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Abstract

Networks of maliciously compromised computers, known as botnets, consisting of thou-

sands of hosts have emerged as a serious threat to Internet security in recent years.

These compromised systems, under the control of an operator are used to steal data, dis-

tribute malware and spam, launch phishing attacks and in Distributed Denial-of-Service

(DDoS) attacks. The operators of these botnets use Command and Control (C2) servers

to communicate with the members of the botnet and send commands. The communica-

tions channels between the C2 nodes and endpoints have employed numerous detection

avoidance mechanisms to prevent the shutdown of the C2 servers. Two prevalent detec-

tion avoidance techniques used by current botnets are algorithmically generated domain

names and DNS Fast-Flux. The use of these mechanisms can however be observed and

used to create distinct signatures that in turn can be used to detect DNS domains being

used for C2 operation. This report details research conducted into the implementation of

three classes of classi�cation techniques that exploit these signatures in order to accurately

detect botnet tra�c. The techniques described make use of the tra�c from DNS query

responses created when members of a botnet try to contact the C2 servers. Tra�c ob-

servation and categorisation is passive from the perspective of the communicating nodes.

The �rst set of classi�ers explored employ frequency analysis to detect the algorithmi-

cally generated domain names used by botnets. These were found to have a high degree

of accuracy with a low false positive rate. The characteristics of Fast-Flux domains are

used in the second set of classi�ers. It is shown that using these characteristics Fast-Flux

domains can be accurately identi�ed and di�erentiated from legitimate domains (such as

Content Distribution Networks exhibit similar behaviour). The �nal set of classi�ers use

spatial autocorrelation to detect Fast-Flux domains based on the geographic distribution

of the botnet C2 servers to which the detected domains resolve. It is shown that botnet

C2 servers can be detected solely based on their geographic location. This technique is

shown to clearly distinguish between malicious and legitimate domains. The implemented

classi�ers are lightweight and use existing network tra�c to detect botnets and thus do

not require major architectural changes to the network. The performance impact of im-

plementing classi�cation of DNS tra�c is examined and it is shown that the performance

impact is at an acceptable level.
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1
Introduction

Botnets have emerged as a serious threat to Internet security and are commonly used

to conduct malicious and illegal activities. These botnets may consist of thousands of

infected corporate and household hosts spread around the world. Botnet operators use

Command and Control (C2) servers to distribute commands to and manage the hosts of

the botnet and thus need to ensure that these servers are resistant to being shutdown.

The distributed nature of these botnets makes mitigation and remediation di�cult. This

distributed nature of the host belonging to the botnet means a central call home point

is required for the hosts to receive instructions. Therefore the hosts require a means of

determining the C2 server's addresses and call home for instructions. To add to the di�-

culties posed by the homogeneous nature of botnets, botnet operators employ numerous

detection and shut-down evasion techniques. These techniques predominantly rely on the

Domain Name System (DNS) to provide a means for infected hosts to contact the C2

servers, while also providing e�ective anti-detection and shutdown protection.

This report describes a number of techniques for detecting botnet tra�c from DNS query

responses. These detection techniques exploit the signatures created by the detection

avoidance mechanisms employed by botnets. The �rst set of classi�ers described employ

frequency analysis to detect algorithmically generated domain names with a high degree of

accuracy with a low number of false positives. The characteristics of Fast-Flux domains are

used in the second set of classi�ers. The �nal set of classi�ers use spatial autocorrelation

to detect Fast-Flux domains from the geographic distribution the botnet C2 servers. It

is shown that Fast-Flux domains can be accurately identi�ed and di�erentiated from

legitimate domains such as Content Distribution Networks. The proposed classi�ers are

lightweight and use existing network tra�c to detect botnets and thus do not require

major architectural changes to the network.
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1.1 Problem Statement

The growth in the number of Internet connected devices has seen a related rapid growth

in the number of hosts infected by malicious software. This software is known as mal-

ware (Vanier, 2011; Arbor Networks, 2012a). Internet connected devices expose multiple

vectors by which malware can infect the system. Current malware protection schemes

are largely failing as systems are becoming more exposed to external threats (Wilson,

2008). Once a system has been infected, the malware can be used to steal data, sending

spam, phishing, distributing malware and Distributed Denial-of-Service (DDoS) attacks.

Current malware detection methods predominantly rely on host-based malware detection

mechanisms that are based on pattern matching and heuristics. These traditional detec-

tion techniques are easily bypassed by zero-day attacks and polymorphic code (Ollmann,

2008). Current network-based solutions often focus on preventing malware from entering

the system through the use of �rewalls, Intrusion Detection Systems and blacklists. These

systems are blind to malware that enters the system through other attack vectors, such as

mobile Internet connections or removable devices, thus highlighting the need for detection

systems that also focus on tra�c leaving the network.

The current generation of malware is largely focused on the creation of large networks of

infected hosts known as botnets. Botnets consist of thousands of infected hosts, referred to

as bots, that receive instructions from C2 servers operated by an individual. Traditionally

Internet Relay Chat (IRC) servers have been used as C2 servers and have communicated

with the botnet through IRC channels (Lee, Jeong, Park, Kim, and Noh, 2008). This has

led to network administrators often blocking IRC tra�c on the network. Recent trends

in botnet development have seen the use of alternative communication channels, such as

DNS-tunnelling and HTTP requests, between the C2 servers and infected hosts (Pereira,

Fucs, and de Barros, 2007; Lee et al., 2008).

The use of alternative communication channels has allowed botnet tra�c to bypass com-

mon network �lters (Gu, Zhang, and Lee, 2008). These channels cannot simply be blocked

as IRC tra�c has been due to many of the underlying protocols being essential for normal

network activity. An example of this is DNS, where almost all network communication is

reliant on DNS for address translation to aid the establishing of communication between

hosts. While most web tra�c relies on HTTP or HTTPs for reliable communication

between servers and hosts.

An emergent trend shown by recent botnets such as ZeuS, Kehlios and Citadal is the use

of new detection avoidance techniques. One of these avoidance techniques, known as DNS
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Fast-Flux, allow botnets to avoid detection and to reduce the ability of researchers to �nd

and shut-down the C2 servers. Fast-Flux relies on rapidly changing domain name records

to mask the location of C2 servers and to ensure domains are defended against common

shutdown techniques such as IP address blacklisting.

A further detection avoidance technique is algorithmically generated domain names. In

this method each infected host employs a Domain Generation Algorithm (DGA) to gen-

erate a large set of domain names to query (Yadav, Reddy, Reddy, and Ranjan, 2010).

These generated domain names are queried until a live C2 server is found. Botnets such

as Con�cker, Kraken and Torpig have successfully employed algorithmically generated

domain names to ensure the longevity of the botnet C2 servers. Trends in algorithmic

name generation have seen bots, such as those infected with Con�cker-C, generating up-

wards of 50000 domain names an hour (Porras, Saidi, and Yegneswaran, 2009). This large

volume of generated domain names makes it nearly impossible for researchers to block

or pre-register all domains associated with these botnets, as was done with earlier Con-

�cker variants (Leder and Werner, 2009; Porras et al., 2009). Furthermore, the massive

amount of generated names makes the maintenance and use of domain blacklists slow,

cumbersome and ultimately largely ine�ective.

1.2 Research Objectives

This research has been conducted with the the aim of detecting botnet domains and

communication using features contained in DNS query responses. The research objectives

can be formally de�ned as the following:

� The detection of algorithmically generated domain names such as those used by the

Torpig, Kraken and Con�cker botnets. These botnets employ DGAs to create a

large pool of domain names which are queried by infected hosts to query when at-

tempting to contact the C2 servers. These generated domain names tend to display

a di�erent frequency distribution of characters than those observed in legitimate

domain names. The aim of this research is to identify these algorithmically gen-

erated domain names using statistical classi�ers, providing a lightweight, learning

system capable of accurately di�erentiating between algorithmically generated and

semantically correct domain names.
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� The detection and identi�cation of Fast-Flux domains used to host the C2 servers

by using the information contained in the DNS query response. The distinct charac-

teristics of Fast-Flux domains were examined and used to create a signature, which

could be used to identify and di�erentiate between Fast-Flux domains and legitimate

domains such as Content Distribution Networks (CDNs).

� The geographic location of servers were used with the aim of detecting Fast-Flux

domains. The characteristic displayed by Fast-Flux domains where the C2 infras-

tructure usually consists of geographically widely dispersed hosts was employed as

an identifying feature that could be used statistical classi�ers. The research aims

to formally de�ne this geographic dispersion and hence classify domains as either

Fast-Flux or legitimate.

� Finally the possible performance impact the proposed classi�ers would have on

existing network tra�c was considered. The classi�ers are all passive and thus the

research aim was to keep classi�cation time as close to zero as possible to match the

zero interaction required with the botnet hosts.

1.3 Research Method

The research was conducted to identify techniques that could be used to identify domains

from DNS query response network tra�c that could be linked to potential botnet activity.

The proposed detection techniques were used to construct prototype classi�ers capable of

detecting known botnet domains. These classi�ers were then evaluated to determine their

accuracy as well as the rate at which false positives and false negatives occur. Finally the

performance of the classi�ers was evaluated to determine the feasibility of deploying the

classi�ers on a real world network.

The proposed classi�ers were derived by examining current detection evasion techniques

employed by botnets: namely algorithmically generated domain names and DNS Fast-

Flux. This led to the identi�cation of features which could be used in the construction of

classi�ers. Once these features were known, statistical techniques were researched to iden-

tify techniques which could be used to produce classi�ers. The proposed classi�ers were

trained using known, legitimate botnet domains. The trained classi�ers were then tested

against real world samples to determine their accuracy when exposed to data gathered

from botnets operating at the time. Real world performance testing was conducted to
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evaluate the performance impact the proposed classi�ers would have on existing network

tra�c.

1.4 Document Structure

The remainder of the document consists of �ve chapters as follows:

� Chapter 2 provides background information about the Domain Name System, bot-

nets and the evasion techniques used by botnets. Related work is outlined and it is

explained how this research aims to extend and improve on previous work, as well

as introducing novel classi�cation techniques.

� Chapter 3 describes the datasources used and how data was divided into train-

ing and test sets. Lexical analysis is explained and the lexical features of English

words, domain names and algorithmically generated domain names are examined.

Following this, the techniques used to construct the classi�ers for the classi�cation

of domain names are outlined. The techniques for detecting Fast-Flux domains are

described along with the spatial autocorrelation and how this can be applied to

Fast-Flux domain detection.

� Chapter 4 presents the results for the classi�ers described in Chapter 3. First the

means of measuring classi�er performance are outlined, followed by the results for

the lexical analysis classi�ers. The results for classi�ers using DNS query features

to detect Fast-Flux domains are presented. Finally the results obtained through

spatial autocorrelation are presented.

� Chapter 5 discusses the results obtained in testing. The performance in terms of

accuracy of the classi�ers are compared to related works and the implications of the

research results are discussed. The weaknesses of the classi�ers are discussed along

with possible bypass techniques and how these could be countered.

� Chapter 6 provides a conclusion to the research and suggests possible future research

based on the �ndings and work presented in this document.

The appendices provide additional information that may be useful in understanding the

data used in this document. Sample Fast-Flux botnet DNS queries are provided in Ap-

pendix A. Algorithmically generated domain names for the Con�cker-C, Kraken and
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Bobax botnets are provided in Appendix B. Appendix C provides a sample of the ge-

ographic distributions of Fast-Flux C2 servers.

Elements of this document have been published in short format and links to these are

provided in Appendix D.
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2
Background

This chapter provides background information relevant to the research presented in the

remainder of this document. The domain name system (DNS) and how it is used ubiq-

uitously in modern Internet communication is described in section 2.1. Botnets are de-

scribed in detail in section 2.2 along with two of the evasion techniques employed by these.

These techniques are discussed separately as DNS Fast-Flux (subsection 2.2.2) and algo-

rithmically generated domain names (subsection 2.2.3). Furthermore, the relationship

these evasion mechanisms have with DNS are discussed in detail. Related work in bot-

net detection and the use of DNS in the detection of botnets is outlined in section 2.3.

This includes work in the identi�cation of algorithmically generated domain names and

Fast-Flux detection. The chapter concludes with section 2.4 providing a summary of the

information presented.

2.1 Domain Name System

All devices connected to the internet have a globally unique address used to identify the

device. This unique address is known as the device's Internet Protocol (IP) address and

consists of 32-bits in IP version 4 (IPv4). In IPv4 this is typically written as a series

of four binary octets (A.B.C.D) known as dotted notation (example 192.168.0.1). IP

version 6 (IPv6) consists of 8 octets and thus allows for a larger set of address to be

represented than in IPv4. IPv6 is the o�cial replacement for IPv4 and has slowly been

integrated into existing networks (Colitti, Gunderson, Kline, and Re�ce, 2010). For the

purpose of this research IPv6 is out of scope, though all the methods described should

be portable to IPv6. These numerical IP addresses are easy for computing devices to
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Figure 2.1: DNS Hierarchical Tree Structure

use but harder for humans to remember. The Domain Name System (DNS) was created

to provide a mapping between the user-friendly domain names and machine friendly IP

addresses. DNS is a distributed, hierarchical naming system that ensures the names used

to identify resources on the Internet can remain constant despite changes to the underlying

IP address or physical location. A domain name may consist of up to 253 characters,

with an individual domain label not allowed to exceed 63 characters (Mockapetris, 1987).

Characters which are allowed to be present in domain labels are alphanumerical ([a-

z][A-Z][0-9]) as well as the hyphen. All other characters are invalid in domain names

(Mockapetris, 1987). International domain name servers (iDNS) allow domain names to

fall outside these limits, allowing for characters from languages such as Chinese to be used

(Tan, Seng, Tan, Leong, De Silva, Lim, Tay, Subbiah, et al., 2002).

Domain names are constructed using a hierarchical tree structure, where a domain name

may consist of multiple domain labels separated by a dot (`.') such that eu.mail.example.com.

constitutes a fully quali�ed domain name. A fully quali�ed domain name ends in a `.'

which is known as the root node. The root node is taken as implied and is commonly left

o�. Each domain name identi�es a path from the root node, identi�ed by the rightmost `.',

to the node representing the Internet endpoint resource. This hierarchical structure can

be represented as shown in Figure 2.1. The domain eu.mail.example.com. can be mapped

by following the branches of the tree structure as shown. The path starts at the root node

progressing downwards through each child node, known as a resource record (RR), along

the path until eventually terminating at the �nal node, which would typically resolve the

domain address and other records. The progression down the tree is shown as purple

dashes, starting at the root node `.' and progressing down to the lowest level domain

`eu'. The depth of a node in the tree is known as the domain level, with each domain

name consisting of at least two domain levels, such that for the domain example.com,
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Figure 2.2: DNS Resolution Process

the Top-Level Domain (TLD) is `com' and the Second-Level Domain (SLD) is `example'.

All the child nodes of `example' indicate sub-domains controlled by the `example.com'

domain. Available TLDs are controlled by Internet Corporation for Assigned Names and

Numbers (ICANN) and can be divided into two subgroups, Generic TLDs (gTLD) and

Country Code TLD (ccTLD). Generic TLDs represent domains such as .com, .edu, .gov

and .net, while ccTLDs consist of a two-character country code such as .uk, .ru and .za

(Aitchison, 2011).

When a user wishes to contact a host on the Internet the domain name �rst needs to be

mapped to the IP address of that host. This is done through the DNS resolution process,

as can be seen in the simpli�ed process depicted by Figure 2.2, where a query for the

domain name www.example.com returns an authoritative answer from the DNS server for

example.com. A DNS query is done to the host's local DNS resolver (1), usually internal

to the organisation or the host's Internet Service Provider. This DNS server performs

a lookup of the domain name in it's local cache and if the address record is available

returns an answer to the host (8). When the address record is not available the DNS

server performs either an iterative or recursive DNS lookup. This referral process shown

by steps 2 through 7 consists of a series of lookups to the DNS servers for each node

in the DNS hierarchy until a valid DNS record is located. If no DNS record is found a

MX record is returned to indicate that the domain name could not be resolved. This

process is however outside the scope of this research. Additional information on iterative

or recursive DNS lookup can be found in the literature Aitchison (2011). The result of

this resolution process is a DNS query response consisting of numerous �elds containing

values pertinent to the domain in question. A typical DNS query response can be seen in
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;; QUESTION SECTION:
;google.com. IN A

;; ANSWER SECTION:
google.com. 300 IN A 74.125.233.14
google.com. 300 IN A 74.125.233.0
google.com. 300 IN A 74.125.233.1
google.com. 300 IN A 74.125.233.2
google.com. 300 IN A 74.125.233.3
google.com. 300 IN A 74.125.233.4
google.com. 300 IN A 74.125.233.5
google.com. 300 IN A 74.125.233.6
google.com. 300 IN A 74.125.233.7
google.com. 300 IN A 74.125.233.8
google.com. 300 IN A 74.125.233.9

;; AUTHORITY SECTION:
google.com. 113635 IN NS ns3.google.com.
google.com. 113635 IN NS ns1.google.com.
google.com. 113635 IN NS ns4.google.com.
google.com. 113635 IN NS ns2.google.com.

;; ADDITIONAL SECTION:
ns1.google.com. 286436 IN A 216.239.32.10
ns2.google.com. 286436 IN A 216.239.34.10
ns3.google.com. 286436 IN A 216.239.36.10
ns4.google.com. 286436 IN A 216.239.38.10

1

2

3

4

Figure 2.3: Output for the DNS Resolution Process Using the dig Command

Figure 2.3, where the resolution of the domain google.com has been done using the dig1

command.

Examining the query response in Figure 2.3, the value at 1 represents the ORIGIN di-

rective, which is the name of the domain that has been queried. This will be extracted

from DNS query responses and used in the lexical analysis of domain names as outlined

later in section 3.2. The next value of concern is the A Resource Record, as identi�ed by

2. This value de�nes the IPv4 address of a particular host in the domain. A related �eld

to this is the AAAA Resource Record, which has an identical structure to a standard A

Resource Record. It is used to identify a host using it's IPv6 address. Each IP address

associated with an A record has an Autonomous System Number (ASN), which is used

in the routing of tra�c on the Internet (Dragon Research Group, 2011). Each ASN is

usually associated with a single organisation and is thus a good indicator of the owner of

an IP address block. The value at 3 is the Time-to-Live (TTL) directive for the domain.

1dig (domain information groper) is a network administration command-line tool for querying DNS
name servers. Dig is a built-in tool in many Linux distributions.
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This value speci�es the amount of time, in seconds, that a domain name should be cached

by another name server. Once the TTL expires the DNS record should be renewed by

performing a new DNS query. RFC 1912 recommends minimum TTL values of 1-5 days,

allowing clients to bene�t from the e�ects of DNS caching (Barr, 1996). The �nal value

of interest is labelled as 4. This is the NS Resource Record and is used to identify the

authoritative name servers for the domain. The authoritative name server is used to host

the DNS records for a domain and answer queries for resolution.

2.2 Botnets

The term `botnet' is used to describe a collection of compromised hosts that are networked

together and are under the control of a third party, known as a botmaster (Pereira et al.,

2007; Shadowserver Organisation, 2012). These compromised hosts may consist of any

computing device capable of accessing the Internet, including private home computer

systems, corporate computer systems and even mobile devices (Xiang, Binxing, Lihua,

Xiaoyi, and Tianning, 2011). Botnets are used by botmasters to commit multiple cy-

bercrimes such as spam distribution, Distributed-Denial-of-Service (DDoS) attacks and

malicious software distribution. Furthermore, the compromised hosts may report back to

the botmaster with user details such as online banking passwords and credit card informa-

tion. Once a botnet has been created, the botmasters require a means of communicating

instructions to all the hosts in the botnet. A common strategy for this is the use of Com-

mand and Control (C2) servers. These C2 servers provide a central location for botnet

members to receive instructions as well as a location to report back with stolen informa-

tion. As C2 servers provide a central location for hosts to call-back to, they also create

a central weak-point which security researchers can use to shutdown the entire botnet.

For this reason botmasters have employed many detection and shutdown techniques. The

structure of botnets and the evasion techniques employed by botmasters are discussed in

greater detail in the subsequent sections.

2.2.1 Structure of Botnets

The structure of a typical botnet is presented in Figure 2.4, where the botnet consists of

all the components outlined above. The botmaster is able to submit commands to the

bots through the C2 servers, while using the C2 servers as relays for data being returned

by the bots. The use of C2 servers as proxies makes locating the botmasters location
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Figure 2.4: Botnet Structure

nearly impossible and provides anonymity to the botmasters. As the botmaster relies on

C2 servers for communicating with the bots of the botnet, C2 servers are the weak point

of any botnet as taking down a C2 server denies a botmaster access to the bots of the

botnet (Silva, Silva, Pinto, and Salles, 2012). To slow down locating and shutting down

of C2 servers, botmasters have employed multiple strategies. Two of these strategies,

DNS Fast-Flux and algorithmically generated domain names, are discussed in the next

sections.

Botnets consist of multiple parts, independent of the botnet's size or the architecture

employed. These parts each play di�erent roles in the operation of the botnet and provide

a di�erent target for managing and taking down botnets. This structure can be broken

down into four main components as follows:

� Botmaster: An individual or group that controls the operation of the botnet.

The botmaster may not be the creator of a botnet and may have purchased the

botnet from another botmaster or rent the botnet temporarily. The botmaster
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issues commands to the bots belonging to the botnet through the C2 servers using

the C2 channel.

� Bot: A bots in the botnet may consists of any computing device that has been

compromised and is under the control of the botmaster. The bots in a botnet receive

instructions from the botmaster through the C2 channel and will perform periodic

checks with the C2 servers for new instructions. The botmaster may also directly

control the bot through a remote access trojan (RAT). Bots may be instructed

to harvest user information on compromised hosts. This information may include

keystrokes, credit card information and online banking logins. Botmasters may

compromise hosts in multiple ways including malicious software, drive-by-downloads

and hacking. Bots will typically perform DNS queries, just as legitimate hosts would,

to �nd the IP addresses of C2 servers to contact (Morales, Al-Bataineh, and Sandhu,

2009).

� C2 Server: C2 servers are used to relay instructions and data between the bot-

master and the bots of the botnet. In many cases the botmaster will never have

direct access to individual bots but rather uses the C2 servers as proxies for con-

trolling these hosts (Silva et al., 2012). The C2 servers may be bots on the botnet,

server infrastructure such as web-servers which have been compromised, or so called

bullet-proof hosting. Bullet-proof hosting consists of networks that are known to

tolerate hostile network activity and ignore take-down notices for malicious hosts.

