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Abstract 

This thesis looks at file execution as an attack vector that leads to the execution of 

unauthorized code. File integrity checking is examined as a means of removing this 

attack vector, and the design, implementation, and evaluation of a best-of-breed 

file integri ty checker for the Linux operating system is undertaken. 'life conclude 

that the resultant file integrity checker does succeed in removing file execution as 

an attack vector, does so at a computational cost that is negligible, and displays 

innovative and useful features that are not currently found in any other Linux file 

integrity checker. 

Keywords: integrity checking, signed binaries, fil e integrity, filesystem monitor, safe 

execution, whitelisting, trojan detection 
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Conventions 

In this document , the following conventions are used : 

• Filenames and command-lines are printed in a monospaced font . 

• Words that appear in the Glossary (Appendix A) are printed in boldface 

italics the first time that they appear in the text. 

• Source code, variable names, constants (such as 5 or NULL), and configuration 

file contents are printed in a sans-serif font. Typenames (such as int , size_t 

and struct imon_core) are printed in boldface sans-serifand may (for clarity) 

occasionally have the "struct" part of the type omitted. 

• I talicized text is used for emphasis or to draw attention. 

• Where sequential steps are important , or points are referred to specifically in 

subsequent text , a numbered list is used. 

• Where the order of points is not important, a bulleted list is used . 

• Where points could benefit from being referred to via a descriptive name in 

subsequent text, a descriptive list with items consisting of boldface words 

and indented paragraphs is used. 

• Chapters , Sections, and Subsections are numbered and nested. 

• Synonyms for a word are given as a marginal note, with the word in question 

being underlined in the text . If the word is glossarized , synonyms are also 

given in the glossary definition. 

When referring to other parts of this document, the following conventions are 

used: 

text: ar­
gument, 
body, 
consider­
ation, 
content, 
docu­
ment, 
passage, 
para­
graph, 
thesis 



• Sections and subsections are identified by dotted-decimal number. For exam­

ple, 4.2 refers to Chapter 4, Section 2; 3.1.4 refers to Chapter 3, Section 1, 

Subsection 4; and C.4 refers to Appendix C, Chapter 4. 

• To refer back to a point in the most recent numbered list, the point number 

enclosed in brackets is used. For example, (7) refers to point 7 in the most 

recently-seen numbered list. 

• To refer back to a point in a descriptive list, boldface is used. For example, 

Golden braid refers to t he point t hat bears that t it le in a recently-seen 

descriptive list . 
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Chapter 1 

Introd uction 

In this chapter we discuss the problem that this thesis attempts to address, and 

give an overview of \yhat the proposed solution is. We also discuss the scope of this 

research and provide a brief descript.ion of some applications of file int.egrit.y checking. 

The chapter is concluded with an introduction to our own practical contribution to 

file integrity checking. 

1.1 Research 

In this section we explain what the problem that we are addressing is, and what our 

proposed solution is. We end the section after discussing the focus of the research 

and the constraints upon it. 

1.1.1 Problem Statement 

File execution is a common attack vector that is exploited by trojan horses, 
rootkits, spyware, and viruses to compromise a system. The seriousness of this 

attack vector is underlined by Catuogno and Visconti in [10, 9]: they use the terms 

strong intrusion and weak intrusion to differentiate attacks on a system which are 

able to install themselves on a syst.em and thereby be effective across reboot.s from 

those which are not able to do so. In their words, cited from [10, pp. 1- 2]: 

Once [an intrusion) has been accomplished, the attacker has complete control 

of the system and access to all t he data stored on the machine. Obviously, if for 
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some reason the machine is rebooted, the attacker has to start again. Moreover, 

the legi ti mate administrator of the system could detect the ongoing in trusion , kill 

the shell session and terminate the intrusion. If the software bug that allowed the 

intrusion has been discovered, the system administrator can install a new version 

of the network daemon and thus the attacker cannot repeat the same attack on 

the machine; instead, he has to find another weak daemon or exploit a weakness 

of the new version of the same daemon (which, unfortunately. most of the times 

is easy to do). We refer to this form of attack as a weak intrusion attack. 

A more serious threat comes from an attacker that, once root privileges have 

been gained, tries to colonize the system; that is , the attacker tries to keep control 

of the machine across reboots. We refer to this kind of attack as a strong intrusion 

attack. 

In this research, we examine file integrity checking as a means to remove file 

execution as an attack vector. 

1.1.2 Proposed Solution 

The content of a valid executable file may be differentiated from the content of 

an invalid executable file by comparing cryptographic hashes of their respective 

contents to a list of known-good file hashes. The metadata of a valid executable 

file may similarly be verified by comparing it to known-good metadata of that file. 

The process of verifying a file 's integrity in such a manner is called "file integrity 

checking", and our proposed solut ion to the problem of unknown executables is to 

yerify them before execution is allowed. 

We therefore propose the creation of an "ideal" fil e integrity checker to address 

the issue of unknown executable files on a system. If successful , this solution should 

close off the avenue of file execution as an attack vector and t hus reduce any strong 

intrusion to a weak intrusion. 

1.1.3 Focus and Constraints 

Our focus is on creating a proof-of-concept implementation that uses the Linux 

operating system; however, the design of such an implementation should be portable 

to most other architectures. In this thesis we use many terms that are specific to the 

Linux and Unix family of operating systems but have analogues on other platforms. 
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We have chosen to work on Linux due to the ease with which it may be modified 

to suit our needs, and the existing framework [12, 131 for adding security features 

to a system that it provides. Linux is a popular, well-tested, developer-friendly 

platform: if a proof-of-concept implementation can be seen to work well on Linux, 

then the real-world applicability of this research is assured . 

