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Abstract

Phishing attacks employ social engineering to target end-users, with the goal of stealing

identifying or sensitive information. This information is used in activities such as identity

theft or financial fraud. During a phishing campaign, attackers distribute URLs which;

along with false information, point to fraudulent resources in an attempt to deceive users

into requesting the resource. These URLs are made obscure through the use of several

techniques which make automated detection difficult. Current methods used to detect

malicious URLs face multiple problems which attackers use to their advantage. These

problems include: the time required to react to new attacks; shifts in trends in URL

obfuscation and usability problems caused by the latency incurred by the lookups required

by these approaches. A new method of identifying malicious URLs using Artificial Neural

Networks (ANNs) has been shown to be effective by several authors. The simple method of

classification performed by ANNs result in very high classification speeds with little impact

on usability. Samples used for the training, validation and testing of these ANNs are

gathered from Phishtank and Open Directory. Words selected from the different sections

of the samples are used to create a ‘Bag-of-Words (BOW)’ which is used as a binary

input vector indicating the presence of a word for a given sample. Twenty additional

features which measure lexical attributes of the sample are used to increase classification

accuracy. A framework that is capable of generating these classifiers in an automated

fashion is implemented. These classifiers are automatically stored on a remote update

distribution service which has been built to supply updates to classifier implementations.

An example browser plugin is created and uses ANNs provided by this service. It is both

capable of classifying URLs requested by a user in real time and is able to block these

requests. The framework is tested in terms of training time and classification accuracy.

Classification speed and the effectiveness of compression algorithms on the data required

to distribute updates is tested. It is concluded that it is possible to generate these ANNs

in a frequent fashion, and in a method that is small enough to distribute easily. It is also

shown that classifications are made at high-speed with high-accuracy, resulting in little

impact on usability.
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CHAPTER

ONE

INTRODUCTION

Phishing attacks and email spam have become a common part of the internet and email

usage. They are a form of social engineering; whereby, attackers try to mask malicious

resources as legitimate ones; deceiving users into entering sensitive and identifying infor-

mation (Hong, 2012). This information is often used in illegal activities; ranging from

identity theft to financial fraud through stolen banking and credit card related details

(Dhamija and Tygar, 2005). These attacks occur in several forms, the most notable being

a wide attack which targets any users that are reachable through means such as email,

to very specific targeted attacks, known as spear phishing, where individuals are singled

out. Detection of phishing attacks is a non-trivial task as the attacks try to mimic le-

gitimate resources. While it is possible to detect these attacks using Bayesian networks

(Androutsopoulos, Koutsias, V. Chandrinos, Paliouras, and D. Spyropoulos, 2000) and

host identification, these methods can be unreliable and often induce latency when a

blacklist or another non-local resource is required. Another difficulty is that attackers

will often try to actively obfuscate the URL in an effort to avoid detection and to mask

the intent of a resource (Garera, Provos, Chew, and Rubin, 2007).

However, expert users are known to be able to ‘see’ phishing URLs through their lexical

elements alone, as a direct result of obfuscation techniques used to avoid detection (Ma,

Saul, Savage, and Voelker, 2009a). It has been shown by several authors that it is possible

to detect phishing URLs through their lexical elements using ANNs (Ma et al., 2009a;

Le, Markopoulou, and Faloutsos, 2011). Additionally, these classifiers are able to predict

1
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the nature of a resource to an accuracy that is as high as that of traditional classification

techniques. Within this document it is shown that it is possible to generate these classifiers

in a production environment to an accuracy that is reported by these authors, as well as

how feasible they are to use as end-user solutions. A framework is built that allows for

the generation of these ANNs as well as a distribution mechanism. Finally, an example

client implementation is shown.

1.1 Motivation

As shown in Aaron and Rasmussen (2012) and Aaron and Rasmussen (2013), the number

of unique phishing attacks to occur have increased during the period starting from the

second half of 2010, to the first half of 2013. This number has increased from 67 677

reported incidents to 72 758. These reports indicate the large volume of phishing attacks

that occur every month; with a total of 488 251 recorded attacks from the first half of 2011

to the same time in 2013. According to a survey conducted in Litan (2004); at least 1.78

million people had been victims of phishing attacks by 2004 in America alone. Phishing,

in general; consists of several different categories, all of which entail an attacker sending

a message containing a URL, often by email, to a website that is intended to mislead

the user into thinking that it originates from a legitimate source (Dhamija, Tygar, and

Hearst, 2006; Garera, Provos, Chew, and Rubin, 2007). The goal of this is to deceive the

user into entering private data such as credit card details; which are then stolen (Hong,

2012). The complexity of these attacks can range from simple messages to high-fidelity

websites; mimicking several functions of the targeted resource (Wu, Miller, and Garfinkel,

2006).

There are several methods of identifying phishing URLs currently in widespread use, in-

cluding; black lists, spam filters, reputation services and content scanners. These methods

have two main problems: firstly; since blacklists often require humans to check the inten-

tion of a resource; they cannot adapt quickly, often only being updated and useful after a

phishing campaign has ended. Secondly; the end-user has to execute lookups from these

services, which incur latency. This additional latency slows the end-user’s experience,

which impacts usability negatively (Le et al., 2011). Spam filters which use heuristics

and other detection methods, such as Bayesian networks; are often deceived through the

use of various obfuscation methods employed by attackers executing phishing techniques.

Reputation services, like blacklists, require lookups which cause the user to experience

further latency when requesting resources. In-depth content scanners can be considered
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as flawed in that they require a resource to be downloaded before they can be classified.

This allows for the possibility of an exploit being executed against the browser before

such a classification is made (Ma et al., 2009a) as the browser has already been exposed

to the content.

The drawbacks in the current methods of identifying malicious URLs can be summarized

as follows: they cannot adapt fast enough when new phishing attacks occur; they incur

overheads in the form of latency which is compounded when multiple resources are re-

quested in typical scenarios and in the case of content scanners; are vulnerable to attack

themselves. Additionally, obfuscation techniques employed by attacks today make phish-

ing attacks difficult to identify by any method currently widely in use. The requirement

for human input in the case of blacklists not only makes reaction time within these systems

slow, but it also introduces the possibility of human error; especially when noting that

phishing sites have been known to show different contents to users from known security

organizations (Ma et al., 2009a).

1.2 Research Objectives

The primary focus of this research is to develop a framework for producing ANNs as

classifiers for use in the identification of phishing URLs through their lexical features.

These should ideally be viable for use in real-world applications. While authors have

shown that this approach is applicable to all categories of malicious resources available on

the internet (Le et al., 2011), the specific focus of this document and research is to identify

phishing attacks. However, detecting other malicious URLs, such as malware downloads;

is achievable by using an appropriate data source without changing the framework or

training methods described in this document. Formally, the research objectives are as

follows:

• Develop a framework which can generate ANNs in a fashion that is usable in client

applications. These ANNs must be fast enough to incur little overhead in terms of

latency and be as accurate as has been shown in previous research. The process

of data gathering, ANN training and distribution must be automated to rule out

human error.

• Determine the impact that increasing numbers of training samples has on training

time. Additionally, examine the accuracy improvements made when using increasing

numbers of training samples.
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• Determine what data is required for clients to be able to download and install an

ANN. Calculate the size of the resulting data set and determine what is the best

compression algorithm to use for this type of data.

• Develop a method of storing and distributing these classifiers that is automated,

reliable and feasible in terms of bandwidth and storage. Additionally, this service

must be implementation-agnostic, so that other implementations of this research

may use it for classifier updates without having to have ANNs generated on a per

implementation basis.

• Create a sample client implementation to illustrate the capabilities of these classi-

fiers, as well as demonstrate the end-to-end process of generating an ANN to the

classification of a URL in a client’s browser. Additionally, this must show what

actions are available once a positive classification is made.

1.3 Approach

Research was done to determine state-of-the-art approaches when identifying malicious

URLs using their lexical features alone. Data was collected from Phishtank1 and Open

Directory2 to use in the training of sample classifiers. A prototype ANN inducer was

developed to use this data to generate classifiers capable of performing this analysis.

These classifiers were used to prove that the concept works and that the accuracy stated

by other authors is possible.

Once this was known, a framework was built to facilitate the generation of ANNs for this

purpose. Using the training data already mentioned, classifiers were trained using various

parameters and then tested in terms of training time, accuracy and compressed sizes.

When these values were known, the update distribution service was built and tested.

Finally, the sample client implementation that uses this framework was developed and

analyzed.

1.4 Document structure

The remaining five chapters of this document are as follows:

1http://www.phishtank.com/
2http://www.dmoz.org/

http://www.phishtank.com/
http://www.dmoz.org/
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• Chapter 2 discusses background information regarding the structure of URLs and

phishing attacks. Consideration is given as to why phishing attacks are difficult

to detect and how prevalent they are. Also discussed within this chapter is what

measures are currently used to detect and mitigate the threat from these phishing

attacks, Artificial Neural Networks (ANNs) and the various technologies used within

the execution of this research.

• Chapter 3 describes how the ANNs are built for this research in terms of the number

of input nodes layers. The method used to format input data and the approach

to training are also described. Finally, validation and testing techniques used to

perform the tests described in Chapter 5 are addressed.

• Chapter 4 presents information on the constituent components within the frame-

work. This includes information regarding how the framework was designed for the

simple generation of ANNs and implemented. Also discussed are the update dis-

tribution service, as well as a sample client implementation capable of using one of

these ANNs on the fly within the Google Chrome Browser.

• Chapter 5 discusses the tests performed on ANNs developed in Chapter 3 that

were generated using the framework described in Chapter 4. It is determined what

number of samples should be used when training these classifiers; at what speed they

can be trained and the size of the resulting updates which clients need to download.

• Chapter 6 gives a conclusion based on the work presented in this research. Also

discussed are topics regarding related future work.

Provided in the appendices is information regarding the research discussed in this docu-

ment that is relevant, but not strictly necessary, within the main body. These are referred

to in the text where relevant. Appendix A provides short descriptions of the components

created as part of the network generation library. An example configuration for the Clas-

sifier Generation Service (CGS) is given in Appendix B. The Net Defence manifest file as

well as the high-level detection algorithm are shown in Appendix C.

Appendix D lists publications by the authors that are related to this document. Finally,

all of the code that was generated as part of this research is available online and is listed

in Appendix E.



CHAPTER

TWO

BACKGROUND

This chapter addresses terms and concepts relevant to the research contained in the rest of

this document. Firstly, the concept of Uniform Resource Locators (URLs) and Uniform

Resource Identifiers (URIs), are covered in Section 2.1. Discussed in Section 2.2 are

various topics regarding phishing and how the URL format is abused to aid in information

stealing. Also covered are the different types of phishing, the prevalence of phishing as

well as the methods used by attackers to avoid detection. Section 2.3 discusses what

methods are currently used to protect users against phishing attacks, the effectiveness of

each of these methods and what methods attackers employ to mitigate the effectiveness of

these techniques. The basic structure of Artificial Neural Networks (ANNs) as well as the

algorithms used to train them are covered in Section 2.4. Finally, the various technologies

used in the implementation of the software output of this research are introduced and

motivated in Section 2.5.

2.1 Uniform Resource Locator (URL)

A Uniform Resource Locator (URL) is a character string that acts as a method of finding

and accessing specific resources on the internet (Berners-Lee, 1994) and was developed

by Tim Berners-Lee and the Internet Engineering Task Force (IETF) in 1994. The term

Uniform Resource Locator (URL) is often used interchangeably with the term Uniform

6
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Resource Identifier (URI). Berners-Lee (2005) defines an Identifier as an object that

“embodies the information required to distinguish what is being identified from all other

things within its scope of identification.”.

The RFC 3986 describes the generic format of a URI (Berners-Lee, 2005). This specifi-

cation provides a method of identification of resources that is uniform through a set of

rules that are extensible without placing restrictions on what the resource that is being

identified may be. The generic structure of a URI with all optional sections present is

shown below; with each part being defined in Table 2.1.

scheme://domain:port/path/file?query#fragment

In Berners-Lee (2005), a definition of what a Resource is, is said to be non-specific. It may

be any electronic data such as a file, image or service and is not necessarily accessible via

the internet. In the scope of this document however, a resource is defined as a resource

that is intended to be accessible via the internet and is primarily concerned with Hyper

Text Transfer Protocol (HTTP).

Table 2.1: The generic parts of a URL.

scheme The protocol being used (HTTP, HTTPS, FTP)
domain The address of the server (IP address or used by a DNS server)

port The port that the resource is available on
path The specific path that the resource is available on

file The file that exposes the resource via whatever means
query The specific query used by the file to access the resource

fragment Which part of the resulting data to access

HyperText Markup Language (HTML) has a mechanism for displaying URLs on webpages

known as anchor tags. These tags are clickable links which direct the browser to navigate

to the URL defined in the href component of the tag. This mechanism enables users

to access multiple resources quickly with the use of a mouse only, by clicking on anchor

tags within rendered HTML documents. As a result, users do not need to type the URL

directly, but simply follow links displayed to them. The HTML mechanism for displaying

anchor tags allows for the masking of these URLs with text that is not required to have

any specific bearing on what resource the URL accesses. This mechanism is often used as

a way for words in a sentence to be clickable, allowing authors to say things like: ‘click

here for access to a particular resource’, which a user may click on; without knowing the

URL used to identify that resource.
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When a user browses the internet, the URL for the current resource is often shown in

the web browser’s address bar, located at the top of the browser by convention. Many

companies advertise the URLs that are used to access their websites and related resources.

The fact that anchor tags do not have to display the URL they point to, or can use a

different URL in the anchor text to the one used in the href component; leads to the

opportunity for this system to be abused, as discussed in Section 2.2.

Once a user follows a URL, the browser will perform a Domain Name System (DNS)

lookup which converts the domain into a address which can be used by the Internet

Protocol (IP) and Transmission Control Protocol (TCP) to find the host which supplies

the resource. The resource is then requested from the host by the user’s browser, supplying

the URL as a method of identifying the resource required as well as the desired protocol

for accessing it.

In summary; while a URL or URI does not specifically apply to internet resources, they

are used extensively as such. The method by which HTML makes URLs easier to use,

also allows the URL location to be masked in an effort to hide technical details from non-

expert users. URLs may also be emailed to users in HTML format, allowing the location

of the resource to be masked in the same manner.

2.2 Phishing

Phishing is a form of social engineering where end-users are deceived into entering identi-

fying or sensitive information into fraudulent resources (Berghel, 2006; Fette, Sadeh, and

Tomasic, 2007; Dhamija and Tygar, 2005). This is usually achieved by providing a link to

the fraudulent resource through email, links on a compromised website or other channels.

These fake sites are often identical in facade and may have entire sets of functionality

built in to deceive a user into thinking that it is a legitimate resource. The user is then

prompted to enter information that is sensitive in nature; such as, log-in credentials, bank-

ing details, online gaming credentials or similar information (Dhamija et al., 2006; Hong,

2012; Elser and Pekrul, 2009). An example of a real-world phishing attack (or phish) is

shown in Figure 2.1. This phish targeted the PayPal online payment service and shows

how high-fidelity phishing attacks may be.

The rest of this section will cover various topics regarding phishing. Section 2.2.1 discusses

the four general types of phishing and their intended targets. Covered in Section 2.2.2
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Figure 2.1: A phishing website targeting PayPal.

are the methods used by attackers to obfuscate phishing URLs. In Section 2.2.3, the

prevalence and other statistics regarding phishing are discussed.

2.2.1 Types

There are four general categories of phishing which cover the act of stealing sensitive

information by using fraudulent websites and other resources (Garera et al., 2007). The

first of which, simply called phishing, is a general term which covers an attempt by

attackers to gather information from non-specific targets (Jagatic, Johnson, Jakobsson,

and Menczer, 2007). These targets are often lured onto web sites masquerading as the

legitimate service using emails, in an attempt to deceive them.

Spear phishing is a more targeted approach. In this scenario, attackers will target specific

individuals, or organizations, by researching the target. In this manner, attackers seem

to have ‘inside’ information, that makes them appear more legitimate than if they were

to try the traditional phishing method (Brody, Mulig, and Kimball, 2007). Whaling is a

form a spear phishing that targets high profile users, such as CEOs (Hong, 2012).
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Within Clone Phishing, a previously sent email is copied and resent. This re-sent version

will contain an URL or malware sample that replaces original content. This is done and is

made to appear as an updated version of the email, with ‘corrected’ contents (Mohamed,

2013).

2.2.2 Detection-avoidance and obfuscation

As stated in Ma, Saul, Savage, and Voelker (2009b), every form of phishing hosted on

the internet requires a URL to link to it. This URL has to reach the target, either by

providing a link where the target audience will find it or, more often, in the form of

an email. Often, attackers will exploit the fact that anchor tags do not have to display

URL destinations, showing a different location in the anchor tag text to that in the href

field of the tag (Chandrasekaran, Narayanan, and Upadhyaya, 2006b). Compounding this

problem is that end-users do not necessarily understand the syntax of URLs and, as a

result, the destination of the resource they point to (Dhamija et al., 2006).

Another method used by attackers intended to mask the intent of a URL is to use obfus-

cation. In URL obfuscation, an attacker will create a URL that is either subtly different

from the legitimate resource’s URL, or will try to make the URL not understandable by

non-expert users such as re-encoding the URL in hexadecimal format (Milletary, 2005).

An example of this is shown in Listing 2.1 where the text shown to the user will be

http://www.safe-site.com but clicking the link will direct the user to http://www.phishing-

site.com.

Listing 2.1: Example of an anchor tag with mismatched href and text component

1 <a href="http://www.phishing -site.com">http://www.safe -site.

com </a>

Examples of the first kind of obfuscation include duplication of letters in place, or addition

of extra tokens to the domain section. An example of this kind of obfuscation where tokens

are added to the domain is shown in Listing 2.2. There may be subtle misspelled words

that are hard to notice without careful inspection of the link. Other techniques would

include using an IP address instead of a domain in the URL, as is discussed in Kirda

and Kruegel (2005); or appending the URL with a port number, which is also effective as

some legitimate web services run on non-standard ports. For more information on these

obfuscation methods, see Egan and Irwin (2011a,b) as well as Ma et al. (2009a).



2.2. PHISHING 11

Listing 2.2: Example of an obfuscated URL

1 http:// update.paypal.com.user.id.39

e3f0f901a9fe6dee45c57aa68ef100267afw161a2h1wcx1ac.the -

deans.net/

The primary result of these slight adjustments to URLs of legitimate resources means that

many non-expert users may not notice the incorrect tokens within the URL. This also

makes it very difficult for automated detection methods to identify these URLs without

latency-inducing measures which have a large impact on legitimate traffic. Compounding

the problem is users who may ignore security warnings built into browsers or security

toolbars (Wu et al., 2006). Hiding URL destinations by using an IP address is more

straightforward, and should be avoided by non-expert users as a general rule. It is these

very subtle changes that users such as network security professionals may be able to

spot at a glance. This may be because they are more aware of these attacks and are

cautious when reading emails that contain links requesting information that should never

be requested.

2.2.3 Prevalence

According to the Anti Phishing Working Group (APWG)1; the number of phishing attacks

for the first half of 2013 was reported to be 72 758 instances, an increase of 5 081 instances

during the same time in 2010 (7.5% increase). Within this same period there were 53

685 domain names registered for phishing purposes (26% increase from 2010) as well as

1 626 IP-based phishing attacks targetting 720 organisations. This represents a 22.7%

increase in the number of organisations targeted for phishing attacks from 2010. For more

information regarding these statistics, see Aaron and Rasmussen (2013).

According to Dhamija et al. (2006); up to 5% of users who encounter fraudulent resources

will divulge sensitive information. Litan (2004) said that by May 2004, nearly 57 million

American adults had had encounters from attackers pretending to be legitimate services

via email. The authors go on to estimate that 19 percent of the victims will actually engage

in the phishing scheme, and that 1.78 million of them handed over sensitive information.

This resulted in a loss of $1.2 billion dollars in 2003 according to Litan (2004). By 2007,

this loss was up to $3.2 billion dollars from 3.6 million American adults (McGrath and

Gupta, 2008).

1http://www.apwg.org

http://www.apwg.org
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Work discussed in Dhamija et al. (2006) shows that high-fidelity phishing resources may

fool up to 90% of the users who encounter them. They go on to say that, within their

study, 23% of the participants ignored mechanisms built into the browser to help avoid

these phishing attacks. These mechanisms include the address bar, status bar and other

indicators. Interestingly, users who are educated about phishing attacks have been shown

to be no better at identifying phishing attacks than people who have not been educated.

This was shown in Anandpara, Dingman, Jakobsson, Liu, and Roinestad (2007), which

went on to say that educated individuals reported more attempts as phishing, but with

no greater accuracy, indicating an increased fear rather than ability to identify phishing

attacks.

Figure 2.2: Unique locations of phishing hosts.

Using the MaxMind GeoLocation Library2, 12 084 samples of phishing URLs were geolo-

cated. This data set was collected in April 2012 from Phishtank. Phishtank is a website

where users may report suspected phishing URLs. Moderators then manually confirm

or deny these URLs by visiting them, and adding them to the Phishtank blacklist. This

blacklist is available for download from their website3. Shown in Figure 2.2 are the unique

locations of hosts used for phishing attacks. It is clear from this data that phishing hosts

are found all over the planet, with the highest concentrations being in first-world countries.

