port 56528 ssh2

103 0.596225 Jun 4 14:27:27 dryder sshd[67006]: error: PAM: authentication error for
root from 192.168.0.1

105 0.592346 Apr 17 15:28:39 acmefileserver sshd[7734]: Invalid user teacher from
192.168.0.1

112 0.590960 Jun 4 13:52:56 dryder sshd[64455]: error: PAM: authentication error for
news from 192.168.0.1

114 0.587433 Apr 14 22:07:43 acmepayroll sshd[8376]: Failed password for root from
192.168.0.1 port 37444 ssh2

125 0.584880 Apr 17 15:32:36 acmefileserver sshd[10077]: pam_unix(sshd:auth): check
pass; user unknown

134 0.575172 Apr 17 15:35:00 acmefileserver sshd[11243]: pam_unix(sshd:auth):
authentication failure; logname= uid=0 euid=0 tty=ssh ruser=
rhost=192.168.0.1

145 0.528018 Audit Success,2012/06/07 12:32:41
PM,Microsoft-Windows-Security-Auditing,4932,Directory Service
Replication. . .

157 0.501826 Information,2012/05/28 04:25:56 PM,Microsoft-Windows-MSDTC
2,4202,TM,"MSDTC started with the following settings. . .
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3.5.8 Findings

Table 3.13: Results Summary for Use-Case 1

Set 1 Set 2 Set 3 Set 4 Combined

# Results 13 127 133 237 157
# Logon Success Events 2 4 2 4 4
# Logon Events 7 121 133 139 139
# False Positives 6 6 0 98 18
# False Negatives 127 13 7 0 0
Lowest Correct LSM Score 0.639554 0.515225 0.515131 0.574475 0.531616
Highest Incorrect LSM Score 0.585295 0.581767 - 0.568002 0.606832
Incorrect Mixed into Correct? No Yes No No Yes

The experiments conducted in this use-case illustrated the potential use of LSM for SIEM
implementers when having to deal with large sets of data, where the eventtype of the
incoming data needs to be identified. This is useful for the SIEM implementer for detecting
variations on the data that may have been unanticipated, for example a new format of an
event after an upgrade to software, or during the implementation or normalisation phases,
where a high degree of accuracy is needed for reporting and for correlation to truly be
effective.

Table 3.13 summarises the finding for the this use-case. The impact of training data
on the classifier’s performance can be seen clearly in the difference in False Negative
counts between Set 1, 4 and the Combined Set. Set 3 clearly had the most success clarity
although, unfortunately, seven logon events were not classified.

It is common practice in information retrieval to measure the recall and precision of
machine classification. Additionally, the f-measure of a classifier’s performance gives the
evaluators a combined metric (Bellegarda, 2008). Recall is a measure of the classifier’s
ability to identify all the relevant events. Precision is a measure of the classifier’s accuracy,
the ability to identify only relevant events. The f-measure (Riloff and Lehnert, 1994) is
calculated to provide a summary of the overall performance of the classifier.

recall = number of relevant events retrieved
total number of relevant events

precision = number of relevant events retrieved
total number of retrieved events

F = 2 x precision x recall
precision+ recall
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Table 3.14: Use-Case 1 Classifier Performance

Logon Success Logon
Recall Precision f-measure Recall Precision f-measure

Set 1 0.50 0.15 0.24 0.05 0.54 0.09
Set 2 1.00 0.03 0.06 0.87 0.95 0.91
Set 3 0.50 0.02 0.03 0.96 1.00 0.98
Set 4 1.00 0.02 0.03 1.00 0.59 0.74
Combined 1.00 0.03 0.05 1.00 0.89 0.94

Table 3.14 represents the performance of the classifier and as can be seen, the results
vary wildly based on the training data provided. Be that as it may, the “logon” eventtype
classification for Sets 2, 3 and Combined performed very well.

LSM is assumed to perform at its best when there are clear differences between the
categories that need to be dealt with, as discussed in the Literature Review in section 2.3.
In the tests, the structure of “logon failed” and “logon success” events did not vary enough
and this was strongly reflected in the results seen in Table 3.14. The lesson learnt through
this was that for broad categories of eventtype classes, LSM seems potentially more useful.
LSM performed well when disambiguating both types of “logon” events from the counter
samples.

It is noted that the use-case deals with a relatively simplistic approach to training data
and counter sample selection and that results may be refined and improved with more
iterations of the process. For example, if an explicit category for “logon failed” events
were to be added to the classifier using the events from the results, the resulting classifier
could be used to disambiguate the events even further. This process could be repeated or
the classifiers could be serialised, with the original classifier processing events into “logon”
and “not logon” events and a subsequent classifier disambiguating the events contained in
the “logon” results through the use of clustering. Clustering is investigated in Use-Case 3
(section 3.7).

The experiment yielded valuable variations of different ssh events, as shown in the table
below Table 3.15. This subtle difference has enormous value when dealing with correlation
and analysis but is also extremely important to detect during the normalisation and
classification processes of SIEM implementation.

The importance of correct training data selection is illustrated clearly by the difference
in results with the four evaluation sets. It is a known property of LSM that its perfor-
mance is affected by the training data provided, as previously discussed in section 2.3. It



3.5. USE-CASE 1: DETECT A TRAINED EVENTTYPE 80

Table 3.15: SSH Event Variations

SSH Event Variations

Jun 4 14:27:27 dryder sshd[67006]: error: PAM:
authentication error for root from 192.168.0.1

Jun 4 14:05:30 dryder sshd[65588]: error: PAM:
authentication error for illegal user uucp from
192.168.0.1

Jun 4 13:52:56 dryder sshd[64455]: error: PAM:
authentication error for news from 192.168.0.1

was encouraging to find that the final evaluation, where all training data was combined,
also delivered good results, implying that the challenge of training data selection can be
managed.

The differences do, however, illustrate that the system relies heavily on a proper coverage
of samples within the domain. Compare the number of results from Set 1 to the results
obtained in the final evaluation. Set 1 was dominated by Windows Event Log events and
as a result the bulk of the “logon” events detected using the other sets was not detected.
For LSM to be effective in this use-case, an event specialist would need to have access
to sufficient samples, either obtained through manual searching as with this research, or
provided by a third party.

