
An analysis of malware evasion
techniques against modern AV engines

Submitted in partial fulfillment

of the requirements of the degree of

Master of Science

of Rhodes University

Jameel Haffejee

Grahamstown, South Africa

July 11, 2015

Abstract

This research empirically tested the response of antivirus applications to binaries

that use virus-like evasion techniques. In order to achieve this, a number of binaries

are processed using a number of evasion methods and are then deployed against several

antivirus engines. The research also documents the process of setting up an environment

for testing antivirus engines, including building the evasion techniques used in the tests.

The results of the empirical tests illustrate that an attacker can evade multiple antivirus

engines without much effort using well-known evasion techniques. Furthermore, some

antivirus engines may respond to the occurrence of an evasion technique instead of the

presence of any malicious code. In practical terms, this shows that while antivirus

applications are useful for protecting against known threats, their effectiveness against

unknown or modified threats is limited.

Acknowledgments

I would like to thank everyone who has helped and supported me during the researching

and writing of this thesis. To my parents and Haroon Meer, thank you for encouraging

me to get started. My supervisors Barry Irwin, Yusuf Motara and Adam Schoeman: I am

grateful for all the constant and invaluable feedback that you provided and for guiding

me through the entire process.

Contents

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 Background . 1

1.2 Research Question . 2

1.2.1 Hypothesis . 2

1.3 Limitations . 2

1.4 Conventions . 3

1.4.1 Malware Classification . 4

1.5 Document Structure . 4

2 Literature Review 6

2.1 Introduction . 6

2.2 Malware Terms . 6

2.2.1 Trojan . 7

2.2.2 Virus . 8

2.2.3 Worm . 9

2.3 Malware Defence . 9

2.4 Code Armouring . 9

2.4.1 Anti-disassembly . 10

2.4.2 Anti-debugging . 10

2.4.3 Anti-emulation . 11

2.4.4 Anti-Virtual Machine . 11

2.4.5 Anti-Goat . 12

2.4.6 Code Armouring Summary . 12

2.5 Early Malware Defence . 12

2.5.1 An Early Example . 13

2.5.2 Response . 13

i

2.5.3 Evolution . 13

2.6 Encryptors . 14

2.6.1 History . 14

2.6.2 An Early Example . 14

2.6.3 Response . 15

2.6.4 Evolution . 15

2.7 Oligomorphism . 16

2.7.1 An Early Example . 16

2.7.2 Response . 16

2.7.3 Evolution . 17

2.8 Polymorphism . 17

2.8.1 Early Example . 17

2.8.2 Response . 18

2.8.3 Evolution . 18

2.9 Metamorphism . 18

2.9.1 An Early Example . 18

2.9.2 The Rise of Virus Toolkits . 20

2.9.3 Response . 21

2.9.4 Evolution . 21

2.10 Packers . 21

2.10.1 An Early Example . 22

2.10.2 Response . 23

2.10.3 Evolution . 23

2.11 Malware Detection Mechanisms . 23

2.11.1 First Generation Scanners . 23

2.11.2 Second Generation Antivirus Scanners 25

2.12 Related Work . 27

2.13 Summary . 29

3 Antivirus Testbed 30

3.1 Introduction . 30

3.2 System Selection . 30

3.3 Testing Methodology: The Custom Testbed 31

3.3.1 Setup . 31

3.3.2 Core Application Installation . 33

3.3.3 Automating Scans . 33

3.3.4 Resource Consideration . 34

3.3.5 Custom Testbed Summary . 35

ii

3.4 Testing Methodology: VirusTotal . 35

3.4.1 Base Tool Compilation . 35

3.4.2 Resource Consideration . 36

3.4.3 VirusTotal Summary . 36

3.5 Summary . 37

4 Antivirus Test Process 38

4.1 Introduction . 38

4.2 Goals . 38

4.3 Selection Process . 38

4.3.1 Benign . 39

4.3.2 Eicar Tests . 39

4.3.3 Potentially Unwanted Program . 40

4.3.4 NetCat . 40

4.3.5 Netcat Details . 41

4.3.6 Scanning the compiled binary . 41

4.3.7 Complications with the compiled binary 42

4.3.8 Reasons for discontinuation of NetCat 43

4.3.9 New Baseline Selection . 43

4.3.10 Metasploit binary . 43

4.3.11 Metasploit Plain details . 44

4.3.12 Metasploit OPCode details . 44

4.3.13 Metasploit custom build details . 45

4.3.14 Malicious Binaries . 46

4.3.15 Build Process : Sample Malware and Baseline analysis 46

4.4 Malicious Binary Selection . 47

4.4.1 Baseline scan for malicious binaries 48

4.5 Testing Process Usage . 50

4.6 Summary . 50

5 Evasion: Packers 51

5.1 Introduction . 51

5.2 Hypothesis . 51

5.2.1 Goals . 51

5.3 Tests . 52

5.4 Existing Packers Tests . 52

5.5 UPX Background . 53

5.5.1 Benign Test With UPX . 53

iii

5.5.2 Metasploit Basic Scan Wrapped With UPX 53

5.5.3 Metasploit Opcode Scan Wrapped With UPX 53

5.5.4 Malicious Binaries wrapped with UPX 54

5.6 ASPack Background . 55

5.6.1 Benign Test With ASPack . 55

5.6.2 ASPack Metasploit Basic Scan . 56

5.6.3 ASPack Metasploit Opcode Scan 57

5.6.4 ASPack Malicious Binary Scan . 58

5.7 PECompact Background . 58

5.7.1 Benign Test With PECompact . 58

5.7.2 PECompact Metasploit Basic Scan 59

5.7.3 PECompact Metasploit Opcode Scan 60

5.7.4 PECompact Malicious Binary Scan 60

5.8 Custom Packers Tests . 61

5.8.1 Implementing the custom packer 62

5.8.2 Dropper Tests . 63

5.8.3 Test with benign application . 63

5.8.4 Final packer test with Metasploit binary 64

5.9 Reports . 64

5.9.1 Existing Packer Reports . 64

5.9.2 Custom Packer Reports . 65

5.10 Summary . 66

6 Evasion : Encrypters 69

6.1 Introduction . 69

6.2 Hypothesis . 69

6.2.1 Goals . 69

6.3 Tests . 70

6.4 Existing Encrypters . 70

6.5 Hyperion Background . 71

6.5.1 Benign Test . 71

6.5.2 Baseline Test . 71

6.5.3 Hyperion Baseline Scan with Opodes 72

6.5.4 Malware Test . 72

6.6 PEScambler Background . 73

6.6.1 Benign Test . 73

6.6.2 Baseline Test . 73

6.6.3 PEScrambler Baseline Scan With Opcodes 74

iv

6.6.4 Malware Test . 74

6.7 Custom Encryptor . 75

6.7.1 Baseline Test . 75

6.7.2 Baseline With Opcodes Test . 76

6.8 Summary . 76

7 Evasion : Combination 79

7.1 Introduction . 79

7.2 Hypothesis . 79

7.2.1 Goals . 79

7.3 Tests . 80

7.4 Pack-First Tests . 81

7.4.1 UPX - Hyperion . 81

7.4.2 UPX - PEScrambler . 82

7.4.3 ASPack - Hyperion . 82

7.4.4 ASPack - PEScrambler . 82

7.4.5 PECompact - Hyperion . 83

7.4.6 PECompact - PEScrambler . 83

7.5 Encrypt-First Tests . 84

7.5.1 Hyperion - ASPack . 84

7.5.2 Hyperion - PECompact . 84

7.5.3 Hyperion - UPX . 85

7.5.4 PEScrambler - ASPack . 85

7.5.5 PEScrambler - PECompact . 85

7.5.6 PEScrambler - UPX . 86

7.6 Summary . 86

8 Conclusion 89

8.1 Introduction . 89

8.2 Chapter Summaries . 89

8.3 Research Goals . 90

8.4 Future Work . 91

8.5 Conclusion . 92

References 93

Glossary 103

Appendices 104

v

List of Figures

3.1 Scan Process . 34

vi

List of Tables

2.1 Packer Early Release Listing . 22

3.1 Custom Scripts Used For Testing . 36

4.1 Expected Test Case Outcomes . 38

4.2 Benign Baseline Scan . 39

4.3 Scan results for NetCat using precompiled binary 41

4.4 Netcat scan results with custom compiled binary 42

4.5 Metasploit Template Original Scan Results 44

4.6 Scan Details For Metasploit OP Binary . 45

4.7 Metasploit Template Custom Build Scan Results 46

4.8 Metasploit Custom Built Template Scan With Embedded Opcodes 46

4.9 Malware selection choices . 47

4.10 Base Zpchast Scan . 48

4.11 Base Zbot Scan . 48

4.12 Base Sality Scan . 48

4.13 Keylogger Scan Results . 50

4.14 Antivirus Binary Test Order . 50

5.1 Packers Tested . 52

5.2 Comparison Against Original Baseline Detection Rates 53

5.3 Comparison Against Original Baseline Detection Rates 54

5.4 UPX comparison of Packed vs Original Detection Rates 54

5.5 Common antivirus engines across all three malicious binaries 55

5.6 ASPack Basic Scan . 56

5.7 ASPack Basic Scan . 56

5.8 Comparison Against Original Baseline Detection Rates 56

5.9 ASPack Opcode Scan Summary . 57

5.10 ASPack AV Scan Results . 57

5.11 Comparison Against Original Baseline Detection Rates 57

vii

5.12 ASPack comparison of Packed vs Original Detection Rates 58

5.13 PECompact Basic Scan Summary . 59

5.14 PECompact basic scan results . 59

5.15 PECompact Opcode Scan Summary . 60

5.16 PECompact Opcode Scan Antivirus Results 60

5.17 PECompact comparison of Packed vs Original Detection Rates 61

5.18 Common antivirus engines between Malicious binary 1,2,3 with PEcompact 61

5.19 Dropper Type Pros vs Cons . 62

5.20 Benign Application Scan Results . 63

5.21 Benign Application AV Scan Results . 64

5.22 Metasploit Scan Details . 64

5.23 Metasploit AV Detection Test Results . 64

5.24 Detection Rates Side By Side Summary . 66

6.1 Encrypters to be tested . 71

6.2 Hyperion Benign Scan . 71

6.3 Baseline Encrypted Scan with Hyperion 72

6.4 Exploit Enabled Baseline Encrypted Scan with Hyperion 72

6.5 Zeus bot Malware Scan with Hyperion . 72

6.6 PEScrambler Benign Scan . 73

6.7 Baseline Encrypted Scan with PEScrambler 74

6.8 Exploit Enabled Baseline Encrypted Scan with PEScrambler 74

6.9 Baseline Scan With Custom Encrypter . 76

6.10 Baseline Scan With Opcodes . 76

6.11 Encryption Comparison Summary . 77

7.1 Expected Goals For Pack First Tests . 80

7.2 Expected Goals For Encrypt First Tests 80

7.3 Listing of Pack First Tests . 81

7.4 Summary Table For Pack First . 83

7.5 Listing of Pack First Tests . 84

7.6 Summary Table For Encrypt First . 86

1 Metasploit UPX OP Scan Results . 105

2 Malicious Binaries Packed with ASPack . 106

3 Malicious Binaries Packed with PECompact 106

4 Malicious Binaries Packed with Custom Packer 106

5 Malicious Binaries Packed with PEScrambler 106

6 Baseline Scan with UPX . 106

viii

7 Baseline Scan with UPX Details . 107

8 Baseline Scan with ASPack . 107

9 Baseline Scan with UPX Details . 107

10 Baseline Scan with PECompact . 107

11 Baseline Scan with UPX Details . 107

12 Results From Dual Scanning Test Binaries with UPX and Hyperion 108

13 Results From Dual Scanning Test Binaries with UPX and PEScrambler . . 108

14 Results From Dual Scanning Test Binaries with ASPack and Hyperion . . 108

15 Results From Dual Scanning Test Binaries with ASPack and PEScrambler 108

16 Results From Dual Scanning Test Binaries with PECompact and Hyperion 109

17 Results From Dual Scanning Test Binaries with PECompact and PEScrambler109

18 Results From Dual Scanning Test Binaries with Hyperion and PEScrambler 109

19 Results From Dual Scanning Test Binaries with Hyperion and PECompact 109

20 Results From Dual Scanning Test Binaries with Hyperion and UPX 109

21 Results From Dual Scanning Test Binaries with PEScrambler and ASPack 110

22 Results From Dual Scanning Test Binaries with PEScrambler and PECompact110

23 Results From Dual Scanning Test Binaries with PEScrambler and UPX . . 110

24 Custom Built Template Scan . 110

25 Basic Metasploit Template Scan . 111

26 UPX OP Code Execution Scan Results . 111

ix

Chapter 1

Introduction

1.1 Background

Antivirus software has become one of the largest commercial industries in regards to

computer security with an estimated 50 antivirus products competing to protect the end

user. This boom has been born largely out of the virus arms race which began in the

late 1980s (Moore et al., 2009, Hsu et al., 2012, VirusTotal, 2014). During this period,

virus authors and antivirus companies fought aggressively: the malware authors fought

to gain as large an infection base as possible while the antivirus companies fought to

remove these viruses (once they were infected) or to prevent them from infecting the end

user’s system in the first place. In response malware authors actively started preempting

antivirus companies detecting their malware by using scanning services (Krebs, 2009).

While antivirus companies have become successful at cleaning infected systems, the shift

has moved toward prevention rather than cure (Moore et al., 2009). This change from

curing a system of its infection to preventing the infection in the first place stems from

the complexity involved with current malware. Even after successful removal it can’t

be guaranteed that the system is completely disinfected and there always remains the

possibility that the malware modified the system in a way the antivirus company was not

aware off.

The reasoning behind this (being that since the antivirus companies do not have access

to source code for a piece of malware) it cannot accurately say that it has cleaned an end

user’s system to the extent that the system is in the same clean state it was before the

attack. Furthermore, once a piece of malware is able to get access to an end user’s system,

it is not beyond their capability to disable an antivirus engine without alerting the end

user (Alsagoff, 2008). This, in turn, renders the antivirus product ineffective at protecting

against further future threats.

To get around the protection that the antivirus engines developed to protect end users,

1

malware authors changed the way the malware was packaged and distributed. In response

to the subsequent modifications by antivirus authors, a number of evasion techniques

were evolved until a new evasion technique was developed. The techniques employed by

malware authors during the early 1990s are still in use today and will be discussed in

further detail in section 2.5. While these techniques have remained fairly unchanged,

very little formal research has been completed in the area of antivirus evasion analysis.

The research presented in this work aims to test these techniques on modern systems and

evaluate their effectiveness against modern antivirus engines.

1.2 Research Question

The purpose of the research documented in this thesis is to investigate whether binaries

which exhibit known virus-like evasion techniques can prove to be effective against modern

antivirus engines using on-demand scanning techniques. Furthermore, the research attempts

to determine if the antivirus applications react to the presence of the evasion technique

instead of the malicious code embedded within. Chapters 5, 6 and 7 are dedicated to

exploring the different methods of testing the evasion techniques. The effectiveness will

be evaluated on a per chapter basis and goals will be defined as to what is expected from

the technique being evaluated. Each chapter will also undertake to identify if the evasion

technique targeted or the malicious code is being detected by the antivirus engines.

1.2.1 Hypothesis

It is expected that the evasion techniques being tested as well as the binaries being

tested will exhibit certain signatures that antivirus engines have already recorded. These

signatures are what will be detected and once modified by an evasion technique will

allow the binary being tested to pass undetected by the antivirus engines. This will

be demonstrated by using known clean binaries and applying an evasion technique. It

is expected that once applied, the antivirus engines will detect the benign binary as

malicious. This would indicate that the antivirus engines are detecting the evasion

techniques based on static signatures instead of the actions performed by the evasion

technique.

1.3 Limitations

One of the limitations of performing research into older malware, and the techniques used

to evade antivirus engines, is the absence of academic research in this area. As such,

many of the sources are taken directly from the ‘Virus Exchange (VX) Scene’ and the

2

work that was published by these groups (Herm1t, 2002). The VX Scene is the term

applied to various groups that participated in the art of writing malware. These groups

would share information between each other via Electronic Text Magazines called E-Zines

(Knight, 2005). It is from here, that a fair amount of information will be referenced, as

this is considered the source from which virus authors got their ideas and shared findings

and techniques on building the latest malware (Thompson, 2004). A further limitation is

not being able to test polymorphic and more advanced evasion techniques that are more

dynamic. It is hoped that further research performed in this area will be able to focus

in on this area as it has significant potential to advance the field of antivirus evasion.

The research will focus primarily on the encryption and packing techniques - as they are

the only non-dynamic and evolving techniques. The last mentioned limitation is that of

constrained resources (of both time and money) required to explore the area of building a

sophisticated, custom malware lab and the automation of this process for future research.

These constraints will be discussed in section 4. Further the tests will only be performed

on windows based malware and does cover testing mobile or linux based malware.

1.4 Conventions

URL Referencing: During the course of the document there are instances in which a

URL link needed to be included. Due to the length of certain URLs they will be included

in the appendix and cross referenced via the footnotes on the relevant page.

Text Highlighting: Throughout the rest of the document commands that needs to be

executed will be emphasized using italics and where required the output will be displayed

in bold text. Output that is greater than a single line of 80 characters will be put into

tabular form.

Hashes: Throughout the rest of the document binaries will often be listed by the output

of a hash function against the binary. This is performed as concrete means of referencing

a binary. If for example the binary is renamed while its contents remain the same, the

cryptographic hash will remain the same. The hashing function used against the binaries

in the rest of this document is the SHA256 function, which provides a sufficient level of

entropy that a collision will not occur when hashing two binaries. To save space in the

rest of the document the results from the hashing will be reduced from 64 characters

to 12 characters, this reduction will be indicated by ellipses. When performing these

reductions, care was taken to ensure that there are no duplicate hashes which could result

in confusion.

3

1.4.1 Malware Classification

There are a number of terms that need to be explained in detail regarding the classification

of malware. In general this document will refer to trojans, viruses or worms when referring

to malware. These terms will be explained in further detail in section 2.2 under malware

classification.

1.5 Document Structure

The remainder of the document is structured as follows:

Chapter 2 covers the categories of evasion techniques that have been used in the past

as well as those that are still currently in use. The chapter will begin with a high level

overview of attributes that define each category. The rest of the chapter will further

detail the evasion techniques. Some details covered include when the technique was

first detected and if the evasion technique is an evolution of a previous technique, or

a new technique. The chapter deals with each of the scanning techniques, which will

usually relate directly to an evasion technique used by malware. This will allow us to

identify how the viruses evolved and how the techniques that were implemented drove

the countermeasures antivirus engines used for scanning. We will observe that certain

techniques will fall away and are replaced by newer methods.

Chapter 3 discusses the building of the laboratory that will be used to automate and

streamline the process of testing antivirus applications. This also covers how the binaries

will be submitted as well as how the results are stored.

Chapter 4 explains how the antivirus engines will be tested by using a Black Box

approach of submitting binaries which have a known state and then monitoring the results

returned by the antivirus applications.

Chapter 5 focuses on the testing of the packer evasion type and its effectiveness against

antivirus engines.

Chapter 6 covers the testing of the encryption evasion type and its effectiveness against

antivirus engines.

Chapter 7 combines the efforts from the two previous chapters to determine if combining

these evasion methods can result in a greater reduction of antivirus detection rates.

4

Chapter 8 presents the results from the preceding three core chapters as well as a

proposal for future work.

5

Chapter 2

Literature Review

2.1 Introduction

This chapter begins by introducing some common terms that will be used in the rest

of the document in section 2.2. After covering the basic terms used in the document,

the chapter covers defensive measures used by malware to protect themselves from being

analysed in section 2.4. The chapter then documents the evolution of the known evasion

techniques used by malware authors in subsections 2.6 - 2.10. This is followed up by

discussing the scanning countermeasures implemented by antivirus applications over time

in section 2.11. Once the work on antivirus scanning evolution has been presented, related

work will be introduced in section 2.12. Thereafter, the chapter will be brought to a close

with the conclusion and a brief overview of the work in the next chapter. The following

section begins by dealing with a number of terms which were introduced in chapter 1 and

will be explained in detail.

2.2 Malware Terms

The term malware (short for Malicious Software) covers a broad spectrum of malicious

applications that can be found on a user’s system (Lin, 2008). As such, the research will

focus on the evasion methods used by three specific types of malware, namely: viruses,

trojans, and worms. These are only a few of the terms that are used to classify malicious

binaries, but are the terms that relate to the current work set. Before getting into the

details for each of the terms, it is useful to define what is considered a malicious binary. A

malicious binary is generally defined as any binary application that can affect the end user

system in unintended manner without the user being aware (Kramer and Bradfield, 2010).

The ignorance of the user, as well as the transformation of the system, is an important

6

distinction. System administration tools such as Netcat1, Nmap2 and PSExec3 exist to

manage and secure the systems they manage. Even though these tools but are not built

with a malicious intent, they are often used by attackers to compromise an end user’s

system (Little, 2005). McAfee (2005) describes these tools as being potentially unwanted

programs (PUP) by an antivirus engine to indicate they may cause harm to an end user’s

system.

2.2.1 Trojan

The trojan is a type of non-viral malicious application that takes its name from Greek

mythology (Gordon and Chess, 1998). According to the myth, the Greek Army cleverly

gained access to the trojan city, disguised as an innocuous wooden horse (Gordon and

Chess, 1999, Burgess, 2003). The key feature of a trojan horse application is that

superficially it claims to be a safe or benign application to an end user, but secretly

provides a number of malicious actions to the person or group controlling the trojan horse

application. A trojan is commonly used to deliver keyloggers or a remote administration

tool which would allow the person controlling the trojan to steal data or gain full control

over the end user’s system (Gordon and Chess, 1999). A trojan does not attempt to

spread on its own, instead it masquerades as a harmless application (Gordon and Chess,

1998). By analysing existing trojans, Zolkipli and Jantan (2010) were able to extract six

sub-classifications for trojans. These sub-classifications are:

• Packed trojan

• Dropper trojan

• Downloader trojan

• Clicker trojan

• Gamethief trojan

• Backdoors trojan

For the purpose of this research, the dropper trojan is relevant and will be extrapolated.

The term ”dropper malware” is often used as a synonym for trojans because there is very

little distinction between the two. The dropper classification refers to a trojan that exists

to deliver other malware in the form of keyloggers or system backdoors (Zolkipli and

1http://netcat.sourceforge.net/
2http://nmap.org/
3http://technet.microsoft.com/en-us/sysinternals/bb897553.aspx

7

Jantan, 2010). The dropper trojan is significant to the current research because it is often

used in a multistage form of attack (Funk and Garnaeva, 2013). This multi-stage attack

pattern allows the malware author to gain a foothold on the targeted system and then

escalate to full control (Funk and Garnaeva, 2013). Ramilli and Bishop (2010) say that

the multi-stage attack pattern also allows for the first stage of the attack to be hidden

from antivirus engines much more easily than the second stage attack owing to its smaller

payload.

The term “dropper”, as applied to malware, has recently increased in usage because

of the term being applied to the binary that is distributed in watering hole attacks (Funk

and Garnaeva, 2013). A watering hole attack is an attack in which a legitimate website

is compromised and then used to deliver malicious trojans to a target’s system (Doherty

and Gegeny, 2013). The binary that is dropped to the targets computer is very small and

meant to establish a foothold on the targets computer.

2.2.2 Virus

A virus is usually characterised by a small application that is designed to spread by

injecting malicious code into other binaries (Cohen, 1987). The resultant effect on the

end user’s system is meant to interfere with normal operations. Ször (2005) explains

that viruses tend to affect binary applications and replicate by modifying other binaries.

This is in contrast to worms which replicate as a whole and target systems instead of

applications.

The main purpose of a virus is to replicate and cause as much damage as possible to the

end user’s system or spread a message that the author wished to distribute (Sanok, 2005).

Viruses are not as popular today as they were during the early 2000s and as such, not

encountered nearly as much, this is evident from analysing the malware threat reports

between 2001 and 2014 (Global Research Analysis Team, 2001, Garnaeva et al., 2014)

and observing the increase in trojans in the most popular malware threats sections, while

observing a decrease in viruses decreasing in rank in the most popular threats between

2001 and 2014. While viruses are not as popular as trojans, they did popularize many of

the evasion techniques that will be covered in chapter 2.

The lifetime or generation for a piece of malware varies depending on the malware

being discussed as well as the type of malware. In respect to simple viruses, the lifetime

for a virus refers to how long it was out in the wild and until it was cleaned out by antivirus

software (Kephart and White, 1991). The generation of a virus generally refers to the

version of virus. Each new version of the virus would be considered a new generation.

When covering the more advanced malware in the later sections on polymorphic and

metamorphic malware, the lifetime refers to how long a virus existed in a state in which

8

a single signature could detect that instance of the virus. The generation still refers to

the versions of a virus, where a new version would relate to a new feature being added.