1.2 File Integrity Checking 

The goal of file integrity checking is to determine whether a given set of files is valid; 

that is, to determine whether or not t hey deviate from a set of known-good metrics. 

In the case of many existing file integrity checkers (see chapter 2 for examples) these 

metrics imply not only that the file contents have not been tampered with , but also 

that the file metadata remains valid. 

To demonstrate why it is important for file metadata to be examined as well as 

file content, we take the case of a file which has not had its contents tampered with 

at all, but which is assigned permissions that make it readable by everyone when 

it should not be: an example of such a file might be the password file on certain 

systems. Though such a file would be bit-for-bit identical to a copy that is correct, 

we would argue that its integri ty has been compromised by the incorrect permissions 

that it has . 

Related to integrity checking is the concept of an opportunity gap : that space 

of time between a file being altered and the file being tested during which the file 

is accepted as being valid. Some uses of a file integrity checker demand that the 

opportunity gap be made small or nonexistent, whilst other uses make no demands 

relating to it at all. 

1.2.1 Blacklists and Whitelists 

File integrity checking is a form of whitelisting. In this section we examine the 

difference between whitelisting and the more common blacklisting, using set nota­

tion to clarify exactly what is meant by each point that is made. At the end of this 

section, it should be clear that whitelisting is superior (from a security perspective) 

to blacklisting. 

Using standard mathematical set notation (see Appendix 13), if we define 
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B: the set of files that are "bad"; 

G: the set of files that are "good" 

13: the set of files that we know to be "bad" (13 c B) 

6: the set of files that we know to be "good" (6 c G) 

U: the set of files whose status is unknown to us ((G \ 6) U (B \ B) = U); 

n: the set of all files that exist in the world; 

F: the set of all files that we have access to; 

then we can see that, accepting G n B = 0, any file that exists in the world 

is either "good" or "bad": BuG = n. The actual definition of "good" or "bad" 

can be made as broadly or narrowly as one likes - meaning as little as "the file is / 

is not known" or as much as "the fi le is / is not a virus" - and is unimportant in 

this discussion of the blacklist and whitelist logic; we leave the line between "good" 

and "bad" up to system administrators to delineate for various systems. What 

is important is acknowledging that , given knowledge about any particular file, it 

is always possible to say that it falls under the aegis of one or the other of these 

categories. Accepting this as true, it is possible to categorize any file that exists 

as one that we know to be "good", one that we know to be "bad", or one that we 

know nothing about (13 U 6 u U = n). It is also reasonable to say that of the files 

we have access to, t he status of any given file (on a baseline system, at least) can 

be determined (6 U 13 = F '* Un F = 0). There are some files we do not have 

access to (n \ F), so we cannot remove these files from U and place them into either 

6 or B. Therefore, we cannot ensure that the status of every file is known to us, 

and we cannot make 13 U 6 = n true. Having laid out these definitions, we shall use 

t.hem in this section to logically demonst.rate the difference between whitclists and 

blacklists. 

A blacklist is a list of that which is forbidden. In a software context, a common 

example of software that uses blacklists is anti-virus software, which uses heuristic 

analysis and a virus signature database to determine which fil es should not be 

allowed to execute. Each time that a new forbidden-content variant emerges, the 

signature database and/or heuristic routines must be updated to detect it. This 

leads to an interval between a threat appearing and the update occurring during 

which a system can be exploited, and (more importantly) also leads to a situation 
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in which a threat must firs t emerge before it can be dealt with; in othcr words, anti­

virus software cannot guard against future threats effectively. To put the matter 

in the terms used above, a blacklist must comprise and test all elements of Band 

ensure that B n F = 0. Assuming the set of "bad" files that exist is more than the 

set of files we havc access to (B Is;: F), and assuming that unknown files exist whose 

status might be bad (B n U i 0, it is not possible to say that B n F = 0 - and 

blacklisting can therefore not ensure that "bad" files are kept from the system. 

Conversely, a whitelist is a list of that which is allowed - and anything that 

is not explicitly on this list is forbidden. File integrity checkers can be considered 

as systems that follow t he principle of whitelisting in t hat they flag as "bad" any 

content that is not known-good - in contrast to anti-virus software which flags as 

"good" any content that is not known-bad . Once again, if we refer to set notation 

we find that if F ~ 0 ¢;. 13 n F = 0 for a baseline system, then ensuring that 

(B U U) n F = 0 becomes easy since we have access to all members of 0; after all, 

we have constructed F from 01 All files that are not in 0 are treated as either 

unknown or "bad" ; relating this back to standard computer security terminology, 

whitelisting provides for a default-deny stance that is impossible to obtain using 

blacklists , which reflect a default-allow stance. 

,-------n-------, 
G I ,-------n-------, 

K" 

o Allowed 

o Denied 

B G B G 

Blacklisting Whitelisting 

Figure 1.1: Blacklisting vs. whitelisting 

Figure 1.1 shows the difference between blacklisting and whitelisting that we 

have described above. In this diagram the shaded area represents that which is 

allowed, and the clear area represents that which is not allowed. The familiar set 

names G, 0, B, 13, and n indicate which areas represent which sets; note that, just 

as has been defined above, the following relationships are shown in the diagram: 

o OeG 

oBeB 
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• (G \ G) U (B \ B) = U 

From Figure 1.1 we can see that whitelisting allows a much smaller, more exact 

set to be specified than does blacklisting, and that this set includes no files from the 

unknown set. 