� C2 Channel: The C2 channel employed de�nes how communication is performed

between bots and the C2 servers. Early botnets employed Internet Relay Chat (IRC)

as a communication channel but in recent years there has been a shift towards the use

of standard HTTP communication channels. This has largely been due to stricter

�rewall policies, limiting the types of tra�c which may egress from a network. With

HTTP being ubiquitous in the functioning of the web tra�c, it is nearly always

allowed on a network (Lee et al., 2008). Furthermore, botnet HTTP tra�c is not as

noticeable with legitimate HTTP tra�c already present on most networks. Botnets

have steadily been shifting towards the use of encrypted communication channels,

preventing Man-in-The-Middle (MiTM) attacks by security researchers. This shift

towards encrypted C2 channels has made botnet take down more di�cult and has

made it near impossible to submit rogue commands to bots belonging to a botnet.
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Table 2.1: Fast-Flux Domain Query Result

IP Address AS Number Organisation Country

222.106.31.123 AS4766 Korea Telecom KR
95.139.78.214 AS48400 CJSC �Comstar-Regions� RU
110.133.1.126 AS9824 Technology Networks Inc JP
80.54.192.197 AS5617 Telekomunikacja Polska S.A. PL
211.125.152.16 AS10019 Matsusaka Cable-TV Station Inc JP

Table 2.2: Content Distribution Network DNS Query Result (fbcdn.com)

IP Address AS Number Organisation Country

66.220.149.88 AS32934 Facebook, Inc. US
66.220.152.16 AS32934 Facebook, Inc. US
66.220.158.70 AS32934 Facebook, Inc. US
69.171.234.21 AS32934 Facebook, Inc. US
69.171.237.16 AS32934 Facebook, Inc. US
69.171.247.21 AS32934 Facebook, Inc. US

2.2.2 DNS Fast-Flux

DNS Fast-Flux is another method used by botmasters to build resilient and robust botnet

control infrastructure. Fast-Flux uses rapidly, repeatedly changing DNS records to provide

constantly changing IP addresses to which a domain name resolves. The use of rapidly

changing DNS records is not in itself malicious and has been used by legitimate services

to provide load balancing for high availability and high volume web sites (Holz, Gorecki,

Rieck, and Freiling, 2008). Fast-Flux domains rely on a short TTL for the resource

records, ensuring that each subsequent DNS query will request a new resource record and

not use the cached version. With each new DNS query, a new set of resources records is

returned with new resources records mapping to di�erent IP addresses from the previous

query. This rapid �ux in DNS records provides a means of concealing the C2 servers as no

two DNS queries map back to the same hosts, with many of the resource records returned

linking to proxy hosts which relay instructions back to the C2 servers. A further bene�t of

DNS Fast-Flux is that as long as a single address returned is available, the whole service

remains online.

As has been stated, Fast-Flux can be used as a legitimate means of providing load balanc-

ing for web sites such as those hosted on CDNs. There is, however, a noticeable di�erence

between legitimate CDNs and Fast-Flux domains (Holz et al., 2008). Botmasters are not

free to choose the hardware and network location of individual nodes, resulting in diverse

IP ranges being returned with each DNS query response. This can be seen in Table 2.1,
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where �ve widely dispersed IP ranges are returned for a single DNS query. Furthermore,

each of these IP ranges were registered to a di�erent organisation and belong to di�erent

ASNs. The geographic locations of the hosts also appear randomly distributed globally,

with four di�erent countries represented. This can be compared to the results for CDNs'

DNS query result in Table 2.2, where - despite two IP ranges being returned - they are

from the same ASN and both ranges belong to Facebook Inc. Furthermore, all the hosts

mapped to these IP addresses are located in the United States and are not widely dis-

persed geographically, as is the case with the Fast-Flux domain presented in Table 2.1.

It has been noted that employing Fast-Flux as a defensive measure to mitigate DDoS

attacks has a high success rate (Lua and Yow, 2011). For this reason Fast-Flux presents

a double-edge sword, as it provides an e�ective means for both legitimate and malicious

domains to maintain availability and throughput (Lua and Yow, 2011).

2.2.3 Algorithmically Generated Domain Names

Algorithmically generating domain names is a technique employed by various botnet fam-

ilies to increase the lifespan of botnet C2 domains. These domain names are generated

using a Domain Generation Algorithm (DGA), ensuring that the botmaster knows in ad-

vance which domain names will be generated and thus knowing which domain names to

register. By using a DGA botmasters are able to have clients generate a large number of

domain names that could possibly be used by C2 servers (Damballa, 2012). Due to the

large number of domains being generated, security researchers are unable to determine

which domain names will actually be used. Furthermore, the sheer volume of domain

names makes it near impossible to preregister all the domain names that have been gen-

erated. The technique of preregistering domain names had been e�ective in preventing

communication between bots and the C2 servers for early variants of botnets such as

Con�cker-A and Con�cker-B, where only 250 domain names were generated in a day.

The release of the Con�cker-C variant saw the generation of 50000 domain names a day.

This was an extremely di�cult number of domains to preregister, in both monetary and

logistic terms (Leder and Werner, 2009). As the botmasters require only one domain to be

reachable, researchers have to ensure a one hundred percent success rate in preregistering

all domains if they wish to e�ectively prevent communication between the botmaster and

the botnet. The botmasters are able to pre-generate a list of domain names that will be

generated by the botnet hosts in the future and register a selection of these domains in

advance.

The success of the Con�cker-C botnet has led to the use of DGAs by multiple botnets,
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Table 2.3: Sample Algorithmically Generated Domain Names

Torpig Kraken Con�cker-C

wghfqlmwtwe.com aafsyt.dyndns.org nzfpt.ir
oderkayotwe.com aetqzvfzub.dyndns.org gxigcsiv.sh
ghplzwgtwe.com aifuunhoomc.dyndns.org motied.sk
wdecfjiwtwe.com gmqaeoeudhd.dyndns.org zuwomto.com.fj
bcplcwytwe.com kpjobheecz.dyndns.org dtofeqdih.in
aefjchpatwe.com likkhxbl.dyndns.org bgwmdt.hu
mhjqxaxmtwe.com bnbnpqkagr.dyndns.org hdwcgwvr.co.za
sfgtilbstwe.com danssxjpgqh.dyndns.org udjgefanm.com.ag
aefnmvuatwe.com ggdcnsp.dyndns.org slkvruja.am
jbcfqmmjtwe.com baqydcdnusq.dyndns.org rozikf.com.gt
ocdvjxdotwe.com uresesbfsb.dyndns.org mcptvhezs.com.hn
ajicfjiatwe.com gbsszmdkuq.dynserv.com jkoo.com.do
qefswxaqtwe.com zpuxycznd.dynserv.com hfhvue.vn

with the �ve largest DGA based botnets being Con�cker, Murofet, BankPatch, Bonnana

and Bobax (Damballa, 2012). The DGAs use a seed value that is consistent across all

the bots of the botnet, such as the system time. The Torpig botnet used the Twitter

API2 to generate domain names from the most popular terms being discussed on the

platform. The pseudo random nature of these domain names mean that characters in the

generated domain names will appear to have a uniformly random distribution. Closer

investigation reveals that certain characters tend to appear more frequently than others.

The frequency distribution of characters is discussed in greater detail in section 3.2. Sam-

ples of algorithmically generated domain names for the Torpig, Kraken and Con�cker-C

botnets are shown in Table 2.3. It can clearly be seen that the domain names generated

do not look the same as legitimate domain names such as facebook.com, youtube.com and

myspace.com, which all consist of a combination of English words. Furthermore, it can

be noted that all the Torpig domain names end in `twe', indicating they were generated

in December Unmask Parasites (2009). This is due to the DGA used to generated these

domains, where a su�x relating the current month is appended to each generated domain

name (Unmask Parasites, 2009).

2https://www.twitter.com/api
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2.3 Related Work

The emergence of botnets as a serious threat in the modern Internet landscape has led

to numerous researchers to examine ways of detecting botnets and the tra�c associated

with botnets. Two areas of botnet research related to this work were examined. Work

in the analysis of URLs is discussed in subsection 2.3.1, where previous attempts to de-

tect algorithmically generated domains are examined. Research in spam �ltering is also

discussed as this relates to the Bayesian techniques used in this research. The second

subset of botnet research examined was DNS Fast-Flux detection and this is discussed in

subsection 2.3.2. Multiple techniques of botnet detection based on DNS query analysis

are outlined.

2.3.1 URL Analysis

Signal theory and signal processing methods have been proposed as an approach for de-

tecting algorithmically generated domain names (Yadav et al., 2010). Analysis of the

distribution of alphanumeric characters as well as the distribution of bigrams within do-

main names was conducted in Yadav et al. (2010). The frequency distribution of char-

acters were found for legitimate and algorithmically generated domain names. The K-L

divergence3 was used as a statistical measure of how closely the frequency distributions

for the test domain relate to the known distributions for legitimate and algorithmically

generated domain names. A domain was classi�ed based on which distribution it diverged

from the most. They extended their analysis to examine the distribution of bigrams (also

known as character pairs) in an attempt to identify domain names that had been gener-

ated using algorithms that attempt to match the frequency distribution of characters in

natural language. The techniques employed required domain grouping to increase accu-

racy, with observed domains being primarily grouped according to domain and secondly

according to IP address. Domain name grouping was done on sets of 50, 100, 200 and

500 test words, with at least 50 domain names in a group required to positively identify

malicious domains, while the researchers noted the best results were achieved once 500

domain names had been analysed. The results achieved showed a 100% detection rate

when 500 domain labels were used, with only 5-7% false positives, with a true positive

rate (TPR) of 93%. Bigram analysis resulted in more domains being detected with a

lower false positive rate of 2%. When only 50 domain names were present in a grouping,

the detection rate dropped to 80% with a 20% false positive rate (FPR).

3Kullback�Leibler divergence: A measure of the di�erence between two probability distributions
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The analysis of domain names based on the character distribution o�er the bene�t of not

having to do costly lookups of known `safe words', such as suggested in other works such

as Alienvault Labs (2012). The work by Alienvault Labs (2012) used syntax heuristics,

where domains were classi�ed according to the number of consonants contained in the

domain name after common English words such as `or', `and', `page', `free' had been

removed. The results from the AlienVault research showed a 61% TPR and a low FPR

of 10%. These results were obtained using only Con�cker-C domains as the malicious

dataset. While the low FPR and relatively high TPR are commendable, the system is

easily bypassed by simply reducing the number of consonants in the domain name. This

can be achieved by altering the DGA and thus it is hypothesised that the AlienVault

solution would not be as e�ective in detecting algorithmically generated domain names

for previously unseen malware.

The move towards social services such as Twitter, where users are limited in the number

of characters which they can post, 140 character limit, has seen the emergence of URL

shortening services (Lee and Kim, 2012). These shortening services provide an interme-

diary service between the user and the shortened domain, where a mapping between a

unique short domain and a fully quali�ed domain is created. The popularity and sheer

number of URL shortening services available has seen a move by botnet creators towards

using these services as a means of �uxing between botnet C2 servers (Lee and Kim, 2012).

The URLs used for phishing and advertising spam were analysed by Ma, Saul, Savage,

and Voelker (2009). They identi�ed that malicious URLs exhibit di�erent alphanumeric

distributions than legitimate URLs. Statistical learning techniques were employed to

identify malicious URLs from lexical features such as domain name length, number of

dots in the URL and host names. The proposed system aimed to identify single URLs

as malicious, whereas Yadav et al. (2010) looked at the grouping of domain names (Ma

et al., 2009). Work performed by Xie, Yu, Achan, Panigrahy, Hulten, and Osipkov (2008)

led to the development of regular expression based signatures for detection of spam URLs.

The solution proposed in this research is intended to surpass the accuracy of the regular

expression based solution. Furthermore, the solution should be harder to bypass and will

avoid the need to constantly update signatures to match new attacks as they develop.

Classi�ers based on Bayesian statistics have been used successfully in the classi�cation

of binary problems. One area of information security where this has been particularly

successful is in the detection of spam emails (Seewald, 2007; Sahami, Dumais, Hecker-

man, and Horvitz, 1998). Bayesian statistics allow for the creation of classi�ers that are

content-based as well as self-learning, allowing for probabilistic problem solving (Androut-
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sopoulos, Koutsias, Chandrinos, Ch, Paliouras, and Spyropoulos, 2000). The two main

types of classi�ers that have been used in the detection of spam emails are Bayesian classi-

�ers and Naive Bayesian classi�ers. The Bayesian classi�ers assume dependence between

the attributes being examined, while the Naive Bayesian classi�ers assume independence

between attributes. Assuming independence allows for smaller, less complicated training

sets to be used. Furthermore, the probabilities of attributes in the Naive Bayesian classi-

�er are easier to calculate as the dependence on other attributes do not have to be taken

into account. It has been shown that both Naive and standard Bayesian classi�ers allow

for highly accurate classi�cation of spam mail (Androutsopoulos et al., 2000; Seewald,

2007; Zhang, Zhu, and Yao, 2004), leading to the notion that they may easily be adapted

to create accurate classi�ers for URL classi�cation.

2.3.2 DNS Fast-Flux Detection

A number of approaches for detecting malicious network activity through DNS tra�c

monitoring were studied. The system implemented by Perdisci, Corona, Dagon, and

Lee (2009) for the detection of malicious Fast-Flux service networks through the passive

analysis of recursive DNS tra�c traces identi�ed common features in Fast-Flux DNS

query results (Perdisci et al., 2009). Common features identi�ed were a short time-to-

live (TTL), multiple Address (A) records and multiple ASNs. It was shown that the

IP addresses resolved to the domain name were often from dissociated networks and

changed rapidly, matching the operation of Fast-Flux as described in subsection 2.2.2.

The de�nitive work in Fast-Flux detection was done by Holz et al. (2008), who identi�ed

the same key DNS features. These DNS features were used in the creation of heuristic

classi�cation models for the detection of Fast-Flux botnets. Their primary observation

was that Fast-Flux botnets could be detected using the number of distinct A records

returned and the number of di�erent ASNs associated with the domain. Results showed

botnet creators attempt to mimic the structure of CDNs. This behaviour masks botnet

activity and hinders the automatic classi�cation of domains (Holz et al., 2008). It was,

however, identi�ed that the inherent distributed structure of botnets could be used as a

distinguishing factor. The authors Holz et al. (2008) noted that botmasters have limited

control over the hardware and network location of individual nodes, where CDNs have full

control over the locations of nodes. Furthermore, botmasters could not easily obfuscate

these features. These features were used in a Fast-Flux detection system. The proposed

system required secondary DNS queries once the original queries TTL expired, increasing

the time required to classify domains.
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The distributed nature of botnet C2's is a well established fact and researchers have at-

tempted detection and classi�cation of botnets using the geographic locations of botnet

nodes (Caglayan, Toothaker, Drapaeau, Burke, and Eaton, 2009; Hu, Knysz, and Shin,

2011; Huang, Mao, and Lee, 2010). The research conducted by Huang et al. (2010) pro-

posed a method for delay-free detection of Fast-Flux service networks. The solution relied

on spatial distribution estimation and spatial service relationship evaluation. Timezones

were used to distinguish between di�erent geographic system spaces and were combined

with information entropy to measure how uniformly nodes were distributed. The authors

noted that benign domains tend to be distributed in the same timezone, while Fast-Flux

nodes are widely distributed across multiple timezones. The authors further noted that

if all the hosts of a botnet were to be located in the same timezone, timezone based en-

tropy would not be an e�ective measure for detecting if the hosts belonged to a benign

or Fast-Flux domain. The work performed by Caglayan et al. (2009) aimed to model the

behavioural patterns of Fast-Flux botnets. Using DNS records, they showed Fast-Flux

botnets exhibit common characteristics: that botnets form clusters based on botnet size,

growth and operation. It was further shown that the majority of Fast-Flux botnets oper-

ate in more than �ve countries at a time, averaging between 20 and 40 countries. In Hu

et al. (2011) the global IP usage patterns of Fast-Flux botnets were studied. Their re-

search bene�ted from a global perspective, with 240 nodes on four continents monitoring

DNS tra�c. Hu et al. (2011) found that Fast-Flux botnets advertise IP addresses from

multiple countries, irrespective of where the DNS query came from, where as CDNs ad-

vertise IPs in a geographically aware manner. This observation provides valuable insight

into the operation of Fast-Flux botnets, and further helps determine how a classi�er that

is capable of di�erentiating between Fast-Flux botnets and CDNs may be constructed.

2.4 Summary

This chapter presented background information pertinent to the research presented in the

rest of this document. The Domain Name System was described in section 2.1, where

the DNS hierarchy was explained along with the mapping between easy to remember

domain names and the numerical addresses used by hosts on the Internet. The structure

of DNS query responses were outlined along with explanation of the records relevant to

this research.

section 2.2 provided background information on botnets and their structure. The re-

lationship between C2 servers and the hosts of a botnet was described as well as the



2.4. SUMMARY 21

communication channels used by botnets. Two detection evasion techniques employed by

modern botnets were described. subsection 2.2.3 described the use of DGAs by hosts on

a botnet to generate a list of domain names to query when attempting to contact the C2

servers. A brief description of the Torpig domain name generation algorithm was provided

to represent common techniques used by botnet creators in setting up DGAs. The second

detection avoidance technique described was DNS Fast-Flux. subsection 2.2.2 described

the operation of Fast-Flux botnets and how DNS records are used to mask the addresses

of the C2 servers and to increase the botnets resilience against shutdown.

Finally related works in the detection of algorithmically generated domain names were

presented in subsection 2.3.1, along with works focusing on the detection of malicious

domain names. Bayesian spam �ltering techniques were discussed, leading to the premise

that these techniques may be applied to the detection of algorithmically generated domain

names. Research into Fast-Flux domains and the detection there-of was described in

subsection 2.3.2. Research into the use of geographic dispersion in the detection of botnets

was presented and brie�y discussed.It was shown that methods for detecting Fast-Flux

botnets have been successful and that there is, however, room for improvement.

The techniques used in related works are expanded upon and improved in the chapter 3.

New and novel means of detecting algorithmically generated domain names are pre-

sented, along with the adaption of Bayesian spam �ltering techniques to detect algorith-

mically generated domain names. Three techniques expanding on the research discussed

in subsection 2.2.2 are described. These aim to detect Fast-Flux domains from DNS query

responses. Spatial autocorrelation is presented as a new, novel technique for detecting

Fast-Flux based on the geographic distribution of C2 servers.
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3
Techniques for Botnet Identi�cation

This research aims to identify botnet tra�c on a network before actual communication is

established between the infected host and the Command and Control (C2) servers. Botnet

creators have developed a variety of means of allowing the infected hosts to contact the

correct C2 server. These techniques, like most connections on the Internet, rely on the

Domain Name System (DNS). This chapter describes multiple techniques used in the

identi�cation of DNS queries used by infected hosts attempting to communicate with C2

servers. By detecting queries for C2 servers, it is possible to block tra�c to these host

preemptively ensuring hosts are unable to establish a communication channel with the

botnet controller and thus prevent infected hosts from receiving instructions. Infected

hosts are identi�ed in the process allowing network administrators to clean infected hosts.

The data used in the training and testing of the classi�ers is described in section 3.1. Tech-

niques for identifying algorithmically generated domain names are described in section 3.2.

The DNS query responses are examined in more depth in section 3.4, where multiple tech-

niques for detection based on these features are detailed. In section 3.5 the geographic

features extracted from the DNS query are detailed as another means of accurately iden-

tifying Fast-Flux domain queries.

3.1 Data Description

Due to the nature of botnets and the multiple detection techniques examined, the data

used in this study was collected from various sources. Furthermore the data was stan-

dardised and divided into two distinct datasets: training data and test data. This was

done to allow classi�ers to be trained using one set of data while the testing of classi�er



3.1. DATA DESCRIPTION 23

accuracy was performed on a separate set of data. The use of two datasets ensured an

accurate representation of classi�er accuracy as the classi�er results were not in�uenced

by testing known data.

3.1.1 Domain Name Data Sources

The data used for the lexical analysis of domain names was taken from sources known to

contain accurate and clean data. These sources are outlined below and a summary of the

datasets are presented in Table 3.1.

� Dictionary words: 10 000 words taken from the Oxford English Dictionary (Oxford

University Press, 2011), based on words longer than 6 characters. The dataset is

labelled as AD1,

� Legitimate domain names: 10 000 domain names from a combination of the Google

Doubleclick Ad Planner Top-1000 Most Visited Sites (Google, 2012) and the Alexa

Top 10 000 Global Sites list (Alexa, 2012). The combined dataset is labelled as

AD2,

� Algorithmically generated domain names: 10 000 sample domain names generated

by Kraken (Royal, 2008), Torpig (Unmask Parasites, 2009) and Con�cker-C (Leder

and Werner, 2009; Porras et al., 2009). The combined dataset is labelled as AD3.

The training and test data were extracted from these datasets at random with a random

selection of 3000 dictionary words, legitimate domain names and algorithmically generated

domain names being selected from each dataset. The remaining 7000 samples from each

dataset were then used as the test data for measuring classi�er accuracy.

Table 3.1: Domain Name Data Sources

Label Description

AD1 English Dictionary Words
AD2 Legitimate Domain Names
AD3 Algorithmically Generated Domain Names
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3.1.2 Fast-Flux Data Sources

Acquiring the data used in the construction and testing of Fast-Flux classi�ers was par-

ticularly di�cult. This was due to the nature of Fast-Flux botnets, which dictates rapidly

changing variables within the datasets as well as domains frequently being taken o�ine.

Due to this constant �ux the values for each domain feature were captured over the pe-

riod that the domains were active and stored for further examination at a later stage.

Classi�er construction was done using this historical data while testing was performed on

live domains when possible and historical data for reference. The collection of data was

further hampered by the take-down of multiple botnets during the research period. The

re-emergence of the Hlux2 (Garnaeva, 2012) botnet for a limited period of time allowed

for the capture of valuable data, however the rapid take-down of this botnet made live

testing impossible. The take-down of the ZeuS botnet by Microsoft (Microsoft Corpora-

tion, 2012) hampered live testing of the classi�ers during the later stages of the research,

while the emergence of the Citidale variant of ZeuS has led to a recent increase in the

number of Fast-Flux botnet domains. A set of 500 domains were randomly selected as

training domains, while the remaining 1500 domains were used for testing the classi�ers

accuracy.