2.2.3 Worm

Weaver et al. (2003) describes a worm as a self-propagating program that attempts

to spread by exploiting vulnerabilities in a computer system (Anderson, 1972). This

ability to self-propagate is what makes a worm particularly dangerous. The danger that

self-propagation poses can also be construed as a weakness of this class of malicious

application. If the systems that the worm targets are patched such that the vulnerability

that the worm exploited no longer exists, the worm will be unable to spread (Staniford

et al., 2002). The countermeasure to stop worms spreading between systems is simply

patching a system as soon as a vulnerability is reported (Kienzle and Elder, 2003, Yu

et al., 2010). Rescorla (2003) demonstrates that even when companies are aware of critical

issues, there is usually a significant lag in the time it takes to patch these systems. This

lag time and inefficiency from companies is what worm authors depend on in order to

gain as large an infection base as possible.

2.3 Malware Defence

With the terms in section 2.2 defined, the following sections provide an explanation for

each of the techniques that malware authors have employed in the past to defend their

creations. The techniques are sequenced historically from oldest to most recent.

2.4 Code Armouring

Code Armouring is the process of obfuscating and/or altering code in order to prevent it

from being analysed. While armouring itself is not, by design, specifically used to evade

antivirus engines, it is used to prevent automated and static analysis of the code, which

will result in a prolonged lifetime for the malware (Sikorski and Honig, 2012, Quist and

Smith, 2007).

Before getting into the specifics about the techniques malware authors employed

to evade antivirus applications, it is worth noting that most malware authors will try

to harden their malware through the use of code armouring to prevent analysis. The

techniques used by malware authors to prevent analysis will differ from author to author,

though most will use a series of obfuscations and traps to prevent debugging and disassembly

(Quist and Smith, 2007). Listed below are areas identified for which code armouring tries

to provide protection (Ször, 2005):

9

• Anti-disassembly

• Anti-debugging

• Anti-emulation

• Anti-VirtualMachine

• Anti-goat

These areas will be briefly explored to provide a deeper understanding as to the

reasoning behind their usage by malware authors. The techniques are dealt with in

the same order that a malware analyst would typically use to analyse a piece of malware

(Harper et al., 2011). Step one: analysing the application in an offline or dormant state.

Step two: moving to an online state, where the application is debugged. Step three,

the final phase: is usually to leave the application in a running state, in order to collect

information about application behaviour the first two steps may have missed.

2.4.1 Anti-disassembly

Anti-disassembly is the process of protecting an application from being disassembled to

determine the internal workings of the application as (Aycock et al., 2006). Sikorski

and Honig (2012) describe the process of anti-disassembly as being commonly achieved

through the use of two groups of techniques. The first group of techniques involves

code obfuscation through dynamic code. This attempts to hide the intent of the code

by dynamically changing the code as it runs. The code could involve incrementing the

data at a specific address by a known value and then jumping to this location after

it is modified. While being analyzed by a disassembler, the code that is modified will

simply look like junk instructions to the application as it has not yet been changed. This

method of obfuscation is what was used by early viruses that encrypted themselves, such

as the Cascade virus. The second group of techniques largely revolves around attacking

different disassemblers through code and data in the application. By causing the code

in the application to be deliberately misinterpreted, the malware author can cause the

disassembler to display an incorrect view of what the application is doing internally.

2.4.2 Anti-debugging

While anti-disassembly protects an application from static and offline analysis, anti-debugging

is meant to protect an application while it is executing a task (Branco et al., 2012). The

techniques implemented are too numerous to detail here, but are described in great detail

by Branco et al. (2012, Section 3). In general, anti-debugging techniques revolve around

10

attempting to set the application into a debug state prior to the analysts debugger being

attached. Since an application can only be debugged by one debugger at a time, this

generally prevents any run-time analysis from succeeding. The alternative approach is

to check via a number of a system calls which are dependent on the operating system to

determine if a debugger is attached to the current process and then exit if one is detected.

The exact details of how these techniques are implemented will vary between operating

systems and hardware implementations.

2.4.3 Anti-emulation

In conjunction with anti-debugging techniques, malware authors will often implement

anti-emulation techniques in their malware. This is to prevent a malware analyst from

gaining a deeper understanding of the malware when executed on an emulated system

(Konstantinou and Wolthusen, 2008). The use of emulation provides a malware analyst

with the ability to trace the inner workings while the application is running and to

substitute instructions if an instruction is not available for the hardware where the

malware is being analysed. Emulation is a key technique in preventing malware from

running successfully. By emulating the environment of the target system, the scanning

application can reasonably determine if the actions of the code are malicious. After second

generation (introduced later in section 2.11.2) scanners were introduced, emulation played

a significant role in the detection of malware. It is in response to this, that anti-emulation

played such a key point in evading antivirus applications. It should be noted that most

malware that implemented anti-emulation in their code, did so to remain undetected

by the process of not executing their malicious code. While this is important, is it not

a generic enough technique that can be applied to a compiled application and requires

access to the source code of the application.

2.4.4 Anti-Virtual Machine

The anti-vm (anti-virtual machine) defences for malware are very similar to those of the

anti-emulation defence and exist to prevent malware from being analyzed and tested as

explained (Ször, 2005). With virtual machine technology becoming more common thanks

to free applications e.g. QEMU and Virtual Box, more analysts are able to test malware

in the context of a virtual machine. This presents a major and unwanted problem to

malware authors, as the environment is almost identical in every manner to a non-virtual

machine. The means employed to detect virtual machines are similar to those used to

detect debuggers (Dinaburg et al., 2008), in that they either check for a known variable or

attempt to access a restricted piece of hardware that would only be available in a virtual

11

machine (Rin, 2013).

2.4.5 Anti-Goat

Anti-goat defences are currently non-existent since the countermeasure they attempted to

defend against is no longer used. When viruses were more common and file infection was a

common problem, antivirus companies would routinely create “sacrificial goat” type files

that would be purposefully infected (Ször, 2005, Aycock, 2006). Once infected the goat file

could be used to trace the infection path of a virus as well as any other characteristics of

the virus. Anti-goat technology provides protection by detecting that it is being executed

against a goat file for analysis and changes its mode of execution to either a mode of

non-malicious code or attempts to attack the user’s system by corrupting files. A virus

called ”Nexiv Der”, was one of the first viruses to implement the anti-goat protection

mechanism (Ször, 1996). The virus was fairly complex, exhibiting both polymorphic and

multi-partite (the ability to spread through multiple infection vectors) traits, but was not

particularly successful in spreading due to a number of internal bugs.

2.4.6 Code Armouring Summary

While Code Armouring is usually effective in slowing down an analyst from gaining a

deeper understanding of the malware, as soon as the analyst does bypass the defences and

a signature is generated, the malware will forever be detected by antivirus applications

(Brand, 2010, Sikorski and Honig, 2012). It can, as a result, be said that Code Armouring

does not provide an active means of evading antivirus applications, instead it provides a

passive means of defence which can provide it with more time to accomplish the task for

which it was created. The previous subsections also demonstrate that malware authors

are very aware of what methods analysts are employing against their malware and in

response, they are building countermeasures to make the analysts’ jobs harder. A number

of the techniques described above i.e. anti-disassembly and anti-debugging were not built

for malware alone, but were also used by commercial software development companies

to protect intellectual property, though as with malware authors, all this can do is slow

down the person trying to gain access to the intellectual property. The section to follow

will introduce the evolution of active defences as employed by malware.

2.5 Early Malware Defence

Early virus writers did not attempt to evade antivirus applications (Rad et al., 2012)

because the antivirus industry did not yes exist for the consumer market. Instead,

12

specific applications were crafted to either inoculate or remove a virus on a case by case

basis. Since malware did not have a specific antivirus application to evade, most malware

authors attempted to hide their actions from system administrators and users that used

the systems which they attacked.

2.5.1 An Early Example

One of the first viruses that attempted to avoid detection by a user was the Brain Virus

(Hypponen, 2011, Parikka, 2007) which was first detected in 1986 (Hypponen, 2011).

The virus worked by first moving the boot sector to a different part of the disk and then

overwriting the boot sector with the virus. Instead of getting an error message when

trying to load the disk (because of a corrupt boot sector) the virus would intercept the

call and redirect any access to the new boot sector location (OECD, 2009). With this

in place, most users would not know they were infected until the virus showed its alert

message. This alert message was intended to let the user know they needed to contact

the authors for support. While this may seem odd, the Brain Virus was not originally

written as a virus but as an anti-piracy protection scheme that would track users that

used their software without purchasing it (Parikka, 2007).

2.5.2 Response

There was no direct response to the Brain Virus from the antivirus industry, as the number

of viruses in the wild during the late 1980’s did not require a generic method of removal.

Solomon (1993) provides a list of only 8 - 24 viruses that were circulating at the time. To

put this in perspective, this occurred approximately three years after the Brain Virus was

first encountered. The listing also demonstrates that the common method for disinfection

was to simply provide a simple technical walk through to the system administrator who

could then remove the offending application from their system. Although this may have

been the case between 1986 and 1987, by 1988 antivirus companies started forming and

released a number of products aimed at the removal of a number of known viruses.

2.5.3 Evolution

Even though the Brain Virus and others like it did not attempt to evade antivirus engines

they did begin the chain of malware evasion techniques (White et al., 1995, Parikka,

2007). The next technique in the chain came in the form of malware encryption. This

technique (which will be discussed in the next section) is the first documented technique

that actively tried to evade antivirus engines instead of just hiding itself from the user on

the machine.

13

2.6 Encryptors

Before detailing the history and evolution of encryptors, there are a number of points that

need to be brought forward for this section as well as the work in the sections to follow.

Regarding the encryption referred to in this section, as well as the remaining sections, the

encryption being referred to is the encryption of the internals of a binary both at rest and

runtime (Nachenberg, 1997). It is not referring to the encryption of user data, which is a

malicious side effect of a number of malware applications (Young and Yung, 1996).

2.6.1 History

Following the Brain virus, encryption was the first major evasion technique that was

used. Encryption is the process of converting text into a form known as ciphertext which

cannot be understood except by the intended target of the message. The strength of an

encryption technique is largely dependent on the following combination: the size of the

key and the implementation being used as described by Filiol (2004). When dealing with

malware that has been coded to use encryption, malware authors started with a simple

XOR cipher encryption as described in the work by Young and Yung (1996). By using a

simple technique, the margin for error occurring when developing an encryption algorithm

was reduced. Large keys by comparison are easier to build and this in turn, increased

the difficulty of decryption through brute force. An example of this in current malware

is the Gauss malware (Goodin, 2014a,b). The Gauss malware currently has an encrypted

payload which malware analysts have not yet been able to decode. While the analysts

working on the malware have worked out the encryption scheme utilized, they have not

been able to force the key or even guess the key, simply because the key is so large and

unique . Even though the encrypted payload is not being used to evade antivirus engines,

it does prevent malware analysts from determining the final target of the malware.

2.6.2 An Early Example

This technique was first noticed in the wild around the year 1986, in the event of the

Cascade virus (Hypponen, 2014). The virus operated by encrypting the body of the virus

with an encryption scheme of the author’s choice. The Cascade virus implemented a very

simple means of encryption called an XOR cipher. The XOR cipher, also known as an

additive cipher, works by adding a cipher key to the plain text to produce ciphertext

(Tutte, 2000). To extract the plain text from the ciphertext, the key is subtracted from

the text, which results in the output of plain text again.

The XOR cipher does present a problem. If the key is small enough, a cryptanalyst

could use statistical analysis of the text to determine the plain text. To prevent this, the

14

Cascade virus attempted to make the encryption stronger by using a dynamic key for the

encryption process. This dynamic key that was used is based on the length of the body

of code. This meant that the key used by the virus would change for each binary file

that it infected. Additionally, the Cascade virus was also one of the first of a few viruses

that implemented Code Armouring. The armouring of the code meant that the job of

the malware analyst tasked with analyzing the virus was made more challenging, which

in turn meant that the virus had an extended lifetime. The Cascade virus implemented

armouring by using the stack pointer which would change as the application ran as part

of its cipher key.

2.6.3 Response

Antivirus vendors were able to adapt fairly easily to the rise of encryption in malware.

They were able to counter the increase of encryptors by detecting the decryption routines

used by the malware. The early method of detecting decryption routines (that will be

covered in further detail later in section 2.11.2) is through the use of entropy detection

which is introduced as the second generation of antivirus detection methods (Davis, 2009).

This was not used widely by the antivirus engines of the time, but it has become more

prevalent in antivirus engines today since the current processing power available to modern

antivirus engines is significantly higher than the past. The entropy calculation can execute

substantially faster, making this method of detection notably more feasible. The negative

result of entropy detection is that it is prone to false positives if a binary is responsible

for a significant amount of dynamic changes to itself.

2.6.4 Evolution

Encryption is the first method that was built specifically to allow a malware to evade an

antivirus engine. The technique itself had a sort of internal evolution as malware authors

attempted to make their encryption routines even harder to detect and implemented more

complex encryption routines. Unfortunately, because encrypted malware always requires

decryption before it can execute its code, this decryption routine becomes a weakness as

it is a single point of failure (detection). Oligomophism which is the next technique in

the chain of evasion techniques will attempt to fix this problem and will be explained in

the next section.

15

2.7 Oligomorphism

Oligomorphism, which is part of the encryptor family of evasion techniques, was a direct

result of antivirus applications being able to detect the decryption stubs used by viruses

at the time (Ször, 2005). These decryption stubs would still allow the viruses to employ

encryption to hide the body of the virus but would generate different decryption stubs

each time it spread. These decryption stubs would employ different looping techniques

that, in turn, generated different byte code that looked different each time a new copy

was created. This meant that antivirus engines could not detect the decryptor stub with

the use of static signatures (Schiffman, 2010, Rad et al., 2012).

2.7.1 An Early Example

The first time oligomorphism was detected was in the Whale virus in the 1990s (Skulason,

1990b, Ször, 2005, McAfee, 2014a). While the virus was an evolution of the usual

encryption/decryption technique, it still suffered from a flaw in its design. The fatal flaw

was simply the limited number of decryptors used by viruses that employed oligomorphism

(Ször, 2005, Schiffman, 2010). This meant that with a sufficient number of runs, a malware

analyst could generate signatures for all the decryptors a virus author had implemented.

While this may seem like a simple enough solution and method for detection, viruses

like the Memorial virus had 96 different decryption stubs built into it, which meant 96

generated signatures needed to be generated as noted by Konstantinou and Wolthusen

(2008).

2.7.2 Response

The antivirus vendor industry did not need a specific method to manage the detection

of oligomophism evasion techniques as the signatures generated by the decryption stubs

were still static for most of the viruses. In the instances where there were multiple

decryption stubs, the antivirus companies iterated as many decryption stubs as possible,

and made a record of their signatures. With multiple signatures linked to a single piece

of malware, an antivirus engine could still, relatively reliably, detect any malware that

employed oligomophism to hide itself. In certain cases (i.e. Memorial virus) generating

multiple signatures is not a requirement when the signature created is a nearly exact

match. The same applies to creating a wild card signature, as both methods are simply

means of creating generic signatures for malware based on multiple points in a file. A

more detailed discussion on how these detection methods operate will follow in section

2.11.1.

16

2.7.3 Evolution

The use of oligomophism was a step forward in terms of the evasion techniques employed

by malware authors and although the technique served its purpose as an intermediate

solution, it was slightly flawed. Its flaw lay in the limited number of possible stubs

it could generate without bloating the malware. Additionally, the decryption stubs that

were generated lacked a dynamic nature. In response to this problem polymorphic viruses

were built as described in the next section.

2.8 Polymorphism

Polymorphism builds upon and attempts to fix the challenges presented in the previous

section on Oligomorphism. Nachenberg (1996), Konstantinou and Wolthusen (2008)

describe polymorphic viruses as viruses that were able to drastically modify themselves

between each iteration. Later, polymorphic viruses that were detected included mutation

engines. These engines, when implemented correctly, allowed the virus to generate millions

of slightly different iterations of itself (Nachenberg, 1997).

2.8.1 Early Example

The first known record of a polymorphic virus was the V2PX virus which was written as a

research project by Mark Washburn (Rad et al., 2012, McAfee, 2014b). The purpose of his

work was to demonstrate to Antivirus vendors that they could no longer depend on static

signatures to detect viruses. The V2PX worked by inserting random calls to functions

that would not affect its code but would alter how the virus looked to an Antivirus engine

(Lammer, 1990). An example of a function that would not affect the execution of the

code is the NOP instruction. The NOP is a ”nooperation” instruction, it is so named

because on encountering a NOP instruction, the CPU does nothing and moves on to the

next instruction. This instruction provides a malware author with a versatile and simple

way to change the signature of a virus without affecting its internal working operations

(Akritidis et al., 2005).

The key to effective polymorphic viruses, as demonstrated by the V2PX virus, is to

sufficiently change the program so that it retains little to no similarity between iterations.

This was primarily achieved through the use of junk data which performed no function

(as mentioned previously) or it expanded single instructions into multi-line instructions

(Skulason, 1990a, Konstantinou and Wolthusen, 2008).

17

2.8.2 Response

The skeleton detection method of detecting viruses which was created by Kaspersky. The

skeleton method will be elaborated upon in section 2.11.2. This method stripped out

supposedly junk data before scanning a virus. This would allow the antivirus engine to

scan the part of the virus that was actually executed.

2.8.3 Evolution

It should be noted that until that point in time, polymorphism had simply been used to

make the detection of the decryption stubs harder. This meant that for the most part,

the body of the virus that was encrypted would still remain the same. As soon as the

main body of the virus was decrypted, it was possible for an antivirus engine to detect the

virus through its decrypted signature. The only methods of altering themselves employed

by malware authors revolved around the insertion of junk instructions; fake loops; and

fake jump instruction calls. Each of these attempts caused the decryption stubs to either

grow or shrink depending on the current iteration that the malware had spawned. To

overcome this challenge, the malware authors needed to create a piece of malware that

was wholly dynamic in that that would change significantly in how it executed between

each time it infected a binary. This resulted in the release of metamorphic malware which

will be covered in the section to follow.

2.9 Metamorphism

As is the case with each new evasion technique, metamorphism is an evolution of the

idea of polymorphism. While polymorphism attempted to make the decryption stub

difficult to detect, metamorphism attempted to make the virus itself a harder task to

detect without the need to encrypt the virus itself (Konstantinou and Wolthusen, 2008).

Metamorphism has been described as a polymorphic body since the body of the virus

changes from generation to generation (You and Yim, 2010).

2.9.1 An Early Example

The first known attempt at using metamorphism as an antivirus evasion tactic came in

the form of the Regswap virus in 1998 by Vecna (Ször, 2005). The virus implemented

metamorphism by dynamically and randomly changing the registers it used within its

body between each generation. This method of implementing metamorphism with dynamic

registers was only one of the ways in which virus authors implemented metamorphism.

Other methods included:

18

• Garbage Code Insertion: The method entailed inserting garbage code by a

metamorphic engine which would not change the functionality of a programme

but defeat pattern based scanning. This is the old technique used by polymorphic

viruses, while it was generally avoided there are still some early metamorphic viruses

that used it.

• Subroutine Reordering: The Win32/Ghost was one of the many viruses that

implemented this method for dynamic code generation (Ször and Ferrie, 2001). This

method of metamorphism differs from the garbage code insertion in that the virus

code between each version is the same (Ször and Ferrie, 2001). To make the virus

seem different between infections, it changed the order of the code in the binary

which resulted in a different signature for the virus. Branch tracing is used as the

method of detecting this type of virus. Since the code base is always the same,

the binary would always have the same branching paths which could be used as a

signature to identify the virus (Radhakrishnan, 2010).

• Instruction Replacement: This practice was implemented by a number of the

mutation engines. This usually involved changing long form calls of an instruction

into many smaller calls. The Win95/Bistro virus is one of the many viruses which

used this (Ször, 2000).

• Code Integration: This process was only really implemented by the Zmist virus.

Ször and Ferrie (2001) demonstrate that the Mistfall engine, which powered the

virus, was able to decompile a binary and insert its required code into the binary.

Once it had added the code it needed, the virus would rebuild the binary, so that

it functioned normally. This was not seen in any other metamorphic virus of the

time, and speaks to the advanced nature of the virus.

Aside from the Regswap virus that was discovered in the early stages of metamorphic

virus evolution, there are two other viruses that have to be mentioned due to the sheer

complexity of their code and advanced techniques implemented.

The Zmist (Z0mbie.Mistfall) virus, which was first introduced under the topic of Code

integration, was the first of the viruses that broke new ground in terms of the advanced

functionality implemented by a virus. The code integration which is the most significant

and advanced feature of this virus, set the virus apart from all other viruses at the time

by allowing it to integrate with a host binary without the need to change the original

entry point of the host binary (Ferrie and Ször, 2001). The virus also implemented Code

Armouring techniques by hiding the running process and spawning a new copy of the host

application so that it would remain undetected. The virus had no other aim other than

19

to spread as much as possible and it did so by simply searching for exe files and if, they

matched the infection parameters set by the virus, they would be infected.

The second virus that showed significant innovation in the metamorphic space was

the Win32/Simile virus (Ször and Ferrie, 2002). In a similar method to Zmist, Simile did

not change the original entry point of the application it infected and it also implemented

significant Code Armouring techniques which prevented researchers from gaining a full

understanding of the virus. To further complicate the analysis, the virus is estimated

to have 14000 lines of code, of which a major portion was dedicated to its internal

mutation engine. Notable work has been done by Ször and Ferrie (2002), Konstantinou

and Wolthusen (2008) on the Simile virus, describing how it implements its mutation

engine as well as how the virus manifests itself to the user.

2.9.2 The Rise of Virus Toolkits

While metamorphism remains an effective method for evading antivirus engines, the

biggest challenge facing its implementation was that it was relatively difficult to build. As

a result, virus authors who had advanced virus building skills would construct polymorphic

toolkits that would allow others to simply plug-in their virus code and have it circumvent

most antivirus engines with a higher level of accuracy (Pearce, 2003). One of the first

toolkits that started this practice of selling antivirus evasion software, was a toolkit called

the Mutation Engine (Pearce, 2003). After the release of the Mutation Engine, a few

more toolkits were released, the details of some of these engines are listed below:

• NuKE Encryption Device (NED) : NED4 was created by the author of the

Virus Creation Lab and released in October 1992 (Beroset, 1993, Fuhs, 1995).

• TridenT Polymorphic Engine (TPE): The first version of TPE5 was released

in December 1992, with four subsequent versions being released to fix a number of

bugs. Around the time of it release, viruses created with this specific engine were

almost undetectable (Fuhs, 1995).

• Dark Angel’s Multiple Encryptor (DAME): DAME6 was released in June 1993

as a response the NED engine which was released by the competing group known

as NuKE. The engine was published with fully commented source code instead of a

compiled format (Angel, 1993, Fuhs, 1995).

4http://vxheaven.org/vx.php?id=en02
5http://vxheaven.org/vx.php?id=et06
6http://vxheaven.org/lib/static/vdat/engine1.htm#DAME

20

2.9.3 Response

The antivirus vendors had been slowly building up their defences against malicious software,

but were only able to detect malware that employed the metamorphic evasion techniques

based on the payload the malware carried (Ször and Ferrie, 2002). The payloads themselves

were again only detected in cases where the payload was destructive in nature. If the

payload implemented an unknown exploit, it is very likely that it would evade all antivirus

engines entirely. In fact, authors preferred to get recognized for their elegant work instead

of being acknowledged for the malicious consequences that could result - as noted by the

author of the Simile virus (Petik, 2002).

2.9.4 Evolution

The metamorphic evasion technique itself did not have any further evolution in its own

right. This is because for the most part, analyses of various metamorphic techniques

have shown that, when implemented correctly, the malware will evade antivirus engines

entirely. The challenge lies with implementing a metaphoric shell in order to wrap a

generic piece of malware. It is extremely complex to write a metamorphic virus even

with the internal knowledge of how the virus should work. Extending this to a generic

piece of malware, where there is no foreknowledge, is entirely error prone, as the malware

may already have Code Armouring techniques in place to prevent modification, or be

encrypted in which case any modification would break the decryption process.

2.10 Packers

Packers were not originally built for use in malware, instead they were meant to compress

applications so that they could be transferred faster over the Internet (Harper et al., 2011).

The use of packers increased once malware authors discovered that packers could easily

allow their existing code to evade antivirus engines (Perdisci et al., 2008). It is important

to note that this would usually only work against antivirus engines that scanned for viruses

on access (O’Kane et al., 2011). Heuristic detection (which would come along at a later

time) and would allow antivirus engines to detect the viruses after being unpacked.

A packer is normally built in two parts, this is similar to the way encryptors operate.