,-------Q-------, 

F 

Baseline System Non-Baseline System 

Figure 1.2: Venn diagram: baseline and non-baseline systems 

Figure 1. 2 can be compared to Figure 1.1: the same sets are shown, with the 

single addition of the F set . However, since Figure 1.2 is a Venn diagram, the 

shading indicates areas of overlap. On the left side of the figure we see a baseline 

system for which F <:;; G holds true. On the right side of the figure we see a non­

baseline system which, during the normal course of operations, has gained and lost 

some files, thus causing F to change. As we can see by comparing the baseline with 

the non-baseline, we can no longer be certain that F <:;; G is true, and this makes it 

more crucial than ever to be certain that the files we are executing are known-good. 

We have already logically demonstrated that blacklisting cannot assure us of this, 

but white listing can. 

From the above we can draw the conclusion that whitelisting has the benefit 

of being able to detect any unauthorized file on the system without needing to be 

specifically updated to detect such a file, and for this reason alone may be considered 

as superior to blacklisting. However, it should be noted that, during the execution 

of various programs, G = F may no longer hold true as addit ional files, placed 

into U, are created; for example, temporary files may be created by applications as 

backups, lock-files , and so forth. Restrictions placed upon these files should include 

denying them permission to execute until, should the system administrator choose 

to do so, they may be examined and placed from U into G. 
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Example 

Let us assume that we are faced with three executable files: good, bad, and unknown. 

As their names imply, the first is known to be an allowed file , t he second is a known 

threat, and we know nothing about the last file. We also have the opportunity to run 

either anti-virus software (which uses blacklisting) or file integrity checking software 

(which uses whitelisting), both of which test files before they are executed. 

I Filename I Allowed by anti-virus? I Allowed by integrity checker? I 

I u~:£n I ~ I f I 
Table 1.1: Blacklisting vs . Whitelisting 

Table 1.1 gives the results of attempting to execute the files. As can be seen, 

the only difference between the anti-virus software and the file integrity checking 

software is that they treat unknown differently. However, this difference is crucial! 

Let us assume that we are using a file integrity checker instead of an anti-virus 

checker. If we find out at a later date that unknown is a harmless executable that 

should be allowed, then we must modify the file integri ty checker to classify it as 

such, and we can say that the anti-virus software was correct in allowing it to 

execute. We have lost nothing but the convenience of being able to type in a new 

command or click on a new icon and have it instantly execute a program. However, 

if we find out that unknown is an example of rnalware , then we have been saved 

from whatever malicious payload it might have carried. 

Now let us assume that we are using anti-virus software instead of a file integrity 

checker. If we find out at a later date that unknown is a harmless executable, then 

we can be glad that the anti-virus software necdcd no modification in order to let 

it execute. However, if we find out at a later date that unknown is an example of 

malware, then we must modify the anti-virus software to recognize it , and we must 

accept that our system has now been infected with whatever malicious payload 

unknown happened to be carrying: we have lost our security, which some consider to 

be worth far more than convenience. Upgrading the anti-virus checker to disallow 

the execution of unknown is now a case of too little, too late: the damage has already 

been done. 

Using both anti-virus software and a file integrity checker is pointless since the 

latter will allow through a subset of the former (see Figure 1.1 ). It therefore equiv-
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alent to using only a file integrity checker. 

File Invalidity Checking: AntiExploit 

If a list of "bad" files is kept instead of a list of good files, then what would be a file 

integrity checker becomes a file invalidity checker. An example of this is AntiExploit 

[551. AntiExploit checks files upon access, much like a realtime file integrity checker, 

but tests to see if a hash of the contents of the file matches a known-bad hash. The 

documentation for AntiExploit recommends that the database of "bad'· files used 

should be updated at least once a day. 

This example is provided to show that it is not always obvious that files from G 

should be tested instead of files from B even in a project that, but for its choice of 

what to test, is very similar to certain other file integrity checkers. 

1.2.2 Integrity Checker Applicability 

Integrity checkers can be said to come in two varieties: periodic and realtime. Pe­

riodic file integrity checkers are those which periodically test files upon every n 

accesses, or after m minutes have passed, or at a certain time each day or week or 

month , or whenever the user requests that a check should be done. Realtime file 

integrity checkers, on the other hand, test files just before they are opened and/ or 

(in the case of executable files ) executed. There are some uses to which realtime 

integri ty checkers are suitable and periodic integrity checkers are not; this section, 

however, covers three situations in which either type may be used. 

Rudimentary Change Management 

Being able to detect whether a given file is valid gives rise to the notion of protect­

ing important files from alteration. In an organizational environment this can be 

invaluable, especially when access to files is granted to a number of people, but (for 

example) changes must be approved by committee [541. 

If multiple "valid" measurements are kept for certain files, historical copies of 

those files can be validated as well; depending on the comprehensiveness of the data 

kept for measurement purposes, files may also be restored to a correct state either 

fully or partially. In an organization, this ability means that rudimentary change 
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management and enforcement becomes easy. An example of file integrity checking 

software that is currently being used for change management is Tripwire (see 2.12 

and [67]) . 

Malware Detection 

Certain categories of malware (such as trojan horses, rootkits, viruses, and spyware) 

may choose to disguise themselves by either presenting themselves to the user as new, 

useful software or replacing existing software with a functionally-similar copy that 

also performs umvanten actions. A file integrity checker can detect these changes and 

indicate to the user exactly which files are affected. It is important to note that a file 

integrity checker is not a complete solution to the problem of malware, as mal ware 

may reside away from the filesystem entirely (e.g. in a machine's boot-sector, or 

accessed via email account across a network). Even if malware is resident on the 

system, it may be resident in a part of t he filesystem that is entirely unsuitable 

to file integrity checking: an example of such a location is an email mailbox or 

newsfeed, which is frequently updated with messages and therefore almost impossible 

to generate a consistent and valid baseline image for. On a positive note, however, 

message-borne malware that relies on being executed as opposed to interpreted by 

an email client or news reader may be stopped by a realtime integrity checker (see 

1.2.3). 