2http://www.maxmind.com/app/api
3http://www.phishtank.com

http://www.maxmind.com/app/api
http://www.phishtank.com
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Shown in Table 2.2 are the countries with the highest population densities from the April

2012 Phishtank data set in terms of hosting. Also shown within this table are the hosting

densities from April 2013 according to EMC (2013). The data show that the United

States hosted 44% of reported phishing sites during 2012, with that number rising to 47%

by April 2013. Brazil, while hosting 10% of all reported phishing resources contained

within the Phishtank 2012 data set, was not mentioned in the 2013 data set in EMC

(2013). The same is true for Australia which hosted 4% of phishing sites in 2012. The

Netherlands hosted 4% during 2012 and dropped to 3% by April 2013. Germany and the

United Kingdom rose from 4% and 3% respectively in 2012, to 6% and 4% respectively

in 2013.

Table 2.2: Population density of phishing hosts by country.

Country 2012 2013
United States 44% 47%
Brazil 10% Not listed
Australia 4% Not listed
Netherlands 4% 3%
Germany 4% 6%
United Kingdom 3% 4%

Also discussed within EMC (2013) are the number of phishing attacks and targets by

country. In April 2013, there were 26 902 attacks identified, with the United States

targeted 46% of the time. This was followed by the United Kingdom with 11% of attacks

and South Africa by 9% of the attacks.

2.3 Phishing counter measures

Discussed within this section are the modern approaches used in security systems to

mitigate the threat from phishing attacks. Each approach is described in terms of its

basic operation, logical configuration and construction as well as the advantages and

disadvantages of its approach.

2.3.1 Blacklists

A blacklist is a method of filtering access to resources by using a default allow approach.

The traditional approach to creating blacklists is to maintain a list of resources that
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should be denied access to (Ramachandran, Dagon, and Feamster, 2006). This method is

generally used when there is a large number of resources that should be accessible which

make it prohibitive to use a default deny (Whitelist) method which would require a list

of all accessible resources to be maintained.

Figure 2.3: Blackhole list transaction.

In a typical transaction, a request is made which is compared against a blacklist and, if

the resource does not appear within the blacklist; the request is permitted, if not; it is

denied. This is depicted in Figure 2.3. This transaction is not necessarily enforced as it

may be implemented as a service which a client may query, and may also be implemented

as a gateway requirement on any request. Blacklists can also be implemented as a Domain

Name System Blackhole List (DNSBL), also known as a Real-time Blackhole List (RBL),

which may be used to mark hosts or networks that shouldn’t be accessed (Ramachandran

et al., 2006).

This method of content filtering has been used extensively in web technologies due to the

sheer number of resources available on the internet (Ramachandran et al., 2006; West and

Lee, 2011). Examples of commonly used blacklists include Google Safe Browsing (Google,

2013c) and Microsoft Smart Screen (Microsoft, 2013b). Blacklists have a high accuracy
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as many of them are manually vetted. This means that humans confirm or deny that

a particular resource is malicious in nature, thus keeping the accuracy of the blacklist

very high. This, however, incurs its own problems. Blacklists may be slow to respond to

new malicious resources for a number of reasons as shown in Sheng, Wardman, Warner,

Cranor, Hong, and Zhang (2009). Firstly, the resource may not be discovered for some

time after it becomes available and, as a result, the first requests made for the resource

are not aware of its malicious nature. Another scenario is that the resource has not been

flagged as it is waiting for a human technician to confirm the nature of its intent and add

it to the blacklist (Sheng et al., 2009; Zhang, Hong, and Cranor, 2007).

Another problem relating to blacklists is that of user-experience. Blacklists may exist as a

local resource like in the case of Google (2013c) and anti-virus packages, or they may exist

outside of the local network. In both cases, the blacklist needs to be polled before access

can be granted or denied. In the case of a non-local blacklist, this incurs additional latency

that may not be tolerable in certain applications or compound an existing problem, such

as in South Africa; where network latency and low bandwidth is a common problem for

end-users. This impact on user performance may cause users to not use blacklist services

at all, causing a major security problem. A method of mitigating this issue is to use a

local blacklist resource with periodic updates to avoid latency issues.

Privacy is another issue that blacklists are concerned with. In the standard method of

maintaining a blacklist, a list of hosts or resources are kept. As a result, when a client

makes a request for a lookup of a particular resource, the URL has to be transmitted in

clear text to make the comparison. This makes it possible to determine what the user is

requesting. A method of enforcing privacy when using blacklists is for the blacklist to keep

a list of hashed URLs rather than the URLs themselves. The client makes requests for

lookups by transmitting a hash of the URL rather than the URL itself, thus maintaining

privacy.

2.3.2 Spam filters

Spam filters are used within email servers to separate email into ham and spam messages

(wanted and unwanted) using several approaches (Cormack and Lynam, 2007). While

these are relatively effective, without constant updating they quickly become irrelevant

as obfuscation trends change. Another downfall of spam filters is that they generally apply

heuristic rules to the content of emails, rather than identifying URLs specifically. Zhang,

Zhu, and Yao (2004) show that statistical models trained to inspect both the message
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body and the header improve the performance of these spam filters. Many spam filters

will integrate with a RBL to improve performance.. As a result they tend to inherit the

shortfalls of blacklists. However, they do not inherit the usability problems of blacklist

implementations as they are able to apply filtering techniques when an email is received

rather than when a user requests it. A method, discussed in Androutsopoulos et al. (2000)

and Sahami, Dumais, Heckerman, and Horvitz (1998), is to use Naive Bayesian Networks

as a spam filtering mechanism. Discussed in Li and Zhong (2006) is a method of making

this approach more effective in large environments using approximate classification.

2.3.3 Reputation services

A third approach used today is collectively called Reputation Services, such as the Mi-

crosoft Reputation Services (MRS)4. These are offered by many security companies such

as Avast with the avast! Online Security Browser plugin which is available for all major

browsers. Another popular tool of this type is Web of Trust5. This works by having users

rate websites and other resources as they use them, with the rating being reported back

to a central reputation service that other users may query (Windley, Daley, Cutler, and

Tew, 2007). When browsing, the plugin will create a visual cue near links to indicate the

level of trust assigned to that resource by other users. While this approach is useful in

theory, it will only work for large sites which have large numbers of users. Smaller, but

still legitimate, sites will have no rating and users will be unable to tell whether they are

benign or malicious. Any new phish site coming into operation has no rating, making the

reputation service approach unusable for phishing avoidance. Like blacklists and spam

filters; this service also incurs latency when clients have to make lookups requesting URLs

they wish to visit.

2.3.4 Content scanners

In an approach known as Content Scanners, an application downloads the resource before

attempting to identify it as illegitimate (Chandrasekaran, Chinchani, and Upadhyaya,

2006a). This is done by checking for obfuscation techniques such as those discussed

in Section 2.2.2, among other detection methods. This approach differs slightly from

the spam filters discussed in Section 2.3.2 in that they are used to identify malicious

4http://www.microsoft.com/mscorp/twc/endtoendtrust/vision/reputation.aspx
5http://www.mywot.com/

http://www.microsoft.com/mscorp/twc/endtoendtrust/vision/reputation.aspx
http://www.mywot.com/
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web pages rather than emails specifically. SpoofGuard for Microsoft Internet Explorer

is a plugin which performs content scanning functions to validate authenticity of a page

(Chou, Ledesma, Teraguchi, Boneh, and Mitchell, 2004, see). Another example of a

content scanner is CANTINA which uses a heuristic based on the TF-IDF algorithm

(Zhang et al., 2007).

2.4 Artificial Neural Networks

A new approach to detecting malicious URLs is to use the statistical modelling approach

implemented through Artificial Neural Networks (ANNs). These ANNs are a modelling

mechanism which can be trained to classify samples. It is for this reason that they

are often called classifiers, which is a term that is used interchangeably throughout this

research. In Section 2.4.1 the structure of ANNs are discussed, followed by 3 methods

of training them, shown in Section 2.4.2. Section 2.4.3 discusses techniques needed to

create useful data sets used for training and validation of classifiers. Finally, in Section

2.4.4, reliable methods for determining how effective a trained classifier is at generalising

to unseen data are shown.

2.4.1 Structure

Artificial Neural Networks (ANNs) are loosely modeled around how a subsection of a

biological neural network works and, as a processor of information, is very different from

the classical von Neuman model (Jain, Mao, and Mohiuddin, 1996). Many authors have

cited them as being successful in applications of pattern recognition, image and speech

recognition (Lippmann, 1988; Nadel and Stein, 1995; Rowley, Baluja, and Kanade, 1998).

They consist of neurons which are interconnected by a layer of unidirectional edges, pass-

ing information between them (Gardner and Dorling, 1998). Neurons within an ANN are

arranged in layers, every ANN consisting of at least two layers. These two layers are the

Input and Output layers (Svozil, Kvasnicka, and Pospichal, 1997). Figure 2.4 shows the

logical layout of a basic perceptron.

The neurons at the input layer represent a vector that contains values as parameters of a

sample for the ANN to process. Each layer after the input layer is connected by a series of

weighted synapses which act as multipliers on the input side of the synapse (Lippmann,
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Figure 2.4: Basic layout of a perceptron.

1988). At the output side, the neuron uses a linear combination of all of the values of the

synapses connected to it and is shown in Equation 2.1.

X =
n∑
i=1

xiwi (2.1)

Within Equation 2.1, where X represents the resulting combined value of the equation; x

represents the value of the input neuron and w is the weight of the associated synapse of

that neuron. Once this result has been obtained, it is put through a hard limit which sets

the final output of the ANN (Lippmann, 1988). Shown in Equation 2.2 is the method used

in this research and is known as the sign activation function or sign transfer function. It

works by adding a bias (or threshold) value to the linear combination value. The result,

being either a 1 or a 0, is known as a binary classification (Lippmann, 1988).

f (x) =

 1 if X + b > 0

0 if X + b ≤ 0

 (2.2)

In this structure, the ANN is known as a Perceptron (Lippmann, 1988). The terms

ANN, Perceptron and classifier are used interchangeably throughout this research. A

more complex structure is to have one or more layers of neurons, each of which has

varying sizes, connected between the input and output layer and is known as a Multi

Layer Perceptron (Gardner and Dorling, 1998; Hornik, Stinchcombe, and White, 1989).
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These layers are known as hidden layers (Svozil et al., 1997). This structure is used when

the problem space is not linearly separable and is outside of the scope of this research.

In summary, a ANN takes a vector of inputs, passes it through a series of weighted

synapses, combines them and adds them to a threshold value. This value is then passed

through an activation function which determines the final classification of the input vector.

2.4.2 Learning

The most simple form of Artificial Neural Network (ANN) is the Perceptron. It comprises

of just two node layers: the input layer; which performs no calculations, and the output

layer. The node in this layer is connected to all of the nodes in the input layer via a

weight vector and makes classifications as discussed in Section 2.4.1. This structure and

classification method were introduced in Rosenblatt (1958) and have been used widely.

Algorithm 1: Online Perceptron learning algorithm.

γ = Yd − Y (2.3)

∆w = α× xi × γ (2.4)

wt+1 = wt + ∆w (2.5)

Where:

• γ is the error of a classification.

• Yd is the desired label of a sample.

• Y is the labeling result of a classifier for a sample.

• ∆w is the amount of change required for a given input.

• α the learning rate scalar.

• xi is the input for a particular node.

• wt is the weight associated with the given node.

Rosenblatt’s Online Perceptron (OP) method of training perceptrons is a common method

of supervised learning (Freund and Schapire, 1999). The approach to learning taken by

this algorithm is one which iterates repeatedly over a data set of labelled samples until a

chosen accuracy metric is achieved (Riedmiller, 1994). For each sample, if the resulting
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classification is correct, it moves onto the next sample. When an incorrect classification

is made, the error is calculated.

This is calculated by subtracting the resulting classification from the desired prediction

for the labelled sample and is shown in Equation 2.3. Once this error value has been

calculated, a delta value is calculated by scaling the error with the value for the input

node as well as a learning rate scalar as shown in Equation 2.4. Finally, a new weight value

is calculate by adding this delta value to the existing weight value, shown in Equation

2.5. This process is executed for the entire weight vector for each incorrect classification

made.

The primary shortfall for the OP method is that the learning rate scalar is static (Le

et al., 2011) and a hard limit is used. In this case, a correction (adjustment to the weight

for a given node) is always of the same size. This has the effect of causing an oscillation

around the optimal result when the training process approaches a converged solution, as

the required correction may be smaller than the static learning rate scalar can provide.

This problem is compounded by a training data set that is noisy. Within Le et al. (2011),

two methods of training an ANN which try to mitigate these problems with the OP

method are discussed.

Introduced in Crammer, Dredze, and Pereira (2008), is the Confidence Weighted (CW)

training algorithm. The approach to classification within this algorithm is exactly the

same as with the perceptron. It differs only in the training process, meaning that the

induction of the ANN is modified. The CW algorithm does not have a static scaling

vector, such as the learning rate within OP. Instead, it maintains a covariance matrix

(Σ) which acts as a confidence for each input weight. This has the significant advantage

of not changing weights that have a high confidence by very much, but also making large

changes in weights of the inputs which have a low confidence weight associated with

them. The general method used to determine the confidence is such that a weight that

is not changed often is represented with high confidence within Σ while a weight that is

updated frequently is represented by a low confidence. The exact methods for updating

the covariance matrix and the input vector weight associations are shown in algorithm 2.

The final algorithm discussed in Le et al. (2011) is called Adaptive Regularization of

Weights (AROW). AROW improves on CW by making it more tolerant of noisy training

data through the use of an updated input weight adjustment method that is shown in

Equation 2.8. However, like CW, it is able to train on correct classifications by increasing

confidence in the weights of the features. This algorithm is a modified version of CW and
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Algorithm 2: The Confidence Weighted (CW) training algorithm.

µt+1 = arg min
µΣ

DKL(N (µ,Σ)‖N (µt,Σt)) (2.6)

Σt+1 = s.t.Prw∼N (µ,Σ)[yt(w · xt)] ≥ η (2.7)

Where:

• µ is the average input weight vector.

• Σ is the covariance matrix indicating confidence of input weights.

• DKL is the KL Divergence.

was introduced by Crammer in Crammer, Kulesza, and Dredze (2009) which is shown in

Algorithm 3.

Algorithm 3: Adaptive Regularization of Weights (AROW) training algorithm.

µt+1 = arg min
µΣ

DKL(N (µ,Σ)‖N (µt,Σt)) + λ1lh2(yt, µ · xt) + λxTt Σxt (2.8)

Σt+1 = s.t.Prw∼N (µ,Σ)[yt(w · xt)] ≥ η (2.9)

Where:

• µ is the average input weight vector.

• Σ is the covariance matrix indicating confidence of input weights.

• DKL is the KL Divergence.

Le et al. (2011) show how both of these training algorithms show improvement in terms

of cumulative error rate over the OP method.

2.4.3 Data balancing

A class of data points represents a group that has a unique quality when compared to

data points of other classes. A balanced data set is a concept within modern statistics

that identifies a sample of data that equally represents all classes within that overall

sample. When, within a binary data set, one class has many more samples than the

other, it is called an imbalanced data set (Estabrooks, Jo, and Japkowicz, 2004; Guo and

Viktor, 2004). ANNs may have problems optimising class labeling when such conditions
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are present and special consideration is not made to compensate for the class imbalance

(Japkowicz and Stephen, 2002; Estabrooks et al., 2004).

There are two general approaches to this problem. The first is to adjust the learning

algorithm to deal with a data set that is not balanced while resampling the data set is the

second. There are two approaches to the resampling option: Over and Under sampling.

The first duplicates samples within a class until the data set is considered balanced, while

under sampling removes samples from a class until it is balanced with the class that has a

lower number of examples. There are several versions of each approach listed in Batista,

Prati, and Monard (2004) where heuristic rules are used to select samples for duplication

or removal. Non-heuristic approaches are also used where random samples are removed

or duplicated in each approach. These are known as Random over-sampling and Random

under-sampling (Batista et al., 2004). A combination of these two approaches where the

majority class is undersampled while the minority class is oversampled is used in Chawla,

Bowyer, Hall, and Kegelmeyer (2002). Random under-sampling is used to balance the

data set mentioned in Section 4.5.5 and it is an implementation of the NetworkData-

Balancer interface (discussed in Appendix A.3 called the DataRemovalNetworkBalancer

(discussed in Section A.10).

2.4.4 Classifier Validation

If a classifier is trained to match a sample population of training data, it is possible to

train it beyond the point where it uses relevant features to make classifications and it

starts to use features to identify the data set it is being trained on (Tetko, Livingstone,

and Luik, 1995; Kohavi, 1995). This is known as over-fitting a data set and happens

when a classifier is trained with few samples or when a network is trained for too long

(Tetko et al., 1995). Over-fitting is also known as a Type I error in this context (Peduzzi,

Concato, Kemper, Holford, and Feinstein, 1996).

Classifier validation is a method by which a classifier’s performance can be determined

and used as a way of choosing a classifier during training (Rao and Wu, 2005). This is

done by using an independent data set (a data set that has not been used in the training

process). Known as Hold-out validation, the intention of this process is to estimate how

accurately the classifier may perform in the real-world and is usually executed over several

rounds to avoid variances in the data used (Arlot and Celisse, 2010).

The general method of performing validation is to extract a sample from a population of

data and to use that sample only for validation purposes (Arlot and Celisse, 2010). The
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rest of the data is then used for training. Typically, this process is reversed in that the

data sets are then swapped in roles and training and validation are then executed again,

with the validation score then calculated as an average of both validation runs. This has

the advantage of all the data being used for both training and validation. When accuracy

is calculated by this method of using an independent data set for validation, it is known

as an out-of-sample estimate, while using the training data itself is known as an in-sample

estimate as the accuracy is calculated using the training sample.

K fold cross-validation (Rotation Estimation (Kohavi, 1995)) is a cross-validation tech-

nique where the population data set is divided into K portions. One of these portions

is then used for training, while the others are used for validation, with their results av-

eraged. This process is then repeated, using a different portion of the data for training.

This continues until all K portions are used as both a training and validation set. This

has been shown to be computationally expensive in Bengio and Grandvalet (2004). A

popular implementation used is ten fold validation; where a data set is divided into ten

parts.

Another method of performing cross-validation is known as Leave One Out Cross-Validation

(LOOCV). In this approach, a single sample is left out of the training sample and used

as a validation sample (Kearns and Ron, 1999; Cawley and Talbot, 2003). The process is

repeated, using a different sample as a validation sample each time, until each sample in

the population has been used as a validation sample. This approach to cross-validation

is considered to provide an unbiased estimate of how well a classifier will generalize (ac-

curacy regarding unseen data) (Vapnik and Chapelle, 2000; Chapelle, Vapnik, Bousquet,

and Mukherjee, 2002).

Hold-out validation is implemented as part of the ANN training process discussed in

Section 4.5.5. This is done by implementing the NetworkValidator interface discussed in

Appendix A.7. The implementation is known as the SinglePassNetworkValidator and is

discussed in Appendix A.13.

2.5 Framework technologies

Part of this research is to deliver a framework by which ANNs can be trained, distributed

and deployed. Discussed within this section are the relevant technologies involved in the

implementation of this framework. Section 2.5.1 discusses the programming languages
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used during this research, while Section 2.5.2 briefly covers Representational State Trans-

fer (REST) as a suitable method of making updates available to clients. Finally, the

Google Chrome Extension Application Program Interface (API) is discussed in Section

2.5.3 as it is used to develop a client for this service in Section 4.7.

2.5.1 Programming languages

Python is a scripting language that was introduced in 1989 (Chun, 2006). It is considered

to be highly expressive and easy to learn (Chun, 2006). It was initially chosen for use

within this framework for these reasons, as well as its support for object-oriented pro-

gramming, its scalability and for the rapid development times associated with this high

level scripting language. It was later dropped in favor of C# for reasons discussed in

Section 4.5.

Unlike Python, C# is a language designed for use within Microsoft Windows that is

compiled into a Microsoft Intermediate Language assembly (Liberty, 2001). Certain C#

applications may be deployed on Linux using the Mono project6. The framework that is

built as part of this research (Section 4.5) is built as a .NET library. Programs wishing

to use some or all of the capability that this library provides, may import it as part of

the capability of the .NET Common Language Runtime (Schult and Polze, 2002).

JavaScript is also used and is the basis for the Google Chrome Extension API (Section

2.5.3, see). It is a scripting language that is predominantly used within web technologies

such as HTML (Flanagan, 1998). JavaScript is fully object-oriented and uses syntax

similar to C++ (Flanagan, 1998).

2.5.2 Representation State Transfer (REST)

The decision was made to use a web service to distribute updates to global clients. A

REST implementation is used for this purpose as it is the most common method of

implementing web services used today (Battle and Benson, 2008) and is suitable for simple

integration between client applications and the service provider (Pautasso, Zimmermann,

and Leymann, 2008).