The author of the malware creates a small packer binary which will pack a target binary

of their choice. Once the target binary is packed, the decryption stub is injected into

the final packed binary. This is similar to the way encryptors originally worked (Brulez,

2009). The entry point for the binary is then changed, so that the decryption stub is

run first so that the application can be extracted into its original form and then run as

21

normal.

Packers still suffer from the same issues as the early encryptors did: the unpacking

stubs are easy to detect (O’Kane et al., 2011). Once an antivirus application detects a

packer stub, it usually flags an application as malicious regardless of the packed content.

In most cases this means that many legitimate applications are falsely flagged. In order

to prevent false flagging, certain antivirus vendors will take the extra step and run the

application through an emulator when a packer stub is detected. This will allow the

application to run and allow the antivirus to detect malicious behavior.

Oberheide et al. (2009) point out that packing is often more of a time hindrance

to analysts instead of a deterrent. It requires a time consuming manual analysis to

be performed against them before details about the malware can be extracted. The

similarities of packers employing similar techniques with slight modifications to them as

the authors find issues with the original technique is described by Guo et al. (2008) in

which they discuss the problem facing the security industry having to deal with packers.

The extent to which packers are effective was demonstrated by Oberheide et al. (2009)

with his service PolyPack (Oberheide et al., 2009): an increase of 4.83 times better evasion

was recorded when compared to the baseline binaries that were presented.

2.10.1 An Early Example

A brief listing of the early packers and when they were released can be seen in Table

2.1 (Brulez, 2009). Two of the packers seen in Table 2.1 UPX and PECompact, are

still available and actively maintained. Based on the estimated release dates, it can be

concluded that UPX and PECompact have been in circulation for approximately fifteen

years. This will be noted when they are used for testing the packing evasion techniques

in Chapter 5. Unfortunately, aside from the release dates for early packers there is little

recorded history of how the packers and encrypters in table 2.1 worked.

Table 2.1: Packer Early Release Listing

Packer Name Version Release Date

Stone PE Crypter 1.0 23 December 1997

PECRYPT32 1.01 22 January 1998

PELOCKnt 2.01 7 April 1998

Petite 1.0 22 May 1998

UPX 0.50 3 January 1999

PECompact v0.91 beta 31 July 1999

22

2.10.2 Response

Guo et al. (2008) notes that, as packers evolved, antivirus engines started detecting

the packer signatures (where present) as malicious. As a consequence, many packed

executables appeared as malware. While there have been a number of novel approaches

proposed to rectify this problem of simply flagging the stub as malicious (see Guo et al.

(2008), Royal et al. (2006), Kang et al. (2007)), it has proven difficult to verify which

approaches are in use by antivirus companies since the process that triggers these methods

rely on runtime detection.

2.10.3 Evolution

Packers in themselves have not undergone any vast changes from what was originally

implemented. Most of the efforts have been focused around Code Armouring instead of

antivirus evasion. Roundy and Miller (2013) have provided a detailed explanation of the

methods implemented by packers.

2.11 Malware Detection Mechanisms

This section aims to present some of the methods employed by antivirus scanners to detect

malware. These mechanisms will be discussed in direct relation to their related evasion

techniques. According to Ször (2005), the various detection mechanisms can primarily be

classified into two generations of scanners, namely first and second generation scanners.

2.11.1 First Generation Scanners

The first generation of scanners were developed and mainly used during the evolution of

virus writing during the early 1990s (Ször, 2005, Bustamante et al., 2007). These methods

of detection were focused around different means of signature detection. Consequently,

while they were useful at the time when they were invented, they quickly fell away to

more efficient methods of detection. The list below is a reduced list of the known antivirus

methods of scanning and indicates the order in which they were introduced to antivirus

applications. The sequence is based on the work by Ször (2005).

• String Scanning: String scanning is one of the oldest known methods of detection

(Kephart and Arnold, 1994, Ször, 2005). It works by having an antivirus company

record a known unique string that would occur in a virus and then it distributes it as

part of their signature database (Thengade et al., 2014). The antivirus application

on the end users computer system subsequently scans all applications for this string

23

pattern which would, in turn, indicate the presence of a malicious application. String

scanning is still used in modern antivirus applications but to a lesser extent as there

are better alternative methods available. This method of scanning is limited by the

fact that it can not detect new viruses which have not had their signature recorded

(Thengade et al., 2014). The string scanning method of detection also means that

dynamic viruses that are able to change their signature can bypass this means of

detection fairly easily (Thengade et al., 2014).

• Wildcards: The Wildcard scanning method is an improvement of the basic string

scanner (Ször, 2005, Thengade et al., 2014). Where the string scanner looks for a

fixed string to match, the Wildcard scanner looks for string matches but allows for

variations in the signature. This primarily allows the antivirus engine to deal with

multiple variants of a virus creation group (Thengade et al., 2014). The types of

Wildcards vary from simple byte replacements to byte ranges and in the case of

some scanners, regular expressions. This method of scanning suffers from the same

limitations as the Simple String Scanning in that it is limited to detecting viruses

that matches the search pattern (Thengade et al., 2014).

• Bookmarks (Check Bytes): The Bookmark method of detection is more of a

modification to the two previous detection methods presented above. The changes

to the simple scanning and wildcard are implemented to make them more accurate

which in turn ensures that there are fewer false detections (Ször, 2005). The

Bookmark method of detection records the location of the string signature as an

offset from the start of the virus. In this manner, when the antivirus engine needs to

look for a signature, it can jump to a specific location. Alternatively, the antivirus

application can compare the length from the start of the virus body to the signature

that was found in order to determine if a virus or a false positive was found (a false

positive would have a different bookmark length). By looking at specific locations

for a signature the antivirus application does not need to scan the entire application,

this in turn speeds up the scanning process (Rad et al., 2011).

• Top and Tail Scanning: Top and Tail scanning refers to the locations that an

antivirus engine would scan (Rad et al., 2011). Top refers to the header of a file

and is usually considered (at most) to be the first eight kilobytes of a file. The

tail conversely refers to the ending of a file, and is also generally limited to eight

kilobytes (Ször, 2005). This type of scanning was implemented to increase the speed

at which the antivirus could perform since (as computers grew more powerful) the

biggest increase came from large file sizes as well as slow disks. By searching sixteen

kilobytes of data only versus two megabytes of data, an antivirus engine could cover

24

many more files in the same time frame it would take to scan a single file. It should

be noted that this method of scanning still requires the application to look for a

fixed string or Wildcard signatures in the blocks of the application it scanned (Ször,

2005, Rad et al., 2011).

• Fixed Point and Entry Point Scanning: Fixed point and entry point scanning

represents the evolution of the techniques listed above. These two methods still

work on signature detection, but instead of scanning chunks of data and hoping

to find a signature, the fixed point scanning simply looks at exact points in an

application for a signature (Ször, 2005, Rad et al., 2011). Entry point scanning

took this idea a bit further and parsed the binaries header and looked for the entry

point location (the entry point is the location of the code which bootstraps and

launches an application). Once this location was found it was scanned for known

virus signatures. It should be noted that these techniques worked because viruses

would often replace the entry point for an application to redirect the control of the

application (Xu et al., 2007).

• Generic Detection: Generic detections were mainly used for variants of a known

virus and generally consisted of multiple previous techniques with some code to tie

the techniques together (Ször, 2005). For example: an antivirus company might use

entry point detection to get to the initial area where the virus is located and then

search for Wildcard data in the area around this entry point.

2.11.2 Second Generation Antivirus Scanners

The second generation of antivirus scanners is a general grouping applied to the detection

mechanisms that was implemented to deal with the rise of dynamic evasion techniques

(Chien and Ször, 2002, Bustamante et al., 2007). The following list outlines the major

techniques which the second generation of scanners used.

• Smart Scanning: Smart scanning was the first of the techniques to be developed

as a response to malware authors distributing malware kits which would allow a

prospective malicious user to generate a custom virus based on the variables setup

and available to the malware kit (Ször, 2005, Leder et al., 2009). The way in which

most malware generation kits worked was by changing the order of function calls

or generating random names and inserting junk data into the calls. In this manner,

every application would look different but at its core was the same. Smart scanning

worked by ignoring all the junk data and looking for signatures that matched bits of

code that was fundamental to the application. This technique was also significantly

25

used to scan scripts that would have a malicious outcome. Even if the script added

spaces and new lines, the smart scanner would ignore these and look for the code

sections and then scan code.

• Skeleton Scanning: Skeleton scanning is a method of scanning invented by Eugene

Kaspersky (Ször, 2005)and works in a similar method to smart scanning. It discards

non-essential code and whitespace. Instead of then looking for a signature in the

remaining code, the scanning application built a signature of how the code was

structured. This code structure was then compared to previous known structures.

This process of detection further enhanced the ability of the scanner to detect any

variants of viruses. By defining what was the fundamental to the virus in a signature,

the antivirus company could easily ignore any new code added to a variant.

• Nearly Exact Identification: Nearly exact identification is similar to generic

detection in that a malware analysts would define multiple signatures for a virus

that would allow for partial matches (Ször, 2005). This method of scanning was

required, in the case of overwriting a virus, for antivirus applications to determine

if the application could successfully disinfect an application. Instead of relying on a

single Wildcard scan, the signatures would be comprised of a number of Wildcards

and static strings. An example of how this would be used is when a variant of a

virus is found. The signatures might match but because of an invalid checksum,

the application will not attempt to repair the software as it could cause further

problematic issues.

• Heuristic Analysis: Heuristic analysis relies on being able to monitor an application

and then make a decision if its malicious or not (Ször, 2005, Gryaznov, 1999).

Unfortunately, Heuristic analysis is not reliably accurate and subsequently results

in a large number of false positives which does not benefit the end user (Gryaznov,

1999).

• Entropy Detection: Entropy detection is relies on calculating the entropy of an

application and making a decision based on the level of entropy found in the code.

This method is often used when checking for packers and encryptors since these

types of evasion techniques result in applications with a large amount of random

data that only becomes valid once the application is executed (Lyda and Hamrock,

2007). This large amount of random data results in a high entropy scores which is

why entropy detection was so useful against encryptors and packers (Shafiq et al.,

2009, Alme and Eardly, 2010, Saleh et al., 2014).

• Filtering: Filtering cannot be construed as a method of detection as a standalone

26

model, rather it is accepted as a modification to the way in which applications would

scan for a virus (Ször, 2005). It worked by limiting the number of files that needed

to be scanned based on the type of application or data that could be infected by a

virus. As a result, if a virus affected the boot sector the antivirus application would

not need to scan all the users’ files to remove the virus and further limit where the

virus originated based on the type of applications the virus affected.

• X-Ray Scanning: X-Ray scanning is another modification of the usual methods of

scanning. X-Ray scanning attacks the encryption and packing systems implemented

by malware authors and then checks the decrypted or unpacked data for a known

signature (Alme and Eardly, 2010). It is known as the X-Ray technique because it

allows the antivirus application to look into the software for signatures that might

not otherwise be easily detectable.

• Code Emulation: Code Emulation is the last of the second generation scanning

techniques and is also possibly the most complex technique. The antivirus application

would emulate a number of instructions that the Central Processing Unit implemented,

and then start tracking these instructions (Alme and Eardly, 2010). By doing this,

the antivirus application would be able to determine if the application is malicious

or not based on the calls it was making as well as the areas of memory with which

it was interacting. This method of detection is very closely related to Heuristic

analysis, but looks at the application on a much lower level.

2.12 Related Work

The taxonomy of techniques that are used to evade antivirus engines primarily stem from

the seminal work by Ször (2005). He goes into detail explaining how each of the techniques

originated and elaborates on their level of effectiveness. Previous work completed in the

area of testing antivirus engines showed that there was a lack of research in this area

(Christodorescu and Jha, 2004). Their research was initiated after the conclusions of

Gordon and Ford (1996) indicated that there is a lack of testing processes and means

of safe testing of viruses. Their research also demonstrates methods that are slightly

different to ours, in that the services used in this research were not available. As a

result, the antivirus scanning was performed by manually submitting the malware to

the antivirus engines and recording the results after wrapping them with a selection of

obfuscation techniques detailed in their paper.

Oberheide et al. (2007, 2008) were some of the earliest authors to explore the concept

of automating the process of antivirus scanning and decoupling it in such a manner that

27

it can scale as needed. Similarly, Oberheide et al. (2009) demonstrated in their work on

PolyPack how to build a service which could automate the process of evading an antivirus

engine through the use of packing. Their research was built in response to Kang et al.

(2007) who demonstrated that it is possible to automate the process of unpacking malware

before being scanned. They also illustrated that unpacked code showed a significant

increase in detection by antivirus engines versus packed code. Further work was completed

by members of the BitDefender team regarding investigations they performed in respect

to moving antivirus engines into the cloud (Chiriac, 2009). The outcome of their work

showed that while it is efficient to perform parts of the scan in the cloud, issues around

privacy and bandwidth considerations do not make it entirely practical.

In an empirical study of six of the popular antivirus engines at the time, it was

determined that the antivirus engines were not able to effectively detect all forms of

malware (Sukwong et al., 2011). The study followed the path of previous studies such as

those performed by Royal et al. (2006), Kang et al. (2007), Oberheide et al. (2007). This

is a deviation from the method of testing used in this report when compared to the work

done by (Oberheide et al., 2009, Kang et al., 2007, Oberheide et al., 2007), in that a large

number of malicious binaries are not tested in a scatter shot approach. Rather, a carefully

selected number of binaries were selected for testing. The reasoning behind this was to

determine if a targeted binary could be modified in such a way that it would bypass

an antivirus engine, this is known as the observed detection technique (Borello et al.,

2010). The online method of submission and recording as used in chapter 4 was initially

proposed and then demonstrated by Bishop et al. (2011). This method of testing involves

submitting the binaries that are being tested to an online service and then recording the

results for later analysis. This approach differs from Sukwong et al. (2011)’s approach in

that an offline lab does not need to be constructed to test each of the antivirus engines.

The testing and recording approach was also demonstrated by Haffejee and Irwin (2014)

in which the effectiveness of antivirus engines as security layer was evaluated. Further

testing using the online method of testing was performed by Swart (2012) in which two

antivirus evasion frameworks were tested. The results from the testing demonstrated

that a single antivirus could not catch all the evasion techniques, but it was possible

for a single custom evasion technique to evade the majority of antivirus engines. Brand

(2010) detailed how a number of code armoring techniques protected the binaries they

were attached to. This worked also detailed how to detect the armoring techniques and

where possible remove them.

Regardless of the approaches used (online and offline scanning) when testing a system,

the testing of antivirus engines are generally classified by two approaches, known as

black-box and white-box testing (Adrion et al., 1982). White-box testing is considered

28

when the internal operation of the system are available to the tester because metrics

can be extracted on how the system processes the input. Black-box testing, by contrast,

is considered when the internal operation of the system is not known to the tester. It

focuses on testing the system by comparing the inputs to the outputs of the system. When

considering the scatter shot method of submitting hundreds and thousands of binaries in

order to a test a system, it can be seen as a useful white-box testing approach: see, for

example, Royal et al. (2006) with their automated unpacking system. By submitting

as many malicious binaries through the system they could, they were able to gain a

deeper understanding about the input data as well as how their system reacted to this

input. This is in contrast to the approach used for testing later known as the black-box

testing approach. In black-box testing, the internal workings of the antivirus applications

are not known and all that is of consequence is the output generated by the antivirus

applications. In comparison to the work Oberheide et al. (2008), the research performed

here is not attempting to quantify the amount of malware that an antivirus engine detects

as malicious. Rather, it aims to determine whether the binaries which the antivirus

already detected as malicious can be made to appear safe.

2.13 Summary

This chapter covered the evasion techniques implemented by malware authors in their

malware over time as well as the detection mechanisms the antivirus industry implemented

in order to detect and remove offending malware. What has transpired is that the antivirus

engines are always a step behind, and simply playing catch up by implementing new

techniques for detecting malware once a new evasion technique is found through manual

analysis. Furthermore, the malware and antivirus evolution has constantly improved

the state of art for both sides as they attempt to outsmart and outdo each other. This

chapter also demonstrated why it is important that the antivirus industry has its products

constantly evaluated and touches on how it was previously tested. Chapter 3 will explain

how this research intends to expand the area of testing by demonstrating the constraints

with the existing models of testing. In conclusion, suggestions for updated methods of

testing antivirus products will be made in the next chapter.

29

Chapter 3

Antivirus Testbed

3.1 Introduction

As highlighted in the previous chapter, the antivirus industry needs to continuously

evaluate and re-evaluate its products to ensure that it is on par with what is available

globally in terms of malware and malware evasion practices. This work also needs to

performed by, firstly a suitably technically advanced user and, secondly in a consistent

repeatable manner. This chapter aims to disclose the method of testing antivirus engines

on a large scale and in a consistent and repeatable manner, as suggested. The chapter to

follow will explain how the antivirus applications scanning methods are tested. The goal

of this chapter was to determine the most suitable methodology for performing the test

in the upcoming chapters. The method of testing needs to lend itself to automation, be

repeatable and perform for multiple applications simultaneously.

3.2 System Selection

The options that were considered were grouped into either online or offline services. There

are currently no publicly available offline systems that can be used to test antivirus engines

in an automated fashion. Previous work analysing metamorphic malware by Borello et al.

(2010) demonstrates that building offline systems are effective but require resources to

maintain. Oberheide et al. (2008), provides a good point of departure for the purposes of

this study. Regrettably, there is no output from this work that can be used immediately.

This means that any custom testbed would need to be implemented from scratch. In

contrast, there are a number of systems that are available that can be used for the online

testing. Of these systems, Virustotal1 is the most public and most accessible system and is

the one that will be used for testing later in this chapter based on previous work completed

1http://www.virustotal.com

30

using the service which has proved that it is effective as an online testing platform (Gashi

et al., 2009). The only other comparable service is MetaScan2, while the website provides

the same functionality as VirusTotal it is not nearly as well tested or used by the security

community due to it being a very new website (only established on 1 December 2012).

All other services that provide online scanning are targeted at specific analysis techniques

instead of scanning via an antivirus engine.

3.3 Testing Methodology: The Custom Testbed

Before beginning the tests with Virustotal, a custom testbed will be built to evaluate

its effectiveness and viability versus using an online system. The testbed will attempt

to perform two major functions. The first of these is to automate the scanning of the

malicious software. The second function under scrutiny is the ability for the testbed to

scale in size based on the sample count as well as the number of antivirus engines that

needs to be tested.

3.3.1 Setup

A virtual environment will be used when building the custom testbed. The requirements

for building this environment are listed below.

• Virtual Machine Environment: The virtual environment is required so that the

system is sufficiently isolated from the tester. This is important in order to prevent

infecting the host when testing with malicious binaries.

• Operating System: A Windows operating system is required to ensure that the

antivirus applications are able to install and execute correctly.

• Antivirus Application: A single antivirus application will need to be installed

per virtual machine instance. This is to prevent conflicts between different antivirus

engines. When testing an antivirus product for effectiveness and viability, two

attributes are being primarily tested between the different antivirus products. This

is the ease in of automation and the ability to detect malware in an offline mode.

The ability to detect malware in an offline mode is crucial as one of the main benefits

of offline detection is that the tester can be sure that the results from scanning a file

are not submitted to antivirus companies for further analysis, as is often performed

by VirusTotal. The ability to automate the antivirus is just as important as the

2https://www.metascan-online.com/en

31

need to scan multiple binaries with different evasion techniques applied will take

too long if done manually.

• Browser: The browser installation is optional per virtual machine. Virtual environments

such as VirtualBox, allow a user to transfer files between the host and a guest using

internal processes. If this process for transferring files to the guest is not used (or

not available in the selected Virtual Machine Environment) then a browser is the

next simplest way to transfer files into a virtual environment without the need to

install third party services such as a FTP server.

• Automation Language: The automation language can be any programming

language that is able to control the Windows environment. This is required since

many antivirus applications do not expose a programming interface or provide a

command line version of the application.

For the base virtual environment, Virtual Box was used for building the virtual

machines (VMs) as it is free and supports all the operating systems (OS’s) that can be

tested. The operating system that was selected was the Windows operating system which

was installed in Virtual Box using the default install options. The operating system was

then updated to ensure that all available patches were applied. Once this was completed, a

snapshot of the operating system was taken using the built in Snapshot feature in Virtual

Box. This allowed for rollbacks to a known good state after executing a potentially

malicious binary.

At the time of comparison the top three antivirus engines based on protection were

Avira, Bitdefender and F-Secure as listed on the AV Comparatives website3. Of these

three antivirus applications, Bitdefender4 was the simplest application to automate. Further

Bitdefender provides a free version of their application for personal use which was the

version that was used for testing. The free copy also provides a non crippled version of

the core scanning engine (which analyses the binaries) which is what is important in the

upcoming tests. Due to time constraints the remaining two applications were not setup

and automated, as such after the base system was setup, the latest version of Bitdefender

was downloaded from the official website and installed.

After the antivirus was installed, a full system scan was executed with the Bitdefender

to set the system in a known good state before the malicious binaries are submitted. This

was also required since Bitdefender requires a full scan before it allows for a selective scan

to be performed. The virtual machine also had its network connection set to ‘host only’

mode (‘host only’ mode allows connections only to the host virtual machine) during scans

3http://www.av-test.org/en/antivirus/home-windows/windows-8/april-2014/
4http://www.bitdefender.com/

32

to ensure that the local virus engine is performing the scans and not sending files to a

remote server for further analysis.

3.3.2 Core Application Installation

Next a number of supporting applications were installed. First a copy Python 2.7 was

installed, this helped with scripting a number of tasks later. Lastly a copy of Firefox

and Autoit were installed. The Firefox installation was optional, but it assisted in the

acquisition of a number of applications when a download was required.

3.3.3 Automating Scans

Owing to recent updates5, it was not possible to perform a command line scan using

Bitdefender. Consequently, the scan are automated internally within the Virtual Machine

using Autoit6. Autoit is a scripting language that allows a user to script control over the

Microsoft Windows graphical user interface. An example of scripting the user interface

would be finding a window by handle and then moving the mouse cursor to click on the

window that was found. The process for automating the scanning of files is outlined by

figure 3.1, this shows the high level process that will be applied to a binary when it needs

to be scanned.

Automation Details As indicated in figure 3.1, the file will be uploaded to the virtual

machine via a web transfer using a simple web application hosted in python. Once the

binary is transfered to the virtual machine the network interface may be disabled if host

only support is not provided by the virtual environment being used. A manual scan will

then be initiated which will begin by opening Windows Explorer at the location at which

the file was uploaded by right clicking the opened folder and selecting the scan option.

Once a scan is completed, the results will be collected from Bitdefender’s log location. The

logs contain the scan results which will be parsed from the XML7 markup language and

stored for later reference in a SQLite8 database. The Autoit script that will be executed

when a user wants to run a scan on the virtual machine, then automates the scanning by

launching the “Windows Explorer” application. The script then navigates to the folder

where the binary which needs to be scanned is located. At this point, the script right

clicks on the folder and then clicks on the “Scan this folder with Bitdefender ” button.

This initiates a manual scan with Bitdefender. Once the scan is completed a pop-up

5http://forum.bitdefender.com/index.php?showtopic=17457
6https://www.autoitscript.com/site/autoit/
7http://www.w3schools.com/xml/
8http://www.sqlite.org/

33

Figure 3.1: Process by which binary will be scanned

notification will appear when the scan is completed. An update to the logs maintained

by Bitdefender will also be made. These results are then uploaded to a simple webservice

running on the host system as means to get the data back to the host system.

3.3.4 Resource Consideration

The following are some resources that need to be accounted for when planning to setup

a custom malware testing laboratory.

• Setup Time

• Execution Time

• CPU Power

• Disk Space

• Financial Costs

While most antivirus engines do provide trial versions of their applications, these

usually have time limitations which creates a further burden on the tester who now has to

complete the tests in the specified time or to build the testbed in such a way that resetting

the testbed back to the original install date is possible. Another consideration is that if

34

the testbed is being built on a cloud provider to work around the cost of purchasing a

valid license key, then resources need to be allocated to pay for the hosting costs. If the

cloud hosting resource is not going to be used, then it should be considered that there is

a physical cost with acquiring hardware that is powerful enough to test multiple antivirus

engines in parallel. If existing hardware that is already in place is used, where speed is not

important to the tester, then it should be noted that the scan time will be significantly

expedited.

3.3.5 Custom Testbed Summary

In conclusion, while this method of testing the antivirus engines succeeds and reflects more

accurately what an end user would be using, unfortunately this process is slow, error prone

and resource intensive in comparison to using a dedicated testing service (which will be

covered in the next section). In terms of resource usage, there are a number of resource

considerations that needed to be accounted for when setting up a laboratory. Resources

that need to be factored into setting up a laboratory are listed in section 3.3.4. As a

result of the restrictions imposed by these resource requirements, the custom testbed

implementation will not be further explored.