The ability of a file integrity checker to detect malware, preferably before it 

executes, is seen by [68, 6, 2, 53] among others to be an overriding concern. 

Corruption Detection 

A failing hard disk frequently leads to data integrity problems that an operating 

system does not pick up. This is because the operating system trusts the hardware 

to return the correct bits and has no way of verifying whether they are, in fac t, 

the correct bits. Using a file integrity checker, one can detect both failing hardware 

and filesystem corruption by the results of an integrity check which a corrupted file 

would fail. This can be seen as an additional benefit of an integrity-checking system. 
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1.2.3 Realtime Integrity Checker Applicability 

Realtime integrity checkers have properties that make them suitable for a greater 

(and sometimes different) number of applications than periodic checkers. For exam­

ple, all periodic checkers suffer from the opportunity gap problem mentioned above. 

T his does not matter much in the case of, for example, a document repository that is 

accessed at infrequent, scheduled intervals; in such a case, the files could be checked 

just before a scheduled access , and there is no opportunity gap. However , for the 

majority of change management and malware detection applications, it seems advis­

able for alterations to files to be detected as soon as possible. The problem becomes 

especially severe in the case of mal ware since running an unauthorized application 

even once can have very serious consequences - including being compromised and 

used for a distributed attack on other systems [21], which is an increasingly common 

occurrence. 

Some applications that are only feasible with a realtime checker are discussed 

below. For these applications it is assumed that the integrity checker can not only 

detect an invalid file, but can also act upon that knowledge in some (possibly au­

tomated) fashion; this is in contrast to the more traditional approach of merely 

reporting that which is invalid , possibly via an occasionally-checked logfilc. 

Malware prevention and Honeypots 

By testing each file before it is executed, we are able to do more than traditional 

malware detection (see 1.2.2): we are able to actively prevent an unauthorized 

executable from being executed. As soon as the file fails a check, we can take any 

number of actions, the most obvious of which is to both deny file execution and log 

the attempt. Of course, the exact action to be taken once the invalid file has been 

detected is up to the system administrator, as the next paragraph shows. 

A honeypot is a system that exists to be attacked, and to log and/or perform 

analyses of attacks as they are in progress; we examine it as a form of mal ware 

prevention that takes a non-preventative action. In [50], we examine the digital 

forensics impact of a realtime integrity checker. Assuming that all valid files on 

a machine are registered as such, it is easy to detect any content that is invalid. 

This ability is invaluable in a honeypot situation since a common strategy used 

by mal ware involves removing the original executable rnalware file during or after 

execution. Through realt ime detection of such an "unauthorized" file on the system, 
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action such as making a backup copy, logging the behaviour of the executable, 

dumping executable images and/or sandboxing the executable can be taken. 

Defined Execution Profiles 

By allowing only certain executables to run on a target machine, and denying the 

execution of other executables, an organization is able to make use of a generic set of 

executables for all machines, a concept that is explored briefly Van Doorn, Arbaugh 

and Ballentijn in [68] . We define the execution profile of a machine as that set of 

executables that are recognized as valid by the realtime file integrity checker , and 

create execution profiles for various people within the organization. These profiles 

have nothing to do with the level of access granted to a particular user: they apply 

to all users of a system irrespective of any privilege systems at work. Due to the 

nature of a realtime integrity checker which needs to have a baseline to compare a file 

against, execution profiles are also only able to deal with "real" files, a defined series 

of bytes that have a specified beginning and end, and may therefore not be used to 

mediate access to "virtual" files such as may be found in the Linux / dev /, /procl 

and /sys/ filesystem hierarchies since the content of these files resides exclusively 

in kernel memory. 

Another way to look at the same idea is to think of perspectives into a machine. 

We can see the machine as the entire "world" of possible executables, and those exe­

cutables allowed by a certain profile are the "perspective" that that profile provides 

to the world. The word "perspective" is used to reinforce the analogy of having a 

vast space of possible views, but being limited or constrained by perspective to only 

see one or some of them. 

Figure 1.3 shows an example set of execution profiles for a university environ­

ment. The entire set of possible executables is shown by the the largest circle; each 

circle within it depicts a particular execution profile. From this diagram we can see 

that laboratory machines are only allowed to execute a certain set of applications, as 

allowed by their execution profile; a lecturer's machine can execute all applications 

available to students, and a few more; an administrator's machine can execute some 

applications of a lecturer or student, and some applications that are not available 

to either lecturer or student; and a mathematician's machine cannot execute any of 

the applications associated with the other three profiles, but can execute a set of 

applications that no other machine can. Importantly, the number of executables on 

each machine is exactly the same: this means that all lecturer-machine executables 
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Figure 1.3: Venn diagram : execution profiles 

are available on a mathematician-machine, but they cannot be executed because 

they are not within the execution profile of a mathematician's machine. An impli­

cation of this is that defining execution profiles could reduce t.he time spent testing 

various combinations of applications for unfavorable interactions: only one set of 

executables need be created for which many execution profiles could exist. 

It should be noted, however , that this technique is not suitable for those machines 

on which new executables are developed: each executable would have to be validated 

before being run, leading to an increased development time. In other words, on 

such a system the definition of what constitutes a valid "baseline" system would 

be continually changing. The alternative to validating each executable would be 

defining certain names , paths, users or groups which would not be checked; however, 

these can easily be spoofed or taken advantage of, rendering the point of execution 

profiles moot. 