From the perspective of a SIEM implementer, this use-case is deemed to be a success
if the original requirement is relaxed from detecting “logon success” to detecting “logon”
events. Multiple iterations become practical if LSM is integrated properly into a practical
framework for the user through which samples and training data can be easily manipulated
with the availability of the correct pre-processing.

The tool-chain is very important when dealing with LSM in a practical setting. As was
seen with the results, the LSM distance measure, or score, provided a guideline to the
user, but selecting the correct thresholds may be a challenge. To that end, it would be
more beneficial to have access to the LSM results in an integrated environment that would
allow the user to sort results, re-run or refine results or perhaps allow for the adjustment
of the score threshold interactively.

During the evaluation of Set 3, a ‘sudo’ event was detected that did not appear in the
results of the other evaluation runs. This detection points to the need to have variability
in training data selection coupled with careful iteration when using LSM in this use-
case. Naively training all sample data and counter samples may displace some of the
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possible fringe results that could be obtained and could warrant careful iteration, as well
as multiple runs, during normal LSM usage.

3.6 Use-Case 2: Detect Multiple Sourcetypes from a

Single Stream

Log sources can often blend different sourcetypes into a single event stream. A good
example of this is a Syslog (Syslog, 2012) server that accepts Syslog messages from multiple
types of source systems. The source systems may have no relation to each other or may
be multiple instances of the same technology, producing the same sourcetype. It is often
deceptively simple to put a Syslog server in place to facilitate log management. However,
if such a system is not properly configured, all the different source systems may log their
events into a common file such as /var/log/syslog.

When implementing a SIEM, it is often necessary to configure the system for specific
sourcetypes. Support for different sourcetypes normally comes in the form of add-ons,
also referred to as plug-ins or adaptors, which contain the relevant normalisations, regular
expressions or other appropriate measures that enable the SIEM to recognise the appro-
priate fields. If these add-ons or plug-ins are misconfigured, or not enabled, the SIEM’s
functionality may be seriously hampered. LSM could potentially identify the relevant
sourcetypes and help the SIEM implementer achieve a higher degree of confidence that
all relevant add-ons have been enabled.

The aim of this experiment is to determine if a SIEM implementer or security analyst can
use LSM to search for known sourcetypes in a large collection of events. The experiment
should therefore use LSM to identify selected sourcetypes and report back to the user.

In order to facilitate this experiment, four sourcetypes were selected and an LSM classifier
prepared with training data from the selected sourcetypes, which in turn were associated
with four distinct categories within the LSM map. This map was used to evaluate a
collection of 51,000 events randomly selected from the thesis data set. A successful eval-
uation would be able to indicate to the user that an evaluated event belonged to one of
the pre-trained categories. Events that did not match any of the categories should be
identifiable by a comparatively lower LSM score associated to the result.
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3.6.1 Design
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Figure 3.16: Use-Case 2 High Level Process Flowchart

This use-case shares several features with Use-Case 1 discussed in section 3.5, the major
difference being that four different sourcetypes were chosen as opposed to a single event-
type. In this experiment multiple eventtypes associated with a sourcetype were trained.
Use-Case 1 dealt with detail related to the LSM processing framework and some of those
details are not repeated within this section; the reader is referred to section 3.3 and
section 3.5 for more detail related to the processes.

This section starts with the description of the training data used and then delves into some
of the unique challenges faced when trying to analyse large data sets. It then concludes
with the results of the experiments and the findings thereof.

Table 3.16 contains the category to sourcetype mapping for the training data. Little to
no attention was given to the composition of the events within the training data files over
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Table 3.16: Use-Case 2 Training Data

Category Sourcetype Description

1 Dovecot IMAP A collection of 59 Dovecot events containing
various eventtypes.

2 BIND Nine BIND DNS server query events
containing a single eventtype

3 F5 Eighteen F5 Application Security Manager
events containing multiple eventtypes

4 Windows Security Twenty Windows Security Event Log events
containing multiple eventtypes

and above a check that it was the correct sourcetype and to reduce the count of the events
in the training data files. This was done to accelerate the LSM training process as well
as to simulate what an event specialist may do in a possible production environment.

As with Use-Case 1, a dimensionality of 200, suitable for the English language, was
selected and the LSM classifier was instructed to create bi-grams. The process flow of the
experiment is shown in Figure 3.16, where the primary difference to the previous use-case
was the use of four LSM categories.

3.6.2 Anticipated Findings

It was anticipated that LSM would perform well as it was analogous to Use-Case 1. There
was a concern that the larger set of training data used in comparison to Use-Case 1 could
lower the quality of the results. The experiment, however, without undue attention given
to the training data, continued as designed to stay true to the goal of this research which
is to investigate if LSM could form a practical part of the tool-chain available to an event
specialist. Having to train practitioners in the art of data composition and the nuances
of training data selection seemed to be in conflict with this goal.

3.6.3 Results

In Use-Case 1, result analysis was relatively straightforward: results could either match or
not match the trained eventtype and all results were sorted according to LSM score. The
result sets were relatively small, not counting more than a couple of hundred. Use-Case
2, however, dealt with 51,000 results per experiment and is discussed in the next section.
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As discussed in subsection 2.3.2, LSM result scores for an evaluation sum to a floating
point number of 1.0. Results for all category 1 matches ranged from 0.273975 to 0.391778.
An attempt was made to filter events according to LSM score but the threshold for
such a filter was not apparent. Manual inspection and a couple of threshold setting test
runs wielded no noteworthy results. An attempt to find a software-based programmatic
solution led to a practical and informative visualisation of the results which proved to
be sufficient for the experiment and pointed the way to possible user interface features
in a production LSM tool, or alternatively, the basis for an algorithmic solution. The
investigation of such a solution, however, was outside the scope of this research.