The concept of REST was first introduced in Fielding (2000) with the author being the

principal developer of the idea. Within his PhD thesis; Fielding identifies several formal

6http://www.mono-project.com/

http://www.mono-project.com/
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constraints on a REST implementation. He first identifies that a REST implementation

is built in terms of the Client-Server model and that it should separate the user interface

from the method by which data is stored. In this fashion, it improves the ability of

client applications to consume the service as it has fewer requirements of them. The

second constraint he imposes is that it is a stateless system as it reduces complexity in

both client and server implementations. The final constraint covered here is that of a

uniform interface. This standard method of communicating with the service decouples

its functionality from the interface. For further information on Fielding’s constraints and

definitions of the REST architectural style, see Fielding (2000).

Within HTTP, REST is implemented using the HTTP verbs as methods of creating,

reading, updating and destroying objects. HTTP naturally works with REST as it is

stateless and has the use of URLs to direct clients towards resources. Using this stateless

interaction between client and server, interaction with a REST API can be made with

a single call, containing all of the data required. As a result, REST lends itself well to

framework development.

2.5.3 Google Chrome Extensions

The Google Chrome browser is a popular browser used today which allows for function-

ality to be extended by allowing third-party developers to create extensions and plugins.

Chrome allows these extensions to interact with user requests, web pages as well as other

functionality of the browser through its API Google (2013a). Extensions may be built in

three main forms: Browser Actions, Page Actions and Packaged Applications

Browser Actions are typically implemented as functionality which extends the capability

of the browser. They take the form of a button to the right of the address bar which,

when clicked, opens a popup which exposes some useful functionality. Capabilities that

are required for some pages, but not all pages, are implemented as Page Actions and

take the form of an icon inside the address bar. An example of this would be a Really

Simple Syndication (RSS) feed reader which detects that there are RSS feeds available for

subscription on the page. Packed Applications represent web applications that are able

to leverage the functionality and portability of Chrome.

The manifest.json file is a file included in all Google Chrome extensions. Listing C.1 is

the manifest file that is associated with the Net Defence extension which is developed

in Section 4.7. It is of particular importance as it defines what security permissions the
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extension will require to function as a least-privileged implementation. This security

feature means that if an extension is compromised by an attacker, the attacker has to

operate with those permissions already requested (Barth, Felt, Saxena, and Boodman,

2010). It is also responsible for listing resources that the extension should have access

to. Permissions included in a manifest file are typically a list of possible websites that

the extension needs to access, what API features are required as well as what events

the extension should be able to intercept. The user is asked to accept these security

requirements when installing the extension. The manifest is also used to identify icons

used for the extension, image sets and other options such as which files to use as entry

points for the options page for each extension. Like the main extension; options pages

are built as HTML pages with JavaScript implementations of functionality. These pages

typically store settings through Local Storage; cookies for storing data in the browser

itself, or through online APIs.

2.6 Summary

Several topics have been covered within this chapter. URLs are used in all categories

of web usage as a method of identifying resources. As such, they are used in all facets

of internet usage. Phishing is highly prevalent in internet usage today, causing large

financial losses every year to many users the world over. Attacks of this kind can use

URLs as a method of deceiving users into navigating to fraudulent resources or may use

URL obfuscation as a method of avoiding detection by current technologies employed

to mitigate this threat. These conventional methods have been shown to have flaws in

terms of latency-induced user-experience issues and the inability to adapt quickly to new

phishing attacks or trends in URL obfuscation.

Artificial Neural Networks (ANNs) are shown not to suffer from these problems. They

do not suffer from latency-induction due to their parallel processing nature and are able

to predict well on unseen data if they have been trained correctly and validated using

cross-validation techniques. If they are to be used in a production environment, various

technologies will need to be employed to make them a feasible option to end-users. The

technologies chosen and discussed in regards to this were C#, Representational State

Transfer (REST) and browser extensions, with Google Chrome being the browser of focus

within this research. Discussed in the Chapter 3 is how the ANNs are created for this

purpose, with the framework implementation being discussed in chapter 4.



CHAPTER

THREE

ARTIFICIAL NEURAL NETWORK DESIGN

It has been shown in several papers, including both Ma et al. (2009a) and Le et al.

(2011), that is is possible to identify malicious URLs using ANNs. Within this document,

research is performed to attempt to prove that it is possible to generate the accuracy that

these authors report, as well as determine if it is feasible to create these classifiers in a

way that can be done quickly enough to be useful, distributable and usable by clients.

As a result; their classifiers are implemented in this research using methods which they

recommend. The method by which data is gathered and formatted for use is discussed

in Section 3.1. Covered in Section 3.2 is the method by which the samples are labelled.

Section 3.3 describes how the samples are divided into the various data sets required for

the training and validation process. The method by which a sample is used to create

an input vector is discussed in Section 3.4. Section 3.5 covers what the structure of the

ANN implementation is and the various algorithmic options used. The training process

is covered in Section 3.6 while the validation and testing methods used are discussed in

Section 3.7 and Section 3.8 respectively.

3.1 Data Sources

Required for the training of ANNs are three sets of unique data. These sets are known as

the training, validation and testing data sets. Within each set, there needs to be relatively

27
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balanced numbers of both positive and negative samples, although this can be achieved

through various balancing techniques, discussed in Section 2.4.3.

The primary sources of data used during this research were Phishtank1 for phishing URLs

while Open Directory2 was used for benign samples. These sources were chosen as they are

manually vetted. This means that individuals visit each URL by hand to verify the intent

and content of each end point. As a result, the data has a high accuracy on the intention

of the sample, with low noise. The Phishtank data source yielded 14 707 samples, while

the Open Directory database contained 9 198 532 samples that were drawn upon to create

training, validation and testing data sets. Both data sets were downloaded in September

2013.

3.1.1 Extraction

These data sets described are available for download from github (details in Appedix

E). The first operation performed on the data is to extract it from its relevant container

format, as implemented within the framework designed in Section 4.5. First in this process

is to decompress the data and then extract it from the source’s standard method of storage.

In the case of Phishtank, this was a Comma Separated Values (CSV) format file, while

Open Directory storage is in Extensible Markup Language (XML) format. Once all of

the data are extracted, it is checked for duplicates which are then removed, and then it is

stored. This ensures that each data set only contains samples which appear once within

that data set, and in no other data set. The data is then transformed for standard input

into the ANN.

3.2 Data labels

Data labels are required for testing, validation and training processes within the frame-

work and testing environments. Classifier inducers require training data to be labelled

so that missclassifications can be detected. This allows the inducer to propagate a cor-

rection through the ANN and continue with training. This is how the ‘learning ’ process

is achieved. Labeled data is also required for validation and testing purposes which are

discussed more in Section 3.3.

1A manually vetted blacklist of phishing URLs, http://www.phishtank.com
2A directory of benign URLs that have been manually vetted. http://www.dmoz.org

http://www.phishtank.com
http://www.dmoz.org
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As mentioned in Section 3.1, each data source manually vets samples before they are

added to the database. This guarantees the malicious or benign nature of each sample.

As a result, each sample is labelled according to its data source. Samples originating from

Phishtank are labelled as malicious and that are represented as positive classifications,

indicated by a 1 within both the framework, and the testing environment. Samples

which were obtained from Open Directory are considered negative classifications which is

indicated by a 0.

3.3 Data set generation

The final procedure executed on the data before they are used for training and testing

is that of separation into the different data sets required. As already mentioned, each

set consists of samples that only appear in one data set, and that data set only contains

a single occurrence of that sample. The First set generated is known as the Training

set which is used to train the classifier. The next set that is generated is also used by

the inducer while training a classifier. It is known as a validation set and is discussed in

Section 2.4.4. This set is used to validate the accuracy of the classifier to avoid over fitting

to the training data set. A secondary function of this set is to allow for early stopping of

training when the over fitting is detected (also discussed in Section 2.4.4). The final set

generated by this process is known as the testing set. The testing data is used as data

that has had no involvement in the training process.

3.4 Vector extraction

During training, both positive and benign data sets are loaded. They are then broken

down into the constituent sections which make up a valid URL. Each section has an

associated list which is used to store the words which will make up the Bag-of-Words

(BOW) used as input to the ANN. Each section of each URL is separated into the tokens

which make it up. These words are then inserted into their associated lists, even if they

are duplicates. Only once this process is complete are the lists checked for duplicates

inside themselves. This means that a word will appear once within any given list, but

may be present in multiple lists. This distinction is important as lists may have words

which are duplicates of words from other lists. This allows the classifier to assign different
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weights to a word appearing in different sections of a URL. The lists generated by this

process are then used as a mapping to create a bag of words for any specific URL.

When a URL is being used to create an input vector for the ANN, the BOW is used. A

vector with the same single dimension as the BOW is created which will represent a set

of binary inputs. Each value in the vector is assigned a 0 at initialisation time, indicating

that there are no words present within the sample. Then, each word within each section of

the URL is checked against the list of the BOW which is associated with that section. If

that word is found at a particular index within that list, that index within the input vector

is set to 1. For further lists, an offset is used to find the index for the associated list within

the input vector. In addition to these binary inputs, there are 20 ‘obfuscation resistant’

features which are used, as described by the authors. These features are continuous values

which represent various metrics regarding a URL. These values are described as follows:

• The URL as a whole has two associated metrics: the number of dots present as well

as the total length.

• The domain name length is recorded, whether or not it represents an IP address or

uses a port number. The number of tokens and hyphens that are used are recorded,

as well as the length of the longest token that appears within the domain name.

• The directory section of the URL is analysed for length, the number of directories

traversed. Additionally, the longest directory name, the highest number of dots that

appear within a directory name as well as the highest number of URL delimiters

used in a directory name are calculated.

• The length, number of dots and the number of delimiters used within the filename

are calculated and stored within the input vector.

• Within the argument portion of the sample, the length and number of variables

defined are stored. Finally, the length of the longest variable is calculated and

stored, as well as the highest number of delimiters used within a variable value.

Finally, where relevant, there are flag features which accompany some of these continuous

values. These flags will be discussed in Section 3.4.1.
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Table 3.1: Example of vector data pre and post normalisation.

x 71 3 26 3 0 18 0 0 0 0 0 0
normalised 0.034 0.085 0.111 0.142 0 0 0 0 0 0 0 1

3.4.1 Normalisation

Once the input vector has been constructed, the continuous variables which describe

various metrics regarding the URL are normalised. Examples of the continuous variables

include the length of the sample or the number of tokens in the domain section of the

URL. These variables differ to binary variables which only have two possible values: 0 and

1. Some of these metrics have naturally higher values than others, such as length versus

the number of dots used in the path section. As a result, within this example, length

would have a naturally higher bias associated with it at the start of training. While this

would eventually be trained out; it adds training time through iterations required for the

ANN to correct this natural error. As a result, these values are all normalised to a range

of between 0 and 1, where 1 represents a value equivalent to the highest value encountered

for that field within the training data set. It is important to note that 0 does not imply

a 0 value, but a value that is the lowest in the encountered data set. For this reason, for

fields that are relevant, a flag value is associated, as mentioned in Section 3.1.1. This is

a binary value where a 1 indicates that a continuous value field with a 0 value represents

an equivalence to the lowest number encountered within the training data set. A 0 value

for this binary field indicates that the associated continuous field has no input.

xn =
x− l
h− l

(3.1)

The normalisation values for the input vectors are calculated before training begins.

Firstly, a pair of vectors which represent maximum and minimum values for each field is

initialised to a 0 value for each field. Then each extracted sample vector is iterated over,

checking each field for a value that is higher than the highest value encountered thus far,

or lower than the lowest value encountered. When an input vector is extracted from a

sample URL, these maximum and minimum values are used to calculate the normalised

value of the field. The method by which these values are used is shown in Equation 3.1

where xn represents the normalised value of x, h represents the highest value encountered

in the training data set and l represents the lowest value for that field encountered in the

data set.

An example of this normalisation process is shown in Table 3.1. The first six fields shown
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in this table are continuous value variables, while the remaining six are the associated

zero-value flags for each field. The first four fields are normalised as values which are

somewhere inside the range of value encountered. The fifth value stays at 0, with the

eleventh flag also set at zero, indicating a 0 value pre-normalisation. The sixth field is

normalised from 18 to 0, with its zero-value flag set to 1, indicating that 18 is equivalent

to the smallest value encountered during normalisation for that field.

3.5 Structure and initialisation

There are two basic components that were built regarding the ANN. The first component,

called an Inducer, uses training data to create a perceptron (Kohavi, 1995). The inducer

uses the lists of vectors extracted as per the method described in Section 3.1 to create the

classifiers which will be tested and used throughout this document.

Figure 3.1: Structure and initialisation of the classifier.

It starts by creating an ANN with just two layers; the input and output layer, known as

a perceptron. The size of the input vectors supplied to the inducer are used to determine

the size of the input layer of this perceptron. The weighted connections from this input

layer to the single neuron of the output layer are each randomly initialised to a value of

between -0.5 to 0.5. The perceptron also uses a bias or threshold value as a hard limiter

when combining the values from the input layer. Since there is no specific way to train
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this bias, it is implemented as an extra input to the classifier which always uses the value

1 as its input. The bias value is then randomly initialised in the same manner as the other

weighted connections. This has the result of being trainable in the same fashion as the

other inputs, but still being able to shift the result in the same manner as the threshold

is intended. Finally, when making classifications, the sign activation function is used as

described in Section 2.4.1, resulting in a 0 for benign classifications and a 1 for malicious

or positive classifications. Figure 3.1 shows this arrangement of the ANN.

3.6 Training

While this research was compiled and tested using a data set which was already down-

loaded, the framework discussed in Chapter 4 has the capability to download, preformat

and store data on a scheduled basis. Training is performed using 18 000 samples, 9 000

of which make up the positively labelled set and the remaining 9 000 the negatively la-

beled set. As a result, the data set is considered balanced. The number of samples yields

the best classifiers, the reasons for which are discussed in Section 5.4. These sets are

interleaved on a 1 to 1 basis, making up a flat distribution across the training data set.

The training algorithm used from training is the Online Perceptron (OP) as described in

Section 2.4.2 using the equations shown in Algorithm 1. This method was chosen as it

consists of the most common steps used in ANN training, is easily implementable and is

one of the methods shown to be successful in Le et al. (2011). The classifier is trained

on a single sample at a time in an online fashion, and updates the weighted connections

on error, as per the OP method. At the end of each epoch (a complete iteration through

the training data), the accuracy of the classifier is calculated using cross-validation. The

training stops when a desired accuracy is reached or the maximum epoch is reached.

3.7 Validation

Validation of the model is performed at every epoch. This allows for the network to be

tested for how well it will generalise to unseen data. This validation is done using a hold-

out validation approach, where the training data set is made up of the bulk of the data set.

Validation using this approach is discussed in Section 2.4.4. When the inducer finishes a

training epoch, the resulting classifier is used to classify 2 000 labelled samples, balanced

with 1 000 samples of each label. The final hold-out sample set is used for further testing,
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discussed in Section 3.8. The results of this are used to determine the cumulative error

of the ANN. Once this is known, it is compared to the previous best performing ANN

generated. If it is better than this previous ANN, or being the first iteration through the

data, the new classifier is stored. Once one of the end conditions are met, discussed in

Section 3.6, and the training process is completed, the best seen ANN at that point is

returned as the classifier result of the induction process. Using the accuracy calculated by

this validation process to stop the training process is known as early stopping. By setting

end conditions that can cause the process to end helps set goals and can speed up the

process of training acceptable ANNs. A graph of this validation process during training

is shown in Figure 3.2. It is a representation of the validated cumulative error generated

by a classifier during training. This is built into the training process of the algorithm

described in Section 4.5.4. It is implemented as a SinglePassNetworkValidator, described

in Appendix A.13.
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Figure 3.2: Validation graph of a classifier training run.
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3.8 Testing

After the inducer has chosen the best performing ANN generated, it is then tested against

another data set which has not been seen by the classifier. This serves as a second round

of validation to test how well the classifier will generalise. The testing data set, like

the validation data set, is made up of a balanced sample of 1 000 positive samples and

1 000 negative samples; to determine a unbiased view of the classifier’s performance in

terms of True Positive Rate (TPR) and True Negative Rate (TNR). These, along with

other accuracy metrics, are calculated as per the methods shown in Algorithm 4 and are

discussed in Section 5.2. The results obtained from this testing phase are averaged with

the results from the validation phase. This average gives a good indication of how well

the classifier will generalise and are returned with the associated ANN by the inducer.

3.9 Summary

Shown within this chapter has been how data is sourced from manually vetted sources and

stored in a common format for the framework to use. These samples are loaded and a Bag-

of-Words (BOW) is extracted from them. They are then analysed to find various lexical

metrics which are normalised to a range of 0 to 1. The BOW and normalisation data

are then used to create labelled input vectors which are then passed to an ANN inducer.

This inducer uses this collection of vectors to train a classifier, with each training round

being validated using unseen data. Finally, as a second round of testing, the classifiers

are tested using a third slice of unseen data known as the testing set.

The logical structure and training mechanisms used to generate these ANNs discussed

here, are implemented in a framework form. This framework forms the subject matter of

the next chapter, Chapter 4. Within this chapter it will show how this is implemented in

an automated fashion and how these classifiers may be transmitted, stored and used in

client implementations.
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SYSTEM IMPLEMENTATION

4.1 Introduction

The primary goals of this framework are to provide developers the tools to develop a

method of generating classifiers trained to identify malicious URLs, provide these clas-

sifiers to the general public through a distribution service and to facilitate the ability

to build URL screening mechanisms based on these classifiers. A requirement of these

systems is that they should be accessible and usable by end-users, irrespective of whether

the end-user is computer-security literate, but without introducing significant additional

latency.

The framework described in this chapter has been designed as an implementation of these

requirements, supplying a library which provides all the necessary interfaces required to

describe this process on an ANN generation level. The framework also supplies mecha-

nisms for storing and transmitting the generated classifiers in such a manner that client

implementations may reconstruct them as well as the required input vector for each clas-

sifier. This library contains interfaces which describe the relationship between objects

with independent goals within the ANN generation process and is based on the methods

described in Chapter 3. For a description of these interfaces; see Appendix A. Within

the project are implementations of all of these interfaces as well as implemented classes

which describe these objects as data containers.

36
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As previously mentioned in Chapter 3 and shown in Chapter 5; the advantages of using

an ANN to make these classifications include the speed at which classifications can be

done and the predictive nature of ANN. This results in a layer of protection that is not

only adaptable, easily implemented and requires infrequent updates, but also has very

simple and small targeted updates.

A valid ANN description for an OP includes a list of input weights, the number of inputs,

as well as a bias value. The normalisation values include minimum and maximum values

for all non-binary inputs; allowing them to be scaled to a value between 0 and 1; preventing

inputs having unnatural importance resulting from their measurement scale. Finally, the

list of possible inputs is encapsulated as a BOW which describes unique words found in

each section of each URL that appears in the training data as binary inputs.

This is achieved using the number 1 to indicate the presence of a particular word within

any part of the URL or a 0 to indicate a word’s absence. This list of words is generated

during the ANN training phase and is made up of five separate lists; each describing a

collection of unique words found in that section. Those words are not necessarily unique

to other parts of the URL, so a particular word could be contained in more than one

BOW.

The short training period required to train classifiers (see Section 5.4.2) as well as the size

and ease of distribution has resulted in a one to two week update cycle being suggested;

which, while not a requirement, helps act as a rapid response mechanism to any shifts in

trends in malicious URL creation and detection-avoidance techniques.

4.1.1 Chapter structure

In the following section; Section 4.2, the design of the high-level entities presented within

this research and their interaction with each other are discussed. Section 4.3 discusses

which platforms are specifically targeted by this research and the motivations for these

decisions. The standards by which the code of each framework entity is developed are

discussed in Section 4.4.

The first implementation as well as the final implementation of the Network Generation

Server are discussed in Section 4.5. In the following section; Section 4.6, the service

which stores ANN descriptors and updates is described in detail. Finally, an example

implementation in the form of a Google Chrome browser extension called Net Defence is

discussed in Section 4.7.
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4.2 High-level design

The system design chosen to be implemented for this research is depicted in Figure 4.1.

This design has three main entities; namely, the Classifier Generation Service (CGS),

the Classifier Distribution Service (CDS) and the Net Defence Google Chrome extension.

The implementation is centered around the generation and use of classifiers trained to

identify phishing URLs.

Figure 4.1: High-level infrastructure layout.

The Network Generation Server is where much of this research is focused as it is re-

sponsible for creating and training ANN as classifiers in a manner which facilitates rapid

response to changing trends in malicious URLs with as little human input as possible.

The library developed for facilitating this generation is used and executed on this entity.

When the training of a new classifier has completed, the relevant data is sent to the CDS.

The CDS is the entity which acts as a mediator between ANN generation and client

consumption of those classifiers and additionally as a separator of the concerns of classifier

generation and classifier distribution. This results in a cleaner and more maintainable

infrastructure.

This service has the ability to accept and securely store new data required to define an

effective classifier as well the ability to distribute that data to different implementations of

this research without needing to have implementation-specific protocols or communication

methods. This service is only responsible for classification data updates and has no means

of providing implementation (application) updates. As a result, there is only the need
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for a single service to provide classifier updates to any application implementing this

classification method.