Licence Compliance 

In any large organization it is difficult to ensure that the licence requirements of 

software are being adhered to [23J. In the event that an organization does not have 

a good idea of which software is running on their machines, it cannot know whether 

it is in compliance with restrictive! software licenses. 

A realtime file integrity checker that denies the execution of any unauthorized 

lwe use this term in the non-pejorative sense to mean licenses which restrict the duplication of 
software 
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executable is one way of ensuring that machines within an organization are kept 

entirely in compliance with software licenses. In contrast with execution profiles, 

this use would typically allow anyone access to all binaries on the system, but stop 

unauthorized executables from running. In turn, stopping unauthorized executables 

from running would discourage the introduction of pirated software onto systems: 

whilst such software could still be introduced, it would fail to execute, rendering the 

point of introducing it null and void. 

At present, many organizations that bear the brunt of a software audit find it 

difficult to prove that none of their machines has placed them out of compliance 

with their licensing agreements [23]. The most common method of ensuring this 

once a software audit has been started is for each machine to be physically visited 

by and checked by an individual - an extremely time-consuming and expensive task! 

Having a realtime file integrity checker installed on each machine could reduce the 

cost of a software audit to virtually nothing as an organization could simply point 

out that running unlicensed copies of software on certain machines is not possible, 

and that their machines must therefore be in compliance. 

Lockdown 

As covered in our previously published work [50], a response to a perceived risk 

might be a lockdown of the machine. This would mean that only known-good tools, 

a.s determined by a realtime integrity checker, would be allowed to run. Importantly, 

the lockdown of a machine need not affect vital services running on the machine, 

though it may affect casual users who do not have their executables registered as 

valid. Another way of understanding the idea is to think of it as an integrity checker 

that runs all the time, and applies a strict policy some of the time. 

Lockdown may be viewed as one step away from digital forensics (see 1.2.3) 

in that unauthorized code may (in a lockdown state) be sandboxed, have its 

behaviour traced, and so forth; however, an important difference is that lockdown 

is a temporary state enacted on a production machine that increases the security of 

the machine until a system administrator can determine whether or not there is a 

threat. By contrast, a honeypot would be "locked down" permanently and would 

most probably gather data on unauthorized executables instead of denying access 

to them. 
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1.3 IMon 

In this section we introduce IMon, a realtime file Integrity Monitor which forms the 

practical basis of this t hesis. We lay down the rationale for why it has been created, 

what goals it seeks to achieve, and the scope that t he project covers. Details of 

research done previously on the subj ect of file integrity checkers are discussed in 

chapter 2. 

1.3.1 Rationale 

Though many file integrity checkers do exist, we consider them to be fl awed in certain 

respects, which are discussed in chapter 2. As yet, we have found little evidence 

of an attempt to see beyond the implementation of a file integrity checker to the 

rationale behind such an implementation. This thesis seeks to address that lack 

and follows a design process that keeps implementation in line with design goals, 

with each design decision and trade-off being well thought-out and motivated by a 

perceived or real need rather than being apparently ad-hoc. 

Though 1.2.2 and 1.2.3 make it clear t hat a file integrity checker may be created 

for a number of purposes, we have chosen to create a security-focused system. In 

securing the machine from unauthorized code and thereby addressing the problem 

mentioned in 1.1.1. Furthermore, a secure system of the described type may be 

modified to be used for other purposes (such as creating defined execution profiles); 

however, in order to select and rank characteristics that are desirable for this project 

and in order t.o compare it meani ngfully against the majority of file intcgrity checkcrs. 

which posit ion themselves in the security fie ld , we submit that this is a reasonable 

starting point. 

1.3.2 Goals 

As expanded from our paper [49], there are several desirable goals or attributes that 

every fil e integrity checker should strive for. In no particular order, these are: 

Comprehensive checks Every possible aspect of a file should be validated, from 

its contents to its related metadata such as t imestamps and permissions. The 

more comprehensive the checks made are, the less chance there is of an unau­

thorized file being able to pass an integrity check. Once again, it bears em-
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phasising that file integrity is not only about the file contents: it is also about 

the meta-information of the file, such as owner, t imestamp and permissions. 

Comprehensive checking implies that not only should every possible aspect of 

a file be t.ested, but that every executable file should be tested as well. Many 

existing file integrity checkers only test certain executable formats, ignoring 

(for example) scripts that could potentially do a large amount of damage; see 

[6, 3, 75, 10] and chapter 2. 

Automation An integrity checker should not depend on being run by the user; 

indeed, the slow reaction time of even technically-minded users when it comes 

to security matters is a cause of concern [4] . In the same vein , a tool that 

requires user input before action is taken is essentially useless until a systems 

administrator intervenes - leading to a time lapse between detection and action 

which may well be exploitable. Examples of this are the Code Red, Slarnmer, 

Nachi/ Blaster and Sasser worm epidemics which would never have taken 

place had systems administrators applied the patch that had been readily 

available for a number of weeks [4]. The perception seems to be t hat security 

is a non-essential operation, and that running security checks may be skipped 

if one is short on time or simply forgetful. 

It is also important that the action taken once an invalid file is found should be 

automated, rather t han depending on a user scanning through logfiles to find 

it. The action could be as simple as denying access to the file or emailing the 

system administrator, but if some action is not taken then the enforceability 

of any policy related to integrity checking is reduced or eliminated entirely. 

Relevance The problem of automation is taken a step further if the tool used 

provides copious amounts of output for a human to sift through. Once again, 

this places the burden of processing on the human - and whilst computers 

rarely make mistakes , humans are prone to do so. l\!issing a detail in a mass 

of irrelevant information is easy. The conclusion that we can draw from this is 

that t he output of an integrity checker should be clear and unambiguous or, 

at the least, easily machine-processible so that exceptional situations can be 

found quickly. 