3.4 Testing Methodology: VirusTotal

VirusTotal was selected as the online application that was used for testing for a number

of reasons (Gashi et al., 2009). The VirusTotal platform is free for public use, this is

an important facet as it means that any future researchers will have access to the same

tools with which to re-execute the tests. VirusTotal also provides access to an application

programming interface (API) by which custom tools can use to build around the platform.

This API is what will be used later in this chapter to perform the tests.

3.4.1 Base Tool Compilation

The tools that were built were simply built around the existing Virustotal API and were

based on the existing VirusTotal Python library9 located from the Virustotal Documentation10.

Based on the code provided by this library, a number of scripts were built to automate.

The names of the scripts that were created and their functions are listed below while the

code can be found in the appendix.

9https://github.com/Gawen/virustotal
10https://www.virustotal.com/en/documentation/public-api/

35

Table 3.1: Custom Scripts Used For Testing

Script Name Function

scan.py Manages the file submission and results recording.

rescanner.py Initiates the process of rescanning a binary with

any updated AV engines, the binary does not need to be available locally.

reportparser.py Manages the parsing of reports that is generated

from the scan.py script for data export.

generatePivot.py Script used to generate the pivot graphs for the

summaries at the end of the packer and encryptor chapter.

3.4.2 Resource Consideration

Fewer resources need to be considered when working with online systems. The resources

to consider are Bandwidth Usage, API Limits and File Size Limitations. When using

an online system the researcher needs to ensure that they always have a stable Internet

connection. Issues including bandwidth and privacy were covered in the work by Chiriac

(2009). In conjunction with this, the researcher needs to be aware that, depending on the

number of binaries tested, a sufficient amount of bandwidth is available to upload these

binaries to the online system. Aside from bandwidth limits, the only other major resource

restriction is the API access limits imposed by the online system. In the case of VirusTotal,

they limit API requests to four per minute, this means that the scanning manager needs

to ensure that this limit is respected or scan requests will fail. Four requests a minute may

not seem like an obstacle, but since scans were usually completed in under five seconds

there is an implicit waiting period that needs to be considered when scanning more than

four binaries. While this is not an issue in most cases, most online systems have upload

limits for the file size and as a result very large files cannot be scanned. While it is not

a resource consideration, it should be noted that VirusTotal does not implement the full

antivirus engine for use when scanning binaries. Instead, only the on demand scanners are

implemented and used when scanning. This means that while certain desktop antivirus

engines will detect a binary as malicious after a period of execution due to the use of

heuristics. Consequently, VirusTotal will not be able to use this method of detection and

can account for differences in results between and online and desktop scan.

3.4.3 VirusTotal Summary

In conjunction with the scripts developed to automate the interaction with VirusTotal,

the efficiency to cost trade-off means that using VirusTotal allows for the research to be

36

executed in a speedy and efficient manner. By using VirusTotal, the research can also

focus on setting up and testing the evasion techniques instead of trying to determine if

the antivirus testbed is working correctly.

3.5 Summary

This chapter dealt with different methodologies by which the antivirus applications could

be tested. It also demonstrated that, while it is possible to create a custom offline testbed,

this method is not ideal for testing a large number of antivirus engines - unless the

tester has significant resources with respect to both time and money. In the end it was

determined that implementing the testing via an online service (where the samples are

submitted for scanning) was the most efficient and returned results that matched those

from the offline test. Having covered how the antivirus applications can be controlled and

tested, the next chapter will explain how the antivirus detection engines will be tested in

a manner that has both a logical and measurable outcome.

37

Chapter 4

Antivirus Test Process

4.1 Introduction

Chapter 3 demonstrated how the antivirus testbed would be constructed. This chapter

will introduce the processes that will be used to test the antivirus detection engines against

each of the evasion techniques. This process involves submitting binaries to an antivirus

engine and recording the results. Since the binaries that are submitted can be controlled,

there is an expectation of what the output should be. Based on these expectations it can

be determined if an antivirus engine is successful in detecting the binary as malicious or

if it fails by marking it as safe.

4.2 Goals

The goal of this chapter is to find suitable binaries that can be used to evaluate the

antivirus engines for the expected outcomes set out in the introduction. The suitability

of a binary is determined based on the test cases in Table 4.1.

Table 4.1: Expected Test Case Outcomes

Test Case Expected Outcome

Benign Should not be detected as malicious or trigger any warnings.

Potentially Unwanted Program Should be detected as malicious or trigger warnings.

Malicious Has to be detected as malicious.

4.3 Selection Process

There are currently three categories that are covered when selecting which binaries with

which to test, namely benign, potentially unwanted applications and lastly, malicious

38

software.

4.3.1 Benign

The first category is the benign application. These are applications of which it is certain

that there is no malicious intent from the application. The application selected for testing

in this section is signed by Microsoft which substantiates the credibility of the application.

In later testing, for each of the evasion sections, a number of tests will require a benign

application that is known to be non-malicious. The application selected to perform this

task is the “cmd.exe” or command interpreter from Microsoft Windows 7. It was selected

because it has no other dependencies and is a compact application. While the calculator

application is often used as a test application, there are a number of dependencies which

will cause it not to execute when running on a remote system if it is not in the correct

folder (the Windows system32 folder where it is originally located). Table 4.2 shows that

on submission to VirusTotal for scanning, the application does indeed not get detected

as malicious by any antivirus application.

Table 4.2: Benign Baseline Scan

SHA256 17f746d82695. . .

File name cmd.exe

Detection ratio 0/55

As expected, when submitting the application to VirusTotal for scanning, the results

show a zero detection rate which is expected. When wrapping the binary with each of

the evasion techniques it is expected that the results should remain zero when submitted

for scans. If the detection results increase, it can be attributed to the antivirus detection

of the evasion technique instead of the base binary.

4.3.2 Eicar Tests

The European Institute for Computer Antivirus Research (EICAR), as the name states

is an organization that developed a signature that could be used to test if an antivirus

engine was working. The signature created can be saved to a file, known as the eicar test

file1. While the eicar file is useful to determine if an antivirus application is running, it is

not a reliable means of testing any kind of binary dependent evasion technique. This is

because the eicar file needs to have any padding when scanned by an antivirus application.

Furthermore, any binary modification technique (of which will be tested in this research)

1http://www.eicar.org/86-0-Intended-use.html

39

depends on a valid Portable Executable binary2. Since the eicar file is just a string, it

cannot be packed, encrypted or modified in any manner. Subsequently, the eicar file will

not be used for any testing for the purpose of this research.

4.3.3 Potentially Unwanted Program

The potentially unwanted program (PUP) provides a middle ground for which to test

the antivirus applications. These applications have the potential to be malicious, but by

nature they were not designed with malicious intent as the end result. These applications

work well as a test case, since tests can determine if the antivirus application is looking

for a simple signature or it is performing more complex scans.

Before each of the evasion techniques can be tested and a baseline set, a sample

malware application needs to be crafted in order to demonstrate that the evasion techniques

being tested are indeed allowing the application to bypass the antivirus. For a PUP to

be considered for use in later tests it needs to meet the following criteria:

• It must have the ability to be detected by multiple antivirus vendors as malicious.

This is needed to ensure that the application is indeed detected and not simply an

anomaly.

• It must be safe for the person running the tests. In the instance of accidental

execution it must not provide an attacker with access to the PC of the person

running the tests. This is also useful for ensuring the simplicity of the tests as a

sandbox environment is not needed.

• It must must have source code available. This is required for certain evasion

techniques that work by dynamically changing parts of the application’s internal

working as part of the application.

Based on the above mentioned criteria, the initial application that passed the selection

process by matching all of these properties is the NetCat application. The next section

will provide an overview of the NetCat application and the rationale supporting the choice

for this research.

4.3.4 NetCat

NetCat is an inert application that is not malicious by design. Its core function is to

assist in performing various network related tasks. Owing to its ease of use and its small

size, NetCat was commonly used by malicious attackers to either bypass firewalls or setup

2The file format required for file execution on a modern Windows operating system

40

reverse connections for the attacker to a system they controlled. Once NetCat became

a common vehicle in malicious attacks, the majority of antivirus applications started

marking the binary as a virus. Presently, its detection has largely declined. The scan

results in the next section documents the instance where a compiled NetCat binary for

Windows was scanned.

4.3.5 Netcat Details

Before compiling a custom version of NetCat on our system, it is worth scanning the

compiled binary version of NetCat that is distributed along with the source code. This is

the version most antivirus scanners are likely to encounter. The variant of NetCat to be

used for the base line testing can be acquired from Jon Cranton’s website3 and the zip file

can be confirmed with the SHA1 hash of “2d3026b4630789247abf07aa3986d7a697cf4cd”

for the complete zip file. Note that the unsafe binary which has remote execution enabled

will be tested, as this is more likely to be detected as malicious by an antivirus engine.

The option that makes this version unsafe is the “-e” option. This option is usually

what causes the application to be detected as malicious because it permits an arbitrary

application to be executed once a connection is made to NetCat.

4.3.6 Scanning the compiled binary

Simply extract the archive acquired in the previous paragraph in order to obtain a copy

of the compiled binary . Once extracted, a binary called “nc.exe” can be found in the

destination folder. Next: navigate to the VirusTotal website and upload the “nc.exe”

application. This can be accomplished by clicking the ‘Choose File’ button and then

selecting nc.exe in the folder that it was extracted to. Once the file is uploaded, the ‘Scan

It’ button can be clicked. By submitting the application to VirusTotal, the following

results were returned :

Table 4.3: Scan results for NetCat using precompiled binary

SHA256 7379c5f5989b. . .

File name nc.exe

Detection ratio 21 / 46

The results in table ?? are a summary of the information returned by VirusTotal.

Located on this summary page is a detailed list of all the antivirus engines that detected

NetCat as malicious. The application that was submitted can be confirmed with the

3http://joncraton.org/blog/netcat-for-windows

41

SHA256 as provided in the virus total summary. This data can be used to validate that

the same compiled binary is being tested. When contemplating the results further, it can

be observed that 21 out of the 46 available antivirus engines detected the application as

malicious. With a detection rate of greater than zero, the NetCat compiled binary is able

to meet the first requirement for use as a sample malware application.

4.3.7 Complications with the compiled binary

Unfortunately, because the compiled binary scanned was compiled by a third party, it

is difficult to determine if the binary is indeed safe to run locally. It has to be taken

into consideration that the third party who compiled the application may have inserted

custom code to change its behavior. To overcome this obstacle, a local development

environment is set up to compile the application locally. The application requires both

the GCC compiler and Make build application to be installed and requires a custom

script to build the application as the default ‘Make File’ is out-dated. Along with the

custom build script, an explanation of how the source code can be compiled on Windows

can be found at4. Once a local build of NetCat is completed, a re-test of the binary is

executed to ensure that it is still detected by multiple antivirus vendors as malicious.

When submitting the custom build to VirusTotal, the results in table 4.4 are found.

Table 4.4: Netcat scan results with custom compiled binary

SHA256 087a3c776bde. . .

File name nc.exe

Detection ratio 1 / 45

The results shown in Table 4.4, are a summary of the information returned by VirusTotal.

Since only a single antivirus vendor detected the application as malicious it will not be

considered for further testing. It is also worth noting that the one antivirus vendor that

did detect the application as malicious was the McAfee-GW-Edition antivirus. Further

McAfee-GW-Edition did not detect the submitted application as NetCat, instead it

detected the submitted application as a generic suspicious file (“Heuristic.LooksLike-

.Win32.Suspicious.J!89”). Note that unlike with the compiled binary, the hash for this

version of NetCat will not match the hash that may be encountered while running this

test on a different computer. The reason for this is that the compiler generates a compiled

binary that is optimised for the current environment that it is being built on.

4http://www.rodneybeede.com/Compile_Netcat_on_Windows_using_MinGW.html

42

4.3.8 Reasons for discontinuation of NetCat

While the initial examination of the NetCat binary showed that it was indeed suitable

for use in the tests, execution of each of the tests showed issues that caused NetCat

to become unsuitable for use. Unfortunately once the binary failed to trigger multiple

antivirus engines as malicious (while using the locally built version of the application) it

could not be used any longer as this was the first and most important criteria required

for further tests to complete.

The tests show us that in the case of NetCat, antivirus vendors are more likely to

flag compiled binaries provided by a third party as malicious, as this is what is most

likely to end up on the user’s computer. It was also shown that by simply re-compiling

an application locally or in a different development environment is enough to beat 99%

of antivirus vendors in the case of NetCat. This further points to the fact that in the

instance of NetCat, most antivirus vendors are simply relying on a hash signature based

on the compiled binary to detect the application and that as soon as this is changed the

application is no longer detected as malicious.

4.3.9 New Baseline Selection

With NetCat now no longer usable as a sample for the baseline scanning, a new sample

application needs to be selected. In an effort to find an application that can fit the

rules that were defined previously, an investigation was done to find current tools that

are actively used in the security industry that were often detected as malicious but still

provided source code so that modifications could be made to the resulting binary. This

resulted in the Metasploit payload generated binary being selected for use.

4.3.10 Metasploit binary

The Metasploit binary that will be used is the output that is generated from the Metasploit

payload command. This binary is used to deliver a payload provided by Metasploit to

a targeted computer. This is useful for the baseline scanning as it would also allow

us to check if an antivirus vendor is checking for a specific payload such as a reverse

connection back to a target computer or if they are flagging the binary regardless of the

payload. Furthermore, the Metasploit payload generator allows for template binaries to

be provided. This can be used to decrease the chance of detection at a later stage when

trying to evade the antivirus vendors. It will be interesting to see how antivirus vendors

react to the built-in countermeasures provided by the Metasploit payload command.

These counter measures are often used in real world testing and may be used to flag

43

an application as malicious. If this is true, then it will be interesting to see if a malicious

application can evade antivirus applications by not using these counter measures.

4.3.11 Metasploit Plain details

While the Metasploit payload application does not provide a compiled application in the

same way as NetCat does, it does have a number of templates that it uses to generate

the payload binary. Since these are the closest applications to a third party compiled

application (they differ because the final version will contain a payload within it) the

initial scans will be performed with these templates. Note that the template that will

be used for the test is the “template x86 windows.exe” binary which can be found in

the exe templates folder. As seen in Table 4.5: the template binary is already detected

as malicious. Based on the results from the NetCat tests this is most likely because

of a known hash and further testing with a locally built version will confirm if this is

correct. While not as many antivirus engines detected the application as malicious- when

compared to the NetCat application, at least one antivirus vendor did detect the binary

as malicious. This means that at this stage the binary can be used for further tests.

Table 4.5: Metasploit Template Original Scan Results

SHA256 640fc87b5754. . .

File name ad21c93553af23ecec319c0ea5f11b755acc3342

Detection ratio 22 / 55

4.3.12 Metasploit OPCode details

The Metasploit OPCode tests refer to the raw low level exploit code that is embedded

within a binary. Taking this into consideration, after testing the plain Metasploit binary,

a copy of the Metasploit binary with custom exploit code embedded needs to be tested

as well. This binary with the exploit code is closer to what the antivirus engine would

encounter when a malicious attacker tries to deploy malicious code to an end users’ system.

From the results seen in Table 4.6, an increase in the detection rate is observed. Since

this binary is similar to the previous binary (with the only change being the inclusion of

the opcodes) it can be said that the increase in detection rates is due to the opcodes.

44

Table 4.6: Scan Details For Metasploit OP Binary

SHA256 1874c340ba2e. . .

File name template x86 windows op.exe

Detection ratio 23 / 54

4.3.13 Metasploit custom build details

As previously noted with NetCat, the binary compiled by a third party will not be used

for our testing and as a result, compilation from source is needed to ensure that regardless

of where the binary is built, it is always detected as malicious. Firstly it is recommended

that the build be completed using MinGW5. It is noted that although Cygwin does provide

similar tools it is more error prone. For the specific instructions on how to install MinGW

refer to the section in which NetCat was built. The current version of the tests are

being run on a Window 7 machine with MinGW as described earlier. The next step in

the process is to download the template file from Github6 and save it to a file called

template.c on disk. There is no ‘Make File’ option to build the template as the original

author may have built the binary with a custom script. As a result, simply running the

following command “gcc template.c -o template gcc.exe”, will build the template binary.

Results for template scan can be found in the Table 4.7. While the basic compilation with

gcc does provide some favorable results, the number of antivirus engines that detected the

binary as malicious is low (2/47). This is most likely due to the fact that the application

does nothing at all except crash when it runs. Following that, some machine language

instructions will be added which will be used to launch the calculator application. This will

allow the application to at least run without crashing and possibly trigger more detection

routines. The opcode template compiles to the same binary as would be generated by the

msfpayload application when using the template x86 windows.exe binary. Notice that the

binaries will not be identical to the byte level as they are compiled on different computers.

The template file with the opcodes added can be found in template op.c. The code can be

compiled with the following command “gcc template op.c -o template x86 windows op.exe”.

Once the application is compiled, the binary can be submitted to VirusTotal again. This

will generate the results which can be found in Table 4.7.

5http://www.mingw.org/
6http://bit.ly/1uGTASj

45

Table 4.7: Metasploit Template Custom Build Scan Results

SHA256 76de5d51b259. . .

File name template gcc.exe

Detection ratio 2 / 47

Table 4.8: Metasploit Custom Built Template Scan With Embedded Opcodes

SHA256 1874c340ba2e. . .

File name template gcc op.exe

Detection ratio 6 / 47

Reading the results seen in Table 4.8, slightly better detection rates (6/47) are observed.

This is better than the initial version of the scan. These slightly lower detection rates

work in the favor of future analysis. The future scans are with an evasion wrapper - but a

higher detection rate means that the Antivirus engines are detecting the wrapper instead

of the base application. The test application cannot be built with the Microsoft compiler

as this prevents any potential exploit code from running.

4.3.14 Malicious Binaries

There are a number of reasons why testing with a malicious binary captured from the wild

is not ideal. Binaries in the wild will not have their source code available for inspection.

This makes it hard to determine the exact evasions that the binary may implement or

what malicious code it may be executing. Furthemore, if the malicious binary manages

to escape from the test environment, this could affect the host system that the researcher

is using. With these downsides, the malicious binaries from the wild still provide a useful

test case in that they represent verified malicious binaries and causing them to evade an

antivirus application demonstrates the true effectiveness of an evasion technique.

4.3.15 Build Process : Sample Malware and Baseline analysis

This section will explain how to build each of the samples that will be tested against

the antivirus applications for the baseline analysis. A detailed explanation will also be

provided on how the sample malware was selected.

46

4.4 Malicious Binary Selection

When selecting which malicious binaries to use for testing, the top 3 unique malware

samples were selected from the samples submitted to the ”nothink” honeypot service7.

The service records and provides a malware honeypot as well as the statistics around

the data collected. Unfortunately, this is the only service that has made its statistics

available to the public, and as a result it is not possible to verify if these statistics are

indeed accurate.

Since there are no original names for each of the malware samples, future work will

refer to the hashes where possible (as each Antivirus has a different name for the malware).

To makes this less prone to error for future work, only the SHA256 hashes are listed here

even though the original web page (referenced earlier) used a md5 hashes. While initially

it was hoped that the top five malware applications would provide enough variety for the

tests, the top five contained only the Conficker malware. Therefore, the three remaining

malware that have a very high detection rate were randomly selected. These malware

samples were collected via the virus share distribution system8.

Table 4.9: Malware selection choices

ID Sha256 Hash Common Name (Bit Defender)

1 83023e32bb12. . . Trojan.Win32.Zapchast

2 5b9508b92a63. . . Trojan.Zbot

3 742915067b83. . . Win32/Sality.dropper

In the tests that will be executed later, it is assumed that after packing, the binary

will simply work as expected. This assumption is fairly naive, but owing to the fact that

the tests are performed with live malicious binaries, it is not safe enough to execute the

applications after packing as it is not possible to determine exactly what the binaries are

doing in the background. While Virtual Machine software will be used while packing the

binaries in order to ensure there is at least some level of buffering between the host and the

binaries being packed, it is not impossible for the malware to bypass the Virtual Machine’s

protections and attack the host system. All these issues are really not worth considering

when many pieces of malware run entirely in the background and do not display any

interface to the user and as a matter of course do not present any user interface features

with which to make a comparison.

7http://www.nothink.org/honeypots.php
8http://tracker.virusshare.com:6969/

47

4.4.1 Baseline scan for malicious binaries

Before scanning each of the known malicious binaries a baseline record is required. This

demonstrates the effectiveness of the evasions. The first piece of malware analyzed is a

generic trojan called Win32.Zapchast that has been in the wild since 2006. Owing to the

age of this malware it has a fairly high detection ratio.

Table 4.10: Base Zpchast Scan

SHA256 83023e32bb12. . .

File name VirusShare 7ed3caf5e5e9f276b72694b79ab17c90.sf.report

Generic Name Trojan.Win32.Zapchast

Detection ratio 48/55

The second malicious binary scanned is the generic payload used by the Zeus malware

to gain a foothold on a target’s computer. As expected this has a fairly high detection

ratio as well as it has been in circulation in the wild for a number of years.

Table 4.11: Base Zbot Scan

SHA256 5b9508b92a63. . .

File name VirusShare 9fc364ccffe540c627733222641259c9.sf.report

Generic Name Trojan.Zbot

Detection ratio 49/55

The next piece of malware analyzed is from the Sality family of malware. This malware

family has also been in existence for a very long time with original detections recorded as

early as 2003. As with the other pieces of malware, the detection rate on this malware is

relatively high.

Table 4.12: Base Sality Scan

SHA256 742915067b83. . .

File name VirusShare e5120818378bd9b3766d45be99f96b59.sf.report

Generic Name Win32/Sality.dropper

Detection ratio 45/55

Custom Malicious Application The previous applications were selected because they

had been previously detected as malicious and as such would trigger an alert from an

antivirus engine. It is important to build a custom application that performs what would

48

be considered malicious actions. An example of this would be a keylogger application.

There are few instances where a keylogger application can be considered as non-malicious

and in these cases exceptions can be added to the antivirus engine to ignore the application.

In the event that a legitimate application needs to hook access to the keyboard, there is

rarely the need to write to file after a keyboard event is triggered. These two items - in

that sequence - exhibit the signature of a keylogger application. This section will cover

the building of a keylogger which should be detected as malicious by an antivirus engine.

While the end goal is for the application to trigger an antivirus alert, this may not be the

end result which would necessitate using a prepackaged keylogger which already triggers

and alert. The expected result from this test is not to be detected as malicious, but for

antivirus engines (which claim to use heuristic detection) to trigger an alert.

Application Details Since the testing is targeting the Windows platform, the keylogger

will be built using the C# programming language. It will make use of the Windows hooks

exposed by the Windows API. The application will also try to hide itself from the user

interface so that there is no way to exit the application aside from finding it and manually

killing the process.

Build Process When building a keylogger, the following process will be adhered to.

The first step of the application will hook the windows keyboard API. Hooking the

Windows API is achieved by calling the “SetWindowsHookEx” function with a callback

to a function that will execute the users code. In our application the callback chaining

was implemented to ensure that any subsequent applications will also receive notification

of a hooked event if they have setup a callback.

The actual callback in our application will only fire on a key-down keyboard event.

Once an event fires that it has the key-down event, the code will open a file stream to a

file called log.txt in the current folder and write the key-code to the file. Thereafter, the

file stream will be closed and the “CallNextHookEx” function will be called which will

continue the rest of the callback chain.

Once the callback hook is in place and our function is set up to receive the calls, the

application will finally call the “ShowWindow” function with the SW HIDE parameter.

This will hide the application from the user’s Windows interface and prevent a user from

exiting the application.

Scan results After scanning the application for the first time with VirusTotal, the

results are shown in Table 4.13. The results illustrate that none of the antivirus applications,

barring the Norman antivirus, detected the keylogger as malicious (detected as “Obfuscated.AI!genr”).

49

This most likely means that by building a custom application an attacker could potentially

bypass an antivirus application without much hindrance.

Table 4.13: Keylogger Scan Results

SHA256 21f97a50f7ef. . .

File name KeyLogger.exe

Detection ratio 1 / 53

4.5 Testing Process Usage

Having analyzed the different binaries for use when testing the evasion techniques, the

following order will be employed when testing the evasion techniques in the Chapters 5,

6 and 7. While this is test order, there are cases when a packer or encryptor will refuse

to work with a selected binary and as such will not be used in the tests.

Table 4.14: Antivirus Binary Test Order

Test Order Binary Expected Outcome

1 CMD Benign Benign

2 Metasploit benign malicious/warnings

3 Metasploit opcode malicious/warnings

4 ZapChast malicious

5 Zeus malicious

6 Sality malicious

4.6 Summary

This chapter demonstrated how the detection engine of an antivirus application will be

tested. As this is a blackbox test, it is not possible to extract further details regarding the

techniques used by the antivirus engines and as such, the testing needs to be as generic

as possible. This caters for multiple antivirus engines. Having demonstrated how to

control the antivirus applications en mass and test their internal detection engines, the

next chapter will begin by testing the packer evasion technique.