The final entity depicted in Figure 4.1 is that of Net Defence. This entity represents an

implementation of this research which uses classifiers sources from the CDS to identify ma-

licious URLs within a browser. Specific implementation applications have been identified

in Section 4.3, but because of the design methodology of CDS, unidentified applications

wishing to consume updates may do so. The requirements of this implementation are

discussed in Section 4.6.

4.3 Targeted classifier platforms

One targeted implementation for these URL classifiers is the area of browser extensions

which have the ability to classify a URL when the user requests it, but before the URL

is retrieved, thereby avoiding any possible damage caused by the malicious party.

Another implementation considered is that of an extension for a network proxy; for exam-

ple, those common to businesses and educational institutions. The nature of these high

speed classifiers make them ideal for use where a large number of URLs are requested,

requiring a high throughput. This potentially helps as another layer of defence; protect-

ing a corporate network from phishing attacks, and may also be used as a method of

identifying these attacks.

The final use for these classifiers specifically considered in this research is that of email

client extensions. These extensions would be able to classify URLs contained in emails

and then remove malicious emails before the user has the opportunity to open them, or

to warn the user when trying to access an email containing malicious URLs.

4.4 Code standards

The primary rule regarding code structure followed when designing this framework was

that of separation of concerns between separate entities within the framework. As shown

in Figure 4.1, each entity has a clear and specific role. This is followed from the code level

of the framework. Each piece of software is layered so as to provide separation between
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Figure 4.2: Application code layers.

functionality concerns, and is generally depicted by Figure 4.2. This is done to keep file

sizes down and to make code cleaner, more readable and easier to understand.

The Interface or Communication Layer is concerned with the interaction of users or

other programs. It handles the formatting and communication of data into and out of the

application. In the case of a browser extension, this is the layer that a user interacts with

to control the application. It formats data that it receives from the lower layers of the

application in such a way as to make the information understandable and useful. It is also

concerned with passing instructions from the user to the lower layers of the application

and provides input validation of these instructions.

The second layer, the Application Logic Layer, is concerned with performing operations

that make the application functional. These include instructions from the interface layer

that affect data from the lower layer; the Data Access Layer. This layer is where the bulk

of the functionality of the application is developed, and is where the majority of the code

for this framework is situated as the generation of ANNs is considered a logical operation.

This decoupling of code is furthered by the use of the Dependency Injection design

methodology. Where possible, interfaces are used as parameters instead of implemented

classes. This approach is not always required as demonstrated in the case of JavaScript.

JavaScript, being a loosely typed language, performs no type validation when a parameter

is passed; it simply tries to access member variables and methods when they are needed.

The name Duck Typing follows from this behavior (Python-Software, 2013), since, if an
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object “looks like a duck and quacks like a duck, it must be a duck.”

As a result of this behavior, JavaScript does not have interfaces defined as part of the

language. Interfacing, or the ability to pass any object as a parameter as long as it has

the required methods and members, follows naturally from Duck Typing and, as a result,

JavaScript does not need to implement an interface explicitly.

Finally, the naming and formatting conventions used within the framework’s code are

shown and described in Table 4.1.

Table 4.1: Naming and formatting conventions.

Classes UpperCamelCase is used. This is where words all start
with a capital letter and are not separated. This is also
known as Pascal case (Microsoft, 2013a).

Member variables lowerCamelCase is used, which is the same as Upper-
CamelCase except the first word does not contain a cap-
ital letter. This is also known as Camel case (Microsoft,
2013a).

Methods Like member variables, lowerCamelCase is used for
methods.

Constants Are capitalized with words separated by the use of an
underscore.

Indentation styles These are language dependent. In the C# sections,
Kernighan and Ritchie (KR) style is used (Kernighan,
1988), while JavaScript code is written using the One
True Brace Style (OTBS) variant.

4.5 Classifier Generation Service (CGS)

The original framework is written in Python due to the ability to rapidly develop appli-

cations and the ease of use. It was developed with the goal of being deployed on a Linux

server, as discussed in Egan and Irwin (2012b,a), for ANN generation and is shown as a

logical representation in Figure 4.3.

Python uses a Random Access Memory (RAM) management mechanism known as

Garbage Collection (GC), which cleans dereferenced objects out of RAM on a sched-

uled basis. While this approach has both positive and negative aspects; it is not suitable

for this application as the RAM requirements from object creation are extreme when

creating thousands of objects, each with thousands of member variables.
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The code is optimised greatly, making sure that URLs are only extracted to a descriptor

at the point at which they were needed as input for the ANN. This tradeoff is considered

necessary as the calculation can be performed faster than that of the Input and Output

(IO) operations required by the operating system to perform swap file swapping on an

already extracted data set. However, this does not have the desired result, as Python’s

GC system is not able to clean the dereferenced objects from RAM in a way that results in

more acceptable RAM usage. While in development, a training data set of 11 235 URLs

(a subset of the samples gathered and described in Section 3.1), each of which extracted

into a BOW containing 18 124 items for each URL descriptor, the training process quickly

used all of the host machine’s eight GB of RAM, slowing training to an unacceptable rate.

For this reason, the decision was made to rebuild the project using a strongly typed,

compiled platform. It was decided that the new ANN training framework would be built

in Microsoft’s C# language, running on a Windows .NET server. C# is different from

Python in many ways, but most importantly it is a strongly typed, partially compiled

language. The compiler is able to optimise code for efficient execution, resulting in the

inducer being able to train a classifier in much more acceptable times. Using the C#

application, the full data set of 22 000 samples was used without exceeding the test bed’s

memory capacity, never using more than 120 MB of RAM.

4.5.1 Python implementation

Shown in Figure 4.3 is the class structure of the Python version of the classifier generator

(inducer) as described in Egan and Irwin (2012b,a). As discussed earlier, tests early in

the development cycle showed that this implementation is not viable. As a result of this,

this version of the code base is deprecated.

Within the framework; Scheduler is the entry point and serves the purpose of timing

training events and coordinating the efforts of several objects instantiated to execute the

training algorithm. It runs as a daemonized process on a Linux server and is controlled by

administrators through the use of system signals to perform functions such as reloading

configuration files and forcefully exiting.

The framework and application have been built following the Observer design pattern1.

This pattern fires events to which observers respond. Each main element within the

framework is an implementation of the base Observer class and executes on specific events,

1http://msdn.microsoft.com/en-us/library/ff649896.aspx

http://msdn.microsoft.com/en-us/library/ff649896.aspx
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Figure 4.3: Overview of Python framework implementation.

such as the completion of the Gatherer - triggering the Formatter instance to execute.

Another benefit of this design is that independent entities may be executed concurrently.

In the case of this application, the Analyser may be run concurrently with all other

processes after the training data has been fetched. The eventual outcome of this design

was to implement a scheduling configuration mechanism through a file or web Graphic

User Interface (GUI), but this was abandoned after the project was rewritten.

The first step in the algorithm is to instantiate the manager which is then responsible for

instantiating the observers. The manager is also responsible for notifying each observer

when events occur. The Gatherer observer runs twice a day, when the time is twelve

o’clock, and fetches new data to be used for training the ANNs. This process is extendable

through the TimerObserver which can fire new events based on the time.

The data fetched by the Gatherer is primarily sourced from Phishtank2 and Open Direc-

tory3 for malicious and benign data respectively, but can also be fetched from a list of

alternative sources. The DataSource interface was written to define a usage contract for

the framework, defining a single fetchData() method. Each entry in the list of sources for

training data must have an associated implementation of this interface which is respon-

sible for fetching data from that resource and formatting it into a usable format (only

URLs should be present, separated by a carriage return and line feed). This allows the

framework to fetch data from various sources, but be independent of the method by which

these resources are fetched. Every implementation must be present within the sources di-

rectory and is executed by the Gatherer entity. Once the data are fetched, they are stored

2http://www.phishtank.com
3http://www.dmoz.org

http://www.phishtank.com
http://www.dmoz.org
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within the database, implemented in MySQL, within the preformatted urls table.

Each DataSource implementation must format the data in such a way that the Format-

ter object is able to interpret them. The formatting performed by the DataSource is

implementation-specific and is responsible for extracting the relevent data from the data

provider. This can be an action such as extracting data from a compressed archive fol-

lowed by field extraction from the particular format in which the data are stored. There

are two-phases of formatting within this implementation of the framework. The first is

the extraction that is performed by the DataSource, followed by the formatting that is

performed by the Formatter object. This final phase of formatting serves to convert the

data into a format that is usable by the Analyser and the Network Trainer observers.

This two-phase formatting allows the requirements of the framework for the data format

to change without having to re-implement each DataSource. Conversely, a data provider

may change the method by which it exposes or deploys its data, leading to a refactoring

of the associated DataSource but no other objects further down the observer pipeline due

to this decoupling.

The next observer which executes is the Network Trainer which performs the primary

task of the framework. Firstly, it selects a range of input data from the database. This

selection is controlled through the configuration of the framework, allowing the operator

to adjust the selection size, time span or random selection methods used to select the

training data. The BOW is then extracted and the data are ready for use. The Network

Trainer then instantiates a Neural Network instance as well as a Validator instance. Once

the data are extracted and the required objects have been instantiated and initialised, the

Network Trainer then begins training the ANN and validating it at each epoch until the

ANN reaches some exiting criteria, such as reaching the desired accuracy or reaching

the epoch count limit. When an acceptable network has been trained, it is serialised

along with its input data and stored in the database. Within the Normandy Framework,

the Network Trainer is the observer which is meant to be subclassed and replaced in

order to apply new or improved training methods, further increasing the flexibility of the

framework.

While the Network Trainer is executing, a second observer, called the Analyser, is run-

ning concurrently. This observer is meant for research purposes, rather than directly

aiding in the training and distribution of these classifiers. Its primary purpose when orig-

inally developed was to resolve domain names to IP addresses, and then, using unique IP

addresses, geolocate these addresses. It was found that further analysis of the training

data was required and this observer fulfils the role perfectly. As a result; the Analyser
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observer acts as an analysis manager, which includes files developed by researchers that

are present within a directory specified in the configuration. These files must contain a

class which subclasses the AnalyserTask class. This allows the Analyser to import and

instantiate each analysis task in an array and execute them. Since some of these tasks

could potentially take a substantial amount of time to complete, the AnalyserTask class

implements a Python thread and is run concurrently with the other tasks which have been

loaded. An advantage to this dynamic loading of tasks is that it allows researchers to

develop, add and remove research activities to the system without requiring the system

to be taken offline. This is done through the use of a system signal (SIGHUP) which

invokes Normandy to reload its configuration files.

The final Observer, at the time this research was compiled, is the publisher. It has the

job of taking the JavaScript Object Notation (JSON) ANN descriptor and the BOW and

compressing them into a zip format. It then pushes these to the database of a web service

which may be used by client side implementations. These clients simply query the web

service and download a new version of the ANN once a week. They may then decompress

the zip file and replace their current ANN description and BOW used to break up URLs

that they encounter. This is a useful approach as it is platform and implementation

independent as it only contains a list of words and a list of input weights.

However, during the testing of the Normandy Framework, as previously mentioned in

Section 4.5, it became apparent that the Python platform is not able to support the

requirements of the training process due to the RAM requirements and the way in which

Python’s Garbage Collection (GC) mechanism works. It may have been possible to make

the framework work, but this would have been an exercise in Python, rather than research

into a framework for delivering ANNs capable of detecting malicious URLs. For this

reason, the code base was deprecated and started ab initio, as described in Section 4.5.2.

4.5.2 Neural network generation library

As a result of the limits identified in the Python implementation, the framework was

rewritten in Microsofts’ C# language. During testing this framework proved to be far

more reliable and able to cope with the requirements of the ANN generation process. This

is discussed in Section 4.5. As a result of this, this code was developed to a stage that

is acceptable for the purposes of this research and is more mature and complex than the

Python implementation. The class hierarchy of the final implementation of the Network

Generation Server, as used in Chapter 5, is shown in Figure 4.4.
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The use of interfaces instead of solid implementations is in accordance with the Depen-

dency Injection4 design model which allows implementations to be swapped out without

affecting other components of the application. For this reason, the NetworkTrainingCon-

figuration class was designed and reads a configuration XML file which dictates which

implementations of interfaces to load. These implementations are then loaded as publicly

accessible member instances of the NetworkTrainingConfiguration instance. An example

of this configuration file is shown in Appendix B.

This configuration object can then be passed to any object within the application and may

be used to access the specific implementation that has been instantiated as determined by

the configuration XML file. This not only allows a project to be configured with different

behaviours without the need to recompile, but it also allows a single parameter to be

passed to all objects requiring access to other objects, without the need to debug and

validate those options. This is as a result of a single configuration instance being loaded,

which allows for a single point of validation for all configuration. This separating of the

concern of configuration management from ANN generation leads to a cleaner and more

maintainable code base.

4.5.3 Classifier Generation Service code structure

As mentioned in Section 4.4, the Network Generation Server is designed with a specific

layering within the code. This layering makes maintainability and bug tracking a simple

task as there are clear delineations of responsibilities between components. Shown in

Figure 4.5 is the general layering of the application. Seperation is not only achieved on

code level, but at a file level as well. The application exists as an exe that calls methods

and libraries available from the NeuralNetwork and Lib Dynamic Link Library (DLL).

The Network Generation Server is implemented as a demonstration implementation of

the library available from the Lib DLL. This DLL provides several interfaces which define

the interaction contracts of several elements identified as requirements in the process

of generating classifiers for use as malicious URL classifiers. Also contained within this

library are implementations of all of the interfaces provided except for that of the Network

Inducer, which are discussed in detail in Appendix A.

Within the NeuralNetwork DLL is an example application that implements the Network

Inducer interface and manages all of the associated tasks, such as data collection and ANN

4http://msdn.microsoft.com/en-us/library/ff921152.aspx

http://msdn.microsoft.com/en-us/library/ff921152.aspx
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Figure 4.4: Overview of the Classifier Generation Service (CGS).

training. This DLL acts as the application logic layer of the code structure while the Lib

layer provides mechanisms through the DataFetcher interface, the FileDataFetcher class

as well as the NetworkPersister interface and its associated implementation which act as

the data layer of the application.

4.5.4 Network generation algorithm

Th Application class acts as the entry point to the program. This class is responsible

for bootstrapping the training process by loading the required data and passing it to an

inducer which generates and persists the newly trained ANN in the form of an update.

The first step is to instantiate a NetworkTrainingConfiguration object. This object is

found within the Lib library and fetches settings from a configuration file called ”config-

uration.xml”. An example of this configuration file can be found in the Appendix B.1.

This configuration file is at the core of the Dependency Injection design methodology
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Figure 4.5: Layout of code structure withing the Classifier Generation Service (CGS).

implementation of this project. It specifies which implementations of the various inter-

faces to instantiate and to pass to the inducer. It is by using this file that a developer

or researcher may implement alternative methods of performing various operations of the

framework by simply implementing the interfaces provided in the library and specifying

those instances within the configuration. This configuration also specifies parameters re-

garding ANN training; such as the maximum number of epochs allowed, the desired error

rate and the learning rate of the training algorithm. Also identified here are paths for

training and validation data. The other fields that are found within the configuration file

will be identified when their associated interfaces are mentioned within this chapter.

Once the configuration has been loaded and all of the required objects instantiated, the

application creates an instance of NetworkInducer class. This interface is instantiated

as a OnlinePerceptronInducer from the NeuralNetwork DLL and is then initialised by

passing it the NetworkTrainingConfiguration. The inducer then has all of the instances

and data required to train an instance of OnlinePerceptron, which is the process that is

then executed through the generateNetwork method and is discussed below.

4.5.5 Perceptron generation using the NerualNetwork DLL

The NeuralNetwork DLL, as discussed in Section 4.5.3, acts as a demonstration imple-

mentation that uses the Lib DLL. The only requirement of this library is that a Percep-

tronInducer interface is implemented. The reason for this is that every implementation

and set of requirements are different. Within this DLL this implementation is called the
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OnlinePerceptronInducer and is intended to load training data from files, generate an

ANN and then to store this ANN in the form of an update exposed via a web service that

is accessible by client consumers.

The OnlinePerceptronInducer is instantiated by the program and initialised with an in-

stance of the NetworkTrainingConfiguration class. It is from this class that intended

implementations of the library’s interfaces are meant to be accessed. Once this class has

been initialised, the generateNetwork method is called and follows the following high-level

algorithm:

1. Extract the BOW and lexical features of URLs contained in the data files and save

them as a list of input vectors for the classifier.

2. Normalise this list of inputs to a range of zero to one for each continuous variable

within the lexical features portion of each input vector.

3. Train the classifier using these normalised lists and a second set of normalised lists

used for validation. These lists are generated by splitting the first list.

4. Persist the classifier. This is done by sending it to the update service described in

Section 4.6.

Extraction of data is done through the use of the NetworkDataFetcher interface which is

available through the ntd member variable of the configuration instance. This interface

provides a single method called fetchDataArray which loads the data and returns it as a

single array element per data item. Within this implementation, each data set is loaded

through its own instance of this interface implementation and loads the data from files

specified as paths in the configuration file. Once the training and validation data have

been loaded and balanced using random under-sampling (as discussed in Section 2.4.3),

they are used to create instances of URLExtractor which will be used as an input to the

classifier during training and validation. Each of the BOWs are then generated using the

collection these extractors and are then used to insert a map of existing words into each

of the extractors as part of the input data.

After extraction is completed, normalisation of the training data begins. Normalisation

is handled by an object called the DescriptorNormaliser which is implemented in the

library. Like all other objects within this application, a reference to this object is found

in the configuration instance and is initialised with all the descriptors (extractors) already
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loaded. Once the normaliser is initialised, it is used to normalise both the malicious and

benign extractor lists to a range of 0 to 1 for each continuous field.

At this point, the inducer which is an object which has the specific purpose of generating

(inducing) an ANN, has all the data that is required and is in the correct format. As

already mentioned, this implementation uses the Online Perceptron model to create an

ANN capable of classifying malicious URLs. This training method is discussed in Chapter

3. The only addition to this algorithm is that the Logger interface is used to create user

interface outputs as an indication of progress and accuracy during the training process.

After each iteration through the training data set, the NetworkValidator instance is used

to validate the ANNs accuracy using independent data known as the validation data set.

After validation, a copy of the classifier and its performance are stored. Once the inducer

exhausts the number of allowed epochs or reaches the ANN’s goal accuracy, training ceases

and the validator’s best performing ANN is chosen as the final trained ANN.

The final step after training is to store the ANN and make it available to end-users to use

within applications implementing this classification method. A NetworkDetails object is

created and stores several statistical metrics regarding the classifier which are obtained

from the ANN validator. An instance of NetworkPersistor is fetched from the configu-

ration and is passed the configuration, network details object, the classifier, the BOW,

weights and normalisation data through the persist method. Like the other objects within

this library, this instance is implementation-specific and can be implemented through any

method. Within this research it is implemented as a series of HTTP POST (an HTTP

verb used to add data to a service5) requests to the REST service which adds persistence

to the framework. Client implementations can access this REST service to request up-

dates. Each of these data sets is transmitted in this fashion as they are required by clients

to rebuild the classifier exactly as it was trained; with the same weighting as well as the

method by which to build input vectors for the classifier from requested URLs.

4.6 Classifier Distribution Service (CDS)

A classifier implementation was developed for use within the Google Chrome browser as

an extension, the purpose of which is to autonomously check URLs as they are requested

by the user when following links. Chrome extensions are normally updated through the

Google Chrome Application Store. This allows Google a degree of control over the content

5http://tools.ietf.org/html/rfc2616

http://tools.ietf.org/html/rfc2616
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distributed through updates; providing consumers a level of security through Google’s

security mechanisms.

One of the goals of this research was to design a distribution service whereby updates to

the classifier could be easily distributed without requiring implementation-specific update

services and procedures. This decoupling of classifier updates from implementation spe-

cific updates allows for a single online service; which is able to provide new classification

data, for all implementations of this research while being implementation-agnostic. As a

result of this, this service could provide updates to implementations such as a fully fea-

tured classifier, an email scanner, browser plugin and proxy server plugin simultaneously,

without needing reconfiguration. Secondly, a single online service for all classifier updates

means that malicious parties cannot seed the internet with false services and thereby

circumvent this research by claiming higher performance classifiers.

This has the added benefit of allowing developers to maintain their specific implemen-

tations without needing to be trained in the generation of, as well as the distribution of

ANNs such as in Chapter 3. This guarantees universal performance of these classifiers as

one body is in control of their generation and distribution. As a result of this require-

ment, updates only provide specific information to client classifiers. This information is

summarized in Table 4.2.

Table 4.2: Resources available via classifier update service.

bias The classifier bias shifter.
weights The weight of each input within the classifier.

normalisation Maximum and minimum values encountered during training.
BOW The Bag-of-Words used to build the input vector.

While the bias and weights resources directly describe the ANN, the normalisation and

BOW resources are equally as important. Normalisation is required by the ANN, as

mentioned previously, to scale all inputs to the classifier to a range of zero to one. This

prevents one input from having a naturally higher weight as a result of its measurement

scale.

Within Table 4.2, the BOW resource is a general reference to a collection of resources

which make up the completed BOW. A more specific description refers to multiple BOWs

which contain unique words describing the top level domain, directory, file, file extension

and arguments sections of an input URL.