The sources of Fast-Flux botnet data were as follows:

� ZeuS Tracker (abuse.ch, 2012) produced a set of 238 Fast-Flux domains for the

period March 2011 - October 2012. Labelled as FD1.

� Spyeye Tracker (abuse.ch, 2011) produced a set of 28 Fast-Flux domains for the

period March 2011 - September 2011. Labelled as FD2.

� The Hlux2/Kelihos botnet domains acquired from a private source at a large Euro-

pean Internet Service Provider consisted of 507 Fast-Flux domains that had been

manually classi�ed for the period 23 January 2012 - 1 March 2012. Labelled as FD3.

� Arbor ATLAS summary report (Arbor Networks, 2012b) consisted of 674 Fast-Flux

domains for the period January 2012 - March 2012. Labelled as FD4.

The total number of Fast-Flux botnet domains in the dataset was 1447, with the combined

dataset being divided at random into a set of 400 training domains and 1047 test domains.

The dataset of legitimate domains consisted of the top 2000 domains taken from a merged

dataset of the Google Doubleclick Ad Planner Top-1000 Most Visited Sites (Google, 2012)
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and the Alexa Top 10000 Global Sites list (Alexa, 2012). The datsets used were labelled

with the pre�x FD with each datasource labelled as FD1, FD2, FD3 and FD4 respectively.

This can be seen in Table 3.2.

Table 3.2: Fast-Flux Data Sources

Label Sample Size (domains) Botnet Family

FD1 238 ZeuS
FD2 28 Spyeye
FD3 507 Hlux2/Kelihos
FD4 674 Unknown
FD5 2000 Legitimate

3.1.3 Live Test Data

Testing of the classi�ers was performed using DNS tra�c logged at a large South African

university and a local schools network to determine if the classi�ers were capable of iden-

tifying malicious domains not seen anywhere else. The datasets consisted of a pcap dump

containing 40 910 498 raw DNS packets. This dataset was labelled as LD1. Accompa-

nying this raw pcap dump, a secondary dump of 33 261 575 visited URLs along with

timestamps as seen by the web proxy. This dataset was labelled as LD2. To simulate

blacklist testing, a set of test data was obtained from MalwareURL (MalwareURL, 2011),

containing a listing 254 214 malicious URLs. This dataset has been labelled as LD3. A

summary of the datasets used is shown in Table 3.3.

Table 3.3: Live Test Data

LABEL SIZE

LD1 40 910 493 packets
LD2 33 261 575 domains
LD3 254 214 domains

3.2 Lexical Features

The Domain Name System relies on the mapping of alphanumeric, human-understandable

and -memorable addresses to numeric IP addresses. These domain names usually consist

of dictionary words or a combination of dictionary words in a memorable sequence. Ran-

domly generated domain names are a technique used by botnet creators for ensuring C2
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longevity and to protect against the shutdown of C2 domains. These randomly generated

domain names need be consistent across the botnet to ensure that all infected hosts con-

tact the correct C2 servers. To this end, botnet operators use a class algorithm, known

as a Domain Generation Algorithm (DGA), to determine how these domain names are

generated. These algorithmically generated domain names tend to exhibit a bias toward

certain character distributions depending on how the algorithm was constructed. These

character distributions vary greatly from the character distributions found in legitimate

dictionary words and thus legitimate domain names (Crawford and Aycock, 2008). Using

the lexical features of a domain name, frequency analysis can be performed to determine

the distribution patterns for letters in dictionary words, domain names and algorithmi-

cally generated domain names. The DGAs have been reverse engineered for numerous

botnet families including Torpig (Unmask Parasites, 2009), Con�cker (Con�cker Working

Group, 2010) and Kraken (Royal, 2008). This process of reverse engineering the DGA is,

however, time consuming and tedious (Thomas Barabosch, 2012), hence the need to de-

tect this algorithmically. Frequency analysis can be based on single character distribution

or on the distribution of character combinations such as ie, ch and qu, known as bigrams.

3.2.1 Frequency Analysis

Establishing a baseline for all comparison is essential in creating e�ective classi�ers. Fre-

quency analysis was performed on datasets of dictionary words, known legitimate domain

names and known algorithmically generated domain names. Frequency analysis was done

on single character distributions (unigrams), character combinations (bigrams) and on

the distribution of vowels and consonants. The frequency distribution for unigrams for

dictionary words, legitimate domain names and algorithmically domain names are shown

in Figure 3.1.

As seen in the �gure, there is a clear distinction between unigram distribution from

legitimate and algorithmically generated domain names. Legitimate domain names tend

to follow the same distribution pattern for unigrams as English words. This can be

attributed to the fact that the domain names examined are largely taken from the `English

Web'. Algorithmically generated domain names follow a similar distribution pattern as

a random distribution of unigrams. There is, however, a bias towards certain unigrams,

which can be attributed to the pseudorandom nature of DGAs.

Bigram analysis focused on all possible two character groupings for alphanumeric char-

acters allowed in domain names. The frequency distribution of these bigrams can be
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Figure 3.1: Frequency Distribution of Unigrams.

seen in Figure 3.2. The �gure clearly shows that the bigram frequency for algorithmically

generated domain names never exceed 0.3%, while common bigrams from the English

language display the same frequency distribution in legitimate domain names. The inset

shows the bigram distributions for all combinations of the regular expression [0-9][a-z].

The frequency distributions of the combinations ah, aj, al and others have the identical

frequency distributions for legitimate domain names and English words.

3.3 Lexical Classi�ers

The clear distinction between the frequency distribution of both unigram and bigram

characters in algorithmically generated domain names and legitimate domain names lends

itself to the idea that highly accurate classi�ers can be constructed based on the known

frequency of character distributions. The problem of identifying a domain name as le-

gitimate or algorithmically generated can be seen as a binary problem and thus binary

classi�ers and likelihood ratios were investigated. For the remainder of this section uni-

grams and bigrams are collectively referred to as tokens.
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Algorithm 3.1 Total Probability

P (D|C) =
∏
i

p(xi|C)

Where:

� P (D|C) is the probability that a domain name D belongs to a class given all letters
xi

� xi is the token at i; for P (`google'): x0 =`g'

3.3.1 Probability Distribution

Frequency analysis results in the frequency distributions of tokens for the target domain

space. These frequencies can be represented as the probability of a token occurring in a

domain name. The probability of a token occurring is treated as an independent event,

with preceding characters having no in�uence on the probability of a token occurring.

The probability of a token occurring in one of the two domain spaces, legitimate or

algorithmically generated, is denoted as P (x|B) where x is the token and B represents

the legitimate class.

The most basic means of calculating the likelihood of a domain name being legitimate

or algorithmically generated is to calculate the product of probabilities for each token

occurring in each class. This can be represented by the formula shown in Algorithm 3.1.

The product of probabilities are calculated for both legitimate and algorithmically gener-

ated domain names. These are then compared and the larger of the two probabilities is

used as an indicator of which domain space the domain name belongs to.

3.3.2 Total Variation Distance

The total variation distance is the maximum possible di�erence between two probability

distributions that can be assigned to a single event (Ehm, 1991). The variation distance

is used to gauge the di�erence between the probability of a domain name being legitimate

or algorithmically generated. The total variation distance measure used relies on a �nite

alphabet being de�ned. It is possible to generate a �nite alphabet with frequency analysis

and the knowledge that the characters used in domain names remain constant. The total

variation distance can be formally de�ned as seen in Algorithm 3.2.
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Algorithm 3.2 Total Variation Distance

σ(P,Q) =
1

2

n∑
i=1

| P (xi)−Q(xi) |

Where:

� xi is the token being examined (either a unigram or bigram)

� P (xi) is the probability of xi occurring in a legitimate domain name

� Q(xi) is the probability of xi occurring in an algorithmically generated domain name

3.3.3 Bayesian

Bayesian inference is a statistical technique that is useful in the classi�cation of problem

domains which have binary outcomes (Sahami et al., 1998). Bayesian inference is based on

Bayes' rule and is used to update the probability estimate for a hypothesis as additional

evidence. The outcome of this probability estimate is a likelihood ratio that compares

the likelihood that an observation belongs to a speci�c domain space. Bayesian classi�ers

have been used to solve other computer security related problems and have become a well

established means of creating self-updating classi�ers for binary classi�cation problems.

The use of Bayesian classi�ers have been particularly e�ective in email spam-�ltering

where words found in emails are given probabilities of occurring in spam email and legiti-

mate email (Sahami et al., 1998). Probabilities are calculated from training data that had

been manually classi�ed as either spam or legitimate. Once a classi�er had been trained

it could be used for classi�cation (Seewald, 2007; Zhang et al., 2004).

During frequency analysis the particular probabilities of tokens occurring in legitimate

and algorithmically generated domain names are calculated. Legitimate domain names

tend to follow the token frequency distribution in line with the distribution of tokens

in the English language, while algorithmically generated domains display frequency dis-

tribution similar to a random distribution of tokens. The classi�er doesn't know these

probabilities in advance and is thus trained to build them up. Training of the classi�er was

done using known legitimate domain names and known algorithmically generated domain

names. As each token is encountered in the training domains, the classi�er adjusts the

probability of that token occurring in legitimate and algorithmically generated domain

names. Once the classi�er has been trained, the token probabilities are used to compute

the probability that a domain belongs to either category. The classi�cation of a domain

relies on the probabilities of each token found in the domain name. This reliance on each
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Algorithm 3.3 Bayesian Classi�er

P (F | t) =
P (t | F ).P (F )

P (t | F ).P (F ) + P (t | ¬F ).P (¬F )

Where:

� P (F | t) is the probability that a domain name is algorithmically generated, if the
token t is in the domain name

� P (F )is the overall probability that a domain name is algorithmically generated

� P (t | F ) is the probability that the token appears in an algorithmically generated
domain name

� P (¬F ) is the overall probability that a domain name is legitimate

� P (t | ¬F ) is the probability that the token appears in a legitimate domain name

token is known as the posterior probability. The overall likelihood is calculated over the

posterior probability and if the result exceeds a threshold, the domain will be classi�ed

as algorithmically generated. The formula for calculating the likelihood ratio using the

Bayesian Classi�er is formally de�ned in Algorithm 3.3.

The classic Bayesian classi�er treats all events as dependent on previous events, this makes

it ideal for analysing tokens in natural language text. This assumption of dependence

presents a problem in the analysis of domain names, as these names may consist of

multiple English words combined together creating unusual character combinations. An

example of this is `dailymotion.com' where the combination of daily and motion results in

the character combination ym that has a low probability of occurring in standard English

text. As a result, a second Bayesian classi�er was created, where each token is treated as

an independent event and is discussed in subsection 3.3.4.

3.3.4 Naïve Bayesian Classi�er

The naïve Bayesian classi�er assumes that all events are independent, where the presence

of any one token is not a�ected by the presence of any other token. The assumption of

independence has been shown to result in highly trainable classi�ers that only require a

small training dataset (Sahami et al., 1998; Seewald, 2007). Due to the independence of

tokens being assumed, only the variance of each token is required and not the covariance

matrix of how variables are related. The construction of the naïve Bayesian classi�er

assumes tokens are randomly distributed in the domain name and that tokens are not
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Algorithm 3.4 Naïve Bayesian Classi�er

ln
P (F | D)

P (¬F | D)
= ln

P (F )

P (¬F )
+
∑
i

ln
P (ti | F )

P (ti | ¬F )

Where:

� ln P (F |D)
P (¬F |D)

is the logarithmic probability ratio that a domain name is algorithmically

generated (P (F | D)) or legitimate (P (¬F | D))

� P (F ) is the overall probability that a domain name is algorithmically generated

� P (¬F ) is the overall probability that a domain is legitimate

� P (ti | F ) is the probability that the token appears in an algorithmically generated
domain name

� P (ti | ¬F ) is the probability that the token appears in a legitimate domain name

dependent on the length of the domain name, position within the domain name with

relation to other tokens, or other domain name contexts. This ensures that training

datasets can be kept small, making training easier and faster. Each token is taken as a

categorical attribute where the conditional probability for P (′a′ = Y es|No) is equal to

the probability that the letter a is present in domain name.

The formula described in Algorithm 3.4 produces a log-likelihood ratio. This ratio de-

scribed the relationship P (F |D) > P (¬F |D) where ln P (F |D)
P (¬F |D)

> 0 indicates a legitimate

domain name. The resultant classi�er is robust and insensitive to isolated points of noise

as these are averaged out. Furthermore, the classi�er is not signi�cantly e�ected by

irrelevant attributes as each token is considered to be independent (Seewald, 2007).

3.4 Domain Name Query Features Classi�ers

The contents of a DNS query response were extracted and used to create classi�ers for DNS

Fast-Flux domain detection. As discussed in subsection 2.2.2 all DNS query responses are

expected to return certain values such as the Answer section and Authoritative section.

The values for these sections were analysed for known legitimate domains and known

Fast-Flux domains to identify attributes that are shared between these domains, while

also identifying attributes that are unique to either domain class.
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3.4.1 Modi�ed Holz Classi�er

A heuristic classi�er classi�es a record based on the record meeting prede�ned heuristics or

characteristics. The work of Holz et al. (2008) identi�ed key DNS query response features

that could be used in the identi�cation of Fast-Flux domains. Their observations noted

the same patterns as identi�ed earlier in subsection 2.2.2. They noted that Fast-Flux

domains displayed the characteristics:

� Numerous A records.

� Multiple network ranges.

� A low TTL.

These observations were combined with observations made while examining known Fast-

Flux and legitimate domains to construct a heuristic classi�er.

Algorithm 3.5 Modi�ed Holz Heuristic Classi�er

fs = (1.32 ∗ acount + 18.54 ∗ asncount + ttlscore ∗ 5)− 50

Where:

� acount is the number of A records in the DNS query

� asncount is the number of unique ASN linked to the A records

� ttlscore is 0 if the lowest TTL returned was greater than 300, otherwise 1

The original Holz classi�er was proposed in 2008 and, after initial testing, it was noted

that the weights proposed by Holz et al. (2008) had to be modi�ed to match current

trends in Fast-Flux botnets. The most signi�cant change made to the Holz classi�er was

the introduction of a score associated with the domain's TTL. It was noted the botnets

observed had higher TTLs (mean 595) and returned more A records per DNS query. This

was in contrast to the botnets observed by Holz, where Fast-Flux domains had low TTLs

(0 and 2), returning a single A record with each query.

A modi�ed Holz classi�er is proposed, where a weighted TTL is used in the calculation

of the Fast-Flux score along with a new �xed constant value of 50. The multipliers used

in the heuristic classi�er were derived from the values calculated by Holz et al. (2008)

(1.32*acount and 18.54*asncount) along with a custom multiplier for the TTL derived from
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observations of known Fast-Flux domains. This helped eliminate the need for additional

DNS queries once the TTL of the �rst DNS query expired introducing an unwanted

delay before classi�cation could be performed. The modi�ed classi�er is formally de�ned

in Algorithm 3.5. The score represented byfs, was indicative of a Fast-Flux domain if

greater than zero.

3.4.2 Rule-based Classi�er

The rule-based classi�er was constructed from observations of Fast-Flux domains active

at the time and based on the performance of the modi�ed Holz classi�er when a variation

from the norm occurred in domain query attributes. It was noted that the modi�ed

Holz classi�er did not take into account the number of di�erent countries IP addresses

were from. This was incorporated into the rule-based classi�er to add a further unique

identi�er of Fast-Flux domains. It had been noted that legitimate domains tended to

be hosted in a single country while Fast-Flux domains were hosted in multiple countries.

This is discussed further in section 3.5. The e�ect of large numbers of A records was

also taken into account, with the total number of A records returned receiving a lower

weighting than is given in the modi�ed Holz classi�er. The rule-based classi�er is described

algorithmically in Algorithm 3.6. The classi�cation of a domain was broken down into

two steps, with Equation 3.1 used to calculate the Fast-Flux score. This score was used

in Equation 3.2 to determine if a domain is Fast-Flux, where a value of ten or greater for

Y indicated a Fast-Flux domain.

3.4.3 Naïve Bayesian Classi�er

The Naïve Bayesian classi�er, developed to classify whether domains are Fast-Flux, dif-

fers from the classi�er discussed in subsection 3.3.4. The properties of the DNS query

response used in the classi�er are treated as continuous attributes, where the attributes

have a numerical value. This property required the calculation of the Naïve Bayes to be

altered to work with continuous attributes and not categorical attributes. The formula for

calculating the Naïve Bayes for continuous attributes is shown in Algorithm 3.7. The clas-

si�er is constructed on the assumption that a probability distribution for the continuous

attribute exists from the training data.

The calculated continuous probability for each DNS query feature is then used to calculate

the total probability that a domain is either Fast-Flux or legitimate. The calculation
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Algorithm 3.6 Rule-based Fast-Flux Classi�er

Y = (0.1 ∗ a+ 1.5 ∗ b+ 1.5 ∗ c+ d+ 2 ∗ e) (3.1)

Y (x) =

{
Y ≥ 10 if x is Fast-Flux domain

Y < 10 if x is Benign domain
(3.2)

Where:

� Y is the rule-based score

� [Y ≥ 10] indicates a Fast-Flux domain

� a is the number of A records in the DNS query

� b is the number of di�erent IP ranges

� c is the number of unique ASNs

� d is the TTL score, where a TTL < 300 is 1 otherwise 0

� e is the number of di�erent countries

of the overall probability is performed using the formulas described in Equation 3.3 for

legitimate domains and Equation 3.4 for Fast-Flux domains. The probabilities derived

in these calculations are compared and the domain is classi�ed according to the largest

probability.

The classi�er is trained using known legitimate and Fast-Flux domains with the sample

mean (x̄) and sample variance (s2) calculated for each attribute. Using the Naïve Bayes

formula as a classi�er creates a more robust classi�er than simple rule-based and heuristic

based classi�ers. This is due to any isolated points of noise being averaged out when

estimating conditional probabilities during the training phase. Furthermore, the proba-

bility distribution obtained during the training phase can be used to determine the ideal

decision boundary for each classi�cation feature. These decision boundaries can then be

used in constructing rule-based classi�ers speci�c to the observed data.

3.5 Geographic Features Classi�ers

The Domain Name System is used to resolve one or more network addresses to a central

domain name. Each of these network addresses can be mapped back to a physical geo-

graphic location (Padmanabhan and Subramanian, 2001). Domain name lookups allow
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Algorithm 3.7 Naïve Bayes Probability of Continuous Attributes.

P (Xi = xi|Y = yj) =
1√

2πσij
exp

−
(xi−µij)

2

2σ2
ij

Where:

� Xi is an attribute such as TTL or number of A records

� xi is the value of the attribute in the domain record being examined

� yi is the class being tested: Fast-Flux or legitimate

� µijis the sample mean (x̄)

� σ2
ij is the sample variance (s2)

Algorithm 3.8 Naïve Bayesian Fast-Flux Classi�er

p(D | S) =
∏
i

p(w
i
| S) (3.3)

and

p(D | ¬S) =
∏
i

p(w
i
| ¬S) (3.4)

Where:

� Equation 3.3 is used to calculate the probability that a domain is legitimate p(D | S)

� Equation 3.4 is used to calculate the probability that a domain is Fast-Flux
p(D | ¬S)

� wi is the domain feature being examined (Number of A Records, TTL, ect.)

infected hosts in the botnet to look up the address of C2 servers from which they need

to receive instructions. Nazario and Holz (2008) and Holz et al. (2008) noted that hosts

used as C2 servers for a botnet need to meet speci�c criteria. These include a globally

accessible, globally unique IP address (Nazario and Holz, 2008). In further work Holz

et al. (2008) identi�ed the inherent distributed structure of botnets as a distinguishing

factor. To contrast, legitimate domains tend to be set up with geographic location in

mind, with all servers for the domain hosted in a central location, such as a data-centre.

It is hypothesised that the principles behind animal population statistics and distribution

modelling can be applied to the geographic distribution patterns of Fast-Flux botnets.

Using data collected in datasets FD1, FD3 and FD4, the mean nearest neighbour dis-

tances were calculated in earlier work Stalmans, Hunter, and Irwin (2012). These nearest
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Table 3.4: Geographic Data for a Fast-Flux Domain (cjjasjjikooppfkja.ru)

IP Address Latitude:Longitude UTM MGRS

79.108.149.71 38.25:-0.7 37M 30SYH0125936055
79.139.110.20 49.7833:22.7833 39Q 34UFA2837416063
31.45.148.102 38.0:-97.0 37Z 14SPH7560307702
88.132.63.164 47.0333:19.7833 38Q 34TDT0755809583
124.6.3.225 22.6333:120.35 34Z 51QTF2762705352
89.229.214.126 53.7333:18.9167 39Q 34UCE6257855864

neighbour distances are shown in Figure 3.3 where it clearly be seen that legitimate do-

main servers (Figure 3.3a) tend to be closer together, with the majority of servers being

in the same location, while the C2 servers of Fast-Flux domains (Figure 3.3b) tend to be

far apart with a binomial distribution centred around a mean nearest neighbour distance

of 5000km (Stalmans et al., 2012).

Figure 3.4 maps the locations of C2 servers for the domain `cjjasjjikooppfkja.ru' which

was listed as a Fast-Flux domain hosting C2 servers for the ZeuS botnet on 14 March

2012 (abuse.ch, 2012). It is noticeable that the C2 servers are widely dispersed globally, in

the case of ZeuS, they were distributed across 11 di�erent servers in 11 di�erent countries

across three continents for a single Fast-Flux domain. In contrast a legitimate domain

such as `google.com' has all six servers returned by a DNS query result located in one

central location. The timezone in which a server is located is also of use as noted by

(Huang et al., 2010). The geographic distribution can be further analysed on a �ner

grained level than timezone using co-ordinate systems such as the Universal Transverse

Mercator system (UTM) and the Military Grid Reference System (MGRS). Table 3.4

provides the translation of IP addresses to geographic locations for a known Fast-Flux

domain using the three di�erent co-ordinate systems. These co-ordinate systems and how

they were adapted to provide a numerical value for the use in the classi�ers are described

in greater detail in section 3.5.2 and section 3.5.2.

3.5.1 GeoIP Database

MaxMind and other organisations have developed IP Intelligence databases that con-

tains geographic information for IP addresses throughout the world (MaxMind, 2012).