Self-protection If files on the system are being modified, it is both prudent and 

reasonable to assume that an attacker has gained privileges that he should not 

have. In such a case alteration of an unprotected integrity checker database 

or other crucial files - such as the integrity checker program itself - is trivial , 
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and it may be that the checker then does more harm than good in providing 

the false security of assuring the administrator that all is well when all is not 

very well at all! 

Realtime checking An integrity checker that only spots untrusted executables af­

ter they have potentially been executed is less useful than one which can detect 

an un trusted executable before it has been executed : the primary difference 

is that the latter reduces the chance of damage being done to the system. In 

fact, the latter may prevent a system compromise entirely in the case of an 

executable needing to be run in order to breach security and gain unauthorized 

capabilit ies. 

Related to this point is the fact that checking files periodically leads to an 

opportunity gap for an attacker , who has the amount of t ime between checks 

to do as he would like on the system with no fear of detection. Important ly, 

this can lead to the compromise of related systems in a networked environment , 

after which detecting and fixing the damage caused on the original system sti ll 

leaves the network vulnerable to outside influence. 

Maintainability As new vulnerabilities in programs are discovered, or as new ver­

sions of a program come out, it should be easy to make t he integrity checker 

recognize the new version as valid and recognize the old version as invalid . A 

fai lure to do the former can lead to a denial of service as t rusted executables 

are not allowed to execute, and a failure to do the latter leads to a situation in 

which a new version of a program may be replaced by an old (and potentially 

flawed) version, leading to an exploitable machine. Both situations represent 

a failure of the integrity checker. 

Ideally, upgrading the system should require li t tle or no user interaction, and 

should be able to be done without requiring machine downt ime. 

Efficiency A periodic file checker that is inefficient is a burden to the system that 

encourages the administrator to ignore it; a realtime fi le integri ty checker that 

is ineffic ient is far worse. Stat istics cited in [6] and [75] show that the slow­

downs that at least two realt ime checkers impose on a system are prohibitive 

for any production system resulting in either minimal checks or non-use. In 

order for a security measure to be accepted by users, it should affect their 

day-to-day activities as little as possible: slowing binary execution down by 

an order of magnitude or more [6, 75] is certainly not in keeping with this 

principle. 
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Efficiency also leads towards a secondary benefit, transparency. An efficient 

implementation is almost indistinguishable from a system that has nothing 

"extra" running on it at all. In the case of a honeypot, it is of cri t ical im­

portance that an intruder does not know that the system is examining his 

movements until it is too late for him to do anything about it. Transparency 

through efficiency aids in this effort. 1M on aims to be efficient enough to 

achieve the benefit of transparency. 

It is useful to rank these qualities in order of importance to our project. Should 

there be a trade-off to be made during the design process , this will allow us to make 

such compromises in an informed fash ion. We therefore rank them by importance, 

with reasons, as follows: 

1. Comprehensive checks encompass the fundamental purpose of a file 1Il­

tegrity checker, and as such t his quality is ranked as most important. 

2. Realtime checking deals with when file integrity should be tested. Since an 

opportunity gap leads to the checker being bypassed, we consider this to be 

very important. 

3. Efficiency is very important for the system to be acceptable to users and 

transparent. As we are attempting to create a model file integrity checker, it 

seems important that we ensure its operation is as efficient as we would like it 

to be. 

4. Automation is required for some uses (execution profiles, honeypots) but not 

necessarily for others (malware detection, change management). We consider 

it to be of middling importance as some uses would not be possible without 

it . 

5. Relevance may be ranked as slightly less important than automation. We 

may be able to tune the output more thoroughly in a future release of the 

software, and need not focus our attention on it at present. 

6. Self-protection is also a good feature, but it is neither required for all uses of 

the file integrity checker nor is it central to the fundamental operation of a file 

integrity checker. It is of little importance in our design and may be "tacked 

on" at a later stage. 
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7. Maintainability would be a good feature to have, but it is not necessary for 

the system to function. It is of little importance when creating a proof-of­

concept best-of-breed system. 

1.3.3 Scope 

The deliverables of t his project are 

• A thorough investigation of current file integrity checkers, leading to the im­

plementation of a proof-of-concept ideal file integrity checker. 

• An explanation of the design decisions made during the implementation of the 

IMon checker that is both in-depth and comprehensive, exploring all reasonable 

alternatives. 

• An evaluation of the implement ation in terms of security, performance and 

applicability. 

1.4 Structure 

Chapter 2 presents prior work in the area of file integrity checkers. In chapter 2, 

we examine basic features of file integrity checkers and then look at selected fi le 

integrity checker projects, extracting features and lessons from them as we go. 

Chapter 3 builds on the previous chapter to create the best possible design. The 

advantages and disadvantages of various architectures and approaches are laid out in 

an accessible format , and both practical and theoretical considerat ions are discussed. 

As far as possible, all major aspects of fil e integrity checker design are examined. 

The chapter ends with a discussion of performance-enhancing algorithms. By the 

end of chapter 3, the design of a best-of-breed file integrity checker is complete. 

Chapter 4 creates a Linux implementation, called IMon , of the design created 

in chapter 3. All important parts of the implementation are discussed, but special 

attention is given to the implementation of the database used by IMon and the code 

that does file integrity checking. Sections that may be difficult to underst and are 

accompanied by diagrams and code snippets. At the end of this chapter, a reader 

should understand the most important parts of IMon's inner workings. 
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In chapter 5 we evaluate the implementation created in the previous chapter. We 

examine whether the security that it purports to provide actually exists, test the 

performance of IMon, and discuss situations for which IMon is particularly suited or 

not suited. The chapter ends with a list of features that sets IMon apart from other 

realtime integrity checkers on Linux, and a summary of the evaluation conducted. 