The following sections describe the approach adopted to designing and implementing
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the update distribution service, the data storage method and the intended method of

consuming this service by client implementations.

4.6.1 Design

The primary goal of this service is to provide client implementations with frequent clas-

sifier updates while being implementation-agnostic, allowing these implementations to

effectively classify malicious URLs. As a result of this, as well as the objective that states

that an implementation should be effective when users are not necessarily computer or

network security literate; implies that these updates should be freely available and through

a transparent process; not requiring any user input.

To be able to supply these updates to client classifiers as well as to streamline the process

from generation to detection; this service is also required to be able to programmatically

receive these updates from CGS. As a result, a RESTful style web service, often referred

to as a RESTful API; was chosen to provide these classifier updates as it allows for verbs

to be used to implement programmatic pushing and fetching of data from the service.

REST web services are discussed in Section 2.5.2. Typically, REST APIs communicate

using JSON to represent resource objects and are accessed using the HTTP verbs: POST,

PUT, GET and DELETE.

Figure 4.6: Flow of updates via Classifier Distribution Service (CDS).

Figure 4.6 shows the intended method of operation for the CDS. The Network Generation

Server generates a new classifier and all the describing information as object instances.

These objects are then JSON encoded and sent to the relevant resource on the CDS via

the HTTP POST verb. When receiving a valid POST request, the service stores the

resource for retrieval when an application requests an updated classifier definition. This

is done by the client executing a series of HTTP GET requests on the relevant resources,

causing the service to respond with the relevant JSON encoded data.
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This method of exposing updates to client applications results in an update service that

only needs a single implementation as it does not need to know anything about how to

communicate with specific clients. This implementation makes updates available through

URLs, each pointing to a resource that can be acquired by clients through the use of the

HTTP GET verb, and updated by the CGS through the HTTP POST verb. The only

requirements of this service are that clients need to be able to make HTTP requests and

be able to handle JSON data.

4.6.2 RESTful API logical implementation

The RESTful web service is implemented using the web.py framework6 (from here on,

written as webpy) available for the Python programming language. This framework was

chosen because, when coupled with this implementation and being written in Python;

it is a cross-platform implementation, meaning that the update server may run on any

operating system that supports Python. Secondly, webpy makes the task of developing

REST services trivial due to the way that individual HTTP verbs are programmed.

All of the resources made available through this API are grouped by concerns. As a result,

two distinct groups are defined; the networks group and bows group. The ANN’s bias,

input weight vector, normalisation values and validation details are considered part of the

networks group, while all five distinct BOWs vectors constitute the bows group.

Shown in Figure 4.7 is the complete logical layout of resources available within the CDS.

As mentioned above, the intended usage of this API is for the classifier generator to

POST updated resources to the service, causing it to store these updates, and for client

consumers to GET updated classifier data.

4.6.3 API URL structure

URL Structure is an important consideration when designing an API. This structure

defines the way in which clients consume the service and as a result, defines how developers

have to interact with the API. A well designed API structure makes it easier to understand

the logical layout of the API. This assists developers in learning how to use it correctly

and making code more maintainable as URL transactions are easier to read. Within the

CDS, the following URL structure is defined:

6http://webpy.org

http://webpy.org
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Figure 4.7: Logical resources available in Classifier Distribution Service (CDS).

http://domain:port/resource-group/resource-id

This structure allows a client to easily choose between related sets of data, resulting in

a cleaner, more understandable access method than a simple collection of all resources

available. The resource-group has two options: networks or bows. The resource-id allows

the consumer to specify which resource to either GET or POST to. An example of

these actions is that the CGS may POST a new set of bows and networks. A client

implementation then uses the GET verb with the same URL request which causes the

service to respond by sending the data to the client. Another benefit of grouping resources

in this fashion is that it makes the API more maintainable and expandable. Having a

statistics resource group that holds resources concerned with network usage, or a user-logs

group where clients can report false positives and negatives to the service for incorporation

in the training data would be trivial to add without requiring the structure of the URL

or any naming of resources to change is trivial to implement.

Another important aspect to the APIs URL structure is that it is used by webpy to map

resources to particular URLs. When a user requests a URL, webpy checks the defined

mappings and passes control of the request and response logic over to that resource.

Resources are represented as a single class per resource within webpy. Each class must

have the appropriate methods named after the HTTP verbs which should be called when

a request is made for the resource that the class represents.
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4.6.4 API code structure

Like all the code written within this project, the API structure follows the code standards

defined in Section 4.4 and is built in three separate layers which constitute the interface,

application logic and data layers. The way in which this is implemented within the CDS

is shown in Figure 4.8.

Figure 4.8: Layout of code structure within the Classifier Distribution Service (CDS).

A simple file called index.py serves as the entry point for the program. This file also

contains an array of URL mappings as discussed in Section 4.6.3. These array entries

map URLs such as ‘networks/bias’ to the Network class. This is considered the interface

layer as it defines how the clients interact with the lower layers of the application.

The second layer, the application layer, comprises of two main classes. These are the

Bow and Network classes and are responsible for saving and fetching resources requested

by clients via the datastore layer. Both of these classes have POST and GET methods

which are invoked by webpy when the appropriate resource-group is requested. Together,

these two classes are responsible for the resources defined in this research. They both have

statically assigned lists of resources which are valid to them as resource-groups. This way,

no incorrectly named resource can be requested or saved. Secondly, this implementation

does not allow for versioning and leads to a simpler API interface. The framework would

be simple to extend to include versioning through the URL structure defined.

There are two other classes implemented for use within this layer that are not shown in



4.6. CLASSIFIER DISTRIBUTION SERVICE (CDS) 56

Figure 4.8. These classes are the BowList and NetworkList classes and are responsible for

listing available resources within each resource group. Further, there are several exception

classes implemented for use within the API that belong to the application logic layer and

extend Python’s web HTTPError 7 class.

4.6.5 Data storage

Within this implementation, each resource is stored in a file with the .json extension.

This is a one-to-one representation of what data are sent from the Network Generation

Server. This approach was chosen due to its simple implementation method and ease with

which it can be debugged. This would ideally be updated to be implemented with the use

of a database. This update would be done by replacing the data layer with one that uses

a database storage. The new implementation is required to match the interface contracts

defined for the data layer. The framework would then instantiate the new implementation

and pass it via the dependency injection methodology. A database approach was not used

in the testing environment as the additional complexity was deemed unnecessary in an

academic environment.

4.6.6 Consumer access

As mentioned in Section 4.6.1, a client wishing to consume this service to obtain classifier

updates is only required to be able to make HTTP requests, which is inherent in any code

wishing to classify URLs, as well as be able to interpret JSON data. To use this service,

a client makes a series of HTTP GET requests as shown in Figure 4.9, and receives JSON

data with the relevant response.

Typically this response would be instantiated in the form of an object instance, repre-

senting the resource in a usable way within a particular language. This object is then

persisted in local storage by the client for use when URL classifications are to be made.

This data should be refreshed on a scheduled interval such as on browser restarts or on a

temporal basis. Persisting is important as the data should not be fetched for every use, as

this would incur significant latency, therefore negating the benefits of a local classification

solution. Requesting the networks resource-group returns the JSON data shown in List-

ing 4.1 which contains four elements (bias, weights, details and normalisation) intended

7http://webpy.org/docs/0.3/api

http://webpy.org/docs/0.3/api
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Figure 4.9: Classifier Distribution Service (CDS) logging a request from a client for up-
dates.

as navigation options for the API and do not represent data used in the construction of a

classifier. This is similar to requesting the bows resource-group without a resource-id as

it also returns a list intended for navigation purposes.
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Listing 4.1: Server JSON response when requesting the networks resource group.

1 {
2 "bias" : {
3 "href" : "http://cds -server:8664/networks/bias"

4 },
5 "weights" : {
6 "href" : "http://cds -server:8664/networks/weights"

7 },
8 "details" : {
9 "href" : "http://cds -server:8664/networks/details"

10 },
11 "normalisation" : {
12 "href" : "http://cds -server:8664/networks/normalisation"

13 }
14 }

Listing 4.1 contains resources that are grouped as they represent a valid classifier descrip-

tion. Each element is returned in an unexpanded format, represented by a URL for each

resource. This allows each resource to be fetched in parallel, as well as allowing updated

resources to be uploaded simultaneously.

As a standard, every resource available through this API has a href field which represents

the direct URL to that resource, even if that resource is already in an expanded state.

This reduces application complexity for client implementations as well as simplifying

debugging. This rule is also followed when POSTing a resource to the API; a copy of

the resource in expanded state is returned to the sender, including an href which links to

that resource. Again, this reduces client implementation complexity and increases ease of

debugging the service.

Each resource returned in the request that Listing 4.1 represents a defining characteristic

about the classifier. The resources defined are the network bias, the network weights

(which imply network input size) and the normalisation values required to normalise an

input vector for the classifier. The details resource is a resource that is available to clients

as an extra information container describing the parameters used as well as the statistical

results of the classifier training and validation and is shown in Listing 4.2. While the

details and normalisation resources are not defining characteristics, they are still grouped

within this resource-group as they describe information about the classifier. It is felt that

it is not necessary to create a meta resource group specifically for this purpose.
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Listing 4.2: Server JSON response when requesting the networks/details resource.

1 {
2 "href" : "http://cds -server:8664/networks/details",

3 "data" : {
4 "fp" : 4.674,

5 "fn" : 9.794,

6 "features" : 16537,

7 "benign" : 5365,

8 "datasetsize" : 10599,

9 "malcious" : 5234,

10 "epoch" : 82,

11 "specificity" : 95.326,

12 "date" : "04/26/2013 19:03:59 PM (UTC+02:00)",

13 "accuracy" : 92.791

14 },
15 "network" : "details"

16 }

The fp and fn fields represent the False Positive Rate and False Negative Rate of the

classifier validation process as measured by the CGS with unseen data after training is

completed. The features field indicates how many features, including both BOWs and

lexical features, make up the total number of inputs to the classifier. The benign and

malicious fields indicate the number of entries were used in the generation of the ANN

and together make up the datasetsize field. The ANN training validation indicates which

of the iterations of the classifier through the training dataset is the most effective classifier,

and the epoch field indicates this iteration number. The fields specificity, accuracy and

date are all obvious in what they represent.

The resources returned when requesting the bows resource group are domain, args, ext,

dir and tld. Each resource in this list represents a BOW. These are considered separate

and distinct from the resources which constitute the networks resource group as they do

not directly describe the classifier. The BOWs are concerned with how an input vector is

constructed instead of how it is processed.

While this is a simple implementation, it allows for clients to completely rebuild classi-

fiers generated previously, as well as enabling clients to generate input vectors that are

normalised to the values used in the training and validation of these classifiers. In an
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effective use case, a client application would request all of the resource URLs shown in

table 4.3 from the CDS.

Table 4.3: Resources required to rebuild a classifier and its input vectors.

Classifier bias http://hostname:port/networks/bias
Input weight vector http://hostname:port/networks/weights
Input normalisation vectors http://hostname:port/networks/normalisation
Domain section BOW http://hostname:port/bows/domain
Arguments section BOW http://hostname:port/bows/args
File extension section BOW http://hostname:port/bows/ext
Directory section BOW http://hostname:port/bows/dir
Top level domain section BOW http://hostname:port/bows/tld

In a production environment, the hostname would not be localhost, but the hostname of

wherever the CDS is hosted. The port number was also chosen for testing purposes, has

no special meaning and may be changed if required within a production environment.

4.7 A classifier client implementation: Net Defence

The final piece of software developed as part of this research is a Client Classifier Con-

sumer. This software is meant to protect end-users from malicious URLs by employing

ANNs to identify these URLs and is named the Net Defence. This software has been

developed in the form of a Google Chrome extension, as it is the most visible method of

demonstrating and testing the capabilities of such classifiers, is likely to be used in every

day life and is not hidden behind IT infrastructure.

To summarize the goals of this project; it needs to be as transparent to the user as

possible during daily usage, but must be able to stop, or at least warn, the user when

requesting a URL classified as malicious. This must be achieved without incurring signif-

icant additional latency through lookups and must be able to query the Classifier Update

Distribution Service periodically for updates as well as be able to interpret JSON data.

Google’s Chrome browser has been chosen as the target platform due to the ease at which

extensions can be built and the developer tools available for debugging extensions. Fi-

nally, extensions are available that extend the developer tools within Chrome specifically

for use with the AngularJS framework.
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4.7.1 Design

Google’s Chrome internet browser allows developers to create and add functionality to

the browser via different approaches and are discussed in detail on the overview page at

Google (2013a). These extensions are written as web pages and consist of HTML5 (and

any associated web programming files such as CSS ), JavaScript and a manifest file that

describes the structure as well as other meta data regarding the extension.

With the design requirements of this research being that the implementation must be

transparent to the user when no malicious URLs are being requested; the extension is

designed to run as a background script. This is a script that is run when the browser

is opened and does not require user interaction to start or to be effective. This script,

however, is required to be able to fetch data from the REST service discussed in Section

4.6 and as a result needs to be able to store JSON information regarding the classifiers

as well as false positives and false negatives that the user may identify.

Users must have the ability, through the client interface, to be able to flag when a page

has been classified as benign incorrectly (False Negative (FN)), or to identify when a URL

has been incorrectly classified as malicious (False Positive (FP)). Additionally, the user

must be able to modify the behavior of the extension when it identifies a threat, as well

as be able to generate rules for sets of misclassified URLs or URLs to be ignored. As a

result of these requirements; the Net Defence extension has several GUIs that the user

may interact with and are discussed in Section 4.7.5. Each of these GUIs is designed as

an HTML template with a JavaScript file that implements the functionality implied by

each GUI.

Since Chrome extensions are built using JavaScript as the engine which provides logic,

Net Defence extension is built using the AngularJS8 framework. The AngularJS code is

used in the main options GUI which affects all aspects of the extension’s behavior. An-

gularJS allows for the code to be separated in a Model-View-Controller (MVC) fashion,9

using HTML files for the view, Controller objects as controllers and resources and ser-

vices to be used as abstractions of the model concept. AngularJS provides several useful

mechanisms used by the extension, the first being the use of Resource entities to commu-

nication with REST web services. AngularJS Resources are extensively used throughout

the extension to implement the ability to update classifier information from the Classifier

Update Distribution Service.

8http://angularjs.org/
9http://docs.angularjs.org/tutorial/step 02

http://angularjs.org/
http://docs.angularjs.org/tutorial/step_02
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Another mechanism used extensively within the extension is that of AngularJS’ two way

data-binding which refers to AngularJS’ ability to map data directly to the GUI through

the use of the $scope object. This allows for the user to interact with entities on the GUI

and directly modify values within the storage of the extension with little code.

4.7.2 Code structure

Within the extension, files are grouped by their extension and stored in directories named

for those extension names. JavaScript files are further separated into files that are involved

with the GUI, those that are required to implement and instantiate the classifier and those

that serve as the core files implementing the algorithm described in Section 4.7.4.

As with all previous code discussed within this document; Net Defence has been designed

with three main layers as described in Section 4.4 and is shown in Figure 4.10. AngularJS

provides most of this layering as it is built as a MVC framework.

Figure 4.10: Layout of code structure within Net Defence.

Views are implemented as HTML files stored in the HTML directory. Data contained

within the scope of the GUI is displayed using the synax {{variable.index}}. The variable

may be a single scalar that contains a value used directly, in which case the syntax

is {{variable}}. Alternatively, the variable may be an associative array which may be

accessed in the GUI (or template) layer using the complete syntax. The template is

populated by the AngularJS databinding mechanisms.
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These data-binding mechanisms access the $scope object as mentioned in Section 4.7.1.

This object holds data that is meant to be bound to the GUI. When this data is modified

within the GUI, or within the logic code that supplies it, it is changed in both places.

This logic code is known as the Controller within the MVC design pattern around which

AngularJS is designed.

Each template file within this project has an associated controller which supplies the

application (or business) logic of that GUI, as well as any data that should be displayed

on the view via the $scope object. These AngularJS Controller instances also interact

with the third and final layer of the application: the Model. This layer is responsible for

accessing persistent data storage.

In the case of Net Defence, this takes the form of two seperate entities; the LocalStorage

API and the AngularJS Resource API. LocalStorage is responsible for storing settings;

previously fetched ANNs, exceptions and rules. The AngularJS Resource instances com-

municate with the REST service which supplies updates and is discussed in Section 4.6.

The interaction between the Controller and Model layers, as well as the process of clas-

sifying a URL is discussed in more detail in Section 4.7.4.

4.7.3 The Net Defence manifest

The manifest file for the Net Defence Chrome extensions is shown in Appendix C and

serves to define the extension on a code level. The first few lines define the name, version,

manifest format, description of the extension and the path to the different resolution icons.

These are used by Chrome in the extensions settings page (chrome://extensions). The

next section defines the permissions required by Net Defence and are described below.

• WebRequest — This permission allows the extension to access URLs requested by

the user and other entities that relate to addresses that the extension has access to.

Having this permission means that a request may be intercepted before it is made,

and checked and blocked if required. WebRequest is used by Net Defence to block

access to URLs that are classified malicious or set in the blacklist or custom rule

sets.

• WebRequestBlocking — When WebRequest is required to operate in a blocking

fashion, this permission is used. This means that when the extension intercepts a
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request for a URL, that URL may not be fetched while the extension is currently

processing the URL. When the extension has completed it’s logical operations; the

request may then be continued or cancelled, at the extension’s discretion.

• <all urls>— Net Defence is required to check all URLs to be an effective method of

mitigating threats faced by the user; this permission is requested for this reason as

it allows the extension to intercept all URL requests instead of a chosen few. This

is where this approach to malicious URL detection starts to differ from black and

white lists as it is able to make informed decisions about the intension of a URL

without the use of a predefined list.

• storage — Requesting the storage permission gives Chrome extensions access to the

LocalStorage API. This is implemented by use of cookies and allows extensions to

persist data such as settings. The Net Defence uses this to store black listed and

white listed URLs, as well as rules that the user creates. Additionally, the extension

also uses this storage to store all information required to initialise and instantiate

the ANN used when classifying URLs.

• notifications — The notifications permission allows Chrome extensions to make

desktop notifications through Chrome. These notifications take the form of a small

popup window in the bottom right of the screen and contain contextual information

that may be dismissed. This approach is useful when the user’s attention may not

be on the entity which generates the notification and requires handling. This is also

useful when operations are happening in the background, which the user should be

made aware of.

• tabs — Finally, the tabs permission is used to allow the extension to use Chrome’s

tab API. This is used to allow the extension to open new tabs when the user flags

a blocked request as a false positive. This is done so that the user does not have to

request the URL a second time, making it a more user friendly experience.

The next section within the manifest.json file white lists files that are used by the extension

to build the extensions GUI or functionality. This is needed as extensions, while built in

the same fashion as websites, do not execute in the same environment, a web server. This

in combination with Chrome’s sandboxing means that relative URLs are not considered

secure unless they have been specifically identified. Through the use of this section in

the manifest, and the use of the getURL method Google (2013b), the extension is able to

access an image for use within the GUI through the use of URL structured as:
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chrome-extension://[PACKAGE ID]/[PATH]

Within this URL, the PACKAGE ID can be obtained using the getURL method men-

tioned previously and is an identifier generated by Google Chrome at the time of instal-

lation. The PATH is the path of the resource within the packaged extension. Using this

URL, extensions may link to resources within its own HTML using web-like URLs.

The background section of the manifest file is important as it references all files which are

required by the extension and run without the use of the GUI. This section acts to include

all the files necessary by the last file included, esssentially instantiating the libraries used

by the extension. This last file should have an execution entry point which is executed by

Chrome when the browser opens. The files included by this section for the Net Defence

extension will be discussed in detail in Section 4.7.2 and Section 4.7.4.

Finally, the browser action and options page sections both list the files required to build

the GUI that the user will employ to interact with the extension. The browser action

within this extension is a small popup which the user uses to identify sites as false negatives

(sites which should not have been allowed to display and are, therefor, misclassifications).

The options page is the part of the extension that the user has the most interaction with

in the case of the Malicious URL classifier. This page allows the user to configure the

behavior of the extension as well as giving the user the ability to manually force updates

of the classifier data.

4.7.4 Algorithm

Within Net Defence there are several distinct pieces of code that perform discrete oper-

ations. The main algorithm, however, is responsible for making the actual classifications

each time the user requests a URL and is depicted in the flow diagram shown in Figure

4.11.

When Google Chome starts up and loads Net Defence extension, it executes the back-

ground JavaScript file. Within this extension, this file is called core.js and is responsible

for registering an event callback (a method to be executed when the event fires) for the

onBeforeRequest event listener. A high-level code overview, which is a code sample from

core.js is shown in Listing C.2.

This listener is triggered every time a URL is requested, including URLs requested by

extensions and JavaScript scripts executing on web pages. The benefits of this include
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Figure 4.11: Flow diagram of the Net Defence classification algorithm.
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that URLs can not be hidden from the engine by making the calls asynchronously within

a JavaScript procedure. A second benefit is that this callback is executed in a blocking

fashion. This means that URLs will not be fetched until after they have been classified,

and can be cancelled (blocked) altogether, further protecting users from drive-by attacks.