MaxMind states that their database provides information for 3,467,581,993 IP addresses,

mapping to 250 countries. The GeoIP City database, used by this research, allows for

the country, city, latitude, longitude and other information pertaining to an IP address to
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Figure 3.4: Geographic Distribution of Hosts for a Botnet and a Legitimate Domain

be retrieved. The information contained within the MaxMind database is collected using

Open Source intelligence where members of the community submit the data to be used in

the database. This community submitted data is then veri�ed and augmented by other

community members, much in the same way as articles on wikipedia.com are submitted,

veri�ed and added. This system allows large amounts of data to be collected and veri�ed.

Alternative solutions investigated were hostip.info which operated on a similar model to

MaxMind where community submissions were used to build up a database of IP to geolo-

cations (hostip.info, 2012). Commercial options such as wipmania.com1, ip2location.com2

and ipligenceMax3 were all investigated and found to be too limited in either the data

available or the number of queries which could be performed in the free versions. Thus

numerous alternatives exist, the MaxMind database was found to contain the most accu-

rate data while still being free to use. Furthermore, the MaxMind database allowed for

o�ine lookup of geolocations, eliminating the need for queries to external services that

may introduce a classi�cation delay or may not be available when required.

1http://www.wipmania.com/en/
2http://www.ip2location.com/
3http://www.ipligence.com/products#max
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Table 3.5: Input Values for the IP Address 59.146.177.153

Method Representive Value Input value

Latitude:Longitude 35.685º:139.7514º -
Timezone Asia/Tokyo (GMT+10) 1000
UTM 36Z 3240
MGRS 54SUE8701849729 111366272831742

3.5.2 Geographic Value

The geographic locations for each server needed to be assigned a numerical value to be

used in classi�er calculations. These values were obtained using three di�erent means

as outlined in the following sections. Table 3.5 shows the numerical values as calculated

from a servers timezone, UTM grid location and MGRS grid location (Stalmans et al.,

2012).

Timezone

The MaxMind database used for determining the geographic location of an IP address

contains the timezone in which the IP address is located. The timezone provides an

easily convertible numeric input value which uses a similar technique to that used for

calculating time. The Greenwich Meridian Time (GMT) was used as a base value of zero,

with each timezone getting assigned a positive value based on it's distance from GMT.

This calculation was trivial and was performed using the following conversion: GMT+1

was assigned the value of 100, GMT+2 the value 200 and so forth. This was repeated

for the timezones GMT-(1...n) where the value was converted to a positive value to be

used as input to the classi�ers. Calculating the input value associated with a timezone is

formally de�ned in Algorithm 3.9.

Algorithm 3.9 Timezone Value Calculation

v = 0+ | 100 ∗ n |

Where:

� GMT is indicated by the value 0

� n is numerical value indicating the timezone (GMT+1)

� v is a positive value to be used in the classi�ers
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Universal Transverse Mercator Coordinate System

The Universal Transverse Mercator (UTM) coordinate system is an alternative to the

standard latitude and longitude coordinate system. Developed for use by the United

States Military, UTM is based on an ellipsoidal grid model of the Earth (U.S. Geological

Survey, 2012). The UTM system allows the earth to be divided into sixty distinct zones,

each zone representing a six-degree band of longitude. The zone is identi�ed by a nu-

meric value followed by an alphabetic character value known as the grid designator. This

accounts for a total of 36 grid designations. For UTM to be used in the classi�er calcula-

tions the UTM value needed to be converted to a fully numeric value. This was achieved

by multiplying the numeric grid designator with the ordinal value of the alphabetic grid

designator. A sample value produced using the UTM system is shown in Table 3.5.

Military Grid Reference System

The Military Grid Reference System (MGRS) was developed to standardise geo-co-ordinatation

between NATO militaries and is based on the UTM grid system and the similar Universal

Polar Stereographic grid system (Hostert, 1997). The bene�t of MGRS is that it allows

�ne grained grid designation of a geographic point down to one square meter. A MGRS

grid point is identi�ed by a grid zone designation, followed by a 100000-meter square iden-

ti�cation (Hostert, 1997). For example: using MGRS, the latitude (26.12º) and longitude

(28.04º) for Johannesburg, South Africa can be represented as 35RPJ3997589726, where

35R is the grid zone designation, PJ the 100000-meter square identi�er and 3997589726

is the numerical location within the grid. The MGRS value provides a grid location for

each C2 server which needs to be converted to a numeric value before it can be used in a

classi�er. The calculation can be performed using the formula shown in Algorithm 3.10.

A result of this calculation can be seen in Table 3.5.

Algorithm 3.10 The Military Grid Reference System Numeric Value

m = V 1 ∗ V 2

Where:

� V 1 = v1 ∗ (v2 + v3 + v4) where v1 is the numerical value and (v2 + v3 + v4)
are the ordinal values of the characters

� V 2 is the integer of the numerical location
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3.6 Spatial Autocorrelation

Spatial autocorrelation is the process of correlating values of a single variable, strictly

according to the proximity of those values in geographic space. Traditionally autocorre-

lation has been used in areas such as signal processing, where correlation is done between

values in serial. Observations of a variable are arranged according to a measure of order-

ing such as time. Spatial statistics can be characterised by the fact that it violates the

statistical assumption of independence. Patterns produced in space result from spatial

patterns, where the value is one of numerous possibilities from the same spatial process.

In statistics autocorrelation refers to the process of �nding the correlation between points

of a random process at di�erent points in time. Autocorrelation is achieved by cross-

correlating a signal with itself, e�ectively removing noise and revealing any obscured

patterns hidden in the signal. Correlation is used to measure the dependence or statisti-

cal relationship between any two points in a distribution. This correlation can refer to any

characteristic that the points share such as geographic location, value or dependence on

other points. The bene�ts o�ered by autocorrelation have led to its use in di�erent �elds

of study such as signal processing, astrophysics and music recording. While autocorrela-

tion measures the dependence of points in one dimension, time, spatial autocorrelation

was developed to measure the dependence of points in two-dimensional space. Spatial

autocorrelation allows for the correlation of points in time and space, along with multi-

directional points. Spatial autocorrelation has mainly been used to measure the spatial

dependence of locations within a geographic area. This measure of dependence is based

on the First Law of Geography which states, `Everything is related to everything else, but

near things are more related than distant things' (Tobler, 1970). Spatial autocorrelation

has largely been used in animal population statistics and disease modelling to �nd com-

mon features that relate dispersed populations to each other (Schabenberger and Gotway,

2004).

The results of spatial autocorrelation can either be positive, negative or no correlation.

Positive spatial autocorrelation indicates that geographically nearby values tend to be

similar. Similarity will show high values located near other high values while low values

are located near other low values. As noted by Lea and Gi�th (2001) demographic and

socioeconomic characteristics such as population density and household income will likely

exhibit positive spatial autocorrelation. It is hypothesised by this research that Internet

infrastructure will exhibit positive spatial autocorrelation, based on variables such as

network speed and available bandwidth. Negative spatial autocorrelation indicates the
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inverse of positive spatial autocorrelation, where nearby values will be dissimilar to other

nearby values.

3.6.1 Moran's Index

Moran's Index (MI) provides a test for spatial autocorrelation in a set of continuous data

(Moran, 1950). The MI is a weighted correlation coe�cient using the distance between

dispersed points as weights. The MI is based on the observation that points spatially

closer together are more likely to be similar than points far apart (Cli� and Ord, 1973).

Moran's coe�cient is calculated using the formula:

Algorithm 3.11 Moran's Index

I =
N∑

i

∑
j wij

∑
i

∑
j wij(Xi − X̄)(Xj − X̄)∑

i(Xi − X̄)2

Where:

� I is the Moran Index

� N is the number of locations returned by the DNS query

� Xnis the value of the n
th variable of interest (timezone value, UTM value, MGRS

value)

� X̄ is the average of all values of N

� wij is the weight (distance) between two spatial points i and j

The weight (wij) between each C2 server location was calculated using the Haversine for-

mula (Robusto, 1957) and a matrix of weights was constructed. Due to the large distances

between hosts on a global scale, the inverse weights ( 1
wij

) were used. Output values for

the MI range from -1 to 1 where negative spatial correlation is indicated by values less

than zero, with -1.0 indicating perfect negative spatial autocorrelation. Positive spatial

correlation is indicated by values greater than zero, where 1.0 indicates perfect positive

spatial correlation. An index value of zero represents a perfectly random spatial pattern.

Values outside the range -1 to +1 indicate spatial autocorrelation that is signi�cant at

the 5% level.

The MI allows for the measuring of global spatial autocorrelation and is not severely

in�uenced by large amounts of whitespace, making it ideal for using in the classifying

of Fast-Flux C2 server distribution, where large distances exists between the servers.
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Inversely, the global nature of MI decreases it's e�ectiveness for measuring localised spatial

correlation.

3.6.2 Geary's Coe�cient

Similarly to Moran's coe�cient, Geary's coe�cient (GC) is used to measure spatial auto-

correlation. The value of GC lies in the range [0-2]. Values between 0.0 and 1.0 indicates

positive spatial autocorrelation while values between 1.0 and 2.0 indicate negative spatial

autocorrelation. A value of 1.0 for GC indicates no spatial autocorrelation. The GC is

calculated using the formula:

Algorithm 3.12 Geary's Coe�cient

C =
(N − 1)

∑
i

∑
j wij(Xi −Xj)

2

2W
∑

i(Xi − X̄)2

Where:

� C is the Geary Coe�cient

� N is the number of locations returned by the DNS query

� Xn is the value of the nth variable of interest (timezone value, UTM value, MGRS
value)

� X̄ is the average of all values of N

� wij is the weight (distance) between two spatial points i and j

� W is the sum of all wij

The GC tends to be more sensitive to localised correlation and has been shown to be a

good indicator of di�erences in small neighbourhoods. The GC is in�uenced far more than

the MI by skewed distribution of numbers of neighbours and by outliers. The Moran's

Index and Geary's Coe�cient tend to give similar results and thus may be used in a two

factor classi�er. The MI and GC are negatively related.

3.7 Summary

This chapter presented multiple techniques to be used to detect botnet tra�c from DNS

query responses. The techniques described use features such as the domain name, the
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A records, the TTL and NS records extracted from the DNS query response as inputs.

The �rst set of techniques presented make use of lexical analysis to determine whether

the domain name being queried was algorithmically generated. Four techniques were

identi�ed for classifying domain names. Each technique made use of Bayesian statistics

to train a classi�er from sample data.

The second set of techniques described are aimed at identifying botnet C2 domains,

speci�cally domains using Fast-Flux as a avoidance technique. Three techniques were

described, resulting in a classi�er based on modifying previous research into Fast-Flux

domain detection using DNS. A new rule-based classi�er was described next, which takes

into account the geographic dispersion of servers. Finally a novel Naïve Bayesian classi�er

was described.

Spatial autocorrelation was described as a technique for detecting Fast-Flux domains

based on the geographic distribution of domain hosts. Two statistical methods known as

Moran's Index and Geary's Coe�cient were described, along with di�erent co-ordinate

systems used to quantify the geographic location of a server.

The techniques presented in this chapter were applied to the datasets outlined in section 3.1

to measure the feasibility of these techniques as �rst pass classi�ers. The results are

presented in the chapter 4, with the results presented in separate subsections for each

detection type. chapter 4 extends the observations made in this chapter and evaluates

the overall accuracy of the proposed techniques.
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4
Results

This chapter presents the results obtained from evaluating the classi�cation techniques

outlined in chapter 3. Each classi�er was tested using known legitimate and malicious data

which had been manually veri�ed and labelled. This process is discussed in section 4.1

along with the means used to measure the performance of each classi�er. The results

for the detection of algorithmically generated domain names are presented in section 4.2.

The results for the detection of Fast-Flux domains from DNS query response attributes

are provided in section 4.3. Finally the results for the spatial autocorrelation classi�ers

are presented in section 4.4.

4.1 Data Metrics

Multiple data sources were used in testing the classi�ers and thus data needed to be

standardised and sanitised through reformatting and the removal of duplicate values.

Once all the data had been standardised each entry was labelled to allow for the correct

training of classi�ers. The labelling of data is discussed in detail in subsection 4.1.1. The

results obtained from testing the classi�ers had to be rated to allow for measurement and

comparison the performance of the di�erent classi�ers. The criteria used for measuring

classi�er performance is outlined in subsection 4.1.2.

4.1.1 Labelling Data

The data used in this thesis was divided into two sets, a training set and a test set. The

training set of data was used in creating the classi�ers that will be used in determining
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Algorithm 4.1 Classi�er Performance Calculations

TPR =
TP

P
=

TP

TP + FN
(4.1)

FPR =
FP

N
=

FP

FP + TN
(4.2)

ACC =
TP + TN

P +N
(4.3)

Where:

� P is the total number of positive samples

� N is the total number of negative samples

� TN is the total number of samples correctly been identi�ed as negative

� TP is the total number of samples correctly identi�ed as positive

� FN is the total number of samples incorrectly identi�ed as negative

� FP is the total number of samples incorrectly identi�ed as positive

whether domains are legitimate or belong to a botnet. It was essential that the validation

of the classi�er's performance was done on a di�erent dataset to the dataset used to train

the classi�ers. This was done to avoid over-training the classi�ers, as well as to avoid

skewing the performance of the classi�ers due to bias developing towards the training

data. Data in these datasets had to be manually labeled to facilitate training and, later,

performance measurement. The labelling of data for the training set was required as

classi�ers had to learn to classify each type of domain, legitimate or malicious. Labeled

test cases were needed for the evaluation of classi�er performance to allow the researcher

to evaluate whether a test case had been correctly classi�ed. The classi�cation problem

was a binary problem and thus values were labeled with either 0 or 1 to indicate the class

to which they belong. Data from legitimate domains was labeled with a 1, while malicious

domains were labeled as 0.

4.1.2 Results Evaluation

Measuring the performance of each classi�er and being able to compare the performance

of multiple classi�ers in a fair and e�ective manner is essential to this research. Each

classi�er produces a binary result of either true (the domain is malicious) or false (the
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domain is safe). Using known data, it is possible to calculate the accuracy of the classi�er.

From the known data the total number of Positive (P) and Negative (N) domains are

calculated, where Positive domains are the domains which have been manually classi�ed

as malicious. Furthermore, incorrectly classifying benign domains as malicious is deemed

more costly than classifying malicious domains as legitimate, as this may have a greater

impact on the overall user experience. Incorrectly classifying benign domains as malicious

is labeled a False Positive (FP). Correctly classifying a malicious domain as malicious is

labeled as a True Positive (TP) and a correct classi�cation of a benign domain as a True

Negative (TN). Incorrectly classifying a malicious domain as benign gets labeled as a

False Negative (FP). Through the labelling of classi�cations it is possible to determine

the rate at which domains are being correctly classi�ed. The True Positive Rate (TPR)

de�nes how many correct positive classi�cations occur among all positive samples, while

the False Positive Rate (FPR) de�nes how many incorrect classi�cations occur among all

the negative samples. These rates can be calculated as shown in Algorithm 4.1, with the

calculation of the TPR shown in Equation 4.1 and the FPR calculation in Equation 4.2.

The Accuracy (ACC) is used to measure the number of TP versus the number of TN,

allowing for classi�er performance measurements and comparisons in terms of correctly

classifying each type of domain. The accuracy will be higher the more accurately a

classi�er classi�es domains, where a high number of TP and TN is considered desirable.

The accuracy is calculated as shown in Equation 4.3.

The overall performance of a classi�er is measured using the Area Under the Curve (AUC)

of the Receiver Operator Characteristic curve (ROC) and is also known as the ROC

space (Schabenberger and Gotway, 2004). The ROC provides a graphical representation

of the performance of a binary classi�er, plotting the TPR versus the FPR. The AUC

is calculated to provide a measure of the trade-o� between the TPR and the FPR. The

optimal classi�er will have an AUC approaching 1, where a high TPR and low FPR is

desired.

4.2 Algorithmically Generated Domain Name Detec-

tion

Classi�ers were developed to identify domain names that have been algorithmically gen-

erated. These domain names could be indicative of malware presence on the network. A
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Table 4.1: Results of the Unigram Classi�ers

Classifier Accuracy (%) TPR (%) FPR (%)
Total Variation 82 80 17
Probability 84 86 17
Bayesian 85 81 11
Naive Bayesian 87 82 8
Combined 89 89 11

well-documented technique used by malware authors for evading detection and increas-

ing the longevity of malicious domains is algorithmically generating domain names. The

classi�ers employed use multiple statistical methods for determining the likelihood that

a domain name is either algorithmically generated or legitimate. The classi�ers were

trained using frequency analysis of character distributions in known algorithmically gen-

erated domain names, such as those employed by the Con�cker and Torpig malware. They

were also trained using known legitimate domain names. The likelihoods were compared

and domains were classi�ed according to the higher likelihood. In the case of the Naïve

Bayesian classi�er the output was a likelihood ratio. This ratio was examined and a

decision boundary was determined and used for classifying domain names based on the

values observed during �rst pass training of the classi�ers. Results showed that likelihood

ratio classi�ers based on the Bayes formula as discussed in subsection 3.3.3, resulted in

the highest accuracy rates, with the high true positive rates (TPR) and low false positive

rates (FPR).

The classi�cation of domains using single character frequencies (unigrams) and paired

character frequencies (bigrams) were examined separately. These are discussed in detail

in the following sections.

4.2.1 Unigram Classi�ers

The unigram based classi�ers examined domain names based on the frequency distribution

of single alpha-numeric characters. The summary of the results of the classi�ers using

unigrams are shown in Table 4.1, these results were obtained on a test dataset of 7 000

legitimate domain names and 7 000 algorithmically generated domain names, taken from

datasets AD2 and AD3 respectively, which were described in subsection 3.1.1. It was

noted that the accuracy rates of the tested classi�ers were all similar, with the Naive

Bayesian classi�er producing the best accuracy rate, 5% higher than the worst performing
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classi�er, the total variation distance classi�er. The FPR of the Naive Bayesian classi�er

was the lowest at 8%, signi�cantly lower than the 17% FPR of the total variation distance

and probability classi�ers. The results for each classi�er are examined in more detail in

the following subsections.

Total Variation Distance Classi�er

The total variation distances for 5 000 algorithmically generated domain names and 5 000

legitimate domain names are shown in Figure 4.1. It was noted that the total variation

distance for legitimate domains, shown in blue, increased as the length of the domain

name increased, with a clear upward trend towards a variation distance of 0.2 develop-

ing. Algorithmically generated domain names, shown in purple, displayed a trend line

�uctuating around zero, with a downward slope towards the end as domain name length

increased beyond 15. The available datasets of algorithmically generated domain names

did not contain any entries with lengths less than 4, while multiple legitimate domain

names of lengths 1 to 3 were present. It was noted that there was a larger overlap of

variation distance for domain names with short domain name lengths than domain names

with longer lengths. The overall accuracy of the total variation classi�er was 82% with a

TPR of 80% and a high FPR of 17% as noted in Table 4.1. Only classifying domains of

length 6 or greater increased the TPR to 95% and decreased the FPR to 13%.

Probability Classi�er

The output of the probability classi�er showed similar trends to those seen in the total

variation distance classi�er section 4.2.1, with domain names of longer length showing

greater variation between the probability outputs for algorithmically generated domain

names and legitimate domain names. It was noted that domain names such as xnxn.com

and fbcdn.com with few or no vowels were classi�ed as algorithmically generated although

they actually belonged to legitimate domains found in the Alexa Top 10000 list. The

accuracy of the probability classi�er was higher than that of the total variation classi�er

at 84% as result of the higher TPR of 86%. The FPR for both classi�ers were the same

at 17%. As seen with the total variation classi�er, adjusting the classi�er to only examine

domains of length 6 or greater increased the TPR to 89% and dramatically decreased the

FPR to 8%.
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Figure 4.1: Total Variation Classi�er Output for Unigrams
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Figure 4.2: Density Distribution of Unigram Naive Bayesian Classi�er Output.

Bayesian Classi�er

The Bayesian Classi�er produced a likelihood ratio which could be used for classifying do-

main names. The produced likelihood ratios for legitimate and algorithmically generated

domains were compared across the training dataset to determine a decision boundary.

It was found that the mean likelihood ratio for legitimate domains was 0.263260, while

algorithmically generated domain names had a mean likelihood ratio of 0.789548. This

resulted in a decision boundary of 0.53, where values greater than 0.53 indicated algo-

rithmically generated domain names. The results showed trends seen in both the total

variation distance and probability classi�ers where domain names of longer length pro-

duced higher likelihood ratios. The Bayesian classi�er had an accuracy of 85%, while

having a lower TPR (85%) than the probability classi�er. The FPR of 11% was sig-

ni�cantly lower than both the Total Variation Distance and Probability classi�ers. The

classi�er was adjusted to only examine domains of length 6 or greater and it was found

that the TPR increased by 8% to 89% while there was a 1% decrease in the number of

false positives, with the FPR dropping to 10%.
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Naïve Bayesian Classi�er

The likelihood ratio output from the Naïve Bayesian classi�er was examined and a deci-

sion boundary determined. The box plot in Figure 4.2 shows the distribution of likelihood

ratios for legitimate and algorithmically generated domain names. It was noted that a

positive likelihood ratio with a median of 1 was produced by the classi�er for algorith-

mically generated names, while the processing of legitimate domain names resulted in a

negative likelihood ratio with a median of -1. The minimum value for algorithmically

generated domain names fell below the lower quartile of outputs for legitimate domain

names, indicating that an overlap of results existed. The heatmap of likelihood values for

legitimate domains shown in Figure 4.3 displays a higher density of values greater than

the legitimate domain name median of -1 occurring for domain names with a length .

It was observed that for the vast majority of values fall below zero, with numerous val-

ues much smaller than the median of -1. Furthermore, it was observed that the average

value of the output decreased as the domain name length increased. Figure 4.4 shows

a heatmap of the output from algorithmically generated domain names, where a more

uniform distribution of results can be seen. In contrast to the results seen in Figure 4.3,

the output is extensively positive with most values greater than one. Furthermore, it was

noted that the number of domains with a value greater than two increases with domain

name length. These observations led to the construction of a decision boundary around

zero, with values greater than zero indicating algorithmically generated domain names

while negative values indicating legitimate domain names. The Naïve Bayesian classi�er

had an accuracy of 87% with a TPR of 82% and a low FPR of 8%, as seen in Table 4.1.

Limiting classi�cation to only domain names of length 6 or greater increased the TPR to

89% and while the FPR stayed the same at 8%.