50

Chapter 5

Evasion: Packers

5.1 Introduction

Having demonstrated how to set up and test the antivirus applications and their internal

scanning engines, this chapter will begin with compiling these processes and performing

the first set of tests using the packer evasion technique. Once the tests are completed,

the results will be compiled and analysed at the end of the chapter.

5.2 Hypothesis

It is expected that the antivirus application tested will be looking for specific signatures

in the form of either a sequence of bytes or an application hash. For this reason, packing

the baseline application will change the baseline application’s signature. This should, in

turn, result in a lower detection rate. It is expected that detections that are made will

be due to the signatures of the packer applications and not the signature of the baseline

application. This detection of the packers’ stubs does not mean that packers are malicious

by nature, rather: the antivirus industry tends to mark tools that are used frequently by

malware authors as malicious even though they have legitimate uses.

5.2.1 Goals

The results obtained in testing demonstrate that an average reduction in the number of

detections of at least 10 percentage points can be gained against the antivirus engines

that detect the baseline tests as malicious. Further, detections recorded in the test results

belong to signatures generated by the packer and is not the signature of the baseline

application. This will be demonstrated by the use of a benign application which will

produce no malicious detections when submitted prior to packing. The benign application

51

will then be detected as malicious after being packed and submitted for testing.

5.3 Tests

The testing will be performed in two phases. The first set of tests will examine existing

packers that exist in the wild and are publicly accessible. This will provide us with a

base from which our custom packer can be compared. The second phase, will be to test a

custom implementation of a packer tool - as discussed in the section 5.8. The creation of a

custom implementation will allow us to compare the results of using a packer that might

be already known to antivirus engines versus a completely new method. While testing

the existing packers that are already in the wild, we will only be testing the three of the

available packers mentioned by Roundy and Miller (2013). While it would be beneficial

to test all the packers, 7 of the 10 packers that they name, are not available publicly or

executable on a modern operating system in the way that they were originally built and

meant to be executed. The testing section will also be split into multiple sections, the

first section titled Existing Packer Tests will cover the scans with the existing packers.

The next section Custom Packer Tests, will cover the building, as well as testing, of the

custom tests.

5.4 Existing Packers Tests

The testing of the packers will begin with a number of known packers. These packers

will allow us to record and compare the results from the antivirus scans of the custom

malware that will be built and tested in the next section. By submitting the resultant

binaries from these packers for scanning, we will be able to determine if the antivirus

applications are detecting the packers signatures or if they are triggering detection based

on the malicious content within. The packers that will be tested are listed in Table 5.1.

These packers were selected as they are the only available packers that run on modern

operating systems. Furthermore, these are the only packers that can still be obtained for

testing purposes. Each of the packers will be tested with the tests listed in section 4.5.

The tests will be grouped per packer.

Table 5.1: Packers Tested

Packer Name Antivirus Version URL

UPX (v3.91) http://upx.sourceforge.net/

ASPack (v2.29) http://www.aspack.com/

PECompact (v3.02.2) https://bitsum.com/pecompact/

52

5.5 UPX Background

The first packer to be tested is the UPX (Ultimate Packer for Executables) packer. UPX

is a common packer that has been in the wild since the early 1990s (first released in 1998).

While the packer was not written with a malicious intent, it became a major player in the

malware community owing to its efficiency as well the extremely small code size required

to unpack a binary packed by the UPX packer.

5.5.1 Benign Test With UPX

To begin the testing for UPX, a baseline scan will be performed with the benign binary

as indicated in Chapter 4. After performing the scan, the results can be found in Table

6 and followed up with the detailed results shown in Table 6. These results show that

only two antivirus engines detected the binary as malicious. Further: they showed the

signatures indicating a trojan and not a signature related to UPX.

5.5.2 Metasploit Basic Scan Wrapped With UPX

The basic Metasploit template scan aims to test whether an antivirus application can

detect the Metasploit template that is wrapped with the packer - or failing that detection,

it can detect the application once it is executed. The UPX packed binary is generated

with maximum compression using the following command:

.\upx.exe -f ..\plain\template_x86_windows.exe \

-o ..\plain\template_x86_windows_upx.exe

As can be seen in Table 5.2, there is a decrease of 22 percentage points in the number

of detections for the baseline binary when using UPX for the initial packing test.

Table 5.2: Comparison Against Original Baseline Detection Rates

Detection Rate

Original Packed Percentage Point Decrease

22 / 55 10/55 22 pp

5.5.3 Metasploit Opcode Scan Wrapped With UPX

The opcode scan refers to executing the tests with a template binary that has machine

code embedded within to execute an application by executing the dynamic code stored

inside the template application. By executing the binary in this manner, we are technically

giving it heuristics that would make the binary seem more malicious.

53

.\upx.exe -f ..\op\template_x86_windows.exe \

-o ..\op\template_x86_windows_upx.exe

Table 5.3: Comparison Against Original Baseline Detection Rates

Detection Rate

Original Packed Percentage Point Increase

29 / 55 37/55 15 pp

As can be seen in Table 5.3, there is an increase of 15 percentage points in the number

of detections for the baseline binary when using UPX for the initial packing test. A full

listing of the antivirus engines that detected the binary as malicious can be found in Table

1. The exact reason for this increase cannot be stated since as the antivirus companies do

not explain their scanning processes. While this holds true, it is known that between the

previous test and the current test, the only change was the inclusion of the opcodes which

launched a non-malicious application (the calculator application). It stands to reason,

therefore, that it is likely these opcodes are what the antivirus engines are detecting.

5.5.4 Malicious Binaries wrapped with UPX

The last set of tests for the UPX packer are the wrapping of the malicious binaries as

defined in section 4.5. These binaries were packed with the default UPX settings and then

submitted for scanning. A summary of the scan results can be found in Table 5.4. From

this data, we can extrapolate an average reduction in the number of detections of 39.5

percentage points, for the malicious binaries when packed with UPX. While this is indeed

useful when evading antivirus engines, it is by no means significant as more than half of

the original antivirus engines that were tested will still detect the binary as malicious.

Table 5.4: UPX comparison of Packed vs Original Detection Rates

Detection Rate

Binary Packed Original Percentage Point Decrease

Malicious Binary 1 29/55 48/55 35 pp

Malicious Binary 2 28/55 52/55 44 pp

Malicious Binary 3 N/A 52/55 N/A

Malicious Binary 3:

There are no scan results for the third malicious binary as UPX was not able to

pack the binary. The inability to pack a binary takes place when the binary implements

54

some custom protections or is already compressed. When checking the binary for existing

compressions of protection schemes with Protection ID1 (Protection ID is a tool used to

detect protection schemes employed by a binary), none were found. While this does not

conclusively mean it is not already packed or using a known protection scheme, it instead

means that the binary has been modified in such a way that these protection schemes are

not easily identified.

Table 5.5: Common antivirus engines across all three malicious binaries

AntiVir Microsoft

Avast Norman

Comodo Qihoo-360

DrWeb Sophos

ESET-NOD32 Symantec

Fortinet TrendMicro

Ikarus TrendMicro-HouseCall

Kaspersky VBA32

Furthermore, as can be extracted from the data in the Table 5.5, only 16 of the 55

anti-virus engines were able to detect all three malicious binaries. This is a cause for

concern since all three of the binaries have been circulation for at least one year (the last

submission time stamp indicates 2012-11-27).

5.6 ASPack Background

ASPack is a commercial packer that gained use in the malware community due to its

effectiveness to compress 64 bit applications which a number of other packers had issues

packing. ASPack had roughly only 1.3% of the malware market with regards to packing

(Roundy and Miller, 2013). It is one of the few packers that are still publicly accessible

and executable on modern operating systems.

5.6.1 Benign Test With ASPack

To begin the testing for ASPack, a baseline scan will be performed with the benign binary

as indicated in Chapter 4. After performing the scan, the results can be found in Table 8

and followed up with the detailed results shown in Table 9. These results show that only

two antivirus engines detected the binary as malicious. Further they showed the signatures

1http://pid.gamecopyworld.com/

55

indicating a joke application and a generic malicious application, and not any signature

related to ASPack. It should be noted that the antivirus engines that detected the binary

as malicious are not the same as those that detected the UPX binary as malicious.

5.6.2 ASPack Metasploit Basic Scan

Since the ASPack application is driven by a graphical user interface, we cannot record

the commands required to pack the binary similar to the way the UPX commands were

recorded. To pack the Metasploit binary, simply select the application from within the

ASPack application. This will immediately compress and make a backup of the file. Once

the application is packed and submitted to VirusTotal, we get the following results. These

results will be analysed further in section 5.9.1.

Table 5.6: ASPack Basic Scan

SHA256 6312d0dabe92. . .

File name template x86 windows.exe

Detection ratio 6 / 55

Table 5.7: ASPack Basic Scan

Antivirus Version Common Name

CMC 1.1.0.977 Hoax.Win32.BadJoke.ScreenFlicker!

Malwarebytes 1.75.0.1 Backdoor.Bot.gen

K7anti-virus 9.183.13139 Backdoor (04c5312d1)

K7GW 9.183.13139 Backdoor (04c5312d1)

AhnLab-V3 2014.08.24.00 Backdoor/Win32.Bifrose

Ikarus T3.1.7.5.0 Trojan.Win32.Swrort

Table 5.8: Comparison Against Original Baseline Detection Rates

Detection Rate

Original Packed Percentage Point Decrease

22 / 55 6/55 29 pp

As can be seen in Table 5.8, there is a decrease of 29 percentage points in the number

of detections from the baseline binary when using ASPack for the initial packing test. It

should be noted that this reduction in detection rates is most likely due to no exploitable

opcodes being embedded in the binary.

56

5.6.3 ASPack Metasploit Opcode Scan

As with the previous test: we pack the Metasploit binary with the opcodes embedded

with ASPack and then submit the compressed application to VirusTotal. Once submitted

we get the following results. These results will be analysed further in section 5.9.1.

Table 5.9: ASPack Opcode Scan Summary

SHA256 f1b93dddad1c. . .

File name template x86 windows op.exe

Detection ratio 29 / 55

As can be seen in Table 5.11, there is a decrease of 35 percentage points in the number

of detections for the baseline binary when using ASPack. As observed with the UPX tests,

once the baseline binary is embedded with opcodes that are associated with an exploit the

detection rates do increase. While the detection rates did not increase significantly (four

more than the previous test), it still indicates that certain scanners are looking for specific

signatures which are represented via the opcodes for detection. The common antivirus

engines between the three malicious binaries can be found in table 5.10.

Table 5.10: ASPack AV Scan Results

Antivirus Version Common Name

CMC 1.1.0.977 Hoax.Win32.BadJoke.ScreenFlicker!O

Malwarebytes 1.75.0.1 Spyware.Passwords

TrendMicro-HouseCall 9.700.0.1001 PAK Generic.009

Kaspersky 12.0.0.1225 HEUR:Trojan.Win32.Generic

NANO-anti-virus 0.28.2.61721 Trojan.Win32.Inject1.cugnjk

DrWeb 7.0.9.4080 Trojan.Inject1.33413

TrendMicro 9.740.0.1012 PAK Generic.009

Microsoft 1.10904 Trojan:Win32/Swrort.A

Ikarus T3.1.7.5.0 Trojan.Win32.Swrort

AVG 14.0.0.4007 Crypt3.IJL

Table 5.11: Comparison Against Original Baseline Detection Rates

Detection Rate

Original Packed Percentage Point Decrease

29 / 55 10/55 35 pp

57

5.6.4 ASPack Malicious Binary Scan

The results from packing the malicious binaries can be found in Table 2. When comparing

the results from packing the malicious binaries with ASPack to the original detection rates

from scanning the unpacked binaries, the following results are listed in Table 5.12. An

average decrease of 60 percentage points was observed in the number of detections between

the original and packed version for each of the three binaries.

Table 5.12: ASPack comparison of Packed vs Original Detection Rates

Detection Rate

Binary Packed Original Percentage Point Decrease

Malicious Binary 1 16/55 48/55 58 pp

Malicious Binary 2 18/55 52/55 62 pp

Malicious Binary 3 19/55 52/55 60 pp

Only five antivirus engines were able to detect all three of the packed binaries as

malicious; namely AntiVir, Avast, Comodo, ESET-NOD32 and Kaspersky.

5.7 PECompact Background

PECompact is also a commercial packer similar to that of ASPack. The packer is one of

the top five packers with regards to packers employed amongst the malware community

with an estimated market share of 2.6% at the time of the publication (Roundy and Miller,

2013). As with ASPack, the packer gained a large market share owing to its effectiveness

in both compression and application control flow protection.

5.7.1 Benign Test With PECompact

To begin the testing for PECompact, a baseline scan will be performed with the benign

binary as indicated in Chapter 4. After performing the scan the results can be found in

Table 10 and followed up with the detailed results shown in Table 11. These results show

that nine antivirus engines detected the binary as malicious. This was significantly more

than any of the previous packers. The antivirus listing showed that most of the antivirus

applications detected the binary as a generic malicious application or as a Trojan. Only

the antivirus Agnitum detected the binary with a PECompact signature.

58

5.7.2 PECompact Metasploit Basic Scan

In the same manner as ASPack, there are no automated commands to pack an application

and packing is handled via a graphical user interface. PECompact supports a number

of compression and protection schemes for protecting an application. All tests will be

performed with the default settings which uses a medium level of compression and no

anti-reversing schemes. After packing the application and submitting it to VirusTotal,

the results found in Table 5.13 (below), will be analysed in section 5.9.1

Table 5.13: PECompact Basic Scan Summary

SHA256 1f83dce7884b. . .

File name template x86 windows.exe - PECompact.exe

Detection ratio 11 / 55

Baseline Detection ratio 22 / 55

A decrease of 20 percentage points was observed in the number of detections when

compared to the baseline binary. The only observation that could be extracted from the

current test was that PEcompact has a low detection rate for the stub that it uses for

extraction. Unfortunately, this specific stub cannot be easily extracted and scanned alone

in order to determine if this is the case.

Table 5.14: PECompact basic scan results

Antivirus Engine Version Detected As

Bkav 1.3.0.4959 HW32.CDB.D7c0

Malwarebytes 1.75.0.1 Backdoor.Bot.gen

Agnitum 5.5.1.3 Packed/PECompact

F-Prot 4.7.1.166 W32/Threat-HLLIP.gen!Eldorado

Symantec 20141.1.0.330 Suspicious.Emit

TrendMicro-HouseCall 9.700.0.1001 PAK Generic.001

TrendMicro 9.740.0.1012 PAK Generic.001

AhnLab-V3 2014.08.25.00 Dropper/Win32.OnlineGameHack

Commtouch 5.4.1.7 W32/Threat-HLLIP-based!Maximus

Ikarus T3.1.7.5.0 Virus.Win32.Heur

Qihoo-360 1.0.0.1015 Malware.QVM17.Gen

59

5.7.3 PECompact Metasploit Opcode Scan

The last of the existing packer tests that will be performed is the opcode binary packed

with PECompact. The same settings as those used in the previous basic Metasploit scan

will be used. The results from this scan be will be analysed in section 5.9.1.

Table 5.15: PECompact Opcode Scan Summary

SHA256 4d968080fb3a. . .

File name template x86 windows op.exe - PECompact.exe

Detection ratio 15 / 55

Baseline Detection ratio 22 / 55

As with the previous test, the scan results are significantly lower to any of the other

packers with a decrease of 15 percentage points was observed when compared to the

baseline binaries scan. While there is a decrease when compared to the baseline binary,

there is an increase in the number of detections of 5 percentage points when compared

to the previous test. As with the previous test, this is most likely due to the inclusion of

the OP codes which is the only differentiator from the previous test.

Table 5.16: PECompact Opcode Scan Antivirus Results

Antivirus Engine Version Detected As

CMC 1.1.0.977 P2P-Worm.Win32.SpyBot!O

Agnitum 5.5.1.3 Packed/PECompact

TrendMicro-HouseCall 9.700.0.1001 PAK Generic.001

Kaspersky 12.0.0.1225 HEUR:Trojan.Win32.Generic

NANO-antivirus 0.28.2.61721 Trojan.Win32.Inject1.cugnjk

Rising 25.0.0.11 PE:HackTool.Swrort!1.6477

DrWeb 7.0.9.4080 Trojan.Inject1.33413

TrendMicro 9.740.0.1012 PAK Generic.001

Microsoft 1.10904 Trojan:Win32/Swrort.A

Ikarus T3.1.7.5.0 Trojan.Win32.Swrort

AVG 14.0.0.4007 Crypt3.IJL

5.7.4 PECompact Malicious Binary Scan

The base results from packing the malicious binaries with PEComact can be found in Table

3. When comparing the results from packing the malicious binaries with PECompact to

the original detection rates from scanning the unpacked binaries, the following results are

60

listed in Table 5.12 are found. An average decrease of 59 percentage points was observed

in the number of detections across the three malicious binaries when compared to their

baseline scans.

Table 5.17: PECompact comparison of Packed vs Original Detection Rates

Detection Rate

Binary Packed Original Percentage Point Decrease

Malicious Binary 1 18/55 48/55 55 pp

Malicious Binary 2 18/55 52/55 62 pp

Malicious Binary 3 19/55 52/55 60 pp

While not listed above comprehensively, it can be found that only six antivirus engines

were able to detect all three of the packed binaries as malicious. These antivirus engines

are listed in Table 5.18.

Table 5.18: Common antivirus engines between Malicious binary 1,2,3 with PEcompact

Agnitum

AntiVir

Avast

ESET-NOD32

TrendMicro

TrendMicro-HouseCall

5.8 Custom Packers Tests

The building of a packer is not clearly defined in previously conducted research and

therefore the following method for building a packer is acquired from the analysis of

existing malware. When analysed, the following methodology was revealed. A packer

is generally comprised of two parts. The dropper which is generated by the packer

application, is what gets distributed to the end user. This application handles the evasion

of the antivirus application as well the payload delivery - which is usually contained

within the application. To build a custom packer the following high level strategy can

be implemented by a malware author. The author first selects a method for compressing

the binary. This may be as simple as the zip or a custom implementation. Once this is

selected, an application is built that is known as the packer. This will accept a binary

as an input, compress it and then inject it into the dropper application. The selection of

a compression mechanism is optional but is highly recommended as it provides another

61

level of obfuscation. The dropper application can be built in two ways. The dropper will

be built as a distinct and separate binary which will manage the extraction and execution

of the packed code. The alternative and more complicated method is to build a code

stub which is injected along with the packed binary into any benign application that may

already exist on an end user’s system. This second method is more effective since the

application may already be white-listed for execution on the end user’s system and does

not provide as easy a signature to detect. Depending on the type of dropper that the

attacker wishes to use, the packer will need to be built to either: generate a dropper

application or just a code stub that will be injected into the transport application.

Table 5.19: Dropper Type Pros vs Cons

Dropper Type Pro Con

Static Binary Simpler To Build Static Binary Easily Detected

Dynamic Binary Dynamic Binary Harder To Detect Complicated Build Process

With the aforementioned knowledge in mind, it was decided that the initial type of

dropper was selected for use (i.e. a static binary that had data only injected). This

method of packing was selected because it is both simpler and less prone to error. The

stub and data injection is significantly more complicated as it requires rewriting different

parts (the original entry point) of the binary which is required to access the injected

stub. Furthermore, the benefits of the stub injection (which is a dynamic binary) only

assists evasion when used as part of a self-replicating package which is required by either

worms or viruses. Since the binaries that are submitted for testing have to be submitted

manually, changing the dropper executable is simply achieved by using different open

source projects while adding the required extraction code.

5.8.1 Implementing the custom packer

The tools for building a packer application can be built using high level languages such as

C# or Python or another scripting language as is common among certain malware authors

(Borello et al., 2010). The alternative is to build the application in a lower level systems

level type language such as C. The trade-off between the choice of languages comes down

to how fast the author can implement the packer in a given language. Higher level scripting

languages that are able to compile to executable binary applications are the most likely

to be selected as it means the runtime requirements on the end user’s system are lower.

62

In the same chain of reasoning, lower level languages provide fairly independent runtime

requirements by default, but at the cost of reimplementing a number of simple functions

provided by higher level functions. To speed up the build process, it was determined

that a higher level language would be used. The higher level language that was selected

was the C# language which runs on the Microsoft .Net framework. There is no specific

reason for using C# other than ease of use and portability. The same application packer

could be built by another rapid application development language and will be left for

future work. By building the packer using C# and using the packer / dropper method

of building a packer, there is a decreased chance of building the packer incorrectly. The

dropper application will be implemented by building a template binary that has a fixed

resource signature. This signature will then be found when the packer is executed and

replaced with the packed content.

5.8.2 Dropper Tests

As explained in section 2.9.4, packers are composed of two parts. For the dropper tests,

the part of the application that is considered the packer will not be tested as there is

nothing that can be considered malicious in the packer application. The tests described

below will be for the dropper that will be executed on an end user’s system. The structure

of the tests below will be executed in the same order as listed in Table 4.14. The dropper

that will be used for all the tests is generated by running the packer binary while using

each of the binaries listed in Table 4.14 as the source. The output from this application

is what will be submitted for final testing.

5.8.3 Test with benign application

The testing will begin with a benign application, this is used to determine if the antivirus

application is detecting the malicious code or the evasion wrapper. Once the benign

binary is packed and submitted to VirusTotal, the results in Table 5.20 are noted. These

results indicate (excluding one antivirus) that none of the other applications detected the

binary as malicious.

Table 5.20: Benign Application Scan Results

SHA256 ea39f07cf220. . .

File name demo.exe

Detection ratio 1 / 49

63

Table 5.21: Benign Application AV Scan Results

Antivirus Result

CMC Hoax.Win32.BadJoke.ScreenFlicker!O

5.8.4 Final packer test with Metasploit binary

As with the previous test, we prepare the dropper for upload but instead of using the

generic calculator application, we use the Metasploit testing binary. The scan results from

uploading this binary can be found below. Note: the Metasploit that is packed does not

contain any exploit opcodes. The results from packing the malicious binaries with the

custom packer can be found in Table 4.

Table 5.22: Metasploit Scan Details

SHA256 df06d7bc21f6. . .

File name SelfExtractor.exe

Detection ratio 2 / 49

Table 5.23: Metasploit AV Detection Test Results

Anti-virus Result

Avast Win32:Malware-gen

Malwarebytes Backdoor.Bot.gen

5.9 Reports

As mentioned previously in subsection 4.3.2, the eicar file could not be used for any of

the tests and as a result it is not covered in further detail for the rest of the section

5.9.1 Existing Packer Reports

UPX Metasploit Basic Test Results: Looking at the tabulated results in Table 25

the basic Metasploit scan, while being wrapped with UPX, had an increased detection

rate from the original detection rate of six for the gcc test. When looking at the tests for

the pre-compiled binary we do gain a small decrease in the detection rate, though this

is attributed to the small number of scanners detecting the packers signatures instead of

the enclosed payload.

64

UPX Metasploit opcode Test Results: In Table 26 we see a significant increase

in detection by antivirus engines. The majority of the antivirus engines seem to detect

the occurrence of malicious behaviour and flag the binary as a generic malicious binary.

The behaviour that is detected according to the F-Secure antivirus index2 is that of a

generic Trojan application. This labeling of a Trojan does not conclusively point to the

antivirus application detecting the internal payload since packer applications are generally

associated with Trojans.

ASPack Metasploit Basic Code Test Results: Detection ratio: 6 / 55

When being wrapped with the ASPack packer and submitting the application to VirusTotal

we see a minimal detection ratio. This is most likely due to the payload being benign and

the antivirus applications simply detecting packers stub application.

ASPack Metasploit Opcode Test Results: Detection ratio: 10 / 55

When the Metasploit binary containing the opcodes to execute an application is wrapped

with the ASPack packer. The application submitted to VirusTotal presents a slight

increase in detections compared to the non opcode embedded version. This increased

detection is possibly due to the sample application launching the calculator application

which is considered a test case of many malicious pieces of malware.

PECompact Metasploit Basic Code Test Results: Detection ratio: 11 / 55

The metasploit binary that is packed using the PECompact application has a higher

detection rate than the ASPack packer. Since we are looking at the basic payload which

does not launch any application, the antivirus engines are once again showing signatures

for generic Trojans and backdoors. This is an indication that the antivirus engines are

detecting the packers signature and not the internal payload.

PECompact Metasploit Opcode Test Results: Detection ratio: 11 / 55

The Metasploit binary with the included payload did not result in an increase in detection

rate. This further confirms that the antivirus engines were simply detecting the packers

signature that is emitted by default when packing an application.

5.9.2 Custom Packer Reports

Benign Test Results As expected none of the antivirus engines detect the wrapper

application as malicious (only one engine flags the application as a joke application). The

joke detection is possibly because the application launched is the calculator application.