The checkURL method is the callback which is executed whenever a URL is requested.

An overview of the algorithm used in the checkURL method is depicted in Figure 4.11.

Firstly, the URL is then checked against the exceptions rule list which allow for any

URL that matches them to be allowed. For usability and performance reasons, the next

check performed is against a user-defined whitelist. If a URL is found in this list, it is

automatically allowed and the algorithm will not proceed any further. If the requested

URL does not appear in this whitelist, it is checked against a user-defined blacklist. This

is not a large blacklist that is defined from a resource on the internet, but a list of URLs

that have been classified as benign in the past but the user has flagged them as false

negatives. Similarly, if a URL has previously been classified as malicious and the user

has flagged it as a false positive, it is added to the whitelist. If the URL does not match

any exceptions, whitelist or blacklist entries, it is then processed by the remainder of the

algorithm.

The following process encapsulates the ANN functionality around which this research is

based. Firstly, the algorithm checks to see if the classifier is already instantiated from a

previous request. If there is no instantiation, it will check for the data that are used to

instantiate the object. If they are not found, they are requested from the CDS through

the update functionality shown Figure 4.11. On the first execution, the classifier object

is created and is an instance of the OnlinePerceptron class, which is stored in the library

written for this extension. Once the classifier is instantiated, the data store is checked

for the network definition. If this definition is not present; the update service is then

invoked and the definition is downloaded and stored. This definition contains information

regarding how many inputs are used, their weightings as well as the bias that the network

should use. Also contained within this data is the BOW definition and the normalisation

values required.

Once the classifier is instantiated and initialised, data extraction begins. The first step of

this process is to extract every word from each section of the URL. A vector of boolean

values is created for each section of the URL and is as long as the BOW for each section

with each value set to false. Each word present in the requested URL is checked against

this vector and, if present, the corresponding index of the vector is flipped to true. This

process is repeated for each section of the URL. Once each BOW has been created, the
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vectors are merged in the order of the URL structure, creating the large vector that will

later be merged with another vector to form the input data for the classifier.

The final data required as input to the classifier is that of the lexical features of the

URL. The URL is analyzed and a set of 20 metrics is calculated, as described in Section

3.1.1. These values are inserted into another vector and passed to an object which uses

the update data to normalise the values for each field. After normalisation of this vector

is complete, the vector is the merged to the end of the BOW vector which then finally

constitutes the final input data passed to the classifier.

The last step within this algorithm is to pass control to the classifier which then flags

the input data, and therefore the requested URL, as malicious or benign. A benign

classification results in the extension allowing the request to continue uninterrupted, while

a malicious classification results in the request being blocked and the user being notified,

depending on the extension’s settings. The options available are discussed in Section 4.7.5.

Within this figure, the malicious request is simply logged to the console rather than being

blocked out right. This is useful in research environments or during the testing of the

classifier.

4.7.5 Functionality

While the primary purpose of this research has been to protect end-users from malicious

URLs using lexical analysis; one of the foremost purposes of the Net Defence extension is

to demonstrate the capabilities and possibilities of such a classification method. Figure

4.12 shows the default landing page displayed when the options page is requested for

the extension. This page displays several metrics regarding the training of the classifier.

These metrics are described briefly in Table 4.4.

Shown in Figure 4.13 is the Settings tab. Using this tab; the user is able to adjust

the general behaviour of the extension. Different users have different levels of expertise

and require different levels of interception from the classifier. A non-technical user may

require the extension to simply block URLs, while expert users may not want pages

blocked, rather to have notifications be displayed. Conversely, an expert user may find the

behaviour of blocking pages, forcing the user to add an exception often, an irritation when

doing security research. The direct result of this low usability is that the extension would

eventually be disabled. Allowing the user the ability to adjust this behavior dramatically

increases the usability of the application for a larger range of requirements.
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Figure 4.12: Validation details as shown by Net Defence.

Shown at the top of this page are the dates when the extension was last updated, as well

as the last time that updates were checked for. This area allows for the manual checking

and fetching of new updates for the classifier. Also within this section is the ability to

specify a custom URL for use when checking for updates. This option is not strictly

required as users should only use the official resource when checking for updates so as to

increase trust in extension. This is not viable for during the testing phase and is simply

present as residue from the development process.

Underneath this section is a series of check boxes which enable and disable specific be-

haviours. The option Block requests for malicious URLs allows the user to turn off mali-

cious URL blocking which is useful when doing security research or when the user does

not wish to make exceptions for a particular URL. Enabling the Popup notifications on

block option sets the extension to show a notification whenever a URL is blocked. This
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Table 4.4: Classifier metrics sent to the Chrome extension.

Training Date The date the classifier was trained.
Features This represents the size of the input vector used by the classifier.

Data Set Size The complete number of URLs used to train the classifier.
Malicious URLs The number of malicious URLs used during training.

Benign URLs The number of benign URLs used during training.
False Positives The false positive rate obtained by the classifier.

False Negatives The false negative rate obtained by the classifier.
Accuracy The accuracy of the classifier.

Specificity The True Negative Rate (TNR).

is useful for debugging as a page request often makes several requests for other resources

in the background, which the user may not be aware of. The popup is shown in Figure

4.14a and shows the URL which has been blocked and gives the option to flag to block

as a false positive.

Figure 4.13: Net Defence settings tab.

When a URL is blocked, the default behavior of Chrome is to show a page indicating to

the user that an extension has blocked the request. This is acceptable when the popup

option is used as the popup indicates to the user which extension has blocked the request.

As an alternative however, the option Redirect on block exists which redirects the requests

to a page contained in the extension and displays the same information as the popup. An

example of this page is shown in Figure 4.14b.



4.7. A CLASSIFIER CLIENT IMPLEMENTATION: NET DEFENCE 71

(a) A popup notification

(b) A redirect page notification

Figure 4.14: Net Defence alternatives for indicating a blocked URL.

The next option available on the Settings tab is the Log to console setting. The console is

a page that is generated by Google Chrome for each extension and exists as a debugging

method. This page is where extensions may log messages that are intended for use by

expert users or programmers when testing their extensions. The console is shown in

Figure 4.15a and is displaying normal activity logged by Net Defence.

Shown within the console log of Figure 4.15a is a list of requests that have been allowed.

Each request is either prefixed with the word “Allowed” or “Denied”. This indicates

whether or not the extension blocked the request. The next field logged is a field that the

extension used to justify the action it took. The five options for this field are shown in

Table 4.5.

Table 4.5: Net Defence action justifications.

Trusted A request that has been allowed as it is white listed
within the extension as it matches a user-defined rule.

False Positive This request has been allowed as the user has indicated
previously is falsely classified as malicious by the classi-
fier.

False Negative This is used when a request is blocked because the user
has flagged the URL as one which is falsely classified as
benign.

Malicious Classification When a URL is blocked with this reason being cited, it
has been classified as malicious by the ANN.

Benign Classification This reason is logged when a URL has been classified as
benign by the classifier.

An example of the console when the extension blocks a request is shown in Figure 4.15b.

Another status code shown within this console log is “Logging mode only”. This is shown
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(a) Update request

(b) Blocking a malicious URL

Figure 4.15: Net Defence console logs.
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when the extension is configured to not block requests for malicious URLs.

The next option shown on this tab is Log blocks to localStorage. This sets the extension

to insert URLs which are blocked into Chrome’s local storage and is intended to be used

in later revisions of the software where these can be reported to the API as training data.

Another option for this data may be to submit it automatically to blacklists which are

used by other services or classification mechanisms.

When a URL is requested and is classified as malicious and blocked, the user is given the

ability to flag the classification as a false positive. When the user invokes this flagging,

the extension will open the resource in a new tab when the option Open resource when

flagged as false positive is enabled.

Figure 4.16: Net Defence False Classifications tab.

Shown in Figure 4.16 is the next tab available in the options page and is called “False

Classifications”. This tab simply lists URLs which the classifier has previously classified

as benign or malicious, and the user has flagged that classification as incorrect. These lists

give the user the ability to temporarily disable a classification exception, and to remove

all inactive false classifications using the “clear” options for the two lists. Giving the user

this ability allows users to correct themselves when accidentally flagging a classification

as incorrect.

A positive classification is flagged as incorrect by clicking the “false positive” link on the

popup (or redirect page) when a URL is classified as malicious; shown in Figure 4.14a

and Figure 4.14b. When a classification is made and thought to be benign, no popup

or redirect is executed and makes the act of flagging this classification difficult. Net

Defence addresses this problem by using a mechanism provided by the Google Chrome

extension API: the browser action. This is displayed as a small button to the right of the

address bar and, when clicked, displays an option to flag a particular web page as a false
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negative available by clicking on the text which says “This page is malicious”. This has

the additional effect of closing the tab. The browser action is shown in Figure 4.17.

Figure 4.17: Net Defence option to add a false negative.

The final tab available within the options page of Net Defence is the “Exceptions” tab,

shown in Figure 4.18, and is purely intended for use by expert user. This page allows a

user to specify Regular Expression (REGEX) patterns that the extension should attempt

to match to a URL when it is requested. When a REGEX match is made, the URL

is automatically allowed as a white list entry. This page follows standard JavaScript

REGEX syntax excepted for the addition of the added asterisk wild card which simplifies

its use, allowing users to specify patterns without being able to write complex REGEX

patterns.

These rules are useful when adding an entire class of URLs to exceptions, APIs and

pre-emptively allowing sites with suspicious domain names. However, these options are

dangerous if used by an inexperienced user. Within the figure are several different do-

mains which the author found useful to allow. Many of these exceptions which apply to

Google domains could be covered by the use of a single exception for *.google.*. This,

however, would allow any URL with the “.google.” token in any position, which is a tactic

specifically employed when obfuscating URLs. It is for this reason that this page should

only be used by expert users. Finally, each REGEX exception may be enabled or disabled

through the use of the check box to the left of the specific exception.

4.8 Summary

Using the three entities described in this chapter (Classifier Generation Service (CGS),

Classifier Distribution Service (CDS) and Net Defence); the system is able to automat-

ically collect phishing and benign URL samples from remote sources. Because of the

way that the framework has been built, this data may be fetched from different sources
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Figure 4.18: Net Defence exceptions tab.

with different intents, automatically. The data is then used to train a classifier, move

it to the distribution service and deploy it to client implementations in an autonomous

fashion. The ANN is then used to classify URLs in a transparent manner, while offering

several protection options when a malicious classification is made. The effectiveness of

these classifiers; methods of transmission and storage and best practices for generating

new classifiers are tested in Chapter 5.



CHAPTER

FIVE

TESTING AND RESULTS

This chapter describes tests performed on the ANNs generated by the services described

in Chapter 4 towards the goals outlined in Section 1.2. These in turn made use of the

techniques described in Chapter 3. Data set composition, size and purpose are discussed

in Section 5.1. Within Section 5.2 the methods used to analyse the performance and other

characteristics of the classifiers are shown. Technical specifications of the computer used

to run the tests described in this chapter are shown in Section 5.3.

Covered in Section 5.4 is a test designed to find an optimal size for training data sets.

The speed at which classifications can be made is tested in Section 5.5. In Section 5.6,

the size of the data that will need to be distributed is calculated in reference to the size of

the training samples used, optimal classifiers and the effectiveness of various compression

algorithms. Finally, the results of these tests and recommendations are discussed in

Section 5.7.

5.1 Data sets

For reasons discussed in Sections 5.4.3 and 5.4.4; a training data set size of 18 000 samples

is generated for each test. In Section 5.4; a variable training data set size is used and is

discussed in Section 5.4.1. The validation set is always generated at a size of 2000 unique

76
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Table 5.1: Summary of data sets.

Section Data set # Training Validation Testing Balance
5.4 1 - 22 1 000 - 22 000 2 000 2 000 1:1
5.5 18 18 000 2 000 2 000 1:1
5.6 18 18 000 2 000 2 000 1:1

samples, none of which appear in the training set. Finally, for ANN analysis; a third data

set called the Testing set is used. This set, like the validation set, is also always generated

at a sample size of 2000, none of which appear in either the training or validation sets.

All data sets generated for every test described in this chapter are balanced with a 1

to 1 ratio of positive and negative samples. These samples are blended together as each

successive sample is the opposite classification, randomly selected from its source data set.

A summary of the data sets that were generated is shown in Table 5.1 which indicates

how many samples were used out of the 9 213 2391 samples available.

5.2 Classifier performance analysis

Each classifier’s performance is judged by a series of statistical metrics, each with different

insights, strengths and weaknesses in terms of performance analysis. Several different

metrics are used to obtain measures from different viewpoints, allowing for a thorough

examination of the performance of each classifier.

Equation 5.1 shows how accuracy is calculated in terms of total number of correctly clas-

sified samples. This test does not take into account differences between correct positive

and negative classifications, just how often the classification is correct in terms of the

testing data set. Shown in Equation 5.2 is the calculation used to determine the classi-

fier’s TPR, or the rate at which a sample is correctly classified as positive. Also known as

sensitivity ; TPR is a measure of how effective a classifier is at identifying positive sam-

ples correctly (Boyko, 1994). Equation 5.3 shows how the False Positive Rate (FPR) is

calculated. The FPR is known to measure fall-out, or how often the classifier incorrectly

classifies a sample as positive. Specificity, or TNR, is also calculated. The method in

which this is done is shown in Equation 5.4. This measure determines the rate at which

the classifier is able to correctly identify negative samples. False Discovery Rate (FDR)

is a measure of how many positive classifications are incorrect out of the total number of

positive classifications made by the classifier. This measure is calculated in Equation 5.5.

1This consists of 14 707 phishing URLs and 9 198 532 benign URLs
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Algorithm 4: Classifier performance measures.

ACC =
TP + TN

P +N
(5.1)

TPR =
TP

P
=

TP

TP + FN
(5.2)

FPR =
FP

N
=

FP

FP + TN
(5.3)

TNR =
TN

N
= 1− FPR (5.4)

FDR =
FP

FP + TP
(5.5)

PPV =
TP

TP + FP
(5.6)

NPV =
TN

TN + FN
(5.7)

F1 =
2TP

2TP + FP + FN
(5.8)

MCC =
TP ∗ TN − FP ∗ FN

2

√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(5.9)

Where:

• P is the number of positive samples.

• N is the number of negative samples.

• TP is the number of correctly classified positive samples.

• TN is the number of correctly classified negative samples.

• FP is the number of incorrectly classified negative samples.

• FN is the number of incorrectly classified positive samples.

Positive Prediction Value (PPV) and Negative Prediction Value (NPV) are calculated

and shown in Equation 5.6 and in Equation 5.7 respectively. Given a positive prediction,

PPV indicates what the likelihood is of a correct prediction. Similarly, given a negative

prediction, NPV indicates what the likelihood of the prediction being correctly classified

is. The F1 score, or F-score, of a classifier is another metric which is meant to indicate

a classifier’s accuracy and is shown in Equation 5.8. The F1 score uses the PPV (preci-
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sion) and TPR to determine a harmonic mean value between them. Because the F1 score

does not take into account the TNR, the Matthews Correlation Coefficient (MCC) is also

calculated for each classifier as shown in Equation 5.9. MCC gives a score between -1

and 1, where 1 indicates that the classifier is capable of perfectly classifying the data, -1

indicates that the classifier makes incorrect classifications for every sample and a score of

0 indicates that the classification accuracy is no better than random prediction (Baldi,

Brunak, Chauvin, Andersen, and Nielsen, 2000).

5.3 Test bed

All tests performed on the classifiers described in this chapter are performed on the

same desktop computer, unless otherwise stated. The test system has an Intel i7 2600k

processor running at 3.4 GHz and 8 gigabytes of DDR 1600 MHz RAM. The Operating

System (OS) installed during the testing period was Microsoft Windows 7 64 bit, running

all available updates up to July 2013. Microsoft Visual studio 2010 is used to execute

the CGS application with no patches. Python version 2.7.3 is used to execute CDS and

Google Chrome version 31.0.1650.57 (m) is used to run the Net Defence extension.

The ANNs are all generated by the framework described in Section 4.5 which is running in

a test mode. This mode allows for data to be loaded from files rather than online services

and saves the resulting ANN and other required data in binary data files. This data can

then be loaded and the ANN instantiated using a bespoke test application which uses the

testing data set to generate the required statistics.

5.4 Optimal data set size

This test is designed to determine what effect the size of the sample training data has on

the accuracy of the resulting classifier. Results from this test will indicate if the framework

is functioning as designed and if the accuracy of 93.1% reported in Le et al. (2011) when

using Phishtank and Open Directory data sources is achievable. The test will also indicate

if that accuracy can be improved upon by adjusting the training data set size. The results

of this test are discussed in Section 5.4.5.
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5.4.1 Test data

Since this test is to determine what data set sizes result in the best performing ANNs,

multiple data sets with various sizes are required. The data set that generates the best

performing ANNs are referred to as the optimal size sets. To achieve a high enough

resolution, data sets were generated with size incrementing in 1 000 sample intervals.

The smallest set being 1 000 samples, with the largest being 22 000 samples. The sets

generated for this test are all perfectly balanced at the 50% point. For example, the 15 000

sample set has 7 500 positive samples (malicious) and 7 500 negative samples (benign).

Sets were generated using the reduction data balancing method since both malicious and

benign data sets exceeded this number by enough to accommodate 2 000 sample validation

and 2 000 sample testing data sets. Just as the training data sets are balanced sets, both

validation and testing data sets are balanced. Each comprises 1 000 positive and 1 000

negative samples. As a result; 22 data sets were generated, each with a unique training,

validation and testing data set for each test run, as shown in Table 5.1.

For each unique data set group generated in Section 5.4, 10 classifiers were trained. This

allows the test to compensate for anomalies in the training data in several aspects. This

resulted in 220 unique classifiers, each with different results due to the random initialisa-

tion states which are part of the training process.

Once this training process was completed, an analysis program was run which was built to

do the same job as validation in terms of calculating metrics based on the performance of

the ANN, but to use the testing data instead of the validation data. Finally, this program

generated a results file which contained all of the relevant metrics regarding the testing

of the classifiers.

The results of these tests are aggregated and graphed using the ggplot2 2 package for the

R-project for statistical computing3 application. This results in graphs that are easy to

generate and display additional information such as the level of confidence of a fit in a gray

band around a fit line. The fit line for each test is generated using the Linear Model (LM)

method to show trends within data points.

2http://ggplot2.org
3http://www.r-project.org

http://ggplot2.org
http://www.r-project.org/
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5.4.2 Timings

The first tests performed as part of the objective of determining the optimal training data

set size is that of timings. By knowing how increasing or decreasing data set size impacts

the time taken to extract, normalise and train an ANN; questions regarding how often

new classifiers can be generated and supplied as updates may be answered.

Since the size of the BOW generated for a data set increases in size as the number of

training samples increases, the likelihood of new unique words being included is increased.

As this number of possible unique words in each section of a URL increases and the number

of words that need to be checked for expands, the size of the vector expands and the time

required to extract that vector as input to the classifier increases.

As shown in Figure 5.1a, extraction time increases linearly with the number of training

samples present. The various statistical metrics regarding extraction time are summarized

in Table 5.2 and show that arithmetic mean time increases from 7.9 milliseconds to 364.2

milliseconds. These values are the time required to extract 2000 samples. This means

that the average time taken to extract a single sample takes from 0.00395 milliseconds to

0.1821 milliseconds depending on the training data set total size. Using the fit line shown

in Figure 5.1a, approximate extraction time can be estimated using Equation 5.10.

Table 5.2: Extraction time in milliseconds.

Data set # Samples Fastest Slowest Average Std. Dev.
1 1 000 5 18 7.9 4.654
4 4 000 25 42 29.3 5.417
7 7 000 67 118 94.7 14.322
10 10 000 91 175 136.2 26.076
13 13 000 125 239 195.4 37.886
16 16 000 158 309 249.8 49.948
19 19 000 171 390 306.0 74.873
22 22 000 201 444 364.2 91.803

Like the extraction time, normalisation time also increases linearly with the number of

training samples used to generate the classifier. Variation in normalisation time stays

fairly stable, as shown in Figure 5.1b, and is due to the number of continuous variables

within the vector being constant. While this number does not change, the length of the

vector being normalised does increase with the number of training samples used due to

the size of the BOW. This increased length makes seek time within the vector take longer

as within this implementation, it is stored at the end of the vector.
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(a) Extraction time.
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Figure 5.1: Timing based on the number of training samples.
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Figure 5.1: Timing based on the number of training samples (continued).

The longest time required to normalise a testing data set is encountered with the training

data set of size 21 000 samples. The time required to normalise on this worst case scenario

with 2000 samples was 41 milliseconds, or 0.0205 milliseconds per sample. Shown in

Equation 5.11 is a method to estimate the time required to normalise a data set. Algorithm

5 may be used to calculate estimates of both extraction and normalisation time for a given

data set size. A summary of the normalisation time data is shown in Table 5.3.

Training time increases substantially with the increase in training set size, as shown in

Figure 5.1c with timings summarized in Table 5.4. This happens for a number of reasons.

Firstly; as the number of training URLs increases, so does the size of the results BOW

which needs to be generated as part of the overhead. Secondly; with a larger BOW, more

words need to be checked for with each sample being extracted for training and validation.