Combined Unigram Classi�er

A feedforward neural network was constructed to create a classi�er using the output from

the four above-mentioned classi�ers as inputs. The network consisted of four inputs, a

single hidden layer using a sigmoid function as a combiner and had a single output. A

dataset of 10000 classi�ed domain names was constructed used the output from the other

classi�ers as results and using known legitimate and algorithmically generated domain

names. The dataset was divided into a training set of 7500 domain names while the

remaining 2500 domain names were used for testing. Once the network had been trained

the test domain names were fed into the network and the classi�cations were recorded. Six
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Figure 4.3: Naive Bayes Classi�er Output for Legitimate Domains
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Figure 4.4: Naive Bayes Classi�er Output for Algorithmically Generated Domain Names
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Table 4.2: Results of the Bigram Classi�ers

Classifier Accuracy(%) TPR (%) FPR (%)
Total Variation 79 84 27
Probability 89 91 14
Bayesian 90 88 8
Naive Bayesian 90 91 9
Combined 88 89 12

hundred iterations were performed and the accuracy, TPR and FPR were averaged across

these iterations and used as the overall values of the classi�er. The resulting accuracy

for the classi�er was observably better than the best performing stand alone classi�er.

The accuracy of the classi�er for the test dataset was 89% with a TPR of 89% and a

FPR of 14%. The neural network was reset and trained with only the domain names in

the dataset that had a length greater or equal to six. The test dataset was modi�ed in

the same manner and tested with again, with 600 iterations being performed again to

calculate the average accuracy, TPR and FPR. The resultant accuracy was 90% with a

decrease in the TPR to 89% and an improvement in the FPR to 10%.

4.2.2 Bigram Classi�ers

The bigram-based classi�ers were used to examine domain names based on the frequency

distribution of character pairs of alphanumeric characters. The test dataset consisted

of the same 7000 legitimate domain names and 7000 algorithmically generated domain

names as previously used with the unigram classi�ers. There was an overall improvement

in classi�er accuracy except for the total variation distance classi�er faring 3% worse than

the same classi�er using unigrams. The largest improvement was seen in the Bayesian

classi�er with accuracy increasing by 5% and improvements in both the TPR and FPR.

Similar results were seen for the Naive Bayesian classi�er, with the largest improvement

of 9% in the TPR and a minor increase in the FPR of 1%. The results from the classi�ers

are shown in Table 4.2.

Total Variation Classi�er

The bigram-based total variation classi�er performed similarly to the unigram based total

variation classi�er, with a 3% lower accuracy of 79%. There was, however, a marked
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increase in the number of false positives with the FPR increasing from 17% to 27%.

There was a minimal change in the TPR to 84% (an increase of 4%). The FPR of the

total variation classi�er decreased to 9% when only domains with a length of 6 or greater

were examined, which was 14% lower than the FPR of total variation classi�er based on

unigram probabilities. Furthermore, the TPR increased to 88% (a total increase of 8%

over the TPR of the unigram classi�er).

Probability Classi�er

There was a noticeable improvement in results for the probability classi�er when using

bigrams. The classi�er's accuracy increased to 89% with improvements in both the TPR

(91%) and FPR (14%). The probability classi�er had a slight improvement in it's TPR

to 92% when domains of length 6 or greater were examined, with a 10% decrease in the

number of false positives with a FPR of 4%.

Bayesian Classi�er

The Bayesian classi�er showed near identical improvements to the probability classi�er.

The increase in accuracy of 5% was identical to the improvement in accuracy seen by

the probability classi�er, while both classi�ers had a decrease in the FPR of 3%. The

Bayesian classi�er had a slightly larger increase in it's TPR, from 81% to 88%. Modifying

the classi�er to only classify domains of length 6 and greater resulted in the classi�er

accuracy increasing to 94% with only 5% of legitimate domains being incorrectly classi�ed.

NaïveBayesian Classi�er

The box plot in Figure 4.5 shows the distribution of likelihood ratios for algorithmically

generated and legitimate domain names. It was noted that the values showed similar

distributions to those seen for the Naïve Bayesian classi�er based on unigram frequency

distribution, with legitimate domain values largely being less than zero and algorithmi-

cally generated domain names values being positive. The likelihood ratio distribution

for legitimate domain names did, however, lie between negative one and negative seven,

where the mean for the unigram based classi�er was negative one. The mean also shifted

lower to negative �ve. The same decision boundary of zero was used to classify domains.

The accuracy of the Naïve Bayesian classi�er improved to 90% as shown in Table 4.2.
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Figure 4.5: Density Distribution of Bigram Naive Bayesian Classi�er Output.

There was a large increase of 9% in the TPR to 91% compared to the unigram Naïve

Bayesian classi�er, while there was a minor increase of 1% in the FPR to 9%. Adjusting

the classi�er to only examine domains of length 6 or greater had the same e�ect as with

the other classi�ers, with the TPR increasing to 92% and the FPR decreasing to 3%.

Combined Bigram Classi�er

The same process of constructing a dataset for training and testing was followed as de-

scribed in section 4.2.1. The testing data was applied to the trained neural network and

again 600 iterations were completed with the average of the results across the iterations

being recorded. The accuracy from the combined classi�er was slightly worse than the

best performing stand-alone classi�er with an average accuracy of 88% being observed.

Both the TPR and FPR were lower than expected with an average TPR of 89% and a

relatively high FPR of 12%. The tests were repeated using only domain names of length

6 or greater and the average results across 600 iterations were recorded. The observed

accuracy for the combined classi�er using only domains of length 6 or greater was 93%,

with a higher TPR of 91% and a lower FPR of 5%.



4.3. DNS FAST-FLUX DETECTION 59

Table 4.3: Accuracy Rates of Lexical Analysing Classi�ers

accuracy (%)
accuracy (%)

(> 6 Characters)
unigrams

Total Variation 82 88
Probability 84 90
Bayesian 85 89

Naive Bayesian 87 90
Combined 89 90
bigrams

Total Variation 79 89
Probability 89 94
Bayesian 90 94

Naive Bayesian 90 93
Combined 88 93

4.2.3 Results Summary

This section presented the results obtained for evaluating the accuracy of the proposed

classi�er techniques. The section was divided into two subsections, with the results from

evaluating the unigram distributions in domain names presented in subsection 4.2.1. The

second subsection 4.2.2, presented the results from evaluating the classi�ers using the

bigram character distributions. A summary of the classi�er accuracies is presented in

Table 4.3. It was observed that the use of bigrams produced higher accuracy rates than

the use of unigrams, however the largest e�ect on accuracy was domain name length.

Classifying domain names of length six or greater resulted in an average increase in accu-

racy of 4% in unigram classi�ers and 5.4% in bigram classi�ers. Classifying only domains

of length six or greater saw the largest improvement in classi�er accuracy for the total

variation distance classi�er with a 10% increase. The results from these classi�er evalua-

tions are discussed in detail in section 5.1, where possible reasons for the observed results

are discussed along with possible means of increasing classi�er accuracy further.

4.3 DNS Fast-Flux Detection

DNS Fast-Flux is a means of evading detection and preventing shutdown employed by

malware authors. The principles behind Fast-Flux and the characteristics of Fast-Flux

domains are discussed in subsection 2.2.2. Classi�ers were constructed to examine DNS
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Table 4.4: Results For Fast-Flux Classi�ers

Classifier Accuracy (%) TPR (%) FPR (%)

Modi�ed Holz 93 86 2
Rule-Based 92 86 3

Naive Bayesian 92 86 3
Combined 95 89 2

Table 4.5: Mean values of DNS features for Fast-�ux and legitimate domains

A NS IP Unique TTL
Records Records Ranges ASNs

Fast-Flux 4.09 3.92 3.89 3.70 595
Legitimate 1.73 3.88 1.15 1.09 14885

query responses with the aim of classifying whether of not a domain was Fast-Flux.

Furthermore, the classi�ers aimed to identify Fast-Flux domains from a single DNS query

response, as opposed to previous work by Holz et al. (2008) which required a second DNS

query once the TTL of the original query had expired. Reducing the amount of time

required to classify a domain while maintaining high detection rate of Fast-Flux domains

was essential. The classi�ers were constructed to use only the DNS query response thus

minimising interaction with the suspect domain and reducing the number of network

resources required. Three classi�ers were constructed: a modi�ed version of the Holz

classi�er, a rule-based classi�er and a Naïve Bayesian statistical classi�er. The classi�ers

were tested using a dataset of 1 047 known Fast-Flux domains and 1 500 known legitimate

domains.

The properties of DNS Fast-Flux domains were compared to those of legitimate domains

and CDNs and are recorded in Table 4.5. It was observed that Fast-Flux domains had

a larger number of associated A-Records with a mean of 4.09 compared to legitimate

domains with a mean of 1.73. The number of Nameservers (NS Records) returned by

Fast-Flux and legitimate domain name queries were similar with a di�erence of 0.04 in

the mean values. A close correlation between the number of di�erent IP ranges and

the number of ASNs was observed, with legitimate domains usually having a single IP

range and single ASN, while Fast-Flux domains had multiple IP ranges (a mean of 3.89)

associated with the domain. Furthermore each of these Fast-Flux domains had IP ranges

from numerous di�erent ASNs. On average Fast-Flux domains had hosts in 3.70 ASNs.

The largest di�erence in mean values observed was in the mean TTL values, where Fast-

Flux domains displayed a low mean TTL value of 595, while legitimate domains generally

had more persistent domain records with high TTLs (mean 14885).
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4.3.1 Modi�ed Holz Classi�er

The modi�ed Holz classi�er (subsection 3.4.1) outputs a �ux-score used to indicate the

con�dence in the classi�cation of a domain as Fast-Flux. Domains with a score above

0 were deemed to be Fast-Flux. The classi�er outputs for a selection of standard, CDN

and Fast-Flux domains are shown in Table 4.6.The lowest �ux-score was -25.14 for the

wikipedia.com domain which is not Fast-Flux and only returns a single A-record with a

high TTL of 3600. The Fast-Flux domains girlsmeetclub.com, hookupdatingsite.net and

lovenewgirl.com all received a �ux-score of 54.3 indicating a high con�dence that these

domains are Fast-Flux. It was noted that all three of these domains returned A-records

from di�erent IP ranges and unique ASNs, while all have a low TTL set. The domain

sergnovgorod23.narod2.ru had been identi�ed by the ZeuS tracker abuse.ch (2012) as a

Fast-Flux domain used for hosting the C2 servers of the ZeuS botnet. The modi�ed

Holz classi�er, however, classi�ed this domain as a standard domain. The work produced

by Holz et al. (2008) showed a detection accuracy of 99.98% with a standard deviation

of 0.05%. During initial testing it was not possible to achieve the same results as the

original Holz work with the traditional Holz classi�er. The modi�ed Holz classi�er was

tested against the set of known Fast-Flux domains and an accuracy of 93% was achieved.

A low FPR of 2% was observed, with a TPR of 86%.

4.3.2 Rule-Based Classi�er

The rule-based classi�er produced results similar to the modi�ed Holz classi�er. The

results closely matched those from the modi�ed Holz classi�er, with the vast majority

of domains being classi�ed similarly to those classi�ed by the modi�ed Holz classi�er.

The Fast-Flux domain sergnovgorod23.narod2.ru that had been misclassi�ed by the mod-

i�ed Holz classi�er was correctly identi�ed as Fast-Flux if rounding was applied to the

classi�er results. Without rounding the classi�cation fell just within the standard domain

boundary and thus was misclassi�ed. The same was observation was noted for the domain

lovenewgirl.com which again fell just below the Fast-Flux domain decision boundary and

was misclassi�ed as standard. This was the same classi�cation as made by the modi�ed

Holz classi�er. The classi�ers had an identical TPR of 86% while the rule-based classi�er

had a slightly higher FPR of 3%. This resulted in an overall classi�er accuracy of 92%

for the rule-based classi�er.
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4.3.3 NaïveBayesian Classi�er

The Naive Bayesian classi�er assumes that a domain has equal initial probabilities of

being Fast-Flux or legitimate. It was hoped that the Naïve Bayes classi�er would be able

to establish fuzzy decision boundaries, where domains mis-classi�ed by the modi�ed Holz

and Rule-Based classi�ers would be correctly classi�ed. The output obtained from the

classi�er is shown in Table 4.7 and both the Fast-Flux and benign scores are listed for

comparison. The results from the classi�er were examined to determine if there was an

improved accuracy compared to the existing rule-based type classi�ers. Furthermore, an

investigation was made to determine whether the similarity between Fast-Flux and CDN

domains could be discerned by the classi�er. It was noted that the classi�er correctly

identi�ed the CDNs of cloud�are.com and yahoo.com as legitimate, while misclassifying

the CDN for zynga.com as Fast-Flux. All but a single Fast-Flux domain was classi�ed

correctly, with the domain sergnovgorod23.narod2.ru correctly being classi�ed as Fast-

Flux, in contrast to both the modi�ed Holz and rule-based classi�ers, which had classi�ed

it as legitimate. The domain loveschemes.com was misclassi�ed by all three classi�ers as

legitimate: it was actually Fast-Flux. It was noted that the output value of the classi�er

widely varied for each domain with no convergence towards a point for either legitimate

or Fast-Flux domains. The classi�er achieved the same TPR (86%) as both the modi�ed

Holz and the rule-based classi�ers. The FPR was slightly higher than the modi�ed Holz

classi�er but was the same as the rule-based classi�er, resulting in all three classi�ers

having near-identical accuracy rates as previously summarised in Table 4.4.

4.3.4 Combined Classi�er

A combined classi�er was constructed to use the outputs from the three aforementioned

classi�ers in order to produce a better classi�cation. The classi�er consisted of a feed-

forward neural network with three inputs and a single hidden layer. The hidden layer

used a sigmoid function as a linear combiner and the result was passed to the output

layer where the �nal classi�cation was done. The output from all three classi�ers were

recorded for 2547 known legitimate and Fast-Flux domains and divided into a training

and test datasets. The training dataset consisted of 1800 domains while the remaining 747

domains were used as test cases. The test data was applied to the trained neural network

(training error 0.072) and 600 iterations were performed with the average results recorded

as the classi�ers performance. The trained neural network produced results similar to the
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Table 4.8: Summary of Fast-Flux Classi�er Accuracy Rates

Classifier Accuracy (%)

Modi�ed Holz 93
Rule-Based 92

Naive Bayesian 92
Combined 95

three stand-alone classi�ers, with an overall accuracy of 95%. The total TPR was 86%

and the false positives were recorded at a FPR of 2%.

4.3.5 Summary

The results showed near identical accuracy for the three classi�ers examined, with all

three classi�ers achieving accuracy rates of 92%-93%. The hand-crafted classi�ers adapted

from Holz and the rule-based classi�er both had TPRs of 86% and low FPRs of 2-3%,

exactly matching the performance of the Naïve Bayesian classi�er. This closely matched

performance resulted in near-identical performance curves for all three classi�ers, as seen

in Figure 4.6. The AUC of for all three classi�ers was 0.94 indicating a high degree of

performance by the classi�ers, with a very low trade o� between the TPR and FPR.

Combining the results of the classi�ers and using them as inputs for a neural network

based classi�er resulted in an increase in the number of Fast-Flux domains correctly

identi�ed, with a TPR of 86%, while the number of legitimate domains being incorrectly

classi�ed dropped to 2%. The combined classi�er produced the best degree of accuracy

95%. The accuracy rates of the three classi�ers as well as the combined classi�ers are

summarised in Table 4.8.

4.4 Spatial Autocorrelation

Classi�ers based on spatial autocorrelation were constructed with the aim of classifying

domains as either Fast-Flux or legitimate based on the the geographic distribution of

the domain's servers. These servers were identi�ed using the A records contained in

the DNS query response and the geographic location determined using the MaxMind

database (subsection 3.5.1). Di�erent methods of quantifying the geographic position

were used, including the Latitude/Longitude, the UTM grid position and the MGRS

grid position. The distance between geographic points was measured using the Haversine
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Figure 4.6: ROC of Fast-Flux Classi�ers Accuracy

formula (Robusto, 1957), which measures the distance between two points on a curved

surface. The classi�ers were constructed using known Fast-Flux and legitimate servers

with the output from each classi�er being used to determine a decision boundary for

classifying domains. The classi�cation problem was treated as a binary decision with

the classi�er output indicating whether the geographic distributions identify Fast-Flux

hosting or legitimate server hosting, including CDNs and standard domains. Two well

known statistical techniques for measuring spatial autocorrelation were used: Moran's

Index (subsection 3.6.1) and Geary's Coe�cient (subsection 3.6.2). Each classi�er was

examined separately, with the three means of quantifying geographic position used with

each classi�er to �nd the classi�er with the greatest accuracy.

4.4.1 Moran's Index

Moran's Index (MI) relies on the observation that points closer together in geographic

space tend to have more similarities in their attributes than points far apart. The values

for I were calculated separately for legitimate and Fast-Flux domains. Once these values

had been calculated they were compared to see if there were any distinguishing values

which could be used for accurately classifying the domains. The results for the MI classi�er

are shown in Table 4.9 where it can be seen that the classi�er produced high TPRs using all

three geographic position measures, while maintaining low FPRs. The overall accuracy for
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Table 4.9: Moran's Index Classi�er Performance

Accuracy (%) TPR (%) FPR (%)
Timezones 97 97 3

UTM 95 99 6
MGRS 95 99 6

the classi�ers was high with the lowest observed accuracy rate of 95%. The MI classi�ers

were tested using 1047 known Fast-Flux domains and 1500 known legitimate domains.

Using the timezones in which servers are located, results displayed index values for le-

gitimate domains with a mean of 0, with 97% of observed legitimate domains having an

index value of zero. A small cluster of domains produced a value of -1 and accounted for

2% of the total observed index values. The remaining 1% of domains having an index

value between -0.2 and 0. The opposite holds true for Fast-Flux domains, with only 3%

of observed domains had an index value of zero, while most Fast-Flux domains displayed

index values distributed between -1 and 0. A small sample of domains had index values

greater than 1 and accounted for 1.5% of all the observed domains. Using these observa-

tions as a classi�er decision boundary, domains were labeled as Fast-Flux if the returned

index value was not equal to zero. Results for this classi�er can be seen in Table 4.9,

where the classi�er has a high true positive rate of 97%, a low false positive rate of 3%

and an overall accuracy of 97%.

The UTM grid location of a server was used to provide a more �ne grained location des-

ignation than timezones as the grid area identi�ed by UTM represents a smaller surface

area. Furthermore, unlike timezones the UTM grid location takes into account the hemi-

sphere in which a server is located. The kernel density distribution of the Moran Index

values for legitimate (Alexa Top 1000) domains and Fast-Flux domains are compared in

Figure 4.7. It was observed that the index values for legitimate domains were zero, with

a few outliers with index values of 1 accounting for 1% of all domains in the training

set. Fast-Flux domains tended to have an index value of one or greater with a peak just

below zero and at 1. A classi�er decision boundary was set at a value of zero, where any

index value not equal to zero indicating a Fast-Flux domain. A TPR of 99% was achieved

as seen in Table 4.9, while a low false positive rate of 6% was achieved. The classi�er

achieved an overall accuracy of 95%.

The MGRS co-ordinate system provided a grid system with smaller grids than the UTM

co-ordinate system, allowing for even �ner grained representation of server locations.
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Figure 4.7: Kernel Density Comparison of Moran's Index Using UTM.

Using MGRS produced interesting results as the index value for Fast-Flux domains was

distributed between -0.5 and 0. While the index value for legitimate domains was mostly

zero, a smaller cluster formed around an index value of -1. Basing the classi�er on the

same logic as was used for the timezone and UTM classi�er, where an index value of zero

indicated a legitimate domain, a TPR of 99% was achieved, and a lower FPR of 6% was

achieved. As seen in Figure 4.8, the Moran's I for numerous legitimate domains is -1, with

no Fast-Flux domains having a Moran's I of -1. Thus modifying the classi�er to classify

any value of -1 or 0 as legitimate led to an improved FPR of 1%, increasing the classi�ers

accuracy to 99%.

All three classi�ers performed with a high degree of accuracy and thus a high AUC

was observed for each one. The Figure 4.9 shows the performance curves for all three

classi�ers, where it can be seen that there was a low trade-o� between the TPR and FPR

for each classi�er.
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Table 4.10: Geary's Coe�cient Classi�er Performance

Accuracy (%) TPR (%) FPR (%)
Timezones 95 92 3

UTM 96 98 5
MGRS 95 99 6

4.4.2 Geary's Coe�cient

Geary's Coe�cient (GC) is used for spatial autocorrelation, but is more sensitive to

localisation than MI. The use of GC should allow for classi�cation of spatial clusters in

instances where MI might not be as accurate, which may occur when the geographic

location of servers are closer together. The same dataset of 1047 Fast-Flux and 1500

legitimate domains were used for testing the GC classi�er's performance compared to the

MI classi�ers.

The value produced by Geary's formula was used as the basis for classifying a domain

as legitimate or Fast-Flux. The GC value was returned as zero for 97% of all legitimate

domains, while returning a value greater than zero for 92% of Fast-Flux domains. Using

this as the classi�cation criteria, domains that returned a GC value greater than zero

were all classi�ed as Fast-Flux. The resulting classi�er had an accuracy of 95% while the

TPR was high with 92% of Fast-Flux domains correctly identi�ed. A small portion of

legitimate domains were incorrectly identi�ed resulting in a FPR of 3%.

As seen with the MI classi�er, UTM provided a higher degree of certainty when classifying

domains due to the more �ne grained nature. The GC value for legitimate domains was

clustered around zero, a similar distribution to that observed with the equivalent MI

classi�er. Two clusters were observed for Fast-Flux domains: one cluster at 0.5 and a

second cluster around 1. This led to the use of the same classifying criteria as before, with

a value of zero indicating a legitimate domain while a value greater than zero indicated

a Fast-Flux domain. The results from this classi�er produced a 98% TPR with a slightly

higher FPR than the timezone based classi�er at 5%. The overall accuracy achieved by

this classi�er was 96%.

The MGRS was used to provide an input value for the GC classi�er with the aim of

allowing for a �ner grained analysis of server distribution. The values for legitimate

domains were clustered at zero, as can be seen in Figure 4.10. It was further observed

that the Fast-Flux domains were clustered around 1. There were no negative values for



4.4. SPATIAL AUTOCORRELATION 71

−1 0 1 2 3 4

0
1

2
3

Geary's Coefficient

D
e
n
si

ty

Alexa Top 1000
Fast−Flux

Figure 4.10: Kernel Density Distribution for Geary's Coe�cient.