The graphs in the section that follows are based on a simple count of distinct LSM result
scores due to the relative uniformity of the events after the pre-processing discussed in
subsection 3.5.2; this approach worked surprisingly well. Most of the graphs clearly in-
dicate large groupings of events and also the minimum and maximum LSM score ranges
that the research should investigate. For completeness, the top results were also investi-
gated for all experiments in this use-case to verify which results the classifier deemed to
be most similar to the semantic anchor for that category.

Category 1 was trained with Dovecot IMAP training data and the results for category 1
matches are described in Table 3.17. The table contains selected events from the total
result set, events which were selected for discussion based on a manual search for category
1 results and by seeking out the large clusters of positive matches visualised in Figure 3.17.
The table illustrates a sampling of both false positive and false negative results returned
from the classifier. It is encouraging that the true positives (event 46506 and 46509) ranked
relatively high on an LSM score basis compared to other results but unfortunately, the
visualisation did not assist in identifying these matches.

The true negative results (such as event 47856 and 49320) are disappointing as the Dove-
Cot IMAP events were clearly misclassified. The events have been classified as Category
4 results, with the events to the table in the interest of providing comparative data. It
is noted that Dovecot Session Disconnected events such as these did not appear in the
training data and that may explain the phenomenon. The visualisation in Figure 3.17 did
not assist with finding the true positive results and primarily just indicate that a large
quantity of relatively weak results are contained in this result set due to the bias of larger
counts towards the middle of the distribution.
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Figure 3.17: Use-Case 2: Selected Results (Category 1)
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Table 3.17: Use-Case 2 Category 1 Results

no. category score event
result

59 1 0.392123 [DEBUG] [06/19/2012 12:30:48.428] [1700]
[ZenworksWindowsService] [29] []
[CacheableHttpWebResponse] [] [Getting
Response Stream] [] []

46191 1 0.388517 [DEBUG] [06/19/2012 22:30:55.960] [1700]
[ZenworksWindowsService] [9] [] [SoapUtility]
[] [Checksumming soap call with UID:
Containment:GetContainment] [] []

46506 1 0.379167 Feb 28 16:03:24 vmail dovecot:
IMAP(user@DOMAIN): Disconnected

True Positive

46509 1 0.378285 Mar 31 23:48:20 mx dovecot: imap-login:
Login: user=<sbuys>, method=PLAIN,
rip=192.168.0.1, lip=192.168.0.1, TLS

True Positive

46656 1 0.368739 Apr 15 21:47:34 192.168.0.1 [UPnP set event:
Public_UPNP_C3] from source 192.168.0.1,

48869 1 0.338456 Jun 4 13:42:39 kelvin portfwd[13909]: copy:
Failure reading from socket: Connection reset
by peer

50699 1 0.307621 Jun 4 08:33:39 kelvin last message repeated 2
times

47856 4 0.354017 Alert 1332871659.46765: - dovecot, 2012 Mar
27 20:07:39 mx->/var/log/syslog Rule: 9706
(level 3) -> ‘Dovecot Session Disconnected.’
Src IP: (none) User: (none) Mar 27 20:07:38
mx dovecot: IMAP(sbuys): Disconnected:
Logged out bytes=477/7516

True Negative

49320 4 0.338442 Alert 1333174883.20854: - dovecot, 2012 Mar
31 08:21:23 mx->/var/log/syslog Rule: 9706
(level 3) -> ‘Dovecot Session Disconnected.’
Src IP: (none) User: (none) Mar 31 08:21:22
mx dovecot: IMAP(sbuys): Disconnected:
Logged out bytes=257/1343

True Negative
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Figure 3.18: Use-Case 2: Selected Results (Category 2)

Category 2 is represented in Figure 3.18 and shows a large concentration of results at the
very top of the LSM Score axis; results were investigated and summarised in Table 3.18.
In Category 2, BIND DNS Query, matching proved to be very successful. It was also
encouraging that the results were obtained from a relatively small collection of training
events – nine events in factTable 3.16.

Of further interest is that Figure 3.18 is clearly dominated by results that have all clustered
towards the maximum LSM result score obtained for this evaluation run. An investigation
of the results shows that the top results are true positive results. False positive results
rank lower than the true positive results and are relatively low in number as shown in
Figure 3.18.
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Table 3.18: Use-Case 2 Category 2 Results

no. category score event

107 2 0.391778 16-May–2012 09:39:05.175 queries: info: client
192.168.0.1#25288: query: DOMAIN IN A -E

29233 2 0.391265 16-May–2012 09:38:48.586 queries: info: client
192.168.0.1#64418: query: DOMAIN IN
AAAA -E

17858 2 0.391474 16-May–2012 09:35:36.099 queries: info: client
192.168.0.1#32819: query: DOMAIN IN A -

50999 2 0.267629 Information,2012/05/15 05:25:07
AM,SceCli,1704,None,Security policy in the
Group policy objects has been applied
successfully.

Category 3 deals with the attempted categorisation of F5 Application Security Manager
(ASM) events. The evaluation data set, however, contained no F5 ASM Table 3.16 events
and as such, no true positive results were anticipated for category 3. A summary of the
results from the evaluation run can be seen in Table 3.19; the results are also visualised
in Figure 3.19. The F5 ASM is a web application firewall that deals with web-related
traffic. It is thus interesting to note that based on the samples from the results, results
were dominated by firewall events and other content filtering solutions. Also, there were
events from other F5 devices (event 47694 and 48214) which may be of some value to a
SIEM implementer.

Of notable interest in this particular result was the distribution of events in the visuali-
sation in Figure 3.19. The bulk of the events were not clearly clustered at the top of the
LSM Score axis as with the results of category 2 Figure 3.18. As far as its distribution of
events is concerned, the visualisation more closely relates to that of category 1 Figure 3.17.
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Figure 3.19: Use-Case 2: Selected Results (Category 3)
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Table 3.19: Use-Case 2 Category 3 Results

no. cate-
gory

score event

46245 3 0.386997 . . . Jnpr Syslog 11718 1 [syslog@DOMAIN dayId=“20090426”
recordId=“6” timeRecv=“2009/04/26 08:42:53”
timeGen=“2009/04/26 08:42:53” domain="“ devDomVer2=”0" . . .