2http://www.f-secure.com/v-descs/trojan_w32_graftor.shtml

65

Metasploit Test Results From the results we can see the only two antivirus engines

detect the packed binary as malicious. It maybe be possible that the payload will be

detected at a later stage. Getting the payload past the first level of scanning is a significant

win.

5.10 Summary

As mentioned previously in section 2.5, packers were one of the first methods used to

evade antivirus engines. Consequently, it is the first method of evasion that was tested.

After using the existing packers to pack the test binaries, the results were submitted to

VirusTotal for scanning and the following results were found and compiled into Table

5.24. The results in table 5.24 represent the final score from virus total indicating the

number of antivirus engines that detected the binary as malicious, while the percentage

point difference compared to the original baseline binary is shown in brackets next to the

scan results. These percentage points indicate whether there was an increase or decrease

in the number of detections, with negative values indicating an increase in the number of

detections, while positive numbers indicate a decrease in the number of detections.

Table 5.24: Detection Rates Side By Side Summary

Detection Rate (Percentage Points)

Binary UPX ASPack PECompact Custom Packer PP Average

Metasploit Base 10/55 (22 pp) 6/55 (29 pp) 11/55 (20 pp) 2/55 (36 pp) 27 pp

Metasploit Opcode 39/55 (-29 pp) 29/55 (-11 pp) 15/55 (15 pp) 22/55 (2 pp) -6 pp

Malicious Binary 1 29/55 (35 pp) 16/55 (58 pp) 18/55 (55 pp) 13/55 (64 pp) 53 pp

Malicious Binary 2 28/55 (44 pp) 18/55 (62 pp) 18/55 (62 pp) 14/55 (69 pp) 59 pp

Malicious Binary 3 0/55 (0 pp) 19/55 (60 pp) 19/55 (60 pp) 18/55 (62 pp) 46 pp

Averages 14 pp 40 pp 42 pp 47 pp 36 pp

There are a number of points that can be extracted from the Table 5.24. Working

through the results from the top of the table: none of the packers were able to process the

eicar file except for the custom packer which still had a zero detection ratio. The reason

for none of the packers being able to process the file is because they require a valid PE

binary to modify. Since the eicar file is just a text file that works as a COM file as well, it

cannot actually be modified. The benign binary was tested with each packer to establish

if the antivirus engines were detecting the malicious code or the wrapper code. Following

the benign tests, the Metasploit base file was tested. This is the original baseline file

that was selected in section 4 after a number of other options were originally considered

and subsequently eliminated as options. The baseline binary started with a base detection

66

rate of 22/55. This detection rate either dropped or increased when different packers were

independently applied. On average the number of detections dropped by 27 percentage

points across all the packers. While there was a large drop in this initial scan, it was

attributed to the significant change of the baseline binary coupled with the fact that

it had no malicious code embedded in it, indicating most antivirus engines ignored the

binary.

To test if adding malicious code to the application would change the detection rates,

the next test added exploit opcodes to launch a benign application in a non-conventional

manner. As mentioned previously, the next step was to add some additional code to

the template binary to make it seem more malicious to the antivirus applications. After

adding the code and scanning it, the new template binary had a total detection rate of

23/55 with only one more antivirus engine detecting the binary as malicious. While only

one antivirus engine detected the new template binary as malicious, after packing the

template binary with each packer and then submitting it for testing a new pattern is

discovered. For UPX and ASPack the detection rate increased instead of decreasing as

expected, with an average increase of 20 percentage points in the number of detections

across the two packers. While the detection rates for the custom packer only got reduced

by two percentage points, only PEcompact gained a significant reduction in the number

of detections with a decrease of 15 percentage points.

A final test was performed to determine the effectiveness of working with a baseline

binary. This final test was to use all the packers to pack a set of known malicious binaries

and compare the results. This final test compromises rows three, four and five in Table

5.24 for the three selected malicious binaries indicated in section4.4. Binary number one

had an average reduction in the number of detections of 53 percentage points across the

four packers. The average reduction in number of detections for binary number two was

increased to 59 percentage points with binary number three having a reduction of 46

percentage points in the number of detections across the three packers that were able to

pack it (UPX was not able to pack the binary). This resulted in an overall reduction of

52 percentage points in the number of detections across the three binaries.

The custom packer performed marginally well by gaining the lowest detection rate of

all the packers for each of the scans. The packer could have been built differently to achieve

better results, but the aim of using the custom packer was not to gain a perfect bypass,

but rather to show that it could perform better than existing packers with minimal work

involved. For malware authors this is good news as it means that building a custom packer

as part of the release plan, will result in the malware being able to evade the vast majority

67

of the antivirus engines employed. Based on the results in Table 5.24, malware authors

that do not have the required development skills can still use existing packers to gain

some reduction in the detection of the malware they deploy. In conclusion, this chapter

dealt with the initial set of tests and demonstrated how the tests should be performed as

well as their effectiveness against the antivirus engines available at the time. The next

chapter will discuss the encryption evasion technique and demonstrate the effectiveness

of encrypting a malicious binary to evade modern antivirus applications.

68

Chapter 6

Evasion : Encrypters

6.1 Introduction

Similar to the work described in chapter 5, this chapter will perform a set of tests to

gauge the effectiveness of modern antivirus applications in detecting a set of protocol

binaries wrapped in the encryption evasion technique as introduced in section 2.6. This

chapter will use the processes and methodologies listed in Chapters 3 and 4 to test the

effectiveness of the encryption evasion technique.

6.2 Hypothesis

It is expected that the antivirus application tested will be looking for specific signatures

and therefore, encrypting the baseline application will change the application’s signature.

This should, in turn, result in a lower detection rate. It is expected that the detections

raised by the antivirus application will be due to the signatures of the encryption stubbs

not the signature of the baseline application. Based on the results from Chapter 5, this

chapter will attempt to match the reduction gained by the packers or gain an increase

in the reduction. Further, detections recorded in the test results belong to signatures

generated by the packer and is not the signature of the baseline application. This will be

demonstrated by the use of a benign application which produces no malicious detections

when submitted prior to encryption. The benign application will then be detected as

malicious after being encrypted and submitted for testing.

6.2.1 Goals

The results obtained from testing in the previous chapter demonstrate that an average

reduction in the number of detections of at least 10 percentage points can be gained

69

against the antivirus engines that detect the baseline tests as malicious. As such the goal

for this chapter will also attempt to achieve an average reduction of at least 10 percentage

points.

6.3 Tests

The testing will be performed in two phases. The first phase of testing will test a set of

existing encryptors that exist in the wild and are publicly accessible. This will provide us

with a base from which our custom encrypter can be compared. The second phase will

be to test a custom implementation of an encrypter tool as discussed in the section 5.8.

The creation of a custom implementation will allow us to compare the results of using a

packer that generates a known signature as part of its decryption routine which may be

already known to antivirus engines versus a custom application that would not have a

recorded signature. This in turn can be used to determine if the antivirus applications are

looking for signatures in the encrypting applications or if they are looking for signatures

in the malicious binaries or if the antivirus applications are using heuristics to perform

their detection.

As for the tests that will be executed and the order of the tests, they are listed in the

Table 4.5. The order and tests are the same as those executed for Chapter 5.8. A benign

application will first be tested to determine if the antivirus applications are scanning for

signatures in the decryption routines. Once the benign test is completed, the baseline

test will be executed using the baseline application selected in the section 4 on baseline

binary selection.

6.4 Existing Encrypters

For the baseline testing of the existing encryption application, two encryptors that are

available and run on modern operating systems will be selected for use.. The two

applications that were selected are Hyperion1 and PEScrambler2. The two applications

provide the functionality required to be tested - which is to wrap a binary by encrypting

its content and then appending a decryption stub to the encrypted binary so that the

binary can be decrypted on execution.

1http://nullsecurity.net/tools/binary.html
2https://code.google.com/p/pescrambler/

70

Table 6.1: Encrypters to be tested

Encypter Version

PEScrambler v0.1

Hyperion v1.0

6.5 Hyperion Background

The Hyperion packer3 is the first of the encryptors to be tested. The encryptor was

selected because it is one of the few remaining publicly available encryptors that work on

a modern operating system without the need for code modification. As mentioned in the

introduction, the tests will start with a benign test and then move on to the baseline test

and finally a malicious test.

6.5.1 Benign Test

The first test is to set the baseline for the future tests. It will allow for verification if

an antivirus engine detects a binary as malicious purely based on a byte signature in the

decryption stub. As discussed in 4.3.1, the application that was selected was the 32bit

version of cmd.exe as the application has no known side effects and is executable on all

modern operating systems (without the need for dedicated dependencies). The baseline

scan for cmd.exe is found in the Table 4.2 in the section 4.3.1 and as expected is not

reported as malicious at all.

After encrypting the application and then submitting it for testing, the results as

listed in Table 6.2 show a detection ratio of 20/55. From this it can determined that the

antivirus engines that are detecting this binary as malicious are simply scanning for a

known byte signature that would be generated by the Hyperion Application.

Table 6.2: Hyperion Benign Scan

SHA256 f70cebe27268. . .

File name cmdhp.exe

Detection ratio 20/55

6.5.2 Baseline Test

The following section covers process of encrypting and then scanning the baseline binary

with Hyperion. The scans for the baseline binary can be found in table 6.3 which contains

3http://nullsecurity.net/tools/binary.html

71

no exploit code, this is followed by a scan of the baseline binary with exploit embedded

as seen in table 6.4.

Table 6.3: Baseline Encrypted Scan with Hyperion

SHA256 a3080b3c97d9. . .

File name template x86 windowshp.exe.report

Detection ratio 23/55

When compared to the previous test the results in Table 6.3 show only a small increase

of 2 percentage points in the number of detections. This indicates that only three of the

anti-virus engines are looking at the end result of the decryption process. The small

increase could be attributed to the template being inert and as such not triggering any

heuristics for the antivirus applications.

6.5.3 Hyperion Baseline Scan with Opodes

Table 6.4: Exploit Enabled Baseline Encrypted Scan with Hyperion

SHA256 900a0b4fcb6c. . .

File name template x86 windows ophp.exe.report

Detection ratio 23/55

After submitting the template binary with the opcodes embedded for scanning, the results

found in Table 6.4 indicate no increase in detection rates. The verification that the same

file was not submitted for both tests can be achieved by comparing the sha256 hash values.

6.5.4 Malware Test

With Hyperion, only one sample of the three listed in the malware test (Table 4.9) was able

to encrypt successfully. The sample that was able to encrypt successfully was Malicious

Binary 2 (the Zeus Bot) and as a result it is the only malware sample tested in this

section. Malicious Binary 2 :

Table 6.5: Zeus bot Malware Scan with Hyperion

SHA256 0c1e63a8d1a5. . .

File name hp VirusShare 9fc364ccffe540c627733222641259c9.sf.report

Detection ratio 26/54

72

When comparing the results from the malware submission in Table 6.5 it can be seen

that there is a significant drop in detection rates of 47 percentage points when compared

to the original scan results for the malicious binary. Unfortunately because there are so

few malicious binaries that can be successfully encrypted with Hyperion it is difficult to

extract a definitive comparison.

6.6 PEScambler Background

The final encryptor to be tested is the encryptor known as PEScrambler4. The original

repository was available at5, but this is no longer open to the public. As with the Hyperion

tests, this section will begin with the benign test to set a baseline and determine if the

antivirus engines have a known byte signature for the encryptors decryption stub.

6.6.1 Benign Test

Table 6.6: PEScrambler Benign Scan

SHA256 fb69c4d27df8. . .

File name cmdpe.exe.sf.report

Detection ratio 7/55

While there is a slight increase in detection rates (seven antivirus engines detected the

benign application as malicious), in comparison to the Hyperion test, the PEScrambler

had a significantly lower detection ratio for the benign application (7/55 versus 20/55).

6.6.2 Baseline Test

The following section covers the process of encrypting and then scanning the encrypted

binary with PEScambler. The scans for the baseline binary in Table 6.7 with no exploit

code embedded is followed by a scan of the baseline binary with exploit embedded in

Table 6.8.

After submitting the encrypted baseline template for scanning, the results in Table

6.7 indicate that there is a decrease of 18 percentage points in the number of detections

when compared to the baseline template scans.

4https://github.com/Veil-Framework/Veil-Evasion/tree/master/tools/pescrambler/
5https://code.google.com/p/pescrambler/

73

Table 6.7: Baseline Encrypted Scan with PEScrambler

SHA256 aa694414c81c. . .

File name template x86 windowspe.exe.report

Detection ratio 12/55

6.6.3 PEScrambler Baseline Scan With Opcodes

Table 6.8: Exploit Enabled Baseline Encrypted Scan with PEScrambler

SHA256 59275c39364b. . .

File name template x86 windows oppe.exe.report

Detection ratio 13/54

After submitting the template with the opcodes embedded for scanning, the results in

Table 6.8 indicate a decrease of 18 percentage points in the detection rate when compared

to the template opcode binaries original scan results.

6.6.4 Malware Test

The following section details the process of encrypting a live malware sample and then

scanning the encrypted binary. The three samples below were encrypted successfully with

PEScrambler. The application does not provide any information on why it is not able

to encrypt an application and as a result, only the successful malware samples will be

listed below. After submitting the encrypted copy of malicious binary 1 for scanning and

analysing the results in Table 5, it is found that there is a decrease of 73 percentage points

in the rate detection. This is a significant result in the decrease of detection rates and

when compared to all other tests completed up this point, it is the highest decrease in

detection.

After submitting the encrypted copy of malicious binary 2 for scanning and analysing the

results in Table 5, it is found that there is a decrease of 56 percentage points in the rate

of detection. While this decrease in rate of detection is noteworthy, it does not compare

as favourably to the decrease in the detection rates for malicious binary 1. One possible

explanation is that Zeus malware authors may have previously encrypted copies of the

malware with PEScrambler.

After submitting the encrypted copy of malicious binary 3 for scanning and analysing

the results in Table 5, it is found that there is a decrease in the detection rates of 78

percentage points. As with malicious binary 1, a high reduction in the detection rates

74

is once again observed and further points to the possibility that the Zeus scan was an

oddity.

6.7 Custom Encryptor

The implementation of encryptors is very similar to that of packers. The Microsoft .Net

Framework (.Net) is used and the encrypted data is stored in the dropper binary. In

the same manner as the packer, the encryptor is built using the .Net platform with the

C# programming language. Furthermore, since the encryptor works in a similar method

to the packer, the majority of the packers code will be used and then expanded (where

needed) to add the encryption layer. As with the packer, the encrypter is split into two

parts, namely the encryptor and the dropper. Similarly to the packer, the dropper will

store the payload as well as handle the decryption and final execution of the binary that

was packed. The encryption used in the implementation is AES. Further, the payload is

encrypted directly and is not zipped before encryption.

In the hypothesis it was stated that we would be testing the techniques used to

evade an antivirus, instead of testing the specific implementations of particular techniques

against modern antivirus engines. Consequently, a custom implementation of an encryptor

will need to be built which will test the second of the two evasion techniques that was

mentioned previously in 2.5.3.

The two basic techniques that were built and tested, are the packer and encryption

techniques. These two methods are very similar because they are different stages of

the evolution of basic evasion techniques. The testing of metamorphism as well as the

other more advanced evasion techniques will need to be completed as a separate research

undertaking owing to the depth and complexity of these techniques. The encryptor tests

are similar to that of the packer with a slight change: instead of performing a dummy

scan with no valid payload, testing will start directly with a payload that has some basic

opcodes to launch the calculator application in Windows. As with the packer tests, the

tests are not meant to evaluate the encryptor, rather to test the dropper application which

contains the payload.

6.7.1 Baseline Test

When testing the encrypter with the basic template payload the results as found in table

6.9 were observed.

75

Table 6.9: Baseline Scan With Custom Encrypter

SHA256 4cce95b26fd4. . .

File name SelfDecrypter.exe

Detection ratio 0 / 49

The scan shows that none of the antivirus engines detected the payload that was

embedded in the binary as malicious. Furthermore the decryption stubb application was

not detected as malicious either because it was a custom application.

6.7.2 Baseline With Opcodes Test

A final scan was done with a payload that executed basic opcodes in order to launch the

Windows calculator application. This method of executing code is technically considered

more malicious and is likely to trigger more alarms for the antivirus engine. The results

from this scan be found in Table 6.10 and as with the previous test, none of the antivirus

engines detected the binary as malicious.

Table 6.10: Baseline Scan With Opcodes

SHA256: 4aad495e7176. . .

File name: SelfDecrypter OP.exe

Detection ratio: 0 / 49

6.8 Summary

After performing all the tests for the chapter, the results are shown in Table 6.11. The

table indicates a baseline by which to compare the rest of the data when determining if

the antivirus engines are detecting the encryptor’s signature as malicious or if the actual

embedded binary as malicious. Based on the hypothesis and observation in the previous

results indicated in Table 5.24, it was expected that a number of antivirus applications

would detect the decryption code as malicious. The results from the benign scan confirms

this notion by indicationg that both Hyperion and PEScrambler had malicious detections

when encrypting the previously clean benign application. Note: The benign scores not

considered in averages for table 6.11 and is simply displayed for easier comparison.

76

Table 6.11: Encryption Comparison Summary

Binary Hyperion PEScrambler PP Average

Benign 20/55 (-36 pp) 7/55 (-13 pp) -25 pp

Metasploit 23/55 (-2 pp) 12/55 (18 pp) 8 pp

Metasploit OP 23/55 (0 pp) 13/55 (18 pp) 9 pp

Malicious Binary 1 N/A 8/55 (73 pp) 37 pp

Malicious Binary 2 26/55 (47 pp) 21/55 (56 pp) 52 pp

Malicious Binary 3 N/A 9/55 (78 pp) 39 pp

Percentage Point Average 9 pp 49 pp 29 pp

After the benign scan was completed, the next two scans performed were the Metasploit

and Metasploit OP scans. These scans were meant to test an antivirus engines ability to

detect the flagged binaries. After performing the scan with Hyperion, an increase of 2

percentage points were observed in the detection rates for the base Metasploit template

binary. The PEScrambler showed a decrease of 18 percentage points in its detection

rates. The increase in the detection rates of Hyperion is most likely due to the common

use of Hyperion in a number of evasion frameworks - which have resulted in an increased

detection rate, when coupled with the already malicious Metasploit template. For this

reason, the increase in detection is reasonably expected.

The decrease in the detection rates is due, in part, to the opposite effect observed by the

Hyperion scan. This effect is one in which a known encryptor increases the detection rate

while an unknown encryptor decreases the detection rate. Even though PEScrambler is

open source, it is not as popular as Hyperion when being used in the wild. For this reason,

when encrypting an application it is able to provide evasion capabilities as expected.

When performing the scans with the OP code template binary the following results

were observed. When scanned with Hyperion no change in percentage points were observed

between the baseline OP binary and the encrypted binary. The same results as the original

baseline scan were observed for the OP code binary with a decrease of 18 percentage points.

For the malicious binary tests, two of the binaries could not be encrypted with

Hyperion. The reason why Hyperion could not encrypt these binaries is not provided

by Hyperion. In the case of the one binary that was able to encrypt successfully, there

was a decrease of 47 percentage points in detection rates. In the case of PEScrambler, all

the binaries were able to encrypt successfully and resulted in an average reduction of 69

percentage points across the three malicious binaries tested.

There was an odd case observed with the tests for Malicious Binary 2 which showed a

higher than normal detection rate for PEScramble when compared to the other binaries.

It is assumed that this is because the binary that was tested has previously used this

77

specific encryptor in the wild, and a larger number of antivirus engines have signatures

for its encrypted form. Overall the results for the malicious binary detection tests were

successful with a reduction in detection rates of greater than 6.

Comparing the results from all the tests performed, it can be observed that the

encryptors were more successful than the packers (previously tested in Table 5.24). This

success is largely owing to PEScrambler which also has a high detection rate, similar to

the custom encryptor with the static key which was almost never detected.

In conclusion, this chapter demonstrated the effectiveness of encrypting a malicious

binary in a manner so that it can evade an antivirus application. The goal of an

average reduction of 10 percentage points was achieved with an average reduction of 29

percentage points. The chapter used the processes and methodologies detailed in Chapter

3 and Chapter 4. Having demonstrated the effectiveness of encryption, the next chapter

will attempt to achieve better results by combining the techniques used in this chapter

(encryption) and the techniques used in Chapter 5 (packing).

78

Chapter 7

Evasion : Combination

7.1 Introduction

Chapters 5 and 6 tested the packing and encryption techniques using the test protocol

applications as defined in chapter 4. This chapter will investigate if combining a packer

and an encryptor on the same binary will reduce the detection rate. The testing will be

performed in two sets, evaluating whether packing a binary first or encrypting the binary

first produces a binary that has a higher percentage of evasion. These tests are performed

since they provide different output binaries depending on which evasion technique is

applied first.

7.2 Hypothesis

By combining both the packer and encryption applications on the same binary, the

detection rates will be reduced when compared to the original single instance tests. There

are two possible outcomes that are expected from this test. The first possible outcome

is that there will be a positive reaction to the combination of the packer and encryptor,

which will result in a reduced detection rate when compared to the original tests. The

second possible outcome is that the antivirus engines detect either the packer or encryptor

resulting in an increased detection rate.

7.2.1 Goals

In this chapter it is favorably expected that based on tests in the previous two chapters

in which the packers and encrypters were tested separately, the percentage point changes

can be found in tables 7.1 and 7.2.

79

Table 7.1: Expected Goals For Pack First Tests

Pack first ASPack UPX PECompact

Baseline 13pp 11pp 10pp

Baseline OP -5pp -14pp 7pp

Malicious Binary 1 25pp 15pp 25pp

Malicious Binary 2 30pp 22pp 31pp

Malicious Binary 3 30pp 0pp 30pp

Average 19pp 7pp 21pp

Table 7.2: Expected Goals For Encrypt First Tests

Encrypt First Hyperion PEScrambler

Baseline -1pp 9pp

Baseline OP 0pp 9pp

Malicious Binary 1 0pp 35pp

Malicious Binary 2 22pp 25pp

Malicious Binary 3 0pp 39pp

Average 4.2pp 23.4pp

Tests that have a 0 percentage point change recorded in tables 7.1 and 7.2, indicate

binaries that were not able to encrypted or packed previously and are unlikely to have a

different result when combined with the alternate packer or encryptor. The remainder of

the binaries were give a percentage point goal of half the of the original tests results, this

is due to the possibility that the combination of a packer or encryptor is likely to affect

the original detection score. While its not possible to say exactly how it will affect the

original score, it is expected that in most cases it will cause the binary to be flagged more

often. In cases where it is not flagged it is then expected that the score will demonstrate

better evasion scores.

7.3 Tests

The tests will be performed in two sets. First the binary will be packed and then encrypted

for each of the existing packers and encryptors. This will be followed by a set of tests

for the opposite order, the binary will be encrypted and then packed. By performing

both sets of tests, it can be verified as to what exactly the antivirus engines are checking

for. If the tests results in both tests are exactly the same, then it will be assumed that

80

the antivirus engines are actually extracting the packed data and allowing the encrypted

data to hit this disk. If the tests result in differing data, then it can be assumed that

the antivirus applications are only verifying one level of maliciousness and reporting this

first level of scanning only. The testing in the upcoming sections will test the binaries

listed in the Table 4.14. It should be noted that the tests in this chapter will only be

performed when the binaries that are being tested can be packed and encrypted. If either

one is not possible, then the binary will be excluded from that test as it will have the

same results as the original test performed in either the Chapter 5 on packing or Chapter

6 on encrypting.

7.4 Pack-First Tests

This section will be broken into the subsections listed in Table 7.3 which deals with a

cross paired test between all the packers and encryptors previously covered in Chapters

5 and 6.

Table 7.3: Listing of Pack First Tests

Sub Section Binary First Packed With Result Is Then Encrypted With

7.4.1 UPX Hyperion

7.4.2 UPX PEScrambler

7.4.3 ASPack Hyperion

7.4.4 ASPack PEScrambler

7.4.5 PECompact Hyperion

7.4.6 PECompact PEScrambler

7.4.1 UPX - Hyperion

The results from scanning the binaries with the combination of UPX and Hyperion are

found in Table 12. The base template had a marginal increase of 7 percentage points,

this is probably the same as the Hyperion increase. The opcode template had a slight

increase in detection of 2 percentage points. The first malicious binary was incapable of

being packed using UPX and as such was not considered for testing. Malicious Binary

number 2 had a reasonable reduction in detection rates of 55 percentage points which is

on par with the original UPX reduction results. The third malicious binary had the same

results as the first binary in terms of reduction of detection rates, with a reduction of 53

percentage points.