Chapter 6 evaluates whether the goals laid out in chapter 1 have been met . It lays 

out future work that can be built upon or using IMon, and presents the conclusions 

of the thesis . 

Appendix A is the glossary in which we present terms and meanings for selected 

words and phrases. In Appendix B, we take a basic look at those parts of set 

notation that are useful to know in order to understand some of the text of this 

thesis . Appendix C contains the explained and abbreviated source code for a big­

number implementation that was created as part of the implementation described 

in chapter 4. 
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Chapter 2 

Prior Work 

The previous chapter introduced t he research area of file integrity checking and 

some of the theory behind it, including a justification of file integrity checking as a 

method of whitclisting. This chapter deals with fi le integrity checker projects anrl 

research that is directly related to fi le integrity checking. We start by providing 

the practical background of file integrity checkers, we give a summary of basic file 

integrity checker features, and then examine each fi le integrity checker and extract 

best practices as we proceed. Finally, we summarise the chapter and introduce the 

next chapter as a logical successor to this one. 

2.1 Background 

Integrity checking has roots and branches that spread to encompass code authentica­

t ion projects such as Microsoft@ Authenticode [26], secure boot architectures such 

as Aegis [74], access control frameworks such as SELinux [37], and hardware-based 

trusted computing platforms such as described by the United States Department of 

Defense in their Orange Book [15] and by Balacheff, Chen, Plaquin and Proudler in 

[5] . In a sense, all of these may be called "prior" work, and some (such as trusted 

computing platforms) may safely be termed alternatives to this project; however, 

in another sense, the details and goals of each of these is different enough that ex­

amining them will not result in a meaningful comparative background being given. 

Therefore, in this section we have only presented projects that are close enough to 

our own to allow us to incorporate innovative ideas from them and learn from their 

mistakes, and we encourage the interested reader to explore the roots and branches 
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of this field of research by starting with the references included in this paragraph. 

The prior work done in the area of file integrit.y checking is difficult to organize in 

any meaningful fashion. Some possible organizations are by similarity, thus provid­

ing the reader with a continuum of gradually-changing features; by specific features 

that we decide are "important"; or by architecture, relying on where file integrity 

checking takes place. All of these organizational schemas are, given t hat feature-sets 

overlap and any "continual" gradient of change is subjectively imposed, inadequate. 

Therefore we present previous work in the area ordered lexicographically by project 

name, and we provide a summary at the end of this chapter that will allow readers 

to quickly find a project that has certain features or is of a certain architecture. 

It should be noted that despite the term "file integrity checker" being used for all 

of the projects explored in this chapter, it is not always the case that a project has 

been created primarily as a file integrity checker. For example, Radmind (see 2.9) 

was created primarily as a system for monitoring and correcting changes made to a 

set of machines. However, all of them function effectively as file integrity checkers, 

and it is in this light that they are discussed. 

2.2 Basic Features 

It makes sense to first understand file integrity checkers using a common set of 

characteristics, and then describe special features that set them apart. All file 

integrity checkers share certain features or characteristics. For example, all integrity 

checkers must keep track of "good" file metrics and must therefore store a baseline 

for a given file somewhere; however, where the file metrics are stored differs bet,,·een 

file integrity checkers. It makes sense to list the differences in basic features of each 

file integrity checker (such as where metrics are stored) in one place for comparison 

and reference purposes, and this is exactly what we do in Table 2.1. 

Each column in Table 2.1 is explained as follows: 

Project name This is the name of the file integrity checker, or the name of the 

paper in which the file integrity checker is described (if the integrity checker 

itself is unnamed). 

Architecture It is possible to encompass both where the integrity checker is sit­

uated as well as how it is designed by using the term "architecture" . All 
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AFICK Application Yes Database Periodic File Any No. of fi les, 
operating system 

AIDE Application Yes Database Periodic File Any 
No. of files, 

metrics used 

CryptoMark Kernel module No Same-file 
Real time User Any binaries None 

on-execution 

DigSig Kernel module No Same-file Realtime None All binaries None 
on-execution 

13FS Kernel module Yes Database Realtime File Any No. of flies, 
on-access polley used 

Osiris Cl ientJServer Yes Database Periodic Directory Any No. of files 

Radmind Cl ient/Server Yes Database Period ic File Any No. of files 

Samhain 
Client/Server 

Yes Database Periodic File Any No. of fi les or Application 

Signed Executables Kernel and No Same-file 
Realtime None All None fo r Linux interpreter patches on-execution 

Tripwire Application Yes Database Periodic File Any No. of files, 
metrics used 

TrojanProof Kerne l patches No Database 
Realtime None All binaries No. of flies 

on -execut ion 

Realtime 
Veriexec Kernel subsystem No Database on-execution File Any None 

on-access 

WL' Kernel module No Same-file 
Realtime None 

on-execution 
All None 

Table 2.1: File Integrity Checkers: Basic Features 
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file integrity checkers that are discussed here can be classified as one of the 

following architectures: 

• Application: the project is situated in userspace and carries out file 

integrity checks from userspace. 

• Kernel module/patch: the project is situated in kernelspace and carries 

out file integrity checks from kernelspace. 

• Client/Server: the project is situated in userspace as a client/server sys­

tem. Machines with files that require testing are clients, and run a client 

program; the database of fil e metrics resides on a server. Integrity check­

ing may take place on the client or the server, depending on the project. 