46340 3 0.382865 2012–04–29 00:57:47.568185 1177 12238 372 6952 “DOMAIN”
192.168.0.1 200 “Government/Legal;Reference”
x_exception_category application/x aspx

47694 3 0.354663 “2012–05–10T16:45:08.000–0700”,“/var/log/interop/2012/
192.168.0.1”,syslog,“192.168.0.1”,"2012–05–10T16:45:08–07:00
192.168.0.1 DCFW 2012–05–10 23:45:13 NOC-LB-BigIP20
F5-LTM . . .

48214 3 0.348233 “2012–05–10T16:44:49.000–0700”,“/var/log/interop/2012/
192.168.0.1”,syslog,“192.168.0.1”,"2012–05–10T16:44:49–07:00
192.168.0.1 DCFW 2012–05–10 23:44:54 NOC-LB-BigIP20
F5-LTM . . .

49482 3 0.334586 “2012–05–10T16:38:10.000–0700”,“/var/log/interop/2012/
192.168.0.1”,syslog,“192.168.0.1”,“2012–05–10T16:38:10–07:00
192.168.0.1 unbound: [945:1] query: [default] 192.168.0.1:18716
TTL:255 RID:0 DNSSEC:0 None IN PTR DOMAIN. ans: <none>
”

50059 3 0.323942 “2012–05–10T16:42:05.000–0700”,“/var/log/interop/2012/
192.168.0.1”,syslog,“192.168.0.1”,“2012–05–10T16:42:05–07:00
192.168.0.1 unbound: [945:0] query: [default] 192.168.0.1:61949
TTL:62 RID:0 DNSSEC:0 None IN A DOMAIN. ans: DOMAIN. 0
IN A 192.168.0.1 ”

50479 3 0.316914 “2012–05–10T16:45:13.000–0700”,“/var/log/interop/2012/
192.168.0.1”,syslog,“192.168.0.1”,“2012–05–10T16:45:13–07:00
192.168.0.1 unbound: [945:1] query: [default] 192.168.0.1:46266
TTL:64 RID:0 DNSSEC:0 None IN A DOMAIN. ans: DOMAIN.
1642 IN CNAME DOMAIN. ans: DOMAIN. 21 IN A 192.168.0.1 ”
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Figure 3.20: Use-Case 2: Selected Results (Category 4)

Category 4 deals with the results from evaluation against Windows Security Table 3.16
events and closely mimics those results of category 2. A sufficient number of true positives
allows the evaluation to be classified as a success, and as can be seen in Table 3.20, the
false positive events rank well below the true positive results when LSM result scores
are compared. The visualisation of the graph seen in Figure 3.20 reflects that with the
category 2 analysis, most results are clustered towards the maximum LSM score achieved
for this evaluation run.
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Table 3.20: Use-Case 2 Category 4 Results

no. category score event

1 4 0.392847 04/25/2012 10:16:10 PM LogName=Security
SourceName=Microsoft Windows security
auditing. EventCode=4672

35 4 0.392845 04/21/2012 11:47:16 AM LogName=Security
SourceName=Microsoft Windows security
auditing. EventCode=4672

46119 4 0.389677 04/25/2012 10:30:54 PM LogName=Security
SourceName=Microsoft Windows security
auditing. EventCode=4634

49320 4 0.338442 ** Alert 1333174883.20854: - dovecot, 2012
Mar 31 08:21:23 mx->/var/log/syslog Rule:
9706 (level 3) -> ’Dovecot Session

49843 4 0.330226 Information,2012/05/28 05:34:09
PM,WDSIMGSRV,256,(1),"The description
for Event ID 256 from source WDSIMGSRV
cannot be found.

3.6.4 Findings

Overall, the results from this experiment show that LSM can certainly play a valuable
role when sourcetype classification is needed during SIEM implementation or as part of
monitoring continued compliance of a SIEM solution based on its original sourcetype
configurations.

One of the most valuable insights gleamed from this experiment is the value of visualisation
of the results. Compare Figure 3.17 and Figure 3.19 against the visualisation of Figure 3.19
and Figure 3.20. The graphs clearly assist the user in determining the quality of the LSM
results and could be a valuable input during production use to assist in the training of an
LSM classifier, or in the refinement of training data. It may be possible to algorithmically
determine the quality of category matching in a similar fashion as the visualisations, but
this falls outside the scope of this research.

Another improvement that may be considered would be the introduction of a counter-
sample category in this use-case, as was found in Use-Case 1 section 3.5. This would
imply that misclassified events would then begin to match a category potentially named
“Unknown/Counter” and could easily be filtered out to be excluded from other positive
results. In an environment where interest is limited to a small selection of sourcetypes,
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this may be sufficient.

However, it seems there may be a process whereby a user will continue to iterate on the
data and create additional sourcetype categories as false positives are identified through
a continuous process of refinement. This would result in the creation of many more
categories and over time will lead to most, if not all sourcetypes, being classified correctly.
This approach makes more intuitive sense over the long run; instead of classifying events
as ‘wrong’, an event specialist would rather take a little extra time and properly classify
the events that were misclassified.

A hybrid approach can also be followed, but as seen, over-enthusiasm in the creation of a
counter-sample category would not be recommended at this stage.

3.7 Use-Case 3: Detect Different Sourcetypes and

Eventtypes Using Clustering

Security analysts are often faced with historical or archived data, particularly when do-
ing incident response or log forensics. As has been discussed, log volumes can often be
overwhelming. Multiple eventtypes and sourcettypes can be found in large collections of
thousands or even millions of events. If the data is not classified or normalised, it could
be very challenging for an event specialist to determine what events are being dealt with.

In Verizon 2012 Data Breach Investigations Report (Baker et al., 2012, p. 54), the
value of looking at larger than normal volumes of logs is underlined. Volume is a great
indicator, but a large spike in Remote Authentication related messages might potentially
be drowned in an even larger number of other kinds of messages; the ability to do a
type-by-type analysis clearly cannot be discounted.