81

7.4.2 UPX - PEScrambler

The results from scanning the binaries with the combination of UPX and PEScrambler

are found in Table 13. When scanning the baseline binary with a combination of UPX and

PEScrambler, a reduction in detection rates of 22 percentage points was observed when

compared to the original scan results of the baseline binary. When scanning template base

with the combination of UPX and PEScrambler, there is an increase of 25 percentage

points in the detection rate which contradicts what was expected after observing the

previous scan results. When scanning Malicious Binary number 1 with the combination

of UPX and PEScrambler, it showed a decrease of 35 percentage points in its detection

rate and was close to the original PEScrambler detection results. When scanning the

combination of UPX and PEScrambler, Malicious Binary number 2 showed a decrease of

44 percentage points in its detection rate was close to the original PEScrambler detection

results. When scanning the combination of UPX and PEScrambler, Malicious Binary

number 3 showed a decrease of 78 percentage points in its detection rate and was close

to the original PEScrambler results.

7.4.3 ASPack - Hyperion

The results from scanning the binaries with the combination of ASPack and Hyperion are

found in Table 14. The base Metasploit template scan shows an increase of 4 percentage

points in its detection rates when manipulated by ASPack and Hyperion. This is the

same effect as observed for UPX and Hyperion, with the exception that the increase is

not as large. The Metasploit opcode scan shows a tiny increase in detection rates as with

the previous test with an increase of 2 percentage points. It is interesting to note that

the increased percentage is exactly the same as the UPX and Hyperion test. As with

previous tests, there was a significant decrease in the detection rates of the malicious

binaries. The first of the malicious binaries was not able to be packed and as such had no

results. However a decrease of 55 percentage points for Malicious Binary number 2. As

with previous tests, there was a significant decrease in the detection rates of the malicious

binaries, with a decrease of 47 percentage points in detection rates for Malicious Binary

number 3.

7.4.4 ASPack - PEScrambler

The results from scanning the binaries with the combination of ASPack and PEScrambler

are found in Table 15. When performing the combination test with ASPack and PEScrambler

on the base template, a significant reduction in detection rates of 27 percentage points

was observed. For the first time this result shows a lower detection rate than that of

82

the original PEScrambler or ASPack test results. When performing the test with the

Metasploit opcode binary, a significant reduction in detection rates of 18 percentage

points was observed. When performing the test with the first malicious binary an average

reduction of 49 percentage points in detection rates is observed. When performing the

test with the second malicious binary, a significant reduction of 62 percentage points in

detection rates is observed. The final test performed with Malicious Binary number 3 also

results in a significant reduction of 82 percentage points in detection rates. This is also

the first time that one of the malicious binaries has shown such a high reduction in its

rate of detection. It is greater than that observed in the original PEScrambler or ASPack

results.

7.4.5 PECompact - Hyperion

The results from scanning the binaries with the combination of PECompact and Hyperion

are found in Table 16. The Baseline Metasploit test with the current combination resulted

in an increased detection rate of 7 percentage points in the rate of detection. When

performed with the Baseline Metasploit opcode binary using the current combination,

an increase of 5 percentage points in the rate of detection was observed. When testing

the malicious binaries, only malicious binary number two and malicious binary number

three successfully packed and encrypted with the current combination being tested. These

binaries showed a decrease of 49 percentage points in their detection rates.

7.4.6 PECompact - PEScrambler

The results from scanning the binaries with the combination of PECompact and PEScrambler

are found in Table 17. The basic template was not able to successfully have the packer

and encryptor evasion applied. When scanned, the Metasploit opcode template showed a

reduction of 29 percentage points in the rate of detections. All three binaries successfully

had the current combination applied to them and showed a reduction of 82, 69 and 80

percentage points in their detection rates of each of the binaries respectively.

Table 7.4: Summary Table For Pack First

ASPack PECompact UPX

Binary Hyperion PEScrambler Hyperion PEScrambler Hyperion PEScrambler

Baseline 24/55 (-4 pp) 7/55 (27 pp) 26/55 (-7 pp) 0/55 (0 pp) 26/55 (-7 pp) 10/55 (22 pp)

Baseline OP 24/55 (-2 pp) 13/55 (18 pp) 26/55 (-5 pp) 7/55 (29 pp) 24/55 (-2 pp) 37/55 (-25 pp)

Malicious Binary 1 0/55 (0 pp) 21/55 (49 pp) 0/55 (0 pp) 3/55 (82 pp) 0/55 (0 pp) 29/55 (35 pp)

Malicious Binary 2 22/55 (55 pp) 18/55 (62 pp) 25/55 (49 pp) 14/55 (69 pp) 22/55 (55 pp) 28/55 (44 pp)

Malicious Binary 3 26/55 (47 pp) 7/55 (82 pp) 25/55 (49 pp) 8/55 (80 pp) 23/55 (53 pp) 9/55 (78 pp)

Percentage Point Average 19 pp 48 pp 17 pp 52 pp 20 pp 31 pp

83

7.5 Encrypt-First Tests

This section will test the use of a combination of packer and encryptors as in the previous

section 7.4. The difference in the tests can be found in the order in which the packers

and encryptors are applied. The previous chapter applied the packers first while this

chapter applies the encryptors first. This section will be broken into the subsections

listed in Table 7.5 which covers a cross paired test between all the encryptors and packers

previously covered in Chapters 5 and 6.

Table 7.5: Listing of Pack First Tests

Sub Section Binary First Encrypted With Result Is Then Packed With

7.5.1 Hyperion ASPack

7.5.2 Hyperion PECompact

7.5.3 Hyperion UPX

7.5.4 PEScrambler ASPack

7.5.5 PEScrambler PECompact

7.5.6 PEScrambler UPX

7.5.1 Hyperion - ASPack

The results from scanning the binaries with the combination of Hyperion and ASPack

are found in Table 18. When the base Metasploit template is scanned, a decrease of 11

percentage points in its detection rates was observed. While this is the first test for the

“encrypt first” tests, when compared to “pack first” tests it is a promising result as it

shows a decrease instead of an increase which was the observed result for many of the

“pack first” scans. The next test which is the Metasploit opcode scan. It demonstrated a

decrease of 15 percentage points in its detection rates. While this is only marginally better

than the base template scan, it shows better results than the alternate paired scan where

ASPack and Hyperion were employed. From the three malicious binaries only two were

able to have the current combination applied to them. These binaries (Binary number 2

and Binary number 3) showed a reduction of 71 and 73 percentage points respectively in

their detection rates.

7.5.2 Hyperion - PECompact

The results from scanning the binaries with the combination of Hyperion and PECompact

are found in Table 19. The base template and the opcode code template both successfully

had the current combination applied to them and showed a reduction of 20 and 13

84

percentage points respectively in their detection rates. As with the previous test in

subsection 7.5.1, only two of the malicious binaries had the current combination successfully

applied to them. These binaries (malicious binary number 2 and malicious binary number

3) both showed a significant reduction of 78 and 80 percentage points in their detection

rates.

7.5.3 Hyperion - UPX

The results from scanning the binaries with the combination of Hyperion and UPX are

found in Table 20. The base template and the opcode code template both successfully had

the current combination applied to them and showed a reduction of 5 and 7 percentage

points respectively in their detection rates. This reduction is the lowest reduction for the

base tests with any of the current ”encrypt first” combinations. Of the three malicious

binaries, only the third malicious binary successfully had the current combination applied

to it. This combination did result in a significant detection rate reduction of 69 percentage

points.

7.5.4 PEScrambler - ASPack

The results from scanning the binaries with the combination of PEScrambler and ASPack

are found in Table 21. The base template and the opcode code template both successfully

had the current combination applied to them and showed a reduction in detection rates

of 24 and 29 percentage points respectively in their detection rates. All three of the

malicious binaries were able to have the current combination of evasions applied to it. All

three of the binaries had a significant reduction in detections rates, these were 65, 76 and

95 percentage points respectively in their detection rates. This is the only time a scan has

ever resulted in zero detections. It should be noted that this combination which results in

a 100% reduction only seems to work for Malicious Binary number 3, as the other binaries

that were tested with the same combination did not result in a 100% reduction

7.5.5 PEScrambler - PECompact

The results from scanning the binaries with the combination of PEScrambler and PECompact

are found in Table 22. The base template and the opcode code template both successfully

had the current combination applied to them and showed a reduction in detection rates of

20 and 27 percentage points respectively. Of the three malicious binaries, only Malicious

Binary numbers 1 and 2 successfully had the current evasions applied. These binaries

showed a reduction in their detection rates of 78 and 69 percentage points respectively.

85

7.5.6 PEScrambler - UPX

The results from scanning the binaries with the combination of PEScrambler and UPX

are found in Table 23. The base template and the opcode code template both successfully

had the current combination applied to them and showed a reduction in its detection

rates of 13 and 24 percentage points respectively. Of the three malicious binaries, only

Malicious Binary 1 and 2 successfully had the current evasions applied. These binaries

showed a reduction in their detection rates of 67 and 56 percentage points respectively.

Table 7.6: Summary Table For Encrypt First

Hyperion PEScrambler

Binary ASPack PECompact UPX ASPack PECompact UPX

Baseline 16/55 (11 pp) 11/55 (20 pp) 19/55 (5 pp) 9/55 (24 pp) 11/55 (20 pp) 15/55 (13 pp)

Baseline OP 15/55 (15 pp) 16/55 (13 pp) 19/55 (7 pp) 7/55 (29 pp) 8/55 (27 pp) 10/55 (24 pp)

Malicious Binary 1 -/55 (0 pp) -/55 (0 pp) -/55 (0 pp) 12/55 (65 pp) 5/55 (78 pp) 11/55 (67 pp)

Malicious Binary 2 13/55 (71 pp) 9/55 (78 pp) -/55 (0 pp) 10/55 (76 pp) 14/55 (69 pp) 21/55 (56 pp)

Malicious Binary 3 12/55 (73 pp) 8/55 (80 pp) 14/55 (69 pp) 0/55 (95 pp) -/55 (0 pp) -/55 (0 pp)

Percentage Point Average 34 pp 38 pp 16 pp 58 pp 39 pp 32 pp

7.6 Summary

After performing all the tests in this chapter the following summary (Table 7.4) can be

drawn to show the effectiveness of each combination across the binaries that were tested.

In the “pack first” tests the binaries were first packed and then encrypted with either

Hyperion or PEScrambler alternatively. The binaries that could not be packed and

encrypted are represented with an N/A in the respective column. The testing showed that

in the end only four combinations of a packer and encryptor did not succeed. Hyperion

showed an averseness to working with packed binaries as it could not modify the flow

correctly and as such would simply fail. This failure to encrypt was only apparent when

testing with the first malicious binary.

When analyzing the results for the ASpack and Hyperion combination, it can be

stated that it performed reasonably well when compared to the average for the expected

goals defined in the beginning of this chapter. The results from tests showed an average

evasion of only 24 percentage points which is greater than the expected average of 19

percentage points. The subsequent ASPack test had much better results with an average

of 48 percentage across the five binaries. This result exceeds expectations and meets the

goal of achieving greater than the 19 percentage points evasion from the original goals.

When analyzing the results for PECompact, the reduction in detection rates is only

just greater than the goal (of 21 percentage points) set out in the starting of the chapter

86

for the PECompact packer with an average of 21.5 percentage points across the four

binaries tested. The subsequent test with PEScrambler achieves a much better average

detection rate of 65 percentage points. While only nominally better than the results of

the first packer, it did achieve the best reduction thus far.

The final packer to be tested in the pack’s first section was UPX, which achieved an

average set in the middle of the group’s detection rate with an average reduction of 28

percentage points. It performed only a little worse than the results achieved by ASPack

but performed much better than those achieved by PECompact. Both the combinations

for UPX exceeded the goals that were original defined in the start of the chapter of a 7

percentage point decrease.

After performing the tests in the “pack’s first” section, the next set of tests focused

on first encrypting the binary and then packing the encrypted binary. This method of

testing resulted in a number of binaries that could not be packed. This is mostly the

case when looking at the first malicious binary, but it also occurs in the other malicious

binaries, although less frequently. The outcome of these tests were also the first time that

a 100% evasion was achieved.

When performing the test with Hyperion as the first part of the combination, the

following results were observed. When combined with ASPack the reduction achieved

was higher than the results achieved in the “pack first” tests with an average of 42

percentage points which is greater than the goal that was calculated at the start of the

chapter of 4 percentage points. This is an interesting observation as it showed that simply

changing the order in which the evasions were applied resulted in a reduced detection

rate. The combination with PECompact showed an average reduction of 48 percentage

points, which is above the goal that we originally set in the start of the chapter of 4

percentage points. The UPX combination was the lowest performing of all the packers

with an average reduction of 27 percentage points but still exceeded the original goal of

4 percentage points.

When testing the PEScrambler combinations, the following results were observed. The

ASPack combination resulted in an average reduction of 58 percentage points across the

five binaries which exceeds the goal of 23 percentage points that was defined in the start

of the chapter. This is the highest reduction when comparing all five binary tests. The

PECompact test resulted in a reduction of 49 percentage points in its detection results

when compared against four binaries which exceeded the goal of 23 percentage point

reduction in the number of reduction. The final test with UPX showed the lowest average

reduction of 40 percentage points but still exceeded the goal of a 23 percentage point

reduction. As expected UPX was the lowest rated combination.

In conclusion, this chapter demonstrated that it was possible to further reduce the

87

detection rate by combining the two existing evasion techniques. The next chapter will

conclude with what was observed in the results from this chapter as well as previous

chapters and present a proposal for future work that can be targeted. We will also reiterate

the limitations of the current tests and suggest how they can be further improved.

88

Chapter 8

Conclusion

8.1 Introduction

The previous chapter showed that the combination testing approach was valuable and

demonstrated that the combination of packers and encryptors provided better results

than a single evasion technique. This chapter will present a summary of the data from

Chapters 5, 6 and 7. The original goals that were set out will then be restated along with

the accompanying results. The chapter will be concluded with a summary and a proposal

for future research of this subject matter.

8.2 Chapter Summaries

Chapter 2: In this chapter we introduced a number of key terms that are used in the

rest of the report. Having introduced these terms, the chapter proceeded to provide a

taxonomy on the different techniques used to evade antivirus applications. Following this

explanation, the chapter proceeded to demonstrate how the antivirus industry responded

to the different evasion techniques. The chapter concluded with the related work in the

areas of online scanning and antivirus evaluation research.

Chapter 3: This chapter introduced the options that were available for building the

antivirus testbed in the forms of online and offline testing. The chapter then explored

the benefits and drawbacks of using a custom offline laboratory and indicated that due

to the high demand in resources, it would no longer be pursued as a viable option. This

was followed up by the benefits and drawbacks of using an online system in the form

of the VirusTotal web application. The chapter concluded by indicating that the online

platform would be best suited for testing in the chapters that followed.

89

Chapter 4: This chapter introduced the process for testing the malicious binary

evasion techniques. The chapter outlined the process for testing the evasion techniques

by selecting a number of binaries which have a known state before scanning and then

monitoring for an expected state after scanning the binary. The chapter then introduced

and explained why each of the binaries was selected and what their expected outcomes

were. The chapter concluded by selecting the binaries that would be employed in Chapters

5 - 7.

Chapter 5: Chapter 5 described the process of testing the packing evasion techniques

and the resulting outcomes. The results illustrated that packing the malicious binaries

resulted in a significant reduction in detection rates. The results also showed that

none of the packer techniques were able to achieve a 100% evasion against all antivirus

applications.

Chapter 6: This chapter continued the testing of the second of two evasion techniques

as selected in Chapter 2. As with that chapter, the testing showed that by applying

an encryption evasion to the malicious binaries it resulted in a significant reduction in

detection rates. Testing with the custom binaries resulted in an increase of detection

rates. As with the previous chapter, none of the wrappers that were applied resulted in

a 100% reduction in detection.

Chapter 7: The seventh chapter performed a number of tests using a combination of

the evasion techniques mentioned in Chapters 5 and 6. These tests were performed to

determine if stacking the evasion techniques would result in a decreased detection rate.

The results from these tests indicated that when encrypted first, the binaries were more

likely to evade an antivirus engine. This was the first chapter in which a 100% evasion

was observed when running the tests with the PEScrambler and ASPack combination.

8.3 Research Goals

The original research question in chapter 1 set out to investigate whether binaries which

exhibited known virus-like evasion techniques could prove effective against modern antivirus

engines when using on-demand scanning techniques. The results from the tests in chapters

5 - 7 demonstrate that the evasion techniques that were tested were not overwhelmingly

effective in reducing the detection rates across the four test groups. The tests in chapters

5 - 7 demonstrated that while it is possible to gain high levels of antivirus evasion, these

high levels of evasion are very selective. The levels of evasion depend on a number of

factors present in the original binary that was submitted for testing. The factors in the

90

binaries that contributed to a more consistent reduction were larger, more complex and

had a high baseline detection rate. This is in comparison to the smaller and simpler

control binaries which had a lower starting detection rate and was not able to achieve a

consistent reduction in detection rates.

From the tests in chapter 7 it was possible to determine that a number of antivirus

engines do react to simple signatures in a binary by simply alternating the evasion

technique that was first applied and then evaluating the results. In cases where it was

possible to apply both evasion techniques to a binary, higher evasion rates were observed.

The intended goal for Chapters 5, 6 and 7 was to gain increasing evasion rates in each

chapter, which would match the complexity of the evasion techniques applied to the test

protocols. This began In Chapter 5, where a goal of 10 percentage point reduction was

set to be achieved. After reviewing the results, it is observed that this goal was achieved

with an average reduction of 36 percentage points. The intended goal for Chapter 6 was

to achieve an evasion rate of 10 percentage points or greater, which is the same as the

goals for the packers, this was achieved with a reduction of 29 percentage points across

the binaries tested.

The goals for Chapter 7 were two-fold. The first goal evaluated the effectiveness of

the evasion achieved by the “packer first” combination to determine if a higher evasion

rate could be achieved compared to the original tests. Following the same method of

testing, the second set of tests evaluated the effectiveness of the evasion achieved by the

“encrypt first” combination. The first goal was achieved: the average reduction in evasion

rates was 37 percentage points which is greater than the original results of 36 percentage

points. The second goal was successfully achieved as well: it averaged a 40 percentage

point reduction in detection rates which is greater than the original average reduction of

29 percentage points. It stands that the goals set out were achieved for this chapter. The

first section barely achieved the reduction goal with only 1 percentage point greater than

the goal, while the second section managed to achieve a better result with an average

reduction of 11 percentage points.

8.4 Future Work

There are currently a number of areas that can be expounded upon to take this work

forward. The first of these areas is to perform further analysis on the exact costing in

terms of time and resources when using an offline laboratory. Once this is completed, the

process of automating the laboratory setup with the use of applications such as Docker or

Vagrant should be explored. If implemented correctly, this can reduce the testing time for

future research completed in this area. Further investigation also needs to be completed in

91

the areas of the more advanced evasion techniques. This will most likely require acquiring

the source code to an existing trojan or virus and modifying it in such a way as to follow

the idea behind one of the dynamic evasion methods such as polymorphism.

8.5 Conclusion

In conclusion, the work performed here explored the area of testing whether an evasion

technique could bypass an antivirus engine. This work further developed the approach

of online testing in which VirusTotal was evaluated as an online testing platform. This

testing demonstrated that it is possible to gain a reduction in the detection rates of

antivirus engines. It is noted that it was not possible to gain a perfect 100% evasion for

all binaries with any of the techniques tested. The work also illustrated that packers have

a good chance at producing a binary that can evade antivirus when compared to the same

ability in encryptors.

92

References

Adrion, W. R., Branstad, M. A., and Cherniavsky, J. C. Validation, verification,

and testing of computer software. ACM Computing Surveys, 14(2):159–192, June 1982.

ISSN 0360-0300. doi:10.1145/356876.356879.

Akritidis, P., Markatos, E. P., Polychronakis, M., and Anagnostakis, K. Stride:

polymorphic sled detection through instruction sequence analysis. In Security and

Privacy in the Age of Ubiquitous Computing, pages 375–391. Springer, 2005.

Alme, C. and Eardly, D. Mcafee anti-malware engines: values and technologies.

Technical report, McAfee Labs, 2010. Last Accessed: 21 Jan 2015.

URL http://bit.ly/1CElV12

Alsagoff, S. Malware self protection mechanism. In International Symposium on

Information Technology, volume 3, pages 1–8. Aug 2008. doi:10.1109/ITSIM.2008.

4631981.

Anderson, J. P. Computer security technology planning study. Technical report, DTIC

Document, 1972. Last Accessed: 21 Jan 2015.

URL http://csrc.nist.gov/publications/history/ande72.pdf

Angel, D. 40hex e-zine. 1993. Last Accessed: 06 Apr 2013.

URL http://www.textfiles.com/magazines/40HEX/40hex011

Aycock, J. Computer viruses and malware. Advances in Information Security. Springer,

2006. ISBN 9780387341880.

Aycock, J., Degraaf, R., and Jacobson, M. Anti-disassembly using cryptographic

hash functions. In Journal in Computer Virology, volume 2, pages 1–8. Springer, 2006.

Beroset, E. The nuke encryption device. In Virus Bulletin Conference. November 1993.

Bishop, P., Bloomfield, R., Gashi, I., and Stankovic, V. Diversity for security:

a study with off-the-shelf antivirus engines. In International Symposium on Software

Reliability Engineering. Nov 2011. ISSN 1071-9458. doi:10.1109/ISSRE.2011.15.

93

Borello, J.-M., Filiol, E., and Me, L. From the design of a generic

metamorphic engine to a black-box classification of antivirus detection techniques.

Journal in Computer Virology, 6(3):277–287, 2010. ISSN 1772-9890. doi:10.1007/

s11416-009-0136-2.

Branco, R. R., Barbosa, G. N., and Neto, P. D. Scientific but not academical

overview of malware. In Black Hat Technical Security Conference. 2012. Last Accessed:

11 July 2015.

URL https://media.blackhat.com/bh-us-12/Briefings/Branco/BH_US_12_

Branco_Scientific_Academic_Slides.pdf

Brand, M. Analysis avoidance techniques of malicious software. Ph.D. thesis, Edith

Cowan University, 2010.

Brulez, N. Win32 portable executable packing uncovered. Technical report, Websense

Security Labs, 2009. Last Accessed: 21 Jan 2015.

URL http://bit.ly/15v7O3t

Burgess, J. The tradition of the trojan war in homer and the epic cycle. The Tradition

of the Trojan War in Homer and the Epic Cycle. Johns Hopkins University Press, 2003.

ISBN 9780801874819.

Bustamante, P., Urzay, I., Corrons, L., and Franco, J. From traditional antivirus

to collective intelligence. Technical report, Panda Security, 2007. Last Accessed: 01

Dec 2014.

URL http://bit.ly/15v7Okf

Chien, E. and Ször, P. Blended attacks exploits, vulnerabilities and buffer-overflow

techniques in computer viruses. In Virus Bulletin Conference, pages 1–36. 2002.

Chiriac, M. Tales from cloud nine. In Virus Bulletin Conference, pages 1–6. 2009.

Christodorescu, M. and Jha, S. Testing malware detectors. In ACM Special Interest

Group on Software Engineering Notes, volume 29, pages 34–44. ACM, 2004.

Cohen, F. Computer viruses. Computers & Security, 6(1):22–35, February 1987. ISSN

0167-4048. doi:10.1016/0167-4048(87)90122-2.

Davis, T. Utilizing entropy to identify undetected malware. Technical report,

Cybersecurity Solutions, 2009. Last Accessed: 21 Jan 2015.

URL http://bit.ly/1y0TnuA

94

Dinaburg, A., Royal, P., Sharif, M., and Lee, W. Ether: malware analysis via

hardware virtualization extensions. In Proceedings of the 15th ACM conference on

Computer and communications security, pages 51–62. ACM, 2008.

Doherty, S. and Gegeny, J. Hidden lynx professional hackers for hire. Technical

report, Symantec, 2013. Last Accessed: 21 Jan 2015.

URL http://wrd.cm/1CSpLnF

Ferrie, P. and Ször, P. Zmist opportunities. In Virus Bulletin, volume 3, pages 6–7.

2001.

Filiol, E. Strong cryptography armoured computer viruses forbidding code analysis:

the bradley virus. Research Report RR-5250, Institut National De Recherche En

Informatique Et En Automatique, 2004. Last Accessed: 01 Dec 2014.

URL https://hal.inria.fr/inria-00070748

Fuhs, H. Encryption generators used in computer viruses. 1995. Last Accessed: 01 Dec

2014.

URL http://www.fuhs.de/en/pub/encryptgen1.shtml

Funk, C. and Garnaeva, M. Kaspersky security bulletin 2013. overall statistics for

2013. Securelist, 2013. Last Accessed: 11 July 2015.

URL https://securelist.com/analysis/kaspersky-security-bulletin/58265/

kaspersky-security-bulletin-2013-overall-statistics-for-2013/

Garnaeva, M., Chebyshev, V., Makrushin, D., Unuchek, R., and Ivanov, A.