Normalisation time for the training data set and validation set is also increased as there

are more input vectors to check and subsequently normalise. Normalisation is further

slowed due to the larger size of each individual input vector due to the time required

to seek to the required continuous values. Finally; the volume of data required for each
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Table 5.3: Normalisation time in milliseconds.

Data set # Samples Fastest Slowest Average Std. Dev
1 1 000 0 3 0.3 1.949
4 4 000 1 5 1.4 1.265
7 7 000 4 13 7.6 3.098
10 10 000 7 17 10.2 3.084
13 13 000 10 20 13.6 2.875
16 16 000 12 26 18.0 4.497
19 19 000 13 34 20.1 6.190
22 22 000 14 29 22.2 5.535

training epoch is higher, resulting in longer individual training iterations through the data

set.

It is clear from the three tests described that the number of samples used to train an

ANN has a significant impact on the time required to complete such training. This is

summarized in Table 5.4 and is shown in milliseconds. This table shows that the longest

time required to train a classifier took 28.5 minutes while the shortest time to train one

was 1.5 seconds. This shows that for an increase of 22 times the training data used to

generate the ANN, the training time slowed down by 803.06 times on average.

Table 5.4: Training time in milliseconds.

Data set # Samples Fastest Slowest Average Std. Dev.
1 1 000 1 507 2 643 2 073.8 386.488
4 4 000 12 876 20 396 17 217.3 2299.809
7 7 000 190 217 198 625 195 573.8 2 489.005
10 10 000 182 910 325 305 241 064.4 44 538.710
13 13 000 630 926 651 593 640 250.7 5 887.714
16 16 000 875 317 1 093 692 959 349.6 78 986.540
19 19 000 1 191 612 1 419 212 1 289 620.0 108 113.500
22 22 000 1 619 702 1 712 934 1 665 385.0 39 553.880

While extraction and normalisation times stay relatively low, training time increases at

a near exponential rate with the use of larger training data sets. With domain names,

folder structures, file names and arguments not limited to natural language words, there

is no limit to the length of the BOW. This further justifies the need to find an optimal

training data set size so that training times do not become unfeasibly long in the search

for accuracy. Shown in Sections 5.4.3 and 5.4.4, one such optimum value exists.

As is shown in Section 5.4.3, 18 000 samples is the best number of samples to use during

training. Using a data set of this size would require 283.9 milliseconds to extract into
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Algorithm 5: Time estimates for training data extraction and normalisation.

y1 = 0.018x− 33.333 (5.10)

y2 = 0.0012x− 2 (5.11)

Where:

• y1 is extraction time in milliseconds.

• y2 is the normalisation time in milliseconds.

• x is the number of samples used for training.

input vectors, 19.6 milliseconds to normalise those vectors and a further 19.57 minutes

to train the classifier on average. With this timescale, a new classifier could be trained

hourly or daily.

5.4.3 Accuracy

A second series of tests performed are to determine the impact that training data set size

has on the performance of a classifier. As mentioned in Section 5.4, this test will show if

an accuracy of 93.1% is possible, as reported in Le et al. (2011) using a similar method.

This test will also determine if this approach is viable on a end-user level and will also help

to answer the question posed at the end of Section 5.4.2. This question asked if there is

an optimal number of training samples that, exceeding this number, decreases the overall

performance of the classifier? This would nullify the problem of ever-increasing BOW size

and the directly related increase in training time.

To this end, all of the classifiers generated were compared using three different measures of

performance: accuracy in terms of cumulative error rate, f1 score and MCC as calculated

per Equations 5.1, 5.8 and 5.9. The F1 score is a statistical measure of accuracy; reaching

best accuracy at a score of 1, and a worst possible score of 0 (Beitzel, 2006). It measures

accuracy in terms of precision and recall, but does not account for TNR. For this reason,

the Matthews Correlation Coefficient (MCC) accuracy measure is also used, at the sug-

gestion of Powers (2011) and can be used as a measure of a binary classifier’s accuracy

(Baldi et al., 2000). The results of these three measures are shown in Figure 5.2a, Figure

5.2b and Figure 5.2c respectively. It is apparent from all three of these metrics, the best

performing classifiers are all generated in the band of training data sets with between 13
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(a) Accuracy. Peaking at dataset #18.
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Figure 5.2: Accuracy metrics based on the number of training samples.
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Figure 5.2: Accuracy metrics based on the number of training samples (continued).

000 and 21 000 samples per set, with the trend moving downwards as data set sizes tends

to increase after 18 000 samples.

The optimal network trained, based on all of the accuracy metrics used, occurs when

using data set #18. This ANN has a cumulative error rate of 2.8% (97.2% accuracy). It

is shown in Section 5.4.4 that this classifier also has the highest True Positive Rate (TPR),

True Negative Rate (TNR) and prediction values of all of the classifiers generated. The

least accurate classifier (91.8% accurate) is trained from 1000 samples. This shows that

even a low number of training samples is capable of producing a reasonable classifier of

this type, supported in Section 5.4.4, with acceptable TPR, TNR and prediction values.

Shown in the metrics above is that; given the data set is balanced in terms of classification

types, that classifiers trained with datasets between 13 000 and 21 000 samples tend to

perform the best, with data set #18 (18 000 samples) being optimal. It is for this reason,

that all subsequent tests performed in this chapter are using the classifier trained with

this sample set size that performed best of all the ANNs generated.
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Table 5.5: Accuracy metrics for data set #18.

Metric Best Worst Average Std. Dev.
Accuracy 0.972 0.966 0.96845 0.0022
F Score 0.972 0.965 0.96804 0.0024
MCC 0.944 0.931 0.93725 0.0043

Table 5.6: Accuracy metrics for data set #1.

Metric Best Worst Average Std. Dev.
Accuracy 0.931 0.918 0.9251 0.0041
F Score 0.930 0.920 0.9240 0.0040
MCC 0.863 0.837 0.8510 0.0084

Shown in Table 5.5 are the performance measures training data set #18. This set contains

9 000 malicious and 9 000 benign samples and yields the best validated and separately

tested classifiers of all the ANNs trained. Table 5.6 is given for comparison and shows

the performance metrics for data set #1.

These three metrics give a good indication as to what the optimum training data set size

is, but do not indicate the value of each classifier in terms of TPR and TNR. These rates

are important as different applications have different requirements.

5.4.4 Prediction values

The final tests performed are regarding the prediction value and usability of the metrics

discussed in Section 5.4.3. These values bring more meaning to these metrics as they

show how such accuracy is achieved.

As shown in Figure 5.3a, TNR improves with the more samples used during training. The

TPR hits its average maximum at data set #18 and then starts to decrease. The TNR is

stable at the same sample point and gets higher with more training samples used.

Prediction value; which indicates the chance of a prediction made by the classifier being

correct, is shown in Figure 5.3b. This plot is very important in relation to the True

Positive (TP) and True Negative (TN) rates plotted in Figure 5.3a in that it shows that,

while the TNR increases with the more samples used, the NPV starts to decrease after 18

000 samples. The opposite is true for the TPR and the PPV. While the TPR decreases

after the same point, its prediction value increases.
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(a) True Positive Rate (TPR) and True Negative Rate (TNR).
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Figure 5.3: Prediction values.
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Figure 5.3: Prediction values (continued).

False discovery rate, as shown in Equation 5.5 and discussed in Section 5.2, indicates how

often a classifier makes an incorrect positive classification of all positive classifications

made. The FDR results for each network are plotted in Figure 5.3c. Like all the other

tests described in this section, the best average FDRs are achieved when using 13 000 to

22 000 samples within a balanced data set as a training data set.

5.4.5 Discussion

This test was designed to answer several questions. Is the accuracy mentioned in Le et al.

(2011) reachable; how long does it take to train an effective classifier; how many samples

are needed to train such a classifier and what accuracy is achievable? Additionally, what

effect would users adding new samples make on the training of these classifiers?

As is shown in Section 5.4.3; the accuracy obtained by Le et al. (2011) (93.1% for an

online perceptron) is possible. Section 5.4.3 shows that it is not only possible to achieve
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this; but to significantly improve on it by adjusting the training data set size, improving

it by a further 4.1% for a total accuracy of 97.2% (or a 2.8% cumulative error rate). This

results in a better classifier built as an OP which is much simpler to implement than other

techniques.

Within Section 5.4.2 it is shown that training time increases exponentially when more

training samples are added. This is due to the expanding BOW size affecting performance

in several facets. Additionally, as users submit new unseen data for inclusion in the

training and vetting process, the resulting BOW increases in size with the increase in

samples. Since there is no upper limit to the number of words that could be included

within the BOW, this could be a potential problem.

However, shown in Section 5.4.3, there is an optimal range of training set sample sizes

that should be used when training these classifiers. That range is from 13 000 to 21 000

samples, impacting performance of the classifier for the worse if this range is exceeded.

This is a fact that is further proven in Section 5.4.4 by showing that the value of predictions

made by the classifier start to decrease when exceeding this range.

Finally, the best ANNs trained as part of this research were shown to be generated

using a training sample set size of 18 000 samples. Since this is considered an optimal

point, it is recommended that new data retrieved from data sources (including vetted

user submissions) be added to the end of the data used for training and that the most

recent 18 000 samples be used. This set should comprise 50% positive and 50% negative

samples with recommended separate validation and testing sets of 2000 samples each, also

balanced at the 50% point.

5.5 Classification speed

The time required to extract, normalise and classify a URL is known as classification

speed. This time is important as it indicates which applications this research is applicable

to. The test will cover execution times in both a C# implementation as well as a Java

script implementation built for Google’s Chrome Browser (see, Section 4.7). The results

shown in this section are discussed in Section 5.5.3. Also tested in this section is what

effect processor speed has on all three stages of classification.
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5.5.1 Test data

The ANN that was used for this test was the best classifier generated in Section 5.4

and the testing data generated for that classifier consisting of 2000 samples. For the

Java script implementation tests, the Chrome extension described in Section 4.7 was used

while following samples found in the same testing data sample set. The third test, in

which classification time is tested against processor speed, uses the ten classifiers and

their associated training data that were trained using data set sizes of 18 000 samples in

Section 5.4. These were chosen as they were the best performing classifiers, and all ten

were used to determine average times for different ANNs with the same training sample

set size.

5.5.2 Tests

The first test executed used a C# implementation using the library developed and de-

scribed in Section 4.5. The test was executed using the ten classifiers trained with a

training data set size of 18 000 samples. Each of the ten classifiers was used to classify

the testing data set and timed. Shown in Table 5.7 are the results of this test and it is

shown that the average time taken to classify a single sample for a classifier of this size is

0.07908263 milliseconds with a standard deviation of 0.001730493.

Table 5.7: Classification time (MS) of 2 000 samples using the C# implementation.

Run # Extraction Normalisation Classification Total Per sample
1 2.57715 1.68247 160.91149 165.17111 0.082585555
2 0.94895 1.62555 157.66824 160.24274 0.080121370
3 1.09362 1.57002 156.20857 158.87221 0.079436105
4 1.09827 1.53853 154.27520 156.91200 0.078456000
5 1.01428 1.61315 153.72625 156.35368 0.078176840
6 0.82579 1.47843 152.62470 154.92892 0.077464460
7 0.81273 1.49266 152.45942 154.76481 0.077382405
8 0.97333 0.96459 152.98409 154.92201 0.077461005
9 0.82555 1.50289 155.01370 157.34214 0.078671070
10 1.00392 1.66175 159.47734 162.14301 0.081071505

Average 1.117 1.513 155.535 158.165 0.079
σ 0.524 0.206 2.963 3.461 0.002

When the same test was executed using the Chrome extension the results were sub-

stantially slower, but still within imperceptible time. Chromes execution time had an
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arithmetic mean of 1.4 milliseconds with a standard deviation of 1.35 milliseconds. This

relatively high standard deviation is likely due to how Google Chrome loads and caches

extensions when they are first run, and run subsequently.

The second series of tests was designed to determine what effect processor clock speed

has on the time taken to classify a sample. This test used a Virtual Machine (VM) which

was created on an ESXi host to enable adjusting of processor clock speed, and had the

test application installed along with all the required data and classifiers. The test was

run in 100 MHz increments starting from 1 500 MHz up to 3 500 MHz. For each test

run; the VM’s processor speed was adjusted and the test application run, using 2 000

samples to calculate timings. This application tested each of the ten classifiers present

and the data was logged. Once this was completed, the VM was shut down, its processor

clock speed increased and the process repeated until all of the data was gathered. The

results from this test are shown in Figure 5.4a. The timings from this test are not directly

comparable with the previous test as the hardware used to run the two series is different.

This is visible from the data, as tests run at the same clock speed on both hardware

configurations differ, with the VM being slower.

5.5.3 Discussion

A central part of this research was to determine if these classifiers can be used in real time

without adding significant overhead in terms of latency. This is because there are highly

accurate services available whose downfall is that they add significant latency which adds

up as more requests are made. This is detrimental to the end-user-experience and not

usable in large-scale on-the-fly applications. A method of circumventing this problem is

to perform these look-ups in batches, before requests are made. For obvious reasons, this

approach is not very flexible and cannot classify samples seen for the first time.

The classifiers in this research are only useful if they have low enough execution times

to be used by end-users or in large-scale applications such as proxies like those within

tertiary education institution and large businesses. These proxies have very strict speed

requirements as they can potentially serve thousands of requests per minute. End users

have slightly lower requirements, requiring that the classifier executes in an imperceptible

time when executing several requests for resources, such as those typical of web pages

loading required resources.

It is shown in Section 5.5.2 that an optimal classifier requires 0.07908 milliseconds to

classify a URL when in the form of a C# application such as the one implemented in
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Figure 5.4: Time to extract, normalise and classify 2 000 samples.
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Section 4.5. This equates to 1 264.54 requests a second and makes it suitable in large

scale proxy applications that serve up to a theoretical maximum of 1 264.54 requests every

second.

The Chrome extension was significantly slower due to it being executed as a Java script

file within Chrome. It is limited by Chrome’s Java script engine and the fact that it is

not a compiled language. However, classifying at an average speed of 1.4 Milliseconds,

it is still fast enough that it may be used on the client side without incurring significant

latencies, even when requesting excessive numbers of URL.

As shown in the final tests (graphed in Figure 5.4a and Figure 5.4b), processor speed

has little impact on both extraction and normalisation time when run on processors

with speeds common at the time of writing. It is clear that Central Processing Unit

(CPU) speed directly and significantly affects the classification step after extraction and

normalisation has taken place. However, the longest time taken to classify all 2 000

samples within this test with the CPU clock set to 1 500 MHz, was 7 744 milliseconds.

This equates to 3.872 milliseconds per sample, which is deemed acceptable for client side

usage. This is further justified by the fact that many cellular phones have CPUs that are

approaching this speed or are capable of it already.

5.6 Update size

Within this section, the size of ANNs and their descriptors are determined in relation to

the size of the sample set used to classify them. This information is important as the

classifier and the data required to rebuild it needs to be transmitted to the end-user as

an update. If these updates are prohibitively large, it may not be possible to transmit

them and it may discourage end-users from updating their implementations.

5.6.1 Data

As an indication of how the classifier data size increases as more training samples are

used, the classifiers trained for the tests described in Section 5.4 were used. This data

set consists of 220 sample classifiers, trained in groups of 10 per training sample set size.

Also used within these tests are the 10 classifiers generated as part of the optimal set

described in Section 5.4.3 which are trained using 18 000 input URLs. Finally; during

compression testing, the best ANN from the optimal data set mentioned above is used.
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5.6.2 Uncompressed classifiers

Shown in Figure 5.5 are the arithmetical mean sizes of the 220 classifiers. This plot shows

that the size of the resulting serialized ANN and its associated data increased linearly as

the number of training samples was increased. The arithmetic mean size of the optimal

classifiers is 908 983.8 bytes (0.87 Megabytes (MB)).
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Figure 5.5: Uncompressed size of classifiers based on the number of training samples used.

5.6.3 Compression effectiveness

Further to the size analysis, the effectiveness of compression algorithms when compressing

these classifiers is determined. Four different algorithms were tested: zip4 using the deflate

algorithm, lz4 5, 7z 6 using the LZMA algorithm and finally rar 7. The zip and 7z formats

4http://www.info-zip.org/
5https://code.google.com/p/lz4/
6http://www.7-zip.org/
7http://www.rarlab.com/

http://www.info-zip.org/
https://code.google.com/p/lz4/
http://www.7-zip.org/
http://www.rarlab.com/
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were tested using the 7-zip program for windows. The lz4 algorithm was tested using the

application implemented on Google Code available from https://code.google.com/p/lz4/.

Finally, rar was tested using the windows installer for the WinRAR program.

Table 5.8: Average compression algorithm effectiveness.

Format Size in bytes Compression %
Uncompressed 908984 0
zip 323837 35.62625965
Lz4 462989 50.93477993
7z 280827 30.89460321
rar 321585 35.37851051

This optimal classifier generated in Section 5.4 and all of the associated serialized data

had an uncompressed size of 908 984 bytes (887.68 Kilobytes (KB)). As can be seen in

Table 5.8 is that the 7s algorithm was the most effective at compressing these classifiers

and the data required to rebuild them. It compressed the classifier to 30.89% (274.25 KB)

of its original size.

5.6.4 Discussion

There are several reasons why the size of the classifiers covered in this research are impor-

tant. If the data required to rebuild them at client side are too large, it may be prohibitive

to download updates frequently, or at all. This is an obvious issue in the field of online

security. Additionally, if the data sets are too large it may make a centralised update

distribution service unfeasible due to bandwidth requirements or may add unnecessary

strain on this service in terms of bandwidth, processing and storage requirements. Addi-

tionally, delta transmission is not applicable as even classifiers trained with the same data

set have different weightings. Classifiers built periodically have different input vectors,

meaning that the entire OP definition is different from instance to instance, which in turn

means that delta transmission would transmit the entire classifier with every update.

In Section 5.6.2 it is shown that the size in terms of bytes increases linearly with an

increase in the number of training samples used to create the ANN. However, shown

in Section 5.4.3, there is an upper limit in the number of URLs that should be used to

generate these classifiers so as to avoid decreased performance. The optimal number was

shown to be 18 000 samples.

The size of all the resources required to rebuild the optimal classifier from this range was

shown in Section 5.6.2 to be 0.87 MB. While this number is low enough to not deter users

https://code.google.com/p/lz4/
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from downloading updates regularly, compression will still offer relief to the bandwidth

requirements of a centralised update distribution service, such as that developed in Section

4.6.

To this end, it is shown in Section 5.6.3 that, when using the the LZMA algorithm with

7z, it is possible to reduce the size of the required data to 30.89% of its original size. This

results in a reduction of bandwidth required by the distribution service of up to 69.11%

in the transmission of updates. Assuming the service receives a new update every 6 hours

and has 10 000 clients updating constantly; the uncompressed version would require 33.86

GB of bandwidth every day. Using compressed data, this would result in a bandwidth

usage of 10.46 GB of data. On a per-client basis; uncompressed updates would result in

3.47 MB of usage every day, while compressed updates would require 1.07 MB of data

usage. If this compression were to be done once, when storing a new update on the service,

it would add negligible processing requirements to the overall process.

Due to the complexity required to implement timing of these various algorithms as well as

the relatively small sizes of the trained classifiers, testing of the time required to execute

these algorithms was not executed.

5.7 Summary

Shown in Table 5.9 is a summary of the metrics for the best ANN trained during the

testing phase of this research. The recommendations within this chapter are based upon

the group of classifiers to which this ANN belongs.

Table 5.9: Summary of best outcomes.

Samples Training time (ms) Accuracy Sensitivity Specificity Compressed size (B)
13 000 635 455 96.80% 0.959 0.977 241 667
14 000 624 402 96.10% 0.963 0.959 227 701
15 000 821 476 96.65% 0.960 0.973 241 869
16 000 875 317 96.40% 0.957 0.971 254 771
17 000 1 010 783 96.85% 0.974 0.963 267 968
18 000 1 111 618 97.20% 0.963 0.981 280 538
19 000 1 203 640 96.85% 0.964 0.973 293 488
20 000 1 482 392 96.60% 0.954 0.978 305 950
21 000 1 533 894 96.60% 0.964 0.968 318 939

When training a classifier for distribution to end-users, a random data set should be

selected. As shown in Section 5.4.3, this data set should be 18 000 samples in size,



5.7. SUMMARY 99

balanced with a 1 to 1 ratio of positive to negative samples. These samples should be

chosen at random from the total data set. A validation set should be chosen that contains

no samples which appear in the training data set. It is highly important that these sets

are mutually exclusive of each other. This validation set should also be randomly selected

and be balanced in terms of positive and negative samples. A testing set should be

constructed by the same method.

Additionally, these data sets should be constructed multiple times for each update itera-

tion. This will help to rule out anomalies in the training data set and, due to its random

nature, contribute towards finding a data set which best represents a real-world distribu-

tion. Multiple ANNs should be trained per data set. This is because the initialisation

of these ANNs is random, with final trained versions performing differently. From that

large pool of resulting ANNs, the best should be chosen with regards to cumulative error

rate, sensitivity and specificity. Within this framework, cumulative error rate is used to

identify the best performing classifier.