The aim of the experiment is to determine whether or not LSM can be used in event
disambiguation without human intervention and whether or not the quality of the clus-
tering is of a sufficient standard to be useful to security practitioners. The advantage of
disambiguation of the types of messages is that an analyst can quickly ‘get a handle’, so
to speak, on the types and amount of data in scope for investigation.

Two variations of the experiment were completed to determine the importance of pre-
processing when applied to clustering. Ideally, little pre-processing or training would be
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needed to produce the desired results; however, based on previous experiments, it was an-
ticipated that the quality of the results would be affected by pre-processing. Subsequently,
variation 1 of the experiment did not apply any pre-processing to the text; variation 2
applied the “AdvancedRegexStrategy” as discussed in section 3.5.

3.7.1 Design
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Figure 3.21: Use-Case 3 High Level Process Flowchart

Use-Case 3 re-uses several familiar components used in Use-Case 1 and Use-Case 2, dis-
cussed in detail in section 3.5. Pre-processing and training proceeded as normal with
the major difference for clustering being that a new LSM category was created for each
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event that was trained. In the experiment, 3000 events from the Interop data set were
trained and then clustered using the LSM API’s agglomerative clustering algorithm (Xu
et al., 2003, p. 268). For larger or massive data sets, k-means clustering can be used as
it often performs faster than agglomerative clustering. It is possible to re-apply cluster-
ing to an LSM map multiple times, as illustrated in the evaluation phase of Use-Case 3
(Figure 3.21).

Recommended practice for LSM is that stop-words and stemming be applied in order to
strip a document of any elements that could distract from its latent semantic meaning, as
discussed in section 3.3. The first variation of the experiment was set up as deliberately
naive: no stemming, stop-words or any modifications were applied. This was meant to
serve as a baseline for comparison to the second variation, as a more realistic test was set
up within which pre-processing was used.

As with the other experiments, an LSM dimensionality of 200 was selected and bi-grams
were generated for the LSM map. The LSM classifier was instructed to reduce the LSM
map to no more than 100 categories using clustering, based on the 3000 categories that
existed after initial training of the map.

3.7.2 Anticipated Findings

One of the known features of LSM is its ability to disambiguate document types from
each other without human intervention. It was anticipated that LSM should perform well
with this experiment; however, there was a concern that event disambiguation may not
work as well as document disambiguation. Documents often contain hundreds or mul-
tiple thousands of words, so clearly, documents relating to economics should be easily
distinguishable from documents relating to farming due to co-occurrence of words that
are commonly used within those domains. As discussed, though, events are special com-
positions and as such cannot be treated as normal documents; this may have impacted
on the performance of the LSM clustering.

3.7.3 Results

This section contains the results for this Use-Case. It is divided into two subsections in
order to address the two variations of the experiment: 1) Variation 1 which did not use pre-
processing; and 2) Variation 2 which used the “AdvancedRegexStrategy” pre-processor.
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Figure 3.22: LSM Clustering Variation 1 - Raw Data

A visualisation of the event count per cluster can be seen in Figure 3.22. This visualisation
was used to more closely investigate the result set and verify the quality of the disam-
biguation that occurred. Some interesting findings are highlighted in Table 3.21. Most of
the clusters created by the LSM classifier contained almost uniform eventtypes as noted
in the column ‘Dominant Eventtype’; the percentage reflects the number of events of the
dominant type, shown in the column named ‘Eventtype’, that occurred in the cluster.

As shown, multiple numbers of the investigated clusters contained the same eventtype: for
example, F5-BigIP events occurring in cluster 6, 21 and 45. It was difficult to determine
if the events in these clusters were of the same eventtype, but it was noted that the
sourcetypes of the events were the same although they did not all cluster into the same
group.
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Table 3.21: Clustering Variation 1 Selected Results Summary

Cluster no. Count Eventtype Dominant Eventtype

6 274 F5-BigIP 96%
12 169 Unknown IPS or VPN Device 96%
21 278 F5-BigIP 92%
45 139 F5-BigIP 97%
80 56 Bind DNS 96%

—
50 6 crond syscheck 100%
75 8 OpenVPN TLS Error 100%
98 8 OpenVPN 100%

Of interest is that cluster 80, Bind DNS, also contained Unbound DNS events, an alter-
native DNS server. This was due to the similar underlying semantic structure for DNS
events. It can therefore be stated that cluster 80 contained multiple sourcetypes but a
single eventtype.

Some smaller clusters were also chosen and summarised; as can be seen, some of the
smaller clusters contained 100% of the same eventtype.

Overall, the quality of the results was encouraging and even though there were multiple
clusters that contained the same sourcetype, as with the F5-BigIP clusters, the results
were still easily consumable.

Variation 2

Table 3.22: Clustering Variation 2 Selected Results Summary

Cluster no. Count Eventtype Dominant Eventtype

4 570 Unbound DNS 98%
17 284 F5-BigIP IPv4 98%
24 143 F5-BigIP IPv6 98%
70 52 Bind DNS 100%

—
0 7 Bind DNS Zone Transfer Request 100%
1 7 Bind DNS Zone Transfer Deny 100%
44 26 Quagga Routing Engine 100%

As with the first variation of this experiment, the a visualisation of the results could be
seen in Figure 3.23. This visualisation was used to identify the largest clusters, sum-
marised in Table 3.22 along with other clusters of interest.
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Figure 3.23: LSM Clustering Variation 2 - Pre-processed Data
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Table 3.23: Clustering Variation 2 Selected Result Examples

Cluster Event No. Raw Event

0 1 2012–05–10T16:45:31–07:00 192.168.0.1
named[752]: client 192.168.0.1#59187:
received notify for zone ‘DOMAIN’

1 2 2012–05–10T16:45:31–07:00 192.168.0.1
named[752]: zone DOMAIN/IN: refused
notify from non-master: 192.168.0.1#59187