Table 4.11: Summary of Spatial Autocorrelation Classi�er Accuracy

Classi�er Moran's Index Accuracy (%) Geary's Coe�cient Accuracy (%)

Timezone 97 95
UTM 95 96
MGRS 95 95

GC as expected, due to the de�nition of GC. The classi�er was constructed with a value

of zero indicating a legitimate domain and any value above zero indicating a Fast-Flux

domain. The performance of the classi�er was in line with the performance of the MGRS

classi�er based on MI, with a similar TPR of 99%. The FPR of the classi�er remained

low at 6% and resulted in a classi�er accuracy of 95%. The accuracy of the MGRS based

classi�er was equal to that of the timezone based classi�er and marginally less accurate

than the UTM classi�er. The AUC for all three classi�ers was above 0.9 as can be seen

in Figure 4.11.

4.4.3 Spatial Autocorrelation Summary

Two means of measuring spatial autocorrelation were examined as classi�ers, while three

di�erent measures of spatial value were used for each of these classi�ers. It was found that

classi�ers based on timezones produced the lowest number of false positives, while the use

of the MGRS produced the best TPR. The best performing classi�er was the Moran's

Index classi�er using timezones as a spatial measure, resulting in a classi�er accuracy

of 97% with a TPR of 97% and a FPR of 3%. The worst performing classi�er was the

GC classi�er using timezones, with an accuracy of 95% and a TPR of 92%, with a 3%
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Figure 4.11: ROC for Geary's Coe�cient Classi�ers

FPR. Overall it was found that the classi�ers are highly accurate and it was possible to

detect up to 99% of all Fast-Flux domains with a high degree of con�dence. There was a

minimal trade-o� between the TPR and FPR with the worst FPR observed being 6% but

this was traded-o� against a TPR of 99%. The similarities between the performance of the

Moran's Index and Geary's Coe�cient classi�ers can be seen summarised in Table 4.11.

4.5 Performance Analysis

The accuracy of the classi�ers has been described in the preceding sections, however

another critical aspect of evaluating the classi�ers was the performance of the classi�ers

in terms of speed and resource consumption. These results are particularly pertinent

to establishing the feasibility of using the proposed classi�ers outside of the research

environment and the potential for future implementation on live networks.
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Figure 4.12: Processing Time for Lexical Classi�ers

4.5.1 Test Platform

Testing was performed on an Intel Core i5-2410M 2.30GHz Ubuntu 12.04 x64 desktop PC,

with 8 GB of DDR3 1600MHZ RAM. The classi�cation system was coded in Python 2.7

and used a single-threaded execution model. The live tra�c dump �le used, dataset LD1,

was read into memory in 20 000 packet batches and then passed to the classi�ers. This

was done to try avoid delays introduced when reading from disk, and also to minimise

the e�ect of the ine�ciency of reading .pcap �les (Nottingham, 2011).

4.5.2 Lexical Classi�ers Performance Analysis

Initial performance testing of the lexical classi�ers was performed using a �at �le con-

sisting of the combined datasets AD2 and AD3. This performance test was designed to

simulate the process of log parsing, such as might occur on a daily basis or during post-

incident analysis. The tests were performed using all the classi�ers described in section 3.3

together. The time to execute was recorded for each test over 600 iterations and the av-

erage processing time was used as the �nal performance measure. The time to classify
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Table 4.12: Real-World Performance of Lexical Classi�ers

DOMAINS TIME (s) TIME PER DOMAIN (s)
Unigram 254,214 9.864 3.800× 10−5

Bigram 254,214 14.005 5.500× 10−5

5 000, 10 000, 15 000 and 20 000 domains is shown in Figure 4.12. It was seen that the

unigram classi�ers executed 1.5 times faster than the bigram classi�ers. A linear increase

in processing time was observed with both unigram and bigram classi�er processing time

increasing at a uniform rate as the number of domain names increased. The time taken to

process a single domain name was calculated using the results obtained when 20 000 do-

mains were classi�ed. The combined unigram classi�ers took approximately 0.046ms per

domain name, while the combined bigram classi�ers required 0.068ms per domain name.

The tests were repeated using datasets LD2 and LD3 as real-world examples of proxy

log parsing and blacklist parsing. The results for 600 iterations of LD3 are presented in

Table 4.12. The current solution has no form of caching, thus reading from disk does have

a slight performance impact, though this is negligible as it took 0.06s to read the total

LD3 dataset.

4.5.3 Fast-Flux Classi�ers Performance Analysis

The Fast-Flux detection classi�ers were tested using a real world dump of network tra�c

as contained in the LD1 dataset described in subsection 3.1.3. The dataset consists of raw

DNS query responses, thus giving a good representation of a real world scenario where the

classi�ers are used to process a network capture post-incident. The use of raw DNS query

response captures would give a good indication of the processing duration of a DNS query

response in realtime. The time it took to process a set number of packets was measured for

each classi�er, with each test being repeated 600 times. The average processing time across

these 600 iterations was used as an indicator of the classi�er's overall performance. The

performance of the various Fast-Flux classi�ers is shown in Figure 4.13; the performance

of each classi�er was tested separately. Finally the performance of all the classi�ers

employed simultaneously.

From these performance measures the estimated time to process a single DNS query

response was estimated. Table 4.13 shows the estimated processing time per DNS packet

for each classi�er. These values were estimated across 600 iterations, processing 20000

domains during each iteration. It was noted that the average time to parse a packet was
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Table 4.13: Processing Time Per DNS Response Packet

Classifier
Total Time (s)

Processing Time (s)
(N=20,000)

Modi�ed Holz 12.775 6.387× 10−4

Rule Based 12.893 6.447× 10−4

Naive Bayes 13.088 6.544× 10−4

Spatial Autocorrelation 13.002 6.501× 10−4

Combined 14.030 7.051× 10−4
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Figure 4.14: Projected Performance Impact of DNS Query Response Classi�cation

6.5× 10−4 s across the classi�ers. This translates to 6.5× 10−1 ms per packet. The average

time per DNS query was calculated by querying the top 500 domains in the AD2 dataset

(subsection 3.1.1) and was it was determined that a DNS query takes approximately

427.132ms to process. The expected performance for classifying DNS query responses,

compared to the calculated performance for standard DNS queries without classi�cation

are shown in Figure 4.14. It was noted that there was an indecernable increase in DNS

query completion time, as can be seen in Figure 4.14, where 4000 standard DNS queries

took 1.708× 106 ms to complete and 4000 queries with the classi�ers took 1.711× 106 ms.

There was an approximately increase of 0.152% in the time taken for a DNS query to be

completed.

The projected times used in Figure 4.14 are shown in Table 4.14, where the minor dif-

ference between the projected processing time of standard DNS queries and DNS queries

that are �ltered by the classi�ers can be seen.
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Table 4.14: Projected Performance Impact of DNS Query Response Classi�cation

Domains Standard Query (ms) Query With Classification (ms)

500 2.135× 105 2.138× 105

1000 4.271× 105 4.277× 105

2000 8.542× 105 8.555× 105

3000 1.281× 106 1.283× 106

4000 1.708× 106 1.711× 106

5000 2.136× 106 2.139× 106

4.6 Summary

This chapter presented the results obtained from three di�erent types of classi�ers. The

results for classi�ers used to detect algorithmically generated domain names were pre-

sented in section 4.2, where the performance of the classi�ers were compared when using

the unigram distribution and bigram distribution of characters in domain names. It was

shown that the use of bigrams for classi�cation resulted in a higher accuracy rate, with

the unigram classi�ers having an average accuracy rate of 85%, while bigram classi�ers

having an average accuracy of 87%. Combining the classi�ers produced accuracy rates

of 89% and 88% respectively, with the unigram classi�er edging out the bigram classi�er

due to a 1% lower FPR.

The second set of results presented in section 4.3 showed the performance of classi�ers

used to detect Fast-Flux domains using the features of DNS query responses. Three

classi�ers were compared: a modi�ed Holz classi�er, a rule-based classi�er and a Naive

Bayesian classi�er. It was shown that Fast-Flux domains could be detected with a 93%

accuracy rate, with false positive rates between 2 and 5%. The Holz classi�er had the

lowest FPR while the Naive Bayesian classi�er had the highest TPR with only a marginally

higher FPR. Combining the three classi�ers using a neural network increased the overall

accuracy to 95% with a only a 2% FPR where 86% of the observed Fast-Flux domains

were correctly identi�ed.

section 4.4 presented the results of the spatial autocorrelation classi�ers. These used the

geographic location of C2 nodes to determine whether a domain was Fast-Flux. It was

shown that Fast-Flux domains could be detected with an average accuracy of 96% across

the proposed classi�ers. Using the geographic location, it was possible to correctly detect

up to 99.89% of Fast-Flux domains with a FPR of only 6%.

In section 4.5 a performance analysis was conducted to determine the feasibility of deploy-

ing the proposed classi�ers in a real-world environment. It was shown that the proposed
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classi�ers had a minor performance drawback in terms of time taken to process each

domain. This performance impact was particularly negligible in light the time taken to

perform a standard DNS query, with the classi�ers adding only 0.152% to the execution

time.

These results show that it is possible to accurately identify two types of botnet domains,

namely DGA and Fast-Flux domains, from the contents of a DNS query response. The

results are discussed in greater detail in chapter 5. The possible weaknesses of the classi-

�ers are discussed along with the means to improve the classi�er results. The projected

real-world performance of the classi�ers are discussed with possible means of increasing

the performance presented.
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5
Discussion

The primary aim of this research was to accurately classify domains used for botnet

Command and Control servers (C2) by performing passive analysis of DNS tra�c. Three

techniques for detecting botnet domains using the contents of an observed DNS query

response were proposed. These techniques focused on the detection of botnets that made

use of two well known obfuscation techniques, Domain Generation Algorithms (DGAs)

and DNS Fast-Flux. The �rst classi�er used lexical analysis to detect algorithmically

generated domain names such as those used by botnets employing DGAs to mask the C2

nodes. The second classi�er used the �elds of DNS Fast-Flux query responses to identify

the properties of Fast-Flux domains and hence detect queries for Fast-Flux domains. The

�nal detection technique made use of spatial autocorrelation and the geographic dispersion

of C2 servers returned in DNS query responses to detect Fast-Flux domains.

The results showed that it was possible to achieve a high degree of accuracy in classifying

botnet domains based on the outlined techniques. The implications of these results and

their shortcomings are discussed in the following section. The results of lexical analysis

and the detection of algorithmically generated domain names are discussed in section 5.1.

Results from the di�erent Fast-Flux classi�ers are discussed in section 5.2, while the

results of the spatial autocorrelation classi�ers are discussed in section 5.3.

5.1 Algorithmically Generated Domain Names

The detection of algorithmically generated domain names, such as those employed by

the Kraken, Torpig and Con�cker botnets, was based on the lexical analysis of known
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legitimate domain names and known algorithmically generated domain names. Domain

names were extracted from DNS queries and multiple classi�ers were developed using

di�erent statistical techniques which examined single letter frequencies (unigram analysis)

along with letter combinations (bigram analysis). These techniques all showed a high

degree of accuracy, with the majority of algorithmically generated domain names being

detected and a low number of legitimate domain names being misclassi�ed. The results

achieved were comparable to those seen in previous work Yadav et al. (2010), which

showed that the detection of algorithmically generated domain names could be achieved

through K-Means clustering.

The work presented in section 4.2, however, was a novel solution where single algorithmi-

cally generated domain names could be detected with a high degree of accuracy, whereas

the work of Yadav et al. (2010) suggested that a domain-�uxing botnet could be accu-

rately characterised by the time it had generated around 500 names. While previous

work achieved high detection rates with a low false positive rate, the large number of

observed domains to achieve this resulted in a delay between the observation of the �rst

algorithmically generated domain and the classi�cation of this domain. In the case of a

botnet such as Con�cker-C, where upwards of 50 000 domain names were generated in

a 24 hour period (Fitzgibbon and Wood, 2009; Porras et al., 2009), this delay would be

negligible. Botnets generating fewer than 500 domain names would not necessarily be

detected though, as was the case with Con�cker-A which only generated 250 domains a

day. Therefore our work aimed to produce a classi�er capable of detecting algorithmically

generated domains with a high degree of accuracy, even when only a single domain was

observed. Previous works in the �eld of algorithmically generated text detection focused

on larger key-spaces than this body of work, usually looking at whole bodies of text as

opposed to this work that only examines only single words as seen in domain names.

5.1.1 Observed Character Distribution

Analysis of the algorithmically generated domain names showed that depending on the

DGA used, the generated domains displayed characteristics which could help identify

which DGA was used to generate a given domain name. This was particularly easy

with the Torpig domains as inspection of the last three characters could help identify

whether a domain name was a possible Torpig domain. This was possible due to the

Torpig DGA using a known su�x of three characters depending on the current month

(Unmask Parasites, 2009). Similar patterns were noticed in the analysis of Con�cker-C
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(b) Vowels to Consonants Ratio for Con�cker-C and Kraken Domain Names

Figure 5.1: Comparison of Vowel to Consonant Ratios

and Kraken domains. Both DGAs shared the characteristic of producing domain names

with fewer vowels as the domain name length increased. This was the opposite from what

was observed in legitimate domain names, where the number of vowels increased with the

domain name length and a steady ratio between vowels and consonants was maintained.

A comparison of the ratios are shown in Figure 5.1, where 5.1a shows how the number

of vowels seen in the sample AD2 dataset, steadily increase to match the increase in

consonants. 5.1b shows how the number of vowels steadily increase as the number of

consonants increases. From these observations it is clear that future work can be done

in investigating other features present in domain names that have been algorithmically

generated.

The classi�ers were developed on the assumption that most domain names follow similar

distribution patterns to latin based languages such as English as described in section 3.2,
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however numerous domain names were observed that did not conform to this assumption.

Examples of these are qq.com1 and fbcdn.net2. These valid domains do not contain any

vowels and contain letters that have a low probability of occurring in English words (q), as

well as letter combinations not commonly seen in English words (qq,fb,cd,dn), thus being

incorrectly classi�ed as algorithmically generated domain names. Furthermore, during

testing it was noted that services such as the Google API generate algorithmic domain

names such as cdsj1ojsf7281.google.com. This may be overcome by ensuring that the

Second Level Domain (SLD) name is always examined by the classi�er.

The obvious weakness of the above mentioned classi�ers is that they assume that domain

names tend to follow a probability distribution similar to the letter frequency distribution

in English, while DGAs produce a probability distribution akin to a randomly distributed

sample of letter frequencies. Research has been conducted into the algorithmic generation

of pronounceable words, particularly for the use in password generators (Gasser, 1975).

These systems use the frequency distribution of characters in the English language as the

basis for generating pronounceable and English looking words. These password generators

tend to use the tri-graph probabilities of characters as this leads to more pronounceable

words (Gasser, 1975). Due to the use of tri-graph probabilities these generated words may

still be detected using the unigram distribution of characters. Applying the classi�ers to

these English looking words that had been generated using the tri-graph probabilities of

characters showed that there was a marked increase in the number of false positives. The

majority of these words were, however, detected, with the unigram classi�ers proving to

be more e�ective than bigram classi�ers by up to 10%. Another possible weakness of the

proposed system is the assumption that domain names are constructed from the English

language. This may hold true for the domains observed in this research, but if the system

is to be deployed in a `real world' network, the domains visited by users on that network

will depend heavily on the native language of those users. As a result the system will

need to be trained to work with the letter frequencies of that language, as these vary

depending on the language (MacKenzie and Soukore�, 2003). Determining the domains

which are most visited by the users of the network will allow for the construction for a

network speci�c training set to be used in construction of the classi�ers.

1Chinese Internet service portal owned by Tencent Inc.
2The Content Distribution Network used to host the Facebook.com photo service
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5.1.2 Unigram Versus Bigram Classi�er Accuracy

The unigram classi�ers employed all achieved similar detection rates with the main variant

being the number of false positive results. A high detection rate was observed when the

probability of characters occurring in domain name were calculated. The probability of a

character occurring in a domain names was taken as an independent event, meaning that

the characters position within the domain name had no e�ect on the probability of that

character occurring. Furthermore, each character was treated as independent of the other

characters in the domain name. The assumption of independence did result in the length

of the domain name in�uencing the accuracy of the classi�er. This can be observed in

the results for the probability classi�er in section 4.2.1. The results showed that shorter

domain names resulted in a higher number of false positives, as can be seen in the results

of the probability classi�er, section 4.2.1, where the FPR decreased from 17% to 8% when

only domain names longer than six characters were examined. This was attributed to the

fact that a single character with a high probability of occurring in either a legitimate or

algorithmically generated domain name could sway the results. The minimum domain

name length of domains from the sample botnet datasets was four, thus indicating the

possibility of constructing classi�ers which classify domains with domain name length of

less than four as benign by default. This works because of the assumption that all one,

two and three character domain names have already been registered. By limiting the

length of domain names examined to length of �ve or greater, it was possible to get the

FPR down to as low as 2% with a TPR of 92% using the bigram Bayesian classi�er.

This technique would work for DGAs such as those employed by the earlier variants of

Con�cker (Con�cker-A and Con�cker-B) which generated domain names of length 8 to 11

characters. The Con�cker-C variant would not be detected as accurately as this generated

domain names with length 4 to 9 characters (Fitzgibbon and Wood, 2009).

Classi�ers adjusted to examine bigrams (as seen in subsection 4.2.2) were constructed

with the aim of increasing the TPR and decreasing the FPR. The same training and test

datasets were used and the results compared with those from the unigram classi�ers. The

results showed, on average, an increased TPR but it was noted that the FPR remained

the same or only decreased slightly. These results are similar to those seen in the work by

Yadav et al. (2010) where only a minor change in classi�er accuracy was noted in their

research when bigrams and trigrams were used. The observed change in classi�er accuracy

was, however, a positive change in accuracy rate compared to Yadav et al. (2010) who

noted a decrease in classi�er accuracy. The higher accuracy was expected but was less

signi�cant than initially predicted. This diminished improvement could be attributed to
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the number of short domain names with a length of less than six. Adjusting the classi�ers

to only classify domain names with longer lengths resulted in a greater increase in accuracy

rates and a lower number of false positives. The increased accuracy when examining

domain names of length 8 or greater was attributed to the larger sample space and the

normalising e�ects of having a greater number of probabilities. The increased number of

bigrams in longer domain names minimise the e�ect of bigrams with large probabilities

in�uencing the overall result of the classi�er output. This was seen as a non-ideal solution

as the aim of this research was to construct classi�ers capable of identifying domain

names of any length. The detection rate based solely on character probabilities performed

better than other proposed solutions that focused on the distribution of consonants and

vowels in the domain name, such as suggested by Alienvault Labs (Alienvault Labs, 2012).

The results of the classi�ers surpass those obtained in the Alienvault Labs study when

applied to only Con�cker-C domains. When applying the detection algorithm to domains

generated by Torpig and Kraken, which the Alienvault Labs work had not been exposed

to previously, the proposed classi�er produced far superior results.

5.1.3 Summary

The research showed that it was possible to detect algorithmically generated domain

names with a high degree of accuracy. These classi�ers have the bene�t of being lightweight,

accurate and fast. Furthermore, the proposed classi�ers provide the added bene�t of being

able to detect algorithmically generated domain names from a single query unlike previous

work which required large numbers of samples before detection was possible. This allows

for earlier detection of communication attempts by infected hosts and subsequently allows

for this tra�c to be blocked before any communication can be established. As the domain

name is contained in the initial DNS query it is possible to detect whether a DNS query is

to a algorithmically generated domain name even before a DNS query response has been

received. This early detection means that communication between infected hosts and C2

servers could be prevented even before an attempt to establish connection has been made.

During the development of the classi�ers it was observed that the size of the training

dataset had a marked in�uence on the accuracy of the classi�ers. Furthermore, it was

noted that the use of a single malicious dataset (such as Con�cker-C domains) produced

classi�ers capable of identifying algorithmically generated domain names from other bot-

net families such as Kraken and Torpig. This observation showed the bene�t of creating

classi�ers capable of detecting algorithmically generated domain names as the classi�ers
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would be able to identify algorithmically generated domain names that have never been

seen before.

5.2 DNS Fast-Flux

Botnets have historically employed numerous techniques to prevent or delay the shut-

down of the C2 servers used to distribute commands to nodes of the botnet. One of these

techniques -DNS Fast-Flux- relies on rapidly changing DNS query responses, with vari-

ous di�erent servers' IP addresses being returned in a short period of time. This means

of shut-down avoidance has led to the creation of a variety of detection strategies by re-

searchers as highlighted in subsection 2.3.2. These detection strategies predominantly rely

on prede�ned detection metrics or detection rules based on observed Fast-Flux character-

istics such as a short TTL. A modi�ed classi�er was developed to extend these current

Fast-Flux detection metrics to match the observed behaviour of modern Fast-Flux do-

mains. Furthermore, two new classi�ers were constructed one rule-based classi�er and a

novel statistics based classi�er. The results of the three proposed classi�ers were used as

inputs to a neural network, resulting in the creation of a fourth classi�er which increased

the overall detection rate of Fast-Flux domains.

5.2.1 Classi�er Results

The results of the developed classi�ers showed that the inherent unreliability of servers

used to host C2 domains could be used as a metric for reliably detecting Fast-Flux do-

mains. Botnet controllers are unable to fully control the uptime of C2 servers due to

their lack of physical access to these hosts, therefore they make use of multiple servers

to ensure that the botnet control infrastructure is more robust. Using multiple servers

limits the ability of security researchers to shutdown the botnet infrastructure even bet-

ter (Barsamian, 2009). The use of multiple servers to host the C2 infrastructure mimics

the behaviour of legitimate Content Distribution Networks (CDNs), which use multiple

servers to host content and these hosts are rapidly swapped out to allow for load bal-

ancing. During the analysis of Fast-Flux domain behaviour it was noted that multiple

A records would be returned with each DNS query. These A records were observed to

be from multiple IP ranges and ASNs. On average Fast-Flux domains were found to be

spread across three IP ranges and three ASNs.
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The analysis of Fast-Flux domains and legitimate domains in section 4.3 showed that

Fast-Flux domains had distinct features that could be used to di�erentiate Fast-Flux

domains from both standard and domains used by CDNs. The most noticeable di�erence

between Fast-Flux domains and CDN domains was that the A records returned for Fast-

Flux domain queries mapped back to multiple IP ranges, multiple ASNs and multiple

countries, while the A records from a CDN regularly mapped back to a single IP range,

single ASN and one country. These observations matched those of other researchers (Hu

et al., 2011; Caglayan et al., 2009; Bilge, Kirda, Kruegel, and Balduzzi, 2011), who all

noted the distributed nature of Fast-Flux domains as a de�ning feature.