Kaspersky security bulletin 2014. Securelist, 2014.

Gashi, I., Stankovic, V., Leita, C., and Thonnard, O. An experimental study of

diversity with off-the-shelf antivirus engines. In Eighth IEEE International Symposium

on Network Computing and Applications, pages 4–11. IEEE, 2009.

Global Research Analysis Team, G. The virus top 20 for november 2001. 2001. Last

Accessed: 20 Jan 2015.

URL http://bit.ly/1ta726V

Goodin, D. Puzzle box part 1. 2014a. Last Accessed: 01 Dec 2014.

URL http://bit.ly/1BuAWWm

Goodin, D. Puzzle box part 2. 2014b. Last Accessed: 01 Dec 2014.

URL http://bit.ly/1xMGUL1

95

Gordon, S. and Chess, D. Where there’s smoke, there’s mirrors: the truth about

trojan horses on the internet. In Virus Bulletin International Conference Proceedings.

1998.

Gordon, S. and Chess, D. Attitude adjustment: trojans and malware on the

internet. In Proceedings of the European Institute for Computer Antivirus Research,

pages 183–204. 1999.

Gordon, S. and Ford, R. Real world anti-virus product reviews and evaluations–the

current state of affairs. In Proceedings of the 1996 National Information Systems

Security Conference. 1996.

Gryaznov, D. Scanners of the year 2000: heuristics. In Proceedings of the 5th

International Virus Bulletin, volume 113. 1999. Last Accessed: 01 Dec 2014.

URL http://ivanlef0u.fr/repo/madchat/vxdevl/vdat/epscan20.htm

Guo, F., Ferrie, P., and Chiueh, T.-C. A study of the packer problem and its

solutions. In Recent Advances in Intrusion Detection, pages 98–115. Springer, 2008.

Haffejee, J. and Irwin, B. Testing antivirus engines to determine their effectiveness

as a security layer. In Information Security for South Africa (ISSA), 2014, pages 1–6.

Aug 2014. doi:10.1109/ISSA.2014.6950496.

Harper, A., Harris, S., Ness, J., Eagle, C., Lenkey, G., and Williams, T. Gray

hat hacking the ethical hackers handbook, 3rd edition. McGraw-Hill Education, 2011.

ISBN 9780071742566.

Herm1t. Virus ezine listing. 2002. Last Accessed: 01 Dec 2014.

URL http://vxheaven.org/lib/static/vdat/ezinemen.htm

Hsu, F.-H., Wu, M.-H., Tso, C.-K., Hsu, C.-H., and Chen, C.-W. Antivirus

software shield against antivirus terminators. Information Forensics and Security, IEEE

Transactions on, 7(5):1439–1447, Oct 2012. ISSN 1556-6013. doi:10.1109/TIFS.2012.

2206028.

Hypponen, M. Overview of the brain virus. 2011. Last Accessed: 01 Dec 2014.

URL http://campaigns.f-secure.com/brain/virus.html

Hypponen, M. Overview of the cascade virus. 2014. Last Accessed: 01 Dec 2014.

URL http://www.f-secure.com/v-descs/cascade.shtml

Kang, M. G., Poosankam, P., and Yin, H. Renovo: a hidden code extractor for

packed executables. In Proceedings of the 2007 ACM Workshop on Recurring Malcode,

96

WORM ’07, pages 46–53. ACM, New York, NY, USA, 2007. ISBN 978-1-59593-886-2.

doi:10.1145/1314389.1314399.

Kephart, J. and White, S. Directed-graph epidemiological models of computer viruses.

In Computer Society Symposium on Research in Security and Privacy, pages 343–359.

May 1991. doi:10.1109/RISP.1991.130801.

Kephart, J. O. and Arnold, W. C. Automatic extraction of computer virus signatures.

In Virus bulletin international conference, pages 178–184. 1994.

Kienzle, D. M. and Elder, M. C. Recent worms: a survey and trends. In Proceedings

of the 2003 ACM Workshop on Rapid Malcode, WORM ’03, pages 1–10. ACM, New

York, NY, USA, 2003. ISBN 1-58113-785-0. doi:10.1145/948187.948189.

Knight, C. What is an e-zine. 2005. Last Accessed: 01 Dec 2014.

URL http://emailuniverse.com/ezine-tips/?id=1312

Konstantinou, E. and Wolthusen, S. Metamorphic virus: analysis and detection.

Royal Holloway University of London, 15, 2008.

Kramer, S. and Bradfield, J. C. A general definition of malware. Journal in Computer

Virology, 6(2):105–114, 2010. ISSN 1772-9890. doi:10.1007/s11416-009-0137-1.

Krebs, B. Virus scanners for virus authors. 2009. Last Accessed: 01 Dec 2014.

URL http://krebsonsecurity.com/2009/12/virus-scanners-for-virus-authors/

Lammer, P. 1260 revisited. In Virus Bulletin Conference, page 12. March 1990.

Leder, F., Steinbock, B., and Martini, P. Classification and detection of

metamorphic malware using value set analysis. In Malicious and Unwanted Software,

2009 4th International Conference on, pages 39–46. Oct 2009. doi:10.1109/MALWARE.

2009.5403019.

Lin, J. On malicious software classification. In Intelligent Information Technology

Application Workshops, pages 368–371. Dec 2008. doi:10.1109/IITA.Workshops.2008.

106.

Little, M. Tealab: a testbed for ad hoc networking security research. In Military

Communications Conference, pages 936–942 Vol. 2. Oct 2005. doi:10.1109/MILCOM.

2005.1605800.

Lyda, R. and Hamrock, J. Using entropy analysis to find encrypted and packed

malware. IEEE Security Privacy, 5(2):40–45, March 2007. ISSN 1540-7993. doi:10.

1109/MSP.2007.48.

97

McAfee. Potentially unwanted programs. 2005. Last Accessed: 01 Dec 2014.

URL http://bit.ly/1uwAk0A

McAfee. Malware report for the whale virus. 2014a. Last Accessed: 01 Dec 2014.

URL http://bit.ly/1uwA6Xk

McAfee. Malware report for v2px. 2014b. Last Accessed: 01 Dec 2014.

URL http://bit.ly/1yPKLxP

Moore, T., Clayton, R., and Anderson, R. The economics of online crime. The

Journal of Economic Perspectives, 23(3):3–20, 2009.

Nachenberg, C. Understanding and managing polymorphic viruses. The Symantec

Enterprise Papers, 30:16, 1996.

Nachenberg, C. Computer virus-antivirus coevolution. Communications of the ACM,

40(1):46–51, January 1997. ISSN 0001-0782. doi:10.1145/242857.242869.

Oberheide, J., Bailey, M., and Jahanian, F. Polypack: an automated online packing

service for optimal antivirus evasion. In Proceedings of the 3rd USENIX Conference

on Offensive Technologies, WOOT’09, pages 9–9. USENIX Association, Berkeley, CA,

USA, 2009.

Oberheide, J., Cooke, E., and Jahanian, F. Rethinking antivirus: executable

analysis in the network cloud. In Proceedings of the 2Nd USENIX Workshop on Hot

Topics in Security, HOTSEC’07, pages 5:1–5:5. USENIX Association, Berkeley, CA,

USA, 2007.

Oberheide, J., Cooke, E., and Jahanian, F. Cloudav: n-version antivirus in the

network cloud. In Proceedings of the 17th Conference on Security Symposium, SS’08,

pages 91–106. USENIX Association, Berkeley, CA, USA, 2008.

OECD. Computer viruses and other malicious software a threat to the internet economy:

a threat to the internet economy. OECD Publishing, 2009. ISBN 9789264056503.

O’Kane, P., Sezer, S., and McLaughlin, K. Obfuscation: the hidden malware. IEEE

Security Privacy, 9(5):41–47, Sept 2011. ISSN 1540-7993. doi:10.1109/MSP.2011.98.

Parikka, J. Digital Contagions: A Media Archaeology of Computer Viruses. Digital

formations. Peter Lang, 2007. ISBN 9780820488370.

Pearce, S. Intro to polymorphisim. 2003. Last Accessed: 01 Dec 2014.

URL http://bit.ly/1JbrHvl

98

Perdisci, R., Lanzi, A., and Lee, W. Classification of packed executables for accurate

computer virus detection. Pattern Recognition Letters, 29(14):1941–1946, 2008.

Petik. Interview with the mental driller from 29a. 2002. Last Accessed: 01 Dec 2014.

Quist, D. and Smith, V. Covert debugging circumventing software armoring

techniques. In Black hat briefings USA. 2007.

Rad, B. B., Masrom, M., and Ibrahim, S. Evolution of computer virus

concealment and anti-virus techniques: short survey. Computing Research Repository,

abs/1104.1070, 2011.

Rad, B. B., Masrom, M., and Ibrahim, S. Camouflage in malware: from encryption

to metamorphism. International Journal of Computer Science and Network Security,

12(8):74–83, 2012.

Radhakrishnan, D. Approximate disassembly. Master’s thesis, San Jose State

University, 2010.

Ramilli, M. and Bishop, M. Multi-stage delivery of malware. In Malicious and

Unwanted Software (MALWARE), 2010 5th International Conference on, pages 91–97.

IEEE, 2010.

Rescorla, E. Security holes... who cares? In Proceedings of the 12th Conference

on USENIX Security Symposium - Volume 12, (SSYM’03), pages 6–6. USENIX

Association, Berkeley, CA, USA, 2003.

Rin, N. Virtual machines detection enhanced. 2013. Last Accessed: 01 Dec 2014.

URL http://artemonsecurity.com/vmde.pdf

Roundy, K. A. and Miller, B. P. Binary-code obfuscations in prevalent packer tools.

ACM Computing Surveys, 46(1):4:1–4:32, July 2013. ISSN 0360-0300. doi:10.1145/

2522968.2522972.

Royal, P., Halpin, M., Dagon, D., Edmonds, R., and Lee, W. Polyunpack:

automating the hidden-code extraction of unpack-executing malware. In Proceedings

of the 22Nd Annual Computer Security Applications Conference, ACSAC ’06, pages

289–300. IEEE Computer Society, Washington, DC, USA, 2006. ISBN 0-7695-2716-7.

doi:10.1109/ACSAC.2006.38.

Saleh, M., Ratazzi, E., and Xu, S. Instructions-based detection of sophisticated

obfuscation and packing. In Military Communications Conference (MILCOM), 2014

IEEE, pages 1–6. Oct 2014. doi:10.1109/MILCOM.2014.9.

99

Sanok, D. J., Jr. An analysis of how antivirus methodologies are utilized in protecting

computers from malicious code. In Proceedings of the 2nd Annual Conference on

Information Security Curriculum Development, InfoSecCD ’05, pages 142–144. ACM,

New York, NY, USA, 2005. ISBN 1-59593-261-5. doi:10.1145/1107622.1107655.

Schiffman, M. A brief history of malware obfuscation. 2010. Last Accessed: 01 Dec

2014.

URL http://bit.ly/1CSq7uF

Shafiq, M. Z., Tabish, S., and Farooq, M. Pe-probe: leveraging packer detection

and structural information to detect malicious portable executables. In Proceedings of

the Virus Bulletin Conference, pages 29–33. 2009.

Sikorski, M. and Honig, A. Practical malware analysis: the hands-on guide to

dissecting malicious software. No Starch Press, 2012. ISBN 9781593274306.

Skulason, F. 1260 - the variable virus. In Virus Bulletin Conference, page 12. 1990a.

Skulason, F. Whale a dinosaur heading for extinction. In Virus Bulletin, page 17.

November 1990b.

Solomon, A. A brief history of pc viruses. Computer Fraud & Security Bulletin,

1993(12):9–19, 1993.

Staniford, S., Paxson, V., and Weaver, N. How to own the internet in your spare

time. In Proceedings of the 11th USENIX Security Symposium, pages 149–167. USENIX

Association, Berkeley, CA, USA, 2002. ISBN 1-931971-00-5.

Sukwong, O., Kim, H., and Hoe, J. Commercial antivirus software effectiveness: an

empirical study. Computer, 44(3):63–70, March 2011. ISSN 0018-9162. doi:10.1109/

MC.2010.187.

Swart, I. Practical application of open source frameworks to achieve anti-virus avoidance.

Academic Conferences International Ltd, 2012.

Ször, P. Nexix der: Tracing the vixen. In Virus Bulletin. April 1996.

Ször, P. The new 32-bit medusa. In Virus Bulletin, 2000, pages 8–10. 2000.

Ször, P. The art of computer virus research and defense. Pearson Education, 2005. ISBN

9780672333903.

Ször, P. and Ferrie, P. Hunting for metamorphic. In Virus Bulletin Conference. 2001.

100

Ször, P. and Ferrie, P. Striking similarites: win32/simile and metamorphic virus code.

In Virus Bulletin Conference. 2002.

Thengade, A., Khaire, A., Mitra, D., and Goyal, A. Virus detection techniques

and their limitations. In International Journal of Scientific & Engineering Research,

volume 5. October 2014.

Thompson, C. The virus underground. Virus, 2004. Last Accessed: 10 Oct 2014.

URL https://vxheaven.org/lib/pdf/The%20Virus%20Underground.pdf

Tutte, W. T. Fish and I. Springer, 2000. Last Accessed: 10 Oct 2014.

URL http://cryptocellar.web.cern.ch/cryptocellar/tutte.pdf

VirusTotal. Virustotal supported scanners. 2014. Last Accessed: 10 Oct 2014.

URL https://www.virustotal.com/en/about/credits/

Weaver, N., Paxson, V., Staniford, S., and Cunningham, R. A taxonomy of

computer worms. In Proceedings of the 2003 ACM workshop on Rapid malcode, pages

11–18. ACM, 2003.

White, S. R., Kephart, J. O., and Chess, D. M. Computer viruses: A global

perspective. In Proceedings of the Fifth International Virus Bulletin Conference,

Boston, pages 185–191. 1995.

Xu, J., Sung, A. H., Mukkamala, S., and Liu, Q. Obfuscated malicious executable

scanner. Journal of Research and Practice in Information Technology, 39(3):181–197,

2007.

You, I. and Yim, K. Malware obfuscation techniques: a brief survey. In BWCCA,

pages 297–300. 2010.

Young, A. and Yung, M. Cryptovirology: extortion-based security threats and

countermeasures. In Proceedings of the 1996 IEEE Symposium on Security and Privacy,

SP ’96, pages 129–. IEEE Computer Society, Washington, DC, USA, 1996. ISBN

0-8186-7417-2.

Yu, W., Zhang, N., Fu, X., and Zhao, W. Self-disciplinary worms and

countermeasures: modeling and analysis. IEEE Transactions on Parallel and

Distributed Systems, 21(10):1501–1514, October 2010. ISSN 1045-9219. doi:10.1109/

TPDS.2009.161.

Zolkipli, M. F. and Jantan, A. Malware behavior analysis: learning and understanding

current malware threats. In Proceedings of the 2010 Second International Conference

101

on Network Applications, Protocols and Services, NETAPPS ’10, pages 218–221. IEEE

Computer Society, Washington, DC, USA, 2010. ISBN 978-0-7695-4177-8. doi:10.1109/

NETAPPS.2010.46.

102

Glossary

PUP Potentially unwanted application. These applications that are not inherently malicious

and their uses depend on the person using the application.. 6

trojan A type of non-viral malicious application that takes its name from Greek mythology.

Commonly used to deliver other malicious applications. 6

virus A virus is usually characterised by a small application that is designed to spread

by injecting malicious code into other binaries. 7, 97

worm A self-propagating program that attempts to spread by exploiting vulnerabilities

in a computer system. 8

103

Appendices

104

The following tables refer to the more verbose descriptions and various results of tests

that are included in the paper. They are ordered in the order they occur in the paper for

easier reference.

Table 1: Metasploit UPX OP Scan Results

Antivirus Engine Version Detected As

Antivirus Version Malware Signature

MicroWorld-eScan 12.0.250.0 Gen:Variant.Graftor.113722

CAT-QuickHeal 12.00 Trojan.Swrort

McAfee 6.0.4.564 RDN/Generic.dx!c2s

K7Antivirus 9.176.11663 Riskware (0040f0f51)

K7GW 9.176.11663 Riskware (0040f0f51)

TheHacker Posible Worm32

NANO-Antivirus 0.28.0.58873 Trojan.Win32.Inject1.cugnjk

TrendMicro-HouseCall 9.700-1001 TROJ GEN.F0C2C00A314

Kaspersky 12.0.0.1225 HEUR:Trojan.Win32.Generic

BitDefender 7.2 Gen:Variant.Graftor.113722

Ad-Aware 12.0.163.0 Gen:Variant.Graftor.113722

Emsisoft 3.0.0.596 Gen:Variant.Graftor.113722 (B)

Comodo 18058 UnclassifiedMalware

F-Secure 11.0.19100.45 Gen:Variant.Graftor.113722

DrWeb 7.00.8.02260 Trojan.Inject1.33413

VIPRE 28078 Trojan.Win32.Generic!BT

AntiVir 7.11.141.154 TR/Swrort.A.9181

TrendMicro 9.740-1012 TROJ GEN.F0C2C00A314

McAfee-GW-Edition 2013 RDN/Generic.dx!c2s

Sophos 4.98.0 Mal/Generic-S

Antiy-AVL 0.1.0.1 Trojan[:HEUR]/Win32.AGeneric

Kingsoft 2013.04.09.267 Win32.Troj.Undef.(kcloud)

Microsoft 1.10401 Trojan:Win32/Swrort.A

GData 24 Gen:Variant.Graftor.113722

Panda 10.0.3.5 Generic Malware

Rising 25.0.0.11 PE:HackTool.Swrort!1.6477

Ikarus T3.1.5.6.0 Trojan.Win32.Swrort

Fortinet 4 Malware fam.NB

Baidu-International 3.5.1.41473 Trojan.Win32.Swrort.A

105

Table 2: Malicious Binaries Packed with ASPack

Binary Name Shortened SHA256 Hash Detection Ratio

Malicious Binary 1 615863572d46. . . 16/55

Malicious Binary 2 6e2c9ecad006. . . 18/55

Malicious Binary 3 7f4cf838c55b. . . 19/55

Table 3: Malicious Binaries Packed with PECompact

Binary Shortened SHA256 Hash Detection Ration

Malicious Binary 1 16a5d346d22c. . . 18/55

Malicious Binary 2 ad2fcbda013c. . . 18/55

Malicious Binary 3 d235fb45b4d8. . . 19/55

Table 4: Malicious Binaries Packed with Custom Packer

Binary Shortened SHA256 Hash Detection Ration

Malicious Binary 1 a7db409d5bfe. . . 13/55

Malicious Binary 2 e12c09d7cc3d. . . 14/55

Malicious Binary 3 60982b7de65b. . . 18/55

Table 5: Malicious Binaries Packed with PEScrambler

Binary Shortened SHA256 Hash Detection Ratio Percentage Point Decrease

Malicious Binary 1 4f3aa42ddd71. . . 8/55 73 pp

Malicious Binary 2 58659313b855. . . 21/55 56 pp

Malicious Binary 3 b5a91d0508b3. . . 9/55 78 pp

Table 6: Baseline Scan with UPX

Shortened SHA256 Hash f7bdb777d1ed. . .

File name cmdupx.exe

Detection ratio 2/55

106

Table 7: Baseline Scan with UPX Details

Antivirus Result

Bkav HW32.Paked.B0EF

TheHacker Posible Worm32

Table 8: Baseline Scan with ASPack

Shortened SHA256 Hash d650f9937c35. . .

File name cmdasp.exe

Detection ratio 2/55

Table 9: Baseline Scan with UPX Details

Antivirus Result

CMC Hoax.Win32.BadJoke.ScreenFlicker!O

Norman Suspicious.C6!genr

Table 10: Baseline Scan with PECompact

Shortened SHA256 Hash 793d8edfeddb. . .

File name cmdpe.exe

Detection ratio 9/55

Table 11: Baseline Scan with UPX Details

Antivirus Detected As

Agnitum Packed/PECompact

Bkav HW32.Paked.ABF3

Cyren W32/SysVenFak.B.gen!Eldorado

F-Prot W32/SysVenFak.B.gen!Eldorado

K7AntiVirus Trojan (00361abb1)

K7GW Trojan (00361abb1)

McAfee-GW-Edition BehavesLike.Win32.Rungbu.cc

Norman Suspicious.C4!genr

Qihoo-360 Malware.QVM17.Gen

107

Table 12: Results From Dual Scanning Test Binaries with UPX and Hyperion

Shortened SHA256 Hash Detection Rate Percentage Point Change

280bdb09196c. . . 26/55

c7f050d01718. . . 24/55

7c0f676b2100. . . 22/55

968e6ae557a6. . . 23/55

Table 13: Results From Dual Scanning Test Binaries with UPX and PEScrambler

Shortened SHA256 Hash Detection Rate

8651c82dd82b. . . 10/55

d1a4ce55b39b. . . 37/55

af3cd521b0ba. . . 29/55

b7d205023174. . . 28/55

b5a91d0508b3. . . 9/55

Table 14: Results From Dual Scanning Test Binaries with ASPack and Hyperion

Shortened SHA256 Hash Detection ratio

9bae621660b9. . . 24/55

7a5fdbf978c9. . . 24/55

17cc27e38cd1. . . 22/55

da4e062d2627. . . 26/55

Table 15: Results From Dual Scanning Test Binaries with ASPack and PEScrambler

Shortened SHA256 Hash Detection ratio

7be35e2d8d52. . . 7/55

59275c39364b. . . 13/55

5bb572d9a688. . . 21/55

c97b878c1c57. . . 18/55

dcd8806f281c. . . 7/55

108

Table 16: Results From Dual Scanning Test Binaries with PECompact and Hyperion

Shortened SHA256 Hash Detection ratio

c46e07ed1798. . . 26/55

2733768faf9a. . . 26/55

f7451086ec6a. . . 25/55

e9b626e7400c. . . 25/55

Table 17: Results From Dual Scanning Test Binaries with PECompact and PEScrambler

Shortened SHA256 Hash Detection ratio

fc125bea5928. . . 7/55

77f260470677. . . 3/55

2fbe0f4e1e4c. . . 14/55

87be1e70a35e. . . 8/55

Table 18: Results From Dual Scanning Test Binaries with Hyperion and PEScrambler

Shortened SHA256 Hash Detection ratio

9b6f3e81a7e6585c. . . 16/55

a2e41c4a6b48f6f1. . . 15/55

67adcf0567b2afef. . . 13/55

05c531a174064701. . . 12/55

Table 19: Results From Dual Scanning Test Binaries with Hyperion and PECompact

Shortened SHA256 Hash Detection ratio

e0b60f4e018a3dfb. . . 11/55

8f793aff79e0c06d. . . 16/55

67c2bc5926503461. . . 9/55

3490bb948eb819d8. . . 8/55

Table 20: Results From Dual Scanning Test Binaries with Hyperion and UPX

Shortened SHA256 Hash Detection ratio

136c5d6480b5afaa. . . 19/55

64fd4ba460d6c199. . . 19/55

ee83e519a090c6aa. . . 14/55

109

Table 21: Results From Dual Scanning Test Binaries with PEScrambler and ASPack

Shortened SHA256 Hash Detection ratio

ca952fb80b7e7d46. . . 9/55

68486315fed5b227. . . 7/55

defb7d5a839dda74. . . 12/55

d83cd65920b252cb. . . 10/55

f8d81ee3ef0edc85. . . 0/55

Table 22: Results From Dual Scanning Test Binaries with PEScrambler and PECompact

Shortened SHA256 Hash Detection ratio

f8684340d11a. . . 11/55

60e3f4287ff4. . . 8/55

c45bdfa113c0. . . 5/55

38173616b668. . . 14/55

Table 23: Results From Dual Scanning Test Binaries with PEScrambler and UPX

Shortened SHA256 Hash Detection ratio

165e7775fd36. . . 15/55

424cf0a68727. . . 10/55

0c19dd1e9fd2. . . 11/55

65e4e92e099d. . . 21/55

Table 24: Custom Built Template Scan

Shortened SHA256 Hash 8eac4e5b577c. . .

File name template gcc upx.exe

Detection ratio 10 / 55

110

Table 25: Basic Metasploit Template Scan

anti-virus Result Update

Ad-Aware Gen:Variant.Graftor.113722 20131208

BitDefender Gen:Variant.Graftor.113722 20131208

Emsisoft Gen:Variant.Graftor.113722 (B) 20131208

GData Gen:Variant.Graftor.113722 20131208

MicroWorld-eScan Gen:Variant.Graftor.113722 20131208

TheHacker Posible Worm32 20131204

TrendMicro PAK Generic.001 20131208

TrendMicro-HouseCall PAK Generic.001 20131208

Table 26: UPX OP Code Execution Scan Results

Shortened SHA256 Hash d1a4ce55b39b. . .

File name template gcc op upx.exe

Detection ratio 37 / 55

111