Shown in Section 5.4.2 is that timing for ANNs created using 18 000 training samples is

less than half an hour. Given a system that has 8 cores, it is possible to generate 32 ANNs

in a two hour period. Given that there should be multiple random data sets generated;

assuming ten are available, 320 ANNs could be trained in a 20 hour period. This is a

reasonable distribution of randomness, allowing the best classifier to be chosen. With a

dedicated day once a week, any shifts in trends in URL obfuscation can be accounted for.

Classifiers should then be transmitted using the 7z compressed format, discussed in Sec-

tion 5.6. This will reduce bandwidth requirements on both the update distribution service

as well as client implementations by 69% for each update. As a result, clients are more

likely to update as each update will be quicker to download and clients with low bandwidth

requirements will be less likely to avoid updates due to bandwidth restrictions.

Client implementations using the C# implementation and a classifier such as the one

described here, will be able to classify URLs in 0.079 milliseconds with a positive classifi-

cation have a 96.3% chance of being accurate and a negative classification having a 98.1%

chance of being correct. The test application built for this chapter uses the C# DLL

implementation of this research, while the Chrome extension discussed in Section 4.7 is

an example of an alternative implementation. It has been used extensively during the

writing of this thesis and has shown to be highly accurate, while being transparent dur-

ing normal, benign usage. This shows that this is a viable, final layer protection against

phishing URLs.



CHAPTER

SIX

CONCLUSION

The research discussed within this document has covered a method of identifying malicious

URLs using ANNs on the client side based on the lexical features of the URL. It has also

detailed a method of building a framework to generate these classifiers in an automated

fashion; a method that yields the best classifiers given available training data. Methods

for storing and transmitting the resulting classifiers were shown as well as an example

implementation that uses an ANN to prevent users from accessing suspicious URLs.

The training process was evaluated to determine how quickly these classifiers can be gen-

erated for use within an update schedule. The resulting classifiers were tested in terms of

several accuracy measures using real-world samples of both positive and negative classifi-

cations to determine their effectiveness in a near real-world environment. The classifiers

were also evaluated in terms of classification speed to determine what impact they would

have on user-experience when using an implementation of this kind. Finally, the infor-

mation required to be stored and sent to client implementations was used to determine

the effectiveness of compression algorithms in an effort to determine the feasibility of a

centralized, implementation-agnostic update service.

Background information that is relevant to this research was provided in Chapter 2. This

information covered concepts regarding the modern structure of URLs as a method of

locating resources on the internet with no knowledge of the content of that resource.

Theoretical information regarding what phishing is, how it abuses the structure of a URL

100
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to mask its intent as well as how prevalent it is, was discussed. Additionally, several

methods of detecting phishing attacks were shown. Modern approaches to implementing

Artificial Neural Networks (ANNs) were presented as well as methods for determining

their accuracy when generalising to unseen data. Also covered within this chapter was

background information regarding the various technologies used within the implementa-

tion of this framework.

In Chapter 3 the algorithmic choices used in the logical formatting of the training, vali-

dation and testing data used in this document were discussed. The learning method used

when training classifiers was chosen and the algorithm by which this learning was imple-

mented was discussed. The validation and testing framework was also covered, showing

how the results from testing are calculated reliably using statistical methods.

An extensible framework for the implementation of a service to generate the classifiers

covered in this research was built and shown in Chapter 4. A sample implementation

that is able to generate Online Perceptrons (OPs) was developed and tested: a REST

service which is able to store these classifiers as well as act as an update service for

client implementations was built. Finally, a client implementation which uses this REST

service is implemented in the Google Chrome Browser. It is capable of blocking attempts

to access phishing resources with a high degree of accuracy by using these classifiers.

Chapter 5 discusses the tests which were performed on the framework and the classifiers

it generates to determine their usefulness in the real-world. The framework was tested

to determine how much time is required to train usable classifiers. The resulting classi-

fiers were tested for accuracy against how many training samples had been used for each

classifier. This was to determine how many samples are needed to generate the best pos-

sible classifier and to understand what the accuracy of such a classifier might be in a real

world environment. Classification speed was also tested and discussed as it affects the

user-experience implications of using this method of identifying malicious URLs. Also de-

termined within this chapter; is the effectiveness of compression algorithms when applied

to this kind of data, to determine the impact of compression on an update distribution

service.

The formal objectives for this research are outlined in Section 1.2. They are to create an

automated framework that is capable of generating ANNs, storing and distributing them.

The system implemented for this purpose must be used to identify what data is needed and

demonstrate a method of exposing it to client applications while being implementation

agnostic. Another requirement is to create a sample end-user implementation that is
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capable of demonstrating the capabilities of this research as well as show what options

are available to a process once a positive classification has been made.

Other research goals were to determine if the accuracy stated in Le et al. (2011) is reach-

able and the impact that differing numbers of training samples has on this accuracy. The

size of the data required to be transmitted for use by end-user applications as well as the

effectiveness of various compression algorithms is also to be determined. Finally, the time

required to make a classification is to be determined to identify what the effect of using

this classification method has on user-experience.

As discussed in this document, the Classifier Generation Service (CGS) is capable of

collecting the required data and generating ANNs for use in the lexical analysis of URLs.

The Classifier Distribution Service (CDS) shows that REST is an effective method of

exposing classifier updates while placing few technological requirements on clients wishing

to utilise this service. This document has identified the data that is required to be exposed

through this method and, through the use of the CGS, CDS and Net Defence applications,

has shown that it works as an end-to-end solution. The Net Defence Google Chome

extension has shown how an implementation of this research may function, demonstrated

its effectiveness and has also covered several options for action to take when a positive

classification is made.

Through multiple rounds of classifier generation and testing, it has been shown that

the accuracy claimed in Le et al. (2011) is not only attainable, but improvable when

using an optimised training data set. It has been shown that classifications made by

ANNs of this structure are in imperceptible time, thus making little impact on user

experience. It has also been shown that compression using the 7z algorithm performs

best and makes a significant impact in terms of storage and bandwidth requirements on

both the distribution service and client implementations.

6.1 Future work

While every effort was made to test this framework and the classifiers that it produces in

an as-close-as-possible to real-world environment, the fact remains that they were tested

in a controlled academic environment. This is useful for testing ideal situations but does

not necessarily generalise to the real-world. As a result, future work is recommended

that tests the classifiers with data that originates from real-world sources, and the impact

that these classifiers have in practice. Work is suggested that increases the scope of the
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framework through growing it to include data sources that would train classifiers capable

of identifying different types of malicious URLs and combining them, thus allowing for a

general classification method for all types of malicious URLs.

6.1.1 Framework functionality

As this framework was developed as a proof of concept, there are several improvements

that should be made. These improvements range from increased functionality, usability

and security. Without these improvements, the framework suffers from very limited scope.

There are several improvements that can be made which include:

• A genetic algorithm could be implemented as part of the ANN generation process.

This will allow an automated approach to generating and validating several classi-

fiers at once and will allow for different starting weight configurations to be tested

and ‘bred’ to improve performance and training time. Processors with multiple cores

may be leveraged to improve the performance of this process, decreasing the time

required to train and find the best possible classifier. The parallelism of Graphics

Processing Units (GPUs) may be utilized for this purpose, such as the work shown

in Nottingham (2011). As this document deals with a small academic environment,

it was not deemed as necessary functionality just reach the goals stated in Section

1.2.

• The service for storing and transmitting updates to client implementations was built

as a proof of concept. This service should be adapted in order to compress the data

that it stores and transmits as this has been shown to be highly effective. Communi-

cation with regards to storing new updates as well as transmitting updates should be

implemented over Hyper Text Transfer Protocol Secure (HTTPS) instead of HTTP

to improve security and trust. A method for the implementation of partial updates

should be explored, as well as processes for implementing update notifications for

client applications. While these are useful functions, they are well researched topics

and are not necessary within the scope of this research.

6.1.2 Classifiers

The learning method selected to create the classifiers was the Online Perceptron method

for reasons discussed in Section 3.6. While other methods represent improvements over
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the OP, the OP training algorithm is deemed sufficient for the purposes of this research.

The following training algorithms should be researched and implemented:

• The Confidence Weighted (CW) and AROW learning methods should be imple-

mented in the form of inducers. This is appropriate as it will allow for further testing

regarding these methods which have better training characteristics when compared

to the OP method. Implementing these algorithms will also allow for more options

to be available to any implementations using the library that is created.

• While this research focused primarily on the detection of phishing URLs, these

classifiers have been shown to be able to reliably detect URLs which point to malware

resources. They may be further extended to detect botnet command and control

servers. This could be done in combination with other classification techniques, such

as those discussed in Stalmans (2013). For this reason, separate classifiers should

be trained and used together to protect end-users from a wider range of threats.

Another form of classifier that could be used to identify suspicious URLs is one that

is trained to detect algorithmically generated domain names. Again, this could be

combined with the other classifiers to make the scope of protection wider.

6.1.3 Testing

The Net Defence Google Chrome extension was implemented as a proof of concept, to

show that client implementations are feasible. However, it was not implemented as an

extensively testable application as this is considered outside of the scope of research for

this document. It is for this reason that extensive user testing was not performed. These

tests should be performed as future research as they will show the impact this classifiers

will have on the user-experience. These tests include:

• User tests should be performed to determine how transparent the classifier is when

browsing legitimate resources as well as how effective it is at warning users when

trying to access fraudulent resources. Additionally, over-all perceived performance

should be measured.

• Testing in real-world environments is critical for determining the applicability of this

research. This should include tests in environments where performance is crucial,

such as use in a proxy within a education institution or large business.
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6.1.4 Data

Finally, extended data sources should be found. While the data used in the research

was highly useful, they do not represent the full range of URLs used in modern internet

technologies. Many modern sites use technologies such as Asynchronous JavaScript and

XML (AJAX) to make asynchronous API calls for normal operations. While testing

the Net Defence implementation, it became apparent that the classifier is sensitive to

these API calls, making false positive classifications. For this reason, data that is more

representative of real-world data should be found and used during the training of these

classifiers. The best approach may be to use a proxy with strict rules to generate a

reasonably clean data set and then to use the AROW training algorithm to generate the

classifier due to its ability to handle potentially noisy data sets over the current perceptron

implementation.
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APPENDIX

A

FRAMEWORK COMPONENTS AND INTERFACES

Contained within this appendix is a list and short description of each of the components

contained in the Network Generation Framework as described in Section 4.5. As a primary

concern of this framework, extendability is an important goal, as well as maintainability.

This is achieved through the use of dependancy injection using interfaces as a method of

swapping implementations without modifying the framework. Part of the research is to

create a proof of concept which is to use the supplied interfaces in a working implementa-

tion. All of the source code described here is available for download, the details of which

are supplied in Appendix E.

Section A.1 to Section A.8 describe interfaces and their defined method contracts, while

the Section A.9 to Section A.13 describe the test implementation and justifications for

their design decisions. Further than this, the components are listed in no particular

order. The final sections within this appendix discuss two classes which do not implement

interfaces, but are used to aid in dependency injection and configuration management.

The relationship between all of the entities described here is depicted in Figure 4.4.

A.1 Extractor

The Extractor interface defines a single getArray() method which takes the various types of

BOWs as parameters. Each URL within the framework, imported as training, validation,
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malicious or benign data is represented as an Extractor instance. This interface is meant

to allow the framework to request each extractor object is able to create a data array that

represents an input vector for an ANN.

A.2 NetworkBackup

The NetworkBackup interface defines two methods, the backupNetwork() and loadNet-

work(). On each iteration through the training data, the ANN is evaluated by the frame-

work, and if found to be the best network so far, it is saved. This interface allows the

method of saving and restoring of the ANN to be abstracted. The first method, backup-

Method() takes the ANN to be saved, as well as the configuration instance which contains

the path to the destination of where the data should be saved, as parameters. The

loadNetwork() method takes the configuration instance as a parameter and returns an

instantiation of the ANN found at the location found within the configuraiton instance.

A.3 NetworkDataBalancer

The balance() method defined by the NetworkDataBalancer interface takes 2 arrays of

any type as input. Implementations of this interface should balance the data using the

desired method, modifying the array that are passed as parameter references.

A.4 DataFetcher

The DataFetcher interface defines a fetchDataArray() method which implementing classes

should implement to fetch URLs from a data source. These urls are returned in an array

of strings.

A.5 NetworkInducer

As the main component of this framework, a network inducer is responsible for generating

ANNs. This interface should be implemented as the main component of any application
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implementing this research. It defines two methods, the first being initInducer() allows

the application to perform initialisation operations such as data loading, data extraction

and BOW extraction. The second method defined, generateNetwork() returns a trained

and validated ANN suitable for updating client applications.

A.6 NetworkPersistor

This interface is defines a method interface which is used by the framework to store

trained ANNs on a resource which is accessible by client consumer applications. The ab-

straction of persistance is to allow the developer to decide method by which these updates

are transmitted. Developers may add features such as compression, partial transfer or

differing transmission methods such as File Transfer Protocol (FTP).

A.7 NetworkValidator

The Validator interface abstracts validation of ANNs and defines methods which, appart

from ANN validation, allow for various statistics to be fetched. These statistics are

universal to different validation methods and as such, are useful when trying to determine

the best resulting network from a training run. Statistics which may be requested from

Validator instances are False Positive Rate (FPR), False Negative Rate(FNR), accuracy

and specificity.

A.8 Logger

Allowing applications to choose their own method of recieving or outputting logs from the

framework is achieved through the use of the Logger interface. It has two logging methods

which allow it to simply log messages through the log() method, or to log training and

validation progress through the logProgress() method.

A.9 ConsoleLogger

The Logger’s purpose is to allow applications to log to various outputs at different stages of

the training process. The ConsoleLogger is in implementation of the Logger interface and
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sends the frameworks output promts to stdout. The label parameter is used to show which

component is logging while the message parameter is the actual data to be outputted.

The logProgress() method displays two progress bars, one which shows the progression

from 0 to the threshold for iterations allowed by the program, and a second visualizes the

accuracy of the best performing network version so far.

A.10 DataRemovalNetworkBalancer

As an implementation of the NetworkDataBalancer, the DataRemovalNetworkBalancer

takes two arrays of any type and adjusts them until they are equal size. As discussed

in Section 2.4.3, this is to avoid unnatural bias as a result of unequal data sets. Within

this implementation, this is done by finding the smallest the of the two data sets, and

removing items from the larger of the two sets. This is accomplished by selecting the all

of the items in the larger array that appear first up to the index of the smallest array size.

A.11 FileDataFetcher

This implementation of the DataFetcher class fetches URLs from a file. Each URL is

separated by a new line and carriage return character. Four instances of this class are

used within this implementation, two which fetch malicious and benign training data, and

two which fetch malicious and benign validation data. Other implementations may be

used in conjunction with this implementation which can fetch data from a database, web

service or other resources.

A.12 FileNetworkBackup

Like the FileDataFetcher, this implementation uses data files to achieve its goals. It

implements the NetworkBackup interface and is used to store different itterations of an

ANN during the training phase of execution. When an iteration through the training data

is completed, the ANN is validated, at which point this class is used to instantiate the

best ANN stored. The accuracy of the current iteration is compared against the newly

instantiated one and is then stored to the file if its accuracy is higher.
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A.13 SinglePassNetworkValidator

This implementation of the NetworkValidator uses a set of URLs not used by the training

process. Each of these URLs is classified by the network, and the SinglePassNetworkVal-

idator counts each incorrect classification made by the network. These metrics are then

used to calculate the accuracy of the ANN.

A.14 NetworkTrainingData

Both the training and validation data are loaded by implementations of the DataFetcher

interface, these implementations are all stored within the NetworkTrainingData object.

This object acts as a container for these, potentially different, instances and also has

the ability to validate these instances by checking their types. Using this approach, all

data can be found with a single reference to this instance, which makes the data source a

clean and maintainable object to handle. This object is held in the configuration object,

discussed in the following section (Section A.15).

A.15 NetworkTrainingConfiguration

This object is central to the framework’s dependency injection model. It uses an XML file

(see Appendix B) to load the frameworks configuration, defining which implementations

of each interface to use. Each implementation is instantiated and stored as a public

member of the NetworkTrainingConfiguration instance. Once the loading is completed,

the instance is validated to make sure that all required implementations are loaded. The

framework is then passed this instance for access to all of the contained implementations.

This object is central to this model and is used in all aspects of training, validation and

transmission of the ANN.
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B

CLASSIFIER GENERATION SERVICE CONFIGURATION

Listing B.1 shows an example configuration file for use with the Classifier Distribution

Service (CDS). This file is used to select which implementations of the the framework’s

instances to use through dependency injection and affects what behavior the framework

has for each configurable option within the training and distribution of ANNs.
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Listing B.1: configuration.xml

1 <?xml version ="1.0" encoding ="utf -8" ?>

2 <network >

3 <training >

4 <epochs >100</epochs >

5 <error >0.004</error >

6 <rate >1 </rate >

7 <normalizer >DescriptorNormalizer </normalizer >

8 <balancer >DataRemoval </balancer >

9 <logger >ConsoleLogger </logger >

10 <persistence resource ="http:// localhost:8664/">

RestNetworkPersister </ persistence >

11 <backup method =" FileNetworkBackup">network.vnn </backup >

12 <data >

13 <training >

14 <malicious >malicious.csv </malicious >

15 <benign >benign.csv </benign >

16 </training >

17 <validation >

18 <validator >SinglePassValidator </validator >

19 <malicious >malicious_validation.csv </malicious >

20 <benign >benign_validation.csv </benign >

21 </validation >

22 </data >

23 </training >

24 </network >
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C

NET DEFENCE

Shown in Listing C.1 is the manifest file used to determine the security options for the

Net Defence Google Chrome extension. Additionally, this file sets other configurable pa-

rameters such as icons and the file that must be used to set user options for the extension.

The algorithm used by the Net Defence extension to determine if a URL will be blocked

is shown in Listing C.2. Within this algorithm a function is created which first checks if

the currently requested URL has been permanently allowed by the user. If it hasn’t been

allowed, it is then checked against a list of both false positives and false negatives and

allowed access or denied if it matches a URL in the appropriate list. The final check is

to use the ANN to predictively determine the nature of the resource based on its lexical

features and is allowed or denied based on the outcome of this classification.
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Listing C.1: Net Defence manifest file

1 {
2 "name": "Net Defence",

3 "manifest_version": 2,

4 "description": "Net Defence",

5 "icons": {
6 "16": "img/urlblock16.png",

7 "48": "img/urlblock48.png",

8 "128": "img/urlblock128.png"

9 },
10 "permissions": [

11 "webRequest",

12 "webRequestBlocking",

13 "<all_urls >",

14 "storage",

15 "notifications",

16 "tabs"

17 ],

18 "web_accessible_resources" : [

19 "img/urlblock48.png"

20 ],

21 "background": {
22 "scripts": [

23 "js/lib/URLExtractor.js",

24 "js/lib/OnlinePerceptron.js",

25 "js/lib/Inducer.js",

26 "js/lib/DescriptorNormalizer.js",

27 "js/core.js"

28 ]

29 },
30 "browser_action": {
31 "default_icon": "img/urlblock16.png",

32 "default_popup": "html/falsenegative.html"

33 },
34 "options_page": "html/interface.html"

35 }
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Listing C.2: Event listener registration and high-level classification algorithm

1 var checkURL = function(details) {
2 var urlString = details.url.toString ();

3 var settings = JSON.parse(localStorage[’appDetails ’]);

4

5 if (isWhiteListed(urlString)) {
6 return allowRequest(details, settings, "Trusted ");

7 } else if (isFalsePositive(urlString)) {
8 return allowRequest(details, settings, "False

Positive ");

9 } else if (isFalseNegative(urlString)) {
10 return blockRequest(details, settings, "False

Negative ");

11 } else if (isMalicious(urlString)) {
12 return blockRequest(details, settings, "Malicious

Classification ");

13 } else {
14 return allowRequest(details, settings, "Benign

Classification ");

15 }
16 };
17

18 chrome.webRequest.onBeforeRequest.addListener(checkURL, {urls
: ["<all_urls >"]}, ["blocking"]);
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Egan, S. and Irwin, B. High speed classification of malicious URLs. In Proceedings of

the 14th Annual South African Telecommunication Networks and Application Conference

(SATNAC), SATNAC ’11. September 2011b.

URL http://www.satnac.org.za/proceedings/2011/papers/Work In Progress/Internet
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Egan, S. and Irwin, B. An evaluation of lightweight classification methods for identify-

ing malicious URLs. In Proceedings of Information Security South Africa (ISSA), ISSA
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E

SOURCE CODE

All of the source code written for this research is freely available at GitHub from

https://github.com/VanguardZA/

The following repositories are available for download:

• Classifier Generation Service (CGS)

• Classifier Distribution Service (CDS)

• Net Defence

• Training Data

The CGS requires a Microsoft Windows installation running Microsoft .NET 3.5. Addi-

tionally, Microsoft C# is required to compile the application. The CDS requires any OS

that is capable of running Python with the webpy1 library installed. Finally, Net Defence

has no requirements and is written to work with the Google Chrome browser2.

1http://webpy.org
2This will not work on mobile installations as extensions are disabled on the mobile version of Chrome.
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