The initial stages of research involved constructing a classi�er based on the work done by

Holz et al. (2008). This work had produced classi�cation techniques capable of detecting

Fast-Flux domains with a high degree of con�dence. Initial testing on active Fast-Flux

domains did not produce the same results as those stated in the past research, and no

apparent means were available to replicate these results. Investigation into active botnets

showed that this failure could largely be attributed to the constant changing nature of

botnets (Hunt, 2010) and the changing techniques used to evade detection. The domains

observed during this research period exhibited longer TTL's than those observed in earlier

work with a mean TTL of 595 seconds, while Passerini, Paleari, Martignoni, and Bruschi

(2008) identi�ed a mean TTL of 291 seconds and the metrics used by Arbor ATLAS

to classify Fast-Flux service networks identi�ed a TTL below 900 seconds as indicative

of a Fast-Flux domain (Nazario and Holz, 2008). The large variation in observed mean

TTL times highlights the di�culty in creating an all-encompassing classi�er capable of

detecting all known and emerging Fast-Flux botnet domains. Furthermore, it was seen

that not all Fast-Flux domains could be detected using a single query response, such was

the case with the Hlux2 botnet where TTLs were set between zero and two seconds with

only a single IP address being returned with each subsequent query. Despite it not being

possible to classify these domains in a single query using the observed behaviour of other

Fast-Flux domains, it was noted that a domain could still be identi�ed with three DNS

queries on average by combining the data collected from each query response. Though

this detection of these domains did not occur within a single query, the low TTL on the

DNS records meant that classifying a domain with a TTL of two seconds took, on average,

eight seconds on average. It was observed that it was uncommon for legitimate domain

records to display a TTL below ten seconds and thus it is proposed that domains with

a TTL below this threshold are deemed highly suspicious. This is the same approach

taken in (Nazario and Holz, 2008), where domains with a TTL of two seconds or lower

are repeatedly queried to search for distinct replies that could be indicative of Fast-Flux
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behaviour. The changing nature of Fast-Flux domains posed the problem of �nding a

means of classifying existing Fast-Flux domains with the ability to adjust to the changes

in Fast-Flux networks over time. To this end the original Holz classi�er was �rst modi�ed

to match current observations in Fast-Flux botnets and to be used as a reference point.

The rule-based classi�er was created to incorporate additional Fast-Flux features not

present in the original Holz classi�er or any other classi�ers. The third classi�er proposed

was based on Bayesian statistics with the aim of creating a classi�er capable of learning

which features constitute a Fast-Flux domain and the ability to adjust to changing features

over time.

The modi�ed Holz classi�er achieved a lower accuracy than the reported accuracy in

the original Holz work (Holz et al., 2008), with the modi�ed classi�er achieving a 93%

accuracy while the Holz classi�er was reported to achieve a 99.98% accuracy. The accuracy

of this classi�er was, however, 4.6% better than the original Holz classi�er when applied

to our test dataset. It was further noted that this accuracy rate was achieved with a

single DNS query as opposed to the Holz classi�er which required two or more DNS

queries to be e�ective. This modi�ed classi�er was able to identify Fast-Flux domains

that resemble CDNs with a low number of false positives. The rule-based classi�er was

constructed with the aim of identifying domains that might be missed by the modi�ed

Holz classi�er. It was hoped that by using the country in which the servers are located,

it would introduce an additional detection metric, increasing the accuracy of the classi�er

and leading to fewer false positives. The accuracy of this classi�er was, however, identical

to that of the modi�ed Holz classi�er, though it identi�ed a small number of Fast-Flux

domains not identi�ed by the modi�ed Holz classi�er. The di�erence in the true positive

rates where, however, not signi�cant enough to set the rule-based classi�er apart as an

improved alternative to the modi�ed Holz classi�er.

5.2.2 Legitimate Fast-Flux Domains

Legitimate domains may also make use of Fast-Flux as a defensive mechanism against

denial of service attacks (Lua and Yow, 2011). The domain webmoney.ru has an Alexa

(Alexa, 2012) rating of 574 globally and 23 in Russia and can be seen as a legitimate

site. It can, however, be seen in Table 5.1 that the DNS query response for this domain

matches the features of Fast-Flux domains. The servers hosting webmoney.ru are located

in three di�erent countries, are all from di�erent IP ranges and belong to �ve di�erent

ASNs. To further complicate the classi�cation of webmoney.ru as either legitimate or not,
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Table 5.1: Observed Domains

Properties

Domain Label
A IP

ASNs
Country

TTL
Record Ranges Codes

maxsidelnikov31.narod2.ru FF 4 4 1 1 3000
yahoo.com CDN 3 3 1 1 3000
megasuperzx.com FF 4 4 4 4 300
webmoney.ru S 5 5 5 3 6600

it has been documented that webmoney.ru is widely used as a payment system on the

Internet underground or blackmarkets (Wehinger, 2011). Due to its popularity as a black-

market payment system, it is highly probable that webmoney.ru is frequently subjected

to denial-of-service attacks. Thus it is speculated that webmoney.ru has employed Fast-

Flux techniques to help mitigate the dangers posed by denial of service attacks against it.

The problem of correctly classifying webmoney.ru highlights how easy it is to misclassify

domains and thus strategies for dealing with false positives needs to be developed. These

are discussed further in the future works section in section 6.1.

The increase in distributed denial-of-service (DDoS) attacks has led to the emergence of

services such as CloudFlare that use techniques similar to those employed by Fast-Flux

service networks (CloudFlare, 2012). The main bene�t of Fast-Flux is that it provides

botmasters with a more robust infrastructure, as their service is spread across multiple

networks, thus making shutting down the entire network more di�cult. The ability to

provide a robust service make Fast-Flux domains ideal for creating robust networks more

resistant to DDoS attacks and thus have been employed as one of the strategies used

by companies such as CloudFlare. It remains possible to di�erentiate between Fast-Flux

domains used by botnets and Fast-Flux type domains used by CloudFlare, Amazon and

other companies despite the numerous A records returned being spread across multiple

network ranges. This is due to legitimate services having full control over the IP ranges

available to them and these IP ranges are usually registered back to a single ASN and a

single country. Furthermore, if doubt remains about a domain it is possible to perform

more heavyweight analysis. This heavyweight analysis involves doing reverse DNS res-

olution on the A records returned to determine if they map to domains other than the

Fast-Flux domain. Once it has been established which domains A records are associated

with, a WHOIS query can be performed to determine the organisation or individual the

domain is registered to. With legitimate services, such as CloudFlare and Amazon, all the

domains queried will have the same registration information, while Fast-Flux domains will

have di�erent WHOIS entries. As the number of legitimate services using Fast-Flux type
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architecture remains small, whitelists can be employed where known legitimate services

are always classi�ed as legitimate. The negative aspect of this strategy is the increased

use of legitimate services such as CloudFlare by illegitimate parties. During the Lulzsec

campaign the hackers used the Cloud Flare service to host their web domain to prevent

DDoS attacks (Rashid, 2012). In response to this malware authors may start moving their

C2 nodes into these cloud services (such as Amazon EC2), making automatic classi�ca-

tion increasingly di�cult and requiring manual veri�cation of domains. This highlights

that no matter how good automated classi�ers are, there will always be a need for manual

intervention in the border cases.

A problem was identi�ed while researching Fast-Flux domains, as it was noted that nu-

merous domains would be labelled as Fast-Flux by sources such as the ZeuS and SpyEye

trackers (abuse.ch, 2011, 2012) and other domain blacklists (MalwareURL, 2011; Arbor

Networks, 2012b) despite these domains not matching the characteristics of the average

Fast-Flux domain. This largely occurred in cases where a domain would have numerous

A records and a short TTL, however all the observed A records were from a single IP

range and ASN, displaying identical behaviour to CDNs. Domains such as these were

still used in the testing of the classi�ers, though it was noted that they were frequently

misclassi�ed as not being Fast-Flux. An example of this can be seen in Table 5.1, where

the domain maxsidelnikov31.narod2.ru had been listed as a Fast-Flux domain used by

the Citadel botnet (abuse.ch, 2012) and at the time of writing had been active for four

months. This domain has near identical features to the legitimate CDN used by ya-

hoo.com. Furthermore, it can be seen that the domain's properties di�er greatly from

that of megasuperzx.com another Fast-Flux domain used by the Citadel botnet. These

discrepancies in the de�nition of what constitutes a Fast-Flux domain and the similarities

between Fast-Flux domains and CDNs makes it near impossible to create a classi�er that

could classify domains with complete accuracy, but the error margin could be kept to

acceptable levels. The classi�ers created manage to achieve a high accuracy rate while

minimising the number of CDN and standard domains that were misclassi�ed as Fast-Flux

and minimised the number of Fast-Flux domains that were misclassi�ed.

5.3 Spatial Autocorrelation

The geographic dispersion of C2 servers was investigated as a possible means of detect-

ing Fast-Flux domains. It has been noted by numerous researchers that the servers used

by botnet controllers to host their C2 infrastructure are widely dispersed geographically
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(Caglayan et al., 2009). This wide geographic dispersion can be attributed to the lack

of physical control botnet controllers have over infected hosts. Hosts used as C2 infras-

tructure often consist of hosts that have either been hacked or taken over by malware.

This leaves the botnet controllers with access to the hosts but no control over the up-

time, bandwidth available and other physical aspects of the hosts. It was hypothesised

that being able to detect Fast-Flux domains from the servers geographic locations would

create a hard to bypass detection method, as the botnet controllers are not able to physi-

cally manipulate the geographic locations of hosts. As botnet controllers cannot alter the

location of the infected hosts and the di�culty of spoo�ng the geographic location of a

hosts, botnet controllers would not be able to easily disguise their Fast-Flux domains as

CDNs. Most CDNs consists of servers under the control of a single organisation, where

the organisation is capable of controlling the geographic location of all the hosts in the

CDN. Furthermore, one of the de�ning features of CDNs is that they are designed to

speed up the distribution of content based on the geographic location of the host request-

ing the content (CloudFlare, 2012). An example of this is the caching of multimedia

content hosted on YouTube: visitors based in South Africa will be directed to the Cape

Town-based YouTube CDN and only be directed to CDNs in other locations if the content

requested is not available on the South African CDN. Fast-Flux botnets do not display

this same behaviour and the list of C2 servers returned by a DNS query will resolve to

widely geographically dispersed hosts.

5.3.1 Observed Distribution Patterns

During the analysis of Fast-Flux and legitimate domains it was observed that Fast-Flux

domains have a mean nearest neighbour distance of 5 000km, while legitimate domains

are clustered together with a short distance between server locations as discussed in

section 3.5. While it could be said that a simple rule could be constructed where domains

with a mean nearest neighbour distance greater than 5000km are classi�ed as Fast-Flux

domains, this solution would not work e�ectively. This solution is ine�ective due to a

large number of actual Fast-Flux domains being missed, while numerous CDNs would

be classi�ed as Fast-Flux, particularly when a CDN has been set up to serve content to

a speci�c country with numerous content servers distributed around the country. Thus

spatial autocorrelation was proposed as a means of formally de�ning domains based on

the clustering of servers. This wide dispersion can be seen in Figure 5.2 where each

country is coloured according to the number of botnet C2 servers that were observed

in that country. The botnet observed in this instance consisted of 21 194 observed hosts
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Figure 5.2: Geographic Distribution of Botnet C2 Server IP Addresses

(Arbor Networks, 2012b). As spatial autocorrelation was designed to identify distribution

patterns in populations, such as disease outbreaks and animal species distribution Lea and

Gi�th (2001); Schabenberger and Gotway (2004); Cli� and Ord (1973), it was theorised

that spatial autocorrelation would be capable of identifying whether domain servers are

clustered or randomly distributed. Furthermore, as spatial autocorrelation is based on

statistics, it would be possible to construct a system capable of learning as the distribution

patterns of Fast-Flux domains change over time, thus creating a more robust system.

5.3.2 Moran's Index and Geary's Coe�cient

Two methods of performing spatial autocorrelation were investigated: Moran's Index (MI)

and Geary's Coe�cient (GC), while both these methods are relatively similar they both

have strengths and weaknesses. These two methods were tested using multiple means of

quantifying the geographic location of servers to identify the method which provides the

highest degree of accuracy, keeping the number of false positives to an absolute minimum.

Work in identifying Fast-Flux domains using the geographic location of servers was done

by (Huang et al., 2010). While this method proved accurate, numerous problems were

identi�ed. As noted by the authors, the main issue identi�ed was that the detection

technique relied on the timezones in which hosts were located. As timezones span both

hemispheres and multiple countries, it was very possible that Fast-Flux domains with

hosts far apart could be classi�ed as legitimate if these hosts were all located in the same
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Table 5.2: Observed Mean Values for Moran's Index

Timezones UTM MGRS
Legitimate(N=964) -0.0276 0.0609 -0.0536
Fast-Flux(N=305) 0.0930 1.1423 -0.1473

Table 5.3: Observed Mean Values for Geary's Coe�cient

Timezones UTM MGRS
Legitimate (N=964) 0.0460 0.0570 0.0803
Fast-Flux (N=305) 0.7681 0.5638 1.1160

timezone. To overcome this problem geographic co-ordinate systems other than timezones

were investigated. These included the use of the UTM and MGRS co-ordinate systems.

The results of the proposed classi�ers were comparable with the previous work done by

Huang et al. (2010) (accuracy 98%) with the classi�ers using timezones as geographic

measures achieving a 97% accuracy, while the FPR was lower at only 3% versus the other

works 4% FPR. The results of the proposed classi�ers did, however, remain consistent

across datasets, where previous work showed varying results based on the test dataset

used (accuracy = 98%, 96%, 92%). This again highlights the problem with attempting

to fairly evaluate the accuracy of classi�ers across di�erent works, with the constantly

changing nature of Fast-Flux domains making the dataset used as the time a factor in

the results obtained.

Typically the values obtained for the MI are used to determine the type of correlation

that exists between points, as discussed in subsection 3.6.1 the values for MI fall in the

range [-1,1] where negative spatial autocorrelation is indicated by values [-1,0) with -1.0

indicating perfect negative spatial autocorrelation. Positive spatial correlation is indicated

by values (0,+1], where 1.0 indicates perfect positive spatial correlation. A value of zero

for MI represents a perfectly random spatial pattern. The mean MI values obtained for

Fast-Flux and legitimate domains are shown in Table 5.2 for the three MI classi�ers used.

It can be seen that the mean MI obtained for legitimate domains using timezones (-0.0276)

is in the range [-1,0) which is used to indicate negative spatial autocorrelation, while

the value for Fast-Flux domains (0.093) is in the range (0,1] indicating positive spatial

autocorrelation. As negative spatial autocorrelation indicates that neighbouring values

are dissimilar, it was predicted that Fast-Flux domains would display negative spatial

autocorrelation due to hosts being widely dispersed. The MI value for Fast-Flux domains

measured using UTM was 1.1423 which is greater than the range for MI values. This

indicates positive spatial autocorrelation signi�cant at the 5% level. Despite the values
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obtained for the MI classi�er being the opposite of those expected, they do not have an

e�ect on the usability of the MI as a classi�er for detecting Fast-Flux domains. The

overall classi�er performance is good with the classi�er achieving a high accuracy of 97%

with only 3% of domains being incorrectly classi�ed. These results are achieved because

the classi�er does not use the type of spatial autocorrelation as a detection metric, but

rather the output value of the MI classi�er. As shown in subsection 4.4.1 and highlighted

in Figure 4.7 and Figure 4.8 the MI values for legitimate and Fast-Flux domains are

clustered accordingly and a clear boundary is distinguishable between the two clusters.

The results from the classi�ers clearly show that the use of geographic locations is an

e�ective means of detecting Fast-Flux domains.

The values returned for GC are in the range [0,2] where values between [0,1) indicates

positive spatial autocorrelation while values between (1,2] indicate negative spatial au-

tocorrelation. A value of 1.0 for GC indicates no spatial autocorrelation. The mean

observed values for GC are shown in Table 5.3, where it can be seen that the mean values

for legitimate domains are all below 0.1 for all three spatial measures used, indicating

positive spatial autocorrelation. This is as expected, with legitimate domains consisting

of servers close together, all with similar values. The values approach zero, especially

when using the timezone, indicative of perfect positive spatial autocorrelation. The mean

GC value for Fast-Flux domains fall in the range [0,1) for both the timezone and UTM

spatial measures, unexpectedly indicating positive spatial autocorrelation. These values

are closer to 1. A perfectly random distribution is indicated by a value of 1, matching

the prediction that Fast-Flux domains would show a random distribution of C2 server

locations. The mean GC value for Fast-Flux domains when using MGRS as a spatial

measure is 1.116 which indicates negative spatial autocorrelation. This value is again

closer to 1, indicating a distribution pattern more random than negatively correlated.

When rounding is applied to all the mean values, legitimate domains have a value of zero

while Fast-Flux domains have a mean value of one, matching expectations that legitimate

domains would show positive spatial autocorrelation and Fast-Flux domains would show

either a perfectly random distribution or negative spatial autocorrelation. The overall

classi�er accuracy for the GC classi�er is high at 96% with the MGRS based classi�er

detecting close to a 100% of all examined Fast-Flux domains.

5.3.3 Open Source Intelligence

The mapping of IP addresses to geographic locations relied on the Open Source Intel-

ligence (OSINT) database o�ered by MaxMind (MaxMind, 2012) and was discussed in
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detail in subsection 3.5.1. Though this database is comprehensive, the issue of missing

data did arise. MaxMind claims to cover all of the IPv4 address space, though it was

found that full location data was not available for a small number of addresses observed.

It was found that while these addresses were present in the database, certain data points

(such as the timezone) were missing from the database. The missing data points raised

the problem of how in the case of missing timezone data these should be handled. The

locations timezone was set to GMT+0. Setting these points to GMT+0 did not have a

negative e�ect on any of the domains classi�ed as there were enough other data points

to use in the classi�cation. It is, however, postulated that it is possible for a domain

to exist that consists of IP addresses without full geographic information available. In

this case an incorrect classi�cation could occur. Another issue associated with the use

of OSINT is the reliability of the data (Hulnick, 2002). Due to its well known nature

and trusted reputation, the MaxMind database was speci�cally chosen to overcome the

issue of reliability. This database has been used by multiple researchers when geolocation

information needed to be mapped to IP addresses (Caglayan et al., 2009; Cremonini and

Riccardi, 2009; Huang et al., 2010).

5.4 Performance Analysis

The performance of the classi�ers was evaluated in section 4.5. Each classi�er was tested

in a simulated real world situation to determine the feasibility of using the classi�ers on a

live network. It was shown that the classi�ers were able to rapidly classify domains without

incurring additional network tra�c. Furthermore, it was noted that the high performance

of the classi�ers was achieved using unoptimised code being run on a standard desktop

environment.

5.4.1 Lexical Classi�ers Performance

The lexical classi�ers were able to quickly classify a large number of domains, as seen

in subsection 4.5.2. The test scenario evaluated the performance of the lexical classi�ers

when used to process log �les or blacklists. It was shown that a large log �le could be

rapidly processed and it could be determined if any network connections were made to

algorithmically generated domain names. This would be a good indicator of a possible

malware infection on the internal network. The bene�t presented by this approach is that

network logs can be used to identify hosts which may have a malware infection that has
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not been detected by the on-host anti-virus solution. As the process of parsing the log �les

occurs quickly (250 000 log entries can be checked in under ten seconds) regular parsing of

the network log �les can be performed without the introduction of a long period between

the parsing of the log �les and a classi�cation result being produced.

5.4.2 Fast-Flux Classi�ers Performance

Performance of the DNS query response based classi�ers was examined in subsection 4.5.3

and it was found that the proposed classi�ers were capable of classifying domains in

0.65ms. A standard DNS query was measured taking 400ms to complete, indicating that

the additional delay of performing classi�cation would not be noticeable. The increase in

time taken to complete the average DNS query was only 0.15% using unoptimised code

and standard desktop computing power. Thus it is highly likely that implementing the

proposed classi�ers will not have a negative e�ect if deployed in a live network environ-

ment, once optimised and run on high end network servers. The similarity between the

performance of the di�erent classi�ers indicates that the main delay in classi�cation is the

actual parsing of the DNS query response. It is postulated that by improving the DNS

query response parsing routine, greater classi�er performance could be achieved, which

would have a lesser impact on overall performance.

Another area of concern is the time taken to do lookups for extra information not present

in the DNS query response packet. Data such as geographic location and the ASN are

queried from the MaxMind database located on the local system. Benchmarking by

MaxMind has shown that the native C libraries are capable of 400 000 IP address lookups

per second when memory caching is not used (MaxMind, 2012). The C implementation

is capable of more than 1 million lookups when memory caching is used. This provides a

good indication that the current solution could be dramatically improved to process more

DNS query responses than is currently possible as the bottleneck is not the local database

lookup but rather the actual parsing of the packet.

5.5 Real-World Application

It has been shown that the proposed classi�ers are capable of detecting and classifying

botnets that use algorithmically generated domain names and DNS Fast-Flux as detection

avoidance techniques. It has furthermore been shown that the classi�ers are lightweight
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and have a minimal performance impact on current DNS query times. These classi�ers

can be adapted for real-world application with minimal e�ort. Two possible areas of

application are network tra�c log analysis and DNS tra�c monitoring.

5.5.1 Log Analysis

The classi�ers used to identify algorithmically generated domain names are suited for log

analysis. It was shown in subsection 4.5.2 that these classi�ers can process a large number

of log entries in a short period of time. It was also shown that these classi�ers are able

to adapt to changing trends in algorithmically generated domain names and thus allows

for earlier detection of emerging botnets. Furthermore, as the classi�ers use probabilities

to identify domains that match known algorithmically generated domain names, the need

to maintain large blacklists is diminished. The large volume of generated names makes

the maintenance and use of domain blacklists slow and cumbersome. As the classi�ers

do not require constant updating of blacklists, the detection is more robust and capable

of detecting botnet domains that have not been seen before. This is evident in the case

of Con�cker-C, where attempting to either pre-register or blacklist 50 000 domains a day

is a near impossible task. Once enough domains have been observed for a given DGA,

it is possible to train the classi�ers to speci�cally identify these domains. It is thus

possible to have multiple classi�ers each capable of identifying speci�c botnet domains,

while a generalised classi�er would be able to identify any domains that appear to be

algorithmically generated. The low false positive rate also means that a weekly test of the

classi�ers against the top 100 000 domains, as listed by Alexa, would allow one to create

a whitelist of known legitimate domains detected by the system and thus have exceptions

for these domains if an attempt is made to access them.