Certain systems may be situated in kernelspace but have a userspace compo­

nent . Two examples of this is are WLF (see 2.15) and CryptoMark (see 2.5), 

both of which rely on userspace utilities to modify files so that they can sub­

sequently be tested. Similarly, certain systems may be situated in userspace 

but have a kernelspace component: an example of this is Samhain (see 2.10), 

which may be run in "stealth mode" using a kernel module to hide its pres­

ence on a machine. We have classified systems by architecture in 2.1 without 

reference to any subsidiary ut ilities or optional components. 

Multiple metrics Some projects use only a fingerprint or digest to check the in­

tegrity of the file's contents. Other projects check multiple metrics, such as 

the file size, timestamps, permissions, and so forth. This column indicates 

which systems provide at least the option of using multiple metrics, and which 

do not. 

Metric storage Baseline metrics must be stored somewhere so t hat they can be 

tested against during an integrity check. The two options that present them­

selves are storing the metrics within the file to be tested and storing them 

apart from the file; we use the terms same-file and database to distinguish 

between these respective options. Note that "database" merely means a file 

apart from the one being tested, and does not imply a standard database 

format or database management system being used. 

Realtime/Periodic At the beginning of 1.2.2 we explain what the difference be­

tween a realtime and periodic file integrity checker is. This column indicates 

wh ich type of file integrity checker each project is. In the case of a realtime in­

tegrity checker, the event(s) that prompt an integrity check are also indicated: 
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• on-access means that the file is tested whenever it is read for any reason . 

• on-execution means that the file is tested whenever it is to be executed. 

Configuration granularity The granularity of configuration indicates the small­

est entity that may be separately configured via the integrity checker. For 

example, if t he granularity is file, then we can say that the integrity checker 

may be configured on a per-file basis; put another way, we can configure the 

integrity checker to treat certain files differently. If the granularity had been 

directory, then we would be able to treat certain directories differently, but 

not files within those directories. When no configuration or only global con­

figuration is possible, we have said that the configuration granularity is none. 

Coverage The coverage of a file integrity checker indicates which files it checks: 

• Any means that any fil e, but not necessarily all fil es, may be tested. For 

example, an integrity checker that tests only files that have an entry in a 

database would be classed as having "any" coverage since it can test any 

file , but does not test all files. 

• All means that all files are tested. 

In addition, the type of file that may be tested could be limited. An ex­

ample of this is DigSig (see 2.6), which tests every file that is in the native 

binary executable format of the Linux platform; therefore, DigSig's coverage 

is mentioned as "All binaries". 

Performance limiter(s) If there are any significant considerations t hat limit the 

performance of a given file integrity checker, they are mentioned in this column. 

In the case of periodic file integrity checkers, performance is taken to be the 

time required for one integrity check; in the case of realtime fil e integrity 

checkers , it is taken to be the time rcquired to test a single filc. Since the 

integrity checking process of a periodic and realtime checker differ, this dual 

definition of "performance" is necessary. 

For example, the periodic integrity checker Tripwire's performance is drasti­

cally reduced if one chooses to use two or more hash algorithms to test the 

content of each file instead of settling on a single hash algorithm; therefore , 

"metrics used" is listed as a performance limi ter. All periodic file integrity 

checkers are affected by the number of files that must be tested; hence, this is 

a common limitation. 
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As an example of a realtime integrity checker with performance limitations, 

we use I3 FS (see 2.7) . This integrity checker can be configured to generate a 

policy for every file that is created; using this sort of policy, a performance 

penalty is incurred whenever many files are created (by unpacking an archive, 

for example). 

All performance data is gathered from papers or documentation written about 

the project or from [73]. 

2.3 AFICK 

Information in this section is summarized from [22] and an examination of the 

AFICK source code. AFICK is downloadable from [22] . 

AFICK is an acronym for Another File Integrity Checker. Written in Perl, 

it consists of three packages: a core tool that does the actual testing of files and 

provides a command-line interface, a graphical interface and a web-based interface. 

The syntax of the configuration file is flexible and simple. It permits the user to use 

regular expressions to exclude files from searches, use only certain tests on certain 

files , and much more. AFICK may be run in either update mode, in which case 

the database is updated, or compare mode, in which case differences between the 

current filesystem state and the database are noted. According to Gerbier [22J, the 

performance of AFICK running on Linux is equal to or greater than the performance 

of AIDE (see 2.4), which is compiled to machine code; however, AFICK runs around 

five times slower on a Windows@ system. 

2.4 AIDE 

AIDE, written in C, is the Advanced Intrusion Detection Environment. AFICK is 

largely based upon it, and all features of AFICK mentioned in 2.3 are present in 

AIDE. An interesting quotation from the AIDE homepage at [33] is worth discussion: 

Unfortunately, Aide can not provide absolute sureness about change in fi les. 

Like a ny other system fi les, Aide's binary and / or database ca n also be a ltered. 

This important criticism holds t rue for all userspace file integrity checkers: with­

out the surety that even the super-user account is unable to modify the integrity 
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checker, it is extremely difficul t for a users pace file integrity checker to come close 

to guaranteeing that it has not been compromised. 

2.5 CryptoMark 

Information in this section, unless otherwise referenced, is derived from [6] . 

CryptoMark is a system written in C that consists of two parts: a set of ut ility 

programs and a Linux kernel module called KernelGuard. The ut ility programs are 

used to digitally sign ELF binary files , calculating a signature for the executable 

portions and adding the signature to the file itself as an SRT _NOTE (see [66]) sec­

tion. A signature consists of a 128-bit MD5 [56] hash encrypted using the EI Gamal 

algorithm. ELF binaries so signed are then