17 2980 2012–05–10T16:43:19–07:00 192.168.0.1
DCFW 2012–05–10 23:43:24
NOC-LB-BigIP20 F5-LTM
rule-dg-dcf-net-shownetworks 1 allow 17
192.168.0.1 10940 192.168.0.1 162
/Common/DCF-IPv4–192.168.0.1-udp–162
non

24 124 2012–05–10T16:45:24–07:00 192.168.0.1
DCFW 2012–05–10 23:45:29
NOC-LB-BigIP20 F5-LTM rule-dg-dcf-net-any
1 allow 17 2620:144:2d00:200::66 58964
2620:144:2d00:800::174 53
/Common/DCF-IPv6–2620.144.2d0

Overall, the results of the clustering were extremely satisfying: where variation 1 had
usable results, variation 2 had clearly partitioned eventtypes for most of the clusters. The
co-occurrence of eventtypes in a single cluster was relatively low and did not pose any
problems for the analysis. Interesting finds such as the clear difference between two Bind
DNS eventtypes in clusters 0 and 1 Table 3.23 highlight the value for any individual tasked
with analysing or normalising the data. Another interesting example of the benefit of
clustering is apparent with clusters 17 and 24: where with variation 1 there were multiple
large clusters of F5-BigIP events, in variation 2 there are two dominant clusters. Closer
inspection showed that cluster 17 contains only IP version 4 events and that cluster 24
contains only IP version 6 events. This type of insight into a data set is invaluable when
creating parsers and plug-ins for SIEM correlation engines.

Variation 2 has a much cleaner distribution of events, as can be witnessed by inspecting
Figure 3.23, the graphical representation of its cluster counts. In this variation, pre-
processing was applied and the results indicated that as with the other experiments, pre-
processing is an invaluable part of the overall process as it assists noticeably in uncovering
the underlying, or latent, semantic structure of events.
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3.7.4 Findings

Overall, the results for Use-Case 3 were very encouraging. The benefits of clustering
in identifying eventtypes can be seen. Over and above the potential insights that an
event specialist could gleam from a large collection of data through the use of clustering,
clustering can also assist in identifying eventtypes that could in turn be used for training
data in other use-cases.

The clustering performance was very good and the results easily parsed by the user, a
great benefit of LSM in the information security domain.

3.8 Summary

This chapter described the approach that was followed in the designing the experiments
for our use-cases and how LSM was applied to the area of interest. The data collected for
the experiments was then discussed in greater detail. section 3.3 delved into the details of
the evolution of the software and processing methodologies that were used to conduct the
research. A discussion related to the design of the final software was provided, as well as
insights that were garnered relating to data pre-processing. The three primary use-cases
and findings related to their experiments were discussed in section 3.5, section 3.6 and
section 3.7 respectively. In chapter 4, the results from the experiments as well as the
methodology used will be considered.



Chapter 4

Evaluation of Results

This chapter deals with the outcome of the experiments and considers the metrics and
methodology used during the evaluation of the results. In section 4.1, the particular
metrics used to evaluate the results are considered. Important insights gained regarding
the processing architecture and the software available for this research are both examined
in section 4.2. The chapter concludes with section 4.3 wherein the successes achieved
during experimentation are summarised.

4.1 Evaluation Metrics

For the purposes of result analysis and evaluation, metrics had to be selected and inter-
preted. LSM produces a set of results for each evaluation that is completed against an
LSM map, results which are a sorted list of LSM scores and their associated category.
The category with the largest score is listed first and can be interpreted as the ‘most likely
category match’ for the given evaluation data. The top result based on highest score was
used for all evaluation.

Use-Cases 1 and 2 applied this metric and dealt with the likelihood of an event belonging
to a set of pre-trained categories; as such, it was deemed that the top score would be a
sufficient measure. The well-established practices of calculating recall, precision and the
f-measure of the results allowed further confirmation of the results to be obtained.

Another important measurement was a ‘per-category’ or ‘per-cluster’ count as with Use-
Case 3. The number of results within a category or cluster were visualised in a set of graphs
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that provided valuable insight into the composition of the clusters and the relevancy and
accuracy of the results. In Use-Case 2, visualisation displayed clearly to the user whether
or not the results for the category match were highly concentrated towards the top LSM
scores or rather more distributed and thus less accurate.

Visualisation was used to aid in the interpretation and selection of results for Use-Cases 2
and 3 and as such, a detailed analysis of the interpretation of the LSM result scores was not
conducted, although as discussed in Use-Case 2, this may warrant further investigation
for future research.

4.2 Evaluation of Experimental Procedures

The areas of interest for this research – log management and SIEM – more often than not
deal with very large volumes of data. When these are taken into account, the challenges
faced with data and result management, challenges which prompted several redesigns of
the software used in the research, had to be acknowledged. These experiments relied heav-
ily on sampling and focussed on proof of concepts rather than an evaluation at production
scale.

There are other technologies in this space such as Bayesian spam filters (Androutsopoulos
et al., 2000) that have been demonstrated to work at scale; for example, as used with spam
filters on large email gateways, LSM was not evaluated under those circumstances in this
research. The scale at which the research was conducted does not make it incomparable
to production use; rather, most real world implementation and investigation dealing with
events may easily be conducted on the same scale as this research. The lessons learnt
and insights awarded from such sampling and investigation may then be used with other
technologies at scale.

Manual searching and the use of other technologies such as regular expressions may also
lead to similar results; it is the ease of use of LSM once a software framework is in place
that makes it very attractive for real world use. The relative forgiving nature of LSM
when it comes to training data and sample selection once the correct pre-processing is
applied makes LSM very attractive as an alternative technology.

The largest stumbling block at this point is that the LSM software and framework is only
available on the MacOS platform. Future use in production environments would benefit
greatly from a cross platform implementation of LSM.
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The LSMPP software took around five minutes to evaluate the 51,000 events in evaluation
data in Use-Case 2 section 3.6. An analysis of the performance of the software indicated
that a large amount of CPU time was consumed by pre-processing. Furthermore, the
software did not benefit from multi-processing that was available on the platform. Fifty
one thousand events are a relatively small number of events in the context of a production
log management environment and would, under the current performance characteristics,
relegate the use of the tool to smaller or sample sets of data.

4.3 Use-Case Successes

When viewed narrowly as designed, Use-Case 1 (section 3.5) did not achieve great success.
However, after requirements were relaxed and the scope of the evaluation broadened from
“logon success” events to “logon” events, the results improved dramatically. Training data
selection remains a challenge: it is hard to imagine an off-the-shelf classifier being made
available at the current implementation levels. Use-Case 1 illustrates the potential value
for event identification but does not provide a turnkey solution for such a requirement.
Use-Case 2 (section 3.6) also highlighted the relative sensitivity of the technology to
training data selection. The addition of visualisation made the interpretation of results
tractable and valuable insights into the sourcetypes of the data were then able to be
obtained. Clustering using LSM displayed great potential for event disambiguation in
Use-Case 3 (section 3.7). Pre-processed events clustered very well and with a couple of
user interface refinements, LSM could be very useful in this scenario. The required human
intervention was minimal and the quality of results was high.

However, LSM does not appear to be accurate enough for event-based processing in the
absence of pre-processing and applied domain knowledge. It seems infeasible that a se-
curity practitioner would just export some events, run it through an off-the-shelf LSM
process and obtain actionable results. LSM combined with sufficient domain knowledge-
based pre-processing and careful training data selection used as part of an integrated
solution seems to hold a great deal of promise for event processing.

Training data selection can be facilitated with the correct graphical and user interfaces,
but yet remains a challenge.
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4.4 Summary

This chapter considered the application of LSM to the field of Security Event Analysis,
both for assisting security analysts in conducting forensic and other types of log analysis,
but also from the point of view of SIEM implementers and how LSM can assist in the
challenges faced in that discipline. The discussion covered the results in the context of
the pre-processing, insights gained, and the acknowledged importance of careful selection
of training data.

The research concludes in the subsequent chapter which revisits the research goals em-
barked upon in the chapter 1, summarises the finding of the research conducted in chap-
ter 3 and points the way to potential future research opportunities.



Chapter 5

Conclusions

5.1 Significance of Research

In this text, we introduced the challenges faced by event specialists and stated the intent
to evaluate LSM in this context in chapter 1.

A comprehensive look into events, their nature and utility, as well as their role in larger log
management practice and SIEM systems was then discussed, along with LSM in chapter 2.

This work then elucidated the approach taken by the researcher, challenges faced with
data collection and software development, insights obtained from the experiments, as well
as the details of the experiments themselves in chapter 3.

Finally, the results as discussed in the Use-Case sections were revisited and summarised
in chapter 4.

This chapter concludes the work, discussing the significance of the research and presenting
possible future research and development that could be undertaken as a continuance of
this work.

The goal of this research was to determine if Latent Semantic Mapping (LSM) could
be a useful technology to event specialists when facing the challenges related to large
log management and SIEM practices, particularly when dealing with implementation
challenges, incident response and forensics. As it stands, these challenges rely heavily on
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the ability of the professional to reliably and quickly identify, classify and disambiguate
relevant event data.

Several experiments, grouped into three use-cases, were conducted: Use-Case 1 (sec-
tion 3.5) addressed the challenge of identification of events (LSM performed well after
the original requirements were somewhat relaxed and achieved a high level of precision
and recall); Use-Case 2 (section 3.6) addressed classification (results from experiments
highlighted the value of LSM and established some visual aids that could assist event spe-
cialists in processing the relevant results); and finally, Use-Case 3 (section 3.7), explored
LSM with appropriate pre-processing and found that it very successfully addressed the
challenge of disambiguation.

Overall, it was found that LSM performed well when the appropriate pre-processing and
training data selection took place. It also became apparent that LSM would perform best
as part of larger collection of tools and strategies available to security practitioners and
that it was unlikely to be of sufficient value in the absence of pre-processing and a larger
system that facilitated the processing of events and results. The unintegrated LSM CLI
tools would be of little value to security practitioners.

Table 5.1: Table of Core Findings

Use-Case Test Deals With Findings

1 Detect A Trained Eventtype Identification Successful. Depends heavily
on training data. F-measure of
more than 0.91 achieved for
three of the five training sets.

2 Detect Multiple Sourcetypes
From A Single Stream

Classification With the aid of visualisation
provides valuable insights to
the classified data, aids
significantly in manual
classification.

3 Detect Different Sourcetypes
and Eventtypes Using
Clustering

Disambiguation Very successful with the
correct preprocessing.

It is clear from the research conducted that Latent Semantic Mapping is an exciting
paradigm which most definitely has a role to play in the Information Security field. Once
understood and integrated into a sufficient software architecture, very challenging work-
flows could be automated as well as insights achieved on event data that would have been
difficult to achieve through traditional means and may have been impractical to achieve
when faced with work and time pressure.
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An important insight gleaned from the development of the software and processing archi-
tecture was that events cannot be treated as normal documents (section 3.3) even though
events are unstructured data; with event data punctuation and other language artefacts
that may detract from the underlying latent semantic meaning of a normal document
actually becomes very valuable and forms an important part of the structure and the
latent semantic meaning of an event.

Due to this special nature of events, the pre-processing model was designed to capture and
amplify the structure of events. This led to the development of specialised pre-processing
routines and was a critical success factor for other LSM-related work in this domain.

LSM would also benefit greatly from being applied as a part of a larger workflow of event
classification, identification and disambiguation. There is little practical reason to use
LSM on well-known and well-understood event data that has already been identified,
classified and disambiguated. Consequently, a user could scale down the need for LSM
and eliminate a great deal of noise that may impact the performance of the LSM classifier.

This leads to the conclusion that LSM use in this space would greatly benefit from inter-
activity that would easily allow for multiple iteration runs of the processes as discussed in
this research. The ability to tag, classify, refine or tweak and then re-run would require a
specialised software environment.

At this stage, it is not feasible to envision that LSM would be integrated directly into
large scale log management system or SIEMs, but rather that it would be integrated into
reporting and management consoles of such systems.

Interactivity and the ability to re-run and iterate through results would assist a user in
selecting the correct training data for production. The importance of good training data
was well-understood from other LSM uses and was re-established as critically important
in this research, particularly in the context of Use-Case 2 and Use-Case 3. Combined with
visualisation, as in Use-Case 2, the solution may prove to be more flexible and user-friendly
than other systems that require in-depth knowledge of regular expression syntax.

Another challenge with the use of LSM is obtaining sufficient training data and samples.
This might be offset in a production system by the availability of such samples and data in
production log management and in SIEM systems; it is also likely that the identification,
categorisation and disambiguation that is needed in production would relate to data that
is already available in the organisation. An off-the-shelf solution would have to contain
trained maps based on ample training data at the originator in a scenario where LSM is
integrated into a larger software based solution.
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In summary, as part of an interactive, iterative process of Security Event Analysis, LSM
holds great promise for provision of valuable insights and understanding of diverse collec-
tions of event information specifically to event specialists. The research has shown this
clearly from the experiments conducted.

5.2 Future Work

This final section considers possible further research and developments based on this
research and the application of LSM.

• Further research is warranted into the ideal pre-processing processes needed to use
LSM with event data. Some inroads have been made into this topic as a part of
this research, but it is by no means comprehensive. Pre-processing has a powerful
impact on the quality of the results and an in-depth examination of the algorithmic
interaction between LSM and data formats could lead to more powerful insights and
vastly improved results. Experimentation with different dimensionality settings,
lexicalisation and the use of tri-grams or other constructs could lead to further
refinement of the results, particularly now that this research provides the evidence
that further, detailed investigation is warranted.

• The research also deals with a limited number of use-cases. Based on the findings
in this research, an extensive evaluation of the existing work with multiple use-cases
could provide powerful new directions for research and lead to further insights into
the special nature of machine data and its properties.

• As shown in Use-Cases 2 and 3, visualisation of the results provides valuable insights
into the quality of the results. This work could be further extended and form
the basis of an algorithmic solution to detect the quality of results, leading to the
development of intelligent feedback systems that could assist in training data fine-
tuning and selection.

• This body of work also did not evaluate the applicability of LSM at scale. Research
into this area could evaluate the performance characteristics of LSM and determine
if it has a future as an integrated part of a log management system or SIEM.

• During the data collection phase, it became apparent that a public source of anonymised
event and log samples does not appear to exist at present. Such a solution would
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be invaluable to enable further research into this area, as it would remove a major
impediment that future researchers would face and also assure richness in test data
and test data coverage.

• Research into the applicability of other natural language and artificial intelligence
paradigms to the research and use-cases in this work could also be undertaken.

The world is steadily embracing more and more data, and with this deluge – this Big
Data – data processing has become substantially more challenging. Machine data in the
form of events make up a large percentage of the data that needs to be processed and
stored on a daily basis. This field is still ripe for research, innovation and development.
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Appendix A

Supplementary Use-cases

This research focussed on evaluating the fundamental strengths of LSM with events.
The work validates the use of the paradigm for Security Event Analysis and as a natural
consequence, leads to further possible arenas of research. Table A.1 and Table A.2 contains
use-cases considered for the research that are either derivatives of the use-cases that were
already covered in section 3.4 or that have been earmarked as interesting but outside the
scope of research due to time constraints or insufficient understanding of the method of
applying LSM to the challenge. Some use-cases are related to Information Security but
not to Security Event Analysis.
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Table A.1: Supplementary Use-cases (1)

Use-Case Derived From Discussion

Detect New/Unknown
Events

Use-Case 1 This use-case can be seen as the
opposite of Use-Case 1 and would
deal with events that could not be
classified as being a specific or known
eventtype. By virtue of not
identifying an event as a certain
eventtype, it would by definition be
new or unknown and thus be cause
for further investigation

Detect New/Unknown
Sourcetypes

Use-Case 2 As with the preceding use-case, this
use-case deals with events that could
not be categorised as known
sourcetypes. This use-case would be
dependent on all events for known
sourcetypes to be classified correctly
before unknown sourcetypes could be
reliably detected

Bad or Malformed Log
Messages

Use-Case 1 and 2 Events that could not be classified or
categorised may be malformed or
bad; at the end of an iterative
classification process, the user may
be left with malformed or bad log
messages

Whitelist or Blacklist
Creation

- Use an LSM map’s co-occurrence
matrix to inform most or least
frequently occurring words, symbols
or numbers. Experienced
practitioners may use the data
obtained to assist in the creation of
blacklists, whitelists or other filters
that could form a part of a SIEM
implementation

Taxonomy Creation Whitelist or Blacklist
Creation

Use closely related words and phrases
to inform the creation of a security
taxonomy
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Table A.2: Supplementary Use-cases (2)

Use-Case Derived From Discussion

Taxonomy Mapping - Train an LSM classifier using a
security taxonomy. Each concept in
the taxonomy would be mapped to an
individual category. Attempt to match
an event to a category in a taxonomy

Machine Type Identification - Train an LSM classifier using the
results of machine inventory dumps
such as a listing of software packages
instead of events. Use LSM clustering
to group ‘configuration’ documents
into different categories. Categories
should map to groups based on the
contents of the configuration
documents. Mail servers should be
different from file servers and others

Machine Classification Machine Type
Identification

Use the LSM classifier derived from
the preceding use-case and classify
incoming machine configuration
documents, possibly from scans
happening on a daily basis to classify
a machine as one of the known types

Misconfiguration Detection Machine Classification Machines not closely matching
categories in the preceding use-case
when measured by LSM Score may
indicate that some variation exists in
the software composition or versions

Miscellaneous Analysis
Use-Cases

- LSM can be used with any data; as
such, the paradigm could be applied
to more than events or configuration
documents. Composition types could
include packet data, protocol data and
many other types of machine data
that could occur within an IT
Infrastructure

Conversation Clustering - In this use-case, the compositions
could be instant messenger chat logs.
It is possible that certain users or
groups of users may discuss certain
terms more frequently
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