The ability to rapidly parse log �les and gain insight into possible malicious activity on

the network is invaluable. The proposed classi�ers o�er both accuracy and performance

bene�ts, making them suitable �rst pass classi�ers. Tra�c logs taken from network prox-

ies such as Squid3 and Websense4 can be parsed o�ine using the proposed classi�ers.

Possible algorithmically generated domains may be identi�ed for further manual inspec-

tion, helping speed up the detection of possible malware infections on the network. The

classi�ers may be trained using the tra�c logs of the target network. This will ultimately

in time lead to the detection of abnormal domain names in the network tra�c logs.

3http://www.squid-cache.org/
4https://www.websense.com/content/microsoftproxyserver.aspx
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5.5.2 DNS Tra�c Monitoring

The proposed classi�ers passively monitor DNS query responses to identify Fast-Flux

botnet C2 server domains. As there is no direct interaction with the domains being

queried the classi�ers can be used as sensors anywhere on the network. The proposed

classi�ers can thus be used as another means of host based malware detection or be used

for network based detection of malware on an organisation's network. It is proposed that

the classi�ers are placed between the network DNS server and the network hosts. This

allows query responses to be monitored and classi�ed before they are passed back to the

relevant host. If a DNS query for a suspected DNS Fast-Flux domain is detected, the

query response can be dropped, thus preventing the host from contacting the botnet C2

server. A further solution would be to generate a new DNS query response that will

direct the hosts tra�c to an address under the organisations control. This solution may

be used in conjunction with a honeypot such as Dionaea (Levy, 2005; Baecher, Koetter,

Holz, Dornseif, and Freiling, 2006), where suspected botnet tra�c can be monitored and

analysed.

As the Moran's Index and Geary's Coe�cient classi�ers retrieve the geographic location

information about the domain servers, patterns in the geographic locations of domains

visited by hosts on the network may be created. These patterns can be used to detect

abnormal behaviour on the network. An example of this is a network where tra�c patterns

have shown that the majority of domains visited are located in Germany, a sudden increase

in tra�c to domains hosted in China could indicate a breach of the network or hosts

infected with malware.

5.6 Summary

The results from chapter 4 clearly show that the techniques described in this thesis can

accurately identify botnet domains from the contents of DNS query responses. The tech-

niques are able to identify botnet domains that use both DGAs and Fast-Flux to avoid

detection. Furthermore, the techniques outlined make it di�cult for botnet controllers

to bypass these detection techniques and when used in conjunction with existing tech-

niques a robust anti-botnet system can be developed. The techniques outlined rely on the

contents of DNS query responses which are already present on the network. This means

no additional network tra�c needs to be generated for detection to be possible. The

classi�ers are capable of identifying botnet domains that have not been seen before and
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thus provide an added bene�t over blacklists and whitelists. Blocking of botnet domains

through the use of blacklists and whitelists introduces a need for on operators to keep

these lists up to date. The proposed classi�ers are adaptable and easily modi�ed, lending

themselves to numerous possible applications in network tra�c monitoring and malicious

activity detection.
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6
Conclusion

This document detailed classi�cation techniques for DNS based detection of botnet do-

mains. These classi�cation techniques were divided into three sub-�elds focused on de-

tecting speci�c evasion techniques employed by modern botnet families. These classi�ers

can be summarised as follows.

� The detection of algorithmically generated domain names such as those used by the

Torpig, Kraken and Con�cker botnets. Multiple classi�ers capable of detecting these

algorithmically generated domains were developed. The classi�ers were based on the

analysis of the frequency distribution of characters contained in domain names.

� Detecting Fast-Flux domains used to mask C2 servers by using the information

contained in DNS query response. Classi�ers were developed using the distinct

characteristics of Fast-Flux domains to di�erentiate between Fast-Flux domains

and legitimate domains such as CDNs.

� Finally the geographic location of servers was used to detect Fast-Flux domains.

The classi�ers developed relied on Fast-Flux domains consisting of widely geograph-

ically dispersed hosts and formally de�ned is geographic dispersion, resulting in the

classi�cation of domains as either Fast-Flux or legitimate.

The proposed techniques were evaluated to determine the feasibility of detecting bot-

net tra�c solely from the contents of a DNS query response. The proposed techniques

were tested against current active botnet domains which were using detection evasion

techniques. Results from the evaluation of these techniques showed that it is possible to

detect botnet domains with a high degree of accuracy based on the contents of DNS query

response packets.
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Theoretical background information of the Domain Name System (DNS) was provided

in chapter 2 along with information regarding modern botnets. The functioning of DNS

was explained, with examples of the contents of DNS query responses, identifying the

sections pertinent to this document. The structure of botnets was discussed, making the

reader aware of the di�erent components of a botnet and how these components func-

tion together as a system. Common detection evasion techniques, such as algorithmically

generated domain names and DNS Fast-Flux, were described, focusing on the de�ning

features of these evasion techniques and how they could be used to identify botnet do-

mains. Finally related works in the �eld of botnet detection were discussed, outlining

how these works could be extended and improved. Spam �ltering techniques and spatial

autocorrelation techniques were discussed as non-botnet related works which could be

altered to be applicable to botnet detection.

In chapter 3 the data used in this document was introduced, the sources of this data

and how the data was sanitised for use with the proposed classi�ers. The rest of the

chapter discussed the techniques used in the construction of the classi�ers used for botnet

detection. The statistical foundations of lexical analysis were outlined along with the

techniques used to calculate the probabilities of domains being algorithmically generated.

An existing Fast-Flux detection technique was discussed, as well as how it was modi�ed

to match changes in Fast-Flux botnet structures. This modi�ed classi�er was extended

into a new rule-based classi�er that introduced additional data points to increase accu-

racy and to aid in di�erentiating between Fast-Flux and Content Distribution Network

domains. Finally a Naive Bayesian classi�cation technique was presented, allowing for the

construction of robust and self-learning classi�ers, capable of adapting to the changing

nature of Fast-Flux domains. The observed geographic distribution of botnet C2 servers

was discussed in the �nal part of the chapter. Multiple means of measuring the geographic

location of hosts were described and used as inputs to the proposed classi�ers. Techniques

taken from plant and animal distribution statistics were modi�ed for use with Fast-Flux

botnet domains. The identi�ed techniques allowed for the formal de�nition of the distri-

bution patterns of C2 servers and could be used to di�erentiate between Fast-Flux and

legitimate domains.

Having discussed the techniques used to construct botnet detection classi�ers, testing was

performed to evaluate how well these classi�ers would function when exposed to real world

samples. The results from these tests were presented in chapter 4. It was shown that all

the classi�ers performed remarkably well in detecting botnet domains, with high accuracy

rates and a minimum number of false positives. The results showed that statistics-based,

self-learning classi�ers were feasible and performed better than manual classi�ers. These
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results were discussed in detail in chapter 5, where possible weaknesses were identi�ed

and their counters were discussed. The bene�ts of self-learning classi�ers over manual

blacklists were discussed and it was shown that the development of self-learning classi�ers

should be explored further. The DNS features most relevant to botnet domain detection

were identi�ed as an area of future research.

This document showed that it is possible to identify botnet domains by examining the

features of DNS query responses. It was shown that using DNS in classi�ers allowed for

early detection of botnet tra�c and thus allows for preventing communication disruption

between botmasters and bots. The performance analysis showed that the classi�ers are

lightweight and introduce a small performance overhead, as low as 0.152%.

6.1 Future Work

The proposed classi�ers have been shown to work well in an academic and well-structured

environment. Future work will be aimed at providing a thorough evaluation of the classi-

�ers on a real world network. The proposed classi�ers only presented a means for detecting

botnet domains, however no methods for reaction or remediation are presented. Thus it

is proposed that future work should include an analysis of possible reactive steps that can

be taken once a botnet domain has been detected. Furthermore, the proposed techniques

may be applied to other areas of botnet defence, such as Distributed Denial-of-Service

(DDoS) attack detection.

6.1.1 Anti-Malware Protection

Mitigation and remediation of botnet infections are an active area of research that could

be applied to the proposed classi�ers. Deploying the classi�ers on a network will allow for

early detection of malware infections when hosts attempt to contact domains associated

with botnets. Infected hosts may perform a DNS query to enable communication with

the botnet C2 domains. Numerous possible reactive steps exist at this point and include.

� Sinkhole - if a DNS query in association with a botnet domain is detected, the

DNS server can return a modi�ed DNS query response which directs the host to a

sinkhole or null routed address. This will prevent the infected host from establishing

communication with the C2 servers, while also allowing researchers to examine the
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communication protocol of the botnet (Asrigo, Litty, and Lie, 2006). To enable

protocol examination, infected hosts can be directed to a honeypot system such as

Dionaea (Levy, 2005).

� Domain Registration Scanning - it has been shown that proactive scanning of domain

registrations may form an e�ective means of detecting phishing domains before an

actual phishing campaign is launched (Marchal, François, State, and Engel, 2012).

A similar approach is proposed for the detection of Fast-Flux and algorithmically

generated domain names, where new domain registrations are scanned on a daily

basis to identify suspicious domains. The domains identi�ed during this proactive

scanning phase may then be incorporated into domain blacklists.

6.1.2 DDoS Detection

The spatial autocorrelation techniques proposed could be adapted to aid in the detection

of DDoS. As DDoS attacks rely on large numbers of widely distributed hosts to attack a

central location. Legitimate tra�c should show clustering according to geographic region

or timezone (Lamm, Reed, and Scullin, 1996; Padmanabhan and Subramanian, 2001).

Thus it should be possible to di�erentiate between legitimate web tra�c and DDoS tra�c

based on the type of spatial clustering observed. By using spatial autocorrelation, DDoS

tra�c could be identi�ed earlier, before a domain has been severely a�ected by the large

tra�c volumes.
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Glossary

ACC Accuracy

ASN Autonomous System Number

Bot Host belonging to a botnet

Botmaster Person or group in control of a botnet

C2 Command and Control Server of a botnet

CDN Content Distribution Network

DDoS Distributed Denial of Service

DGA Domain Generation Algorithm

DNS Domain Name System

FN False Negative

FP False Positive

FPR False Positive Rate

GC Geary's Coe�cient

IP Internet Protocol

IPv4 Internet Protocol version 4
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IPv6 Internet Protocol version 6

IRC Internet Relay Chat

MGRS Military Grid Reference System

MI Moran's Index

MiTM Man in the Middle

OSINT Open Source Intelligence

TTL Time to Live

TN True Negative

TP True Positive

TPR True Positive Rate

URL Universal Resource Locator, the address of a World Wide Web page

UTM Universal Transverse Mercator
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A
Fast-Flux Domain Query Responses

A sample of DNS query responses for Fast-Flux domains listed by Arbor Networks1 be-

tween January 2012 and November 2012. Output obtained using the dig2 tool.

; ; QUESTION SECTION:

; a l lamur . i n f o . IN A

; ; ANSWER SECTION:

al lamur . i n f o . 600 IN A 82 . 131 . 50 . 1 91

al lamur . i n f o . 600 IN A 174 . 54 . 6 3 . 1 33

al lamur . i n f o . 600 IN A 85 . 180 . 225 . 47

al lamur . i n f o . 600 IN A 219 . 19 . 188 . 152

al lamur . i n f o . 600 IN A 24 . 113 . 216 . 70

; ; AUTHORITY SECTION:

al lamur . i n f o . 86400 IN NS ns1 . vseprokote . i n f o .

a l lamur . i n f o . 86400 IN NS ns2 . vseprokote . i n f o .

a l lamur . i n f o . 86400 IN NS ns3 . vseprokote . i n f o .

a l lamur . i n f o . 86400 IN NS ns4 . vseprokote . i n f o .

a l lamur . i n f o . 86400 IN NS ns5 . vseprokote . i n f o .

; ; Query time : 50 msec

; ; SERVER: 109 . 74 . 193 . 20#53(109 . 74 . 193 . 20 )

; ; WHEN: Sat Oct 13 10 : 19 : 13 2012

; ; MSG SIZE rcvd : 211

1http://atlas.arbor.net/summary/fast�ux
2dig (domain information groper) http://linux.die.net/man/1/dig
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; ; QUESTION SECTION:

; r e s i d e n c e l o v e r s . com . IN A

; ; ANSWER SECTION:

r e s i d e n c e l o v e r s . com . 600 IN A 87 . 247 . 33 . 2 07

r e s i d e n c e l o v e r s . com . 600 IN A 95 . 57 . 2 46 . 222

r e s i d e n c e l o v e r s . com . 600 IN A 98 . 212 . 50 . 2 28

r e s i d e n c e l o v e r s . com . 600 IN A 186 . 1 56 . 9 . 3 6

r e s i d e n c e l o v e r s . com . 600 IN A 37 . 229 . 153 . 244

; ; AUTHORITY SECTION:

r e s i d e n c e l o v e r s . com . 86400 IN NS ns1 . t ea ch f a sh i on . com .

r e s i d e n c e l o v e r s . com . 86400 IN NS ns2 . t ea ch f a sh i on . com .

r e s i d e n c e l o v e r s . com . 86400 IN NS ns3 . t ea ch f a sh i on . com .

r e s i d e n c e l o v e r s . com . 86400 IN NS ns4 . t ea ch f a sh i on . com .

r e s i d e n c e l o v e r s . com . 86400 IN NS ns5 . t ea ch f a sh i on . com .

; ; Query time : 284 msec

; ; SERVER: 192 . 168 . 0 . 1#53 (192 . 168 . 0 . 1 )

; ; WHEN: Sun Nov 18 23 : 16 : 10 2012

; ; MSG SIZE rcvd : 220

; ; QUESTION SECTION:

; f i t o t e a f c l o p e . p l . IN A

; ; ANSWER SECTION:

f i t o t e a f c l o p e . p l . 300 IN A 189 . 8 . 2 52 . 1 2

f i t o t e a f c l o p e . p l . 300 IN A 221 . 1 3 . 7 9 . 2 6

f i t o t e a f c l o p e . p l . 300 IN A 119 . 6 0 . 6 . 2 54

; ; AUTHORITY SECTION:

f i t o t e a f c l o p e . p l . 300 IN NS ns1 . l u i s i anaca rwash . p l .

f i t o t e a f c l o p e . p l . 300 IN NS ns1 . cr i s scross ingamendment . com .

; ; Query time : 608 msec

; ; SERVER: 192 . 168 . 0 . 1#53 (192 . 168 . 0 . 1 )

; ; WHEN: Sun Nov 18 23 : 13 : 36 2012

; ; MSG SIZE rcvd : 160
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; ; QUESTION SECTION:

; funnypoets . com . IN A

; ; ANSWER SECTION:

funnypoets . com . 90 IN A 107 . 22 . 2 8 . 1 31

funnypoets . com . 90 IN A 107 . 22 . 103 . 111

funnypoets . com . 90 IN A 184 . 72 . 148 . 193

funnypoets . com . 90 IN A 23 . 2 2 . 9 9 . 1 44

funnypoets . com . 90 IN A 72 . 4 4 . 4 3 . 1 06

; ; AUTHORITY SECTION:

funnypoets . com . 14400 IN NS ns1 . s c a l r . net .

funnypoets . com . 14400 IN NS ns2 . s c a l r . net .

funnypoets . com . 14400 IN NS ns4 . s c a l r . net .

funnypoets . com . 14400 IN NS ns3 . s c a l r . net .

; ; Query time : 236 msec

; ; SERVER: 109 . 74 . 193 . 20#53(109 . 74 . 193 . 20 )

; ; WHEN: Sat Oct 13 10 : 20 : 03 2012

; ; MSG SIZE rcvd : 193

; ; QUESTION SECTION:

; s t o r u o f g i n e z i . com . IN A

; ; ANSWER SECTION:

s t o r u o f g i n e z i . com . 300 IN A 83 . 6 9 . 1 39 . 1 9

s t o r u o f g i n e z i . com . 300 IN A 123 . 178 . 150 . 174

s t o r u o f g i n e z i . com . 300 IN A 99 . 88 . 223 . 211

s t o r u o f g i n e z i . com . 300 IN A 189 . 8 . 2 52 . 1 2

; ; AUTHORITY SECTION:

s t o r u o f g i n e z i . com . 300 IN NS ns1 . satsun−weekends . p l .
s t o r u o f g i n e z i . com . 300 IN NS ns1 . s t epp ing l ega l zoom . com .

; ; Query time : 205 msec

; ; SERVER: 109 . 74 . 193 . 20#53(109 . 74 . 193 . 20 )

; ; WHEN: Sat Oct 13 10 : 22 : 14 2012

; ; MSG SIZE rcvd : 171
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B
Algorithmically Generated Domain Names

A sample of algorithmically generated domains for Con�cker-C in April 2009 (Table B.1).

Table B.1: Con�cker-C Domains

fpkxd.tn bupk.tl dsjd.pe

acklirhal.co.za clgxssep.com.pa wlltih�k.ac

gtzo.com.tr frrup.co.za aini.tn

ptoww.dj ruqp.com.co xpoj.bz

uolodcz.dk izeo.pk umoee.co.cr

hcxrjl.com.gl aqhb.lv dprcz.com.uy

ossuw.com.gl sdis.com.ua aluolzo.to

yxqoc.cx tlmozybi.tc pwjglcfb.la

mzeqmimuk.pe qxmdmx.mn sfvrt.ly

hcqdy.com.jm ywsienzog.md bnlimlhzf.lu

sbwb.ae mxzuxiehu.com.gt yxbrzbs.kn

prauvdjv.ch ptihuuel.pk xlubugj.co.za

hbhutqj.ly qemhvphpn.com.tr juanfhuhx.ec

gzmw.dk lkjsfdt.ly vpdwsv.dj

Samples from the domain names generated by the Kraken (Table B.2) and Bobax (Table B.3)

botnets, samples taken from Royal (2008).
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Table B.2: Kraken Domains

bjjdhgpby.dyndns.org ezqqddbkx.yi.org ulssrxrzu.dynserv.com
bnbnpqkagr.dyndns.org fcnhysydw.yi.org uokvzojl.dynserv.com
bqzzqwwi.dyndns.org gtyeywobh.yi.org ucxibbeenwz.dynserv.com
bvvliba.dyndns.org iogrdedv.yi.org iikctrpa.dynserv.com
cipaxqmcgfz.dyndns.org kpxvrvde.yi.org cazrsihs.dynserv.com
cvvhg�ch.dyndns.org kpxvrvdefs.yi.org tvzggexcvfv.dynserv.com
dk�xkqecdf.dyndns.org orugtuapnzu.yi.org orhsnoiv.dynserv.com
dmaciltbek.dyndns.org ospknhemqt.yi.org xoskcy.dynserv.com
doqsstt.dyndns.org rdjqleu.yi.org koaqnn.dynserv.com
dqovzm.dyndns.org tapdcm.yi.org ddrqyggw.dynserv.com
dvguqvob.dyndns.org yeaigapqs.yi.org bodrxb.dynserv.com
dztxvpt.dyndns.org znvibonyf.yi.org jpbytzo.dynserv.com

Table B.3: Bobax Domains

dlivmg.1dumb.com eniaaknrxb.3-a.net ipbjty.afraid.org
eivysjix.1dumb.com gxjitrjifgp.3-a.net jqevnl.afraid.org
fndvrix.1dumb.com ihhyzby.3-a.net mhnyavmf.afraid.org
glilepv.1dumb.com imtoey.3-a.net gypzmaudtlv.hn.org
kvuznwxmfoj.1dumb.com ksfvgfrf.3-a.net ichyig.hn.org
qeqfsvxousx.1dumb.com kyfabyzf.3-a.net ipurfbqpsdj.hn.org
rjjuyi.1dumb.com mcduii.3-a.net nttstzi.hn.org
vfpqyv.1dumb.com mlxvdl.3-a.net nttstziinpa.hn.org
wbghid.1dumb.com neytteybbo.3-a.net tsyunetwmi.hn.org
aazuxmmqqkq.3-a.net qst�supgu.3-a.net xatzjf.hn.org
amjcud.3-a.net ryhszzinxss.3-a.net fcnhysydw.yi.org
cnntzas.3-a.net bhlnklify.afraid.org kpxvrvde.yi.org
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C
Geographic Distribution of C2 Servers

Table C.1: Geographic Distribution of C2 Servers

DOMAIN IP ADDRESS LATITUDE LONGITUDE COUNTRY

0dnotraxniki.ru 188.32.46.167 55.7522 37.6156 RU

0dnotraxniki.ru 117.199.233.10 17.3753 78.4744 IN

0dnotraxniki.ru 86.122.154.165 44.3167 23.8 RO

uthdrugs.com 78.229.170.28 49.4167 2.8333 FR

uthdrugs.com 117.215.148.207 28.6 77.2 IN

uthdrugs.com 84.109.168.59 32.0114 34.7722 IL

uthdrugs.com 202.88.76.10 15.1819 145.7567 MP

uthdrugs.com 58.94.154.22 35.685 139.7514 JP

uthdrugs.com 175.136.74.201 2.5 112.5 MY

warpills.ru 99.245.97.167 43.75 -79.2 CA

warpills.ru 113.162.74.179 16.0 106.0 VN

warpills.ru 116.71.58.158 24.8667 67.05 PK

warpills.ru 122.168.108.212 22.0833 79.5333 IN

warpills.ru 189.157.102.251 9.43421 -99.1386 MX

waydontsupface.com 4.97.38.46 24.6408 46.7728 SA

waydontsupface.com 220.50.10.127 35.685 139.7514 JP

waydontsupface.com 81.100.211.250 51.5002 -0.1262 GB

zildoctor.ru 115.64.35.231 -33.9667 151.1 AU

zildoctor.ru 183.82.242.39 20.0 77.0 IN

zildoctor.ru 19.155.28.90 33.7 73.1667 PK

zildoctor.ru 77.250.226.213 52.3667 5.15 NL
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Table C.1 lists the geographic distribution of C2 servers for the Citadel botnet (abuse.ch,

2012) and a Fast-Flux botnet monitored by Arbor Networks in October 2012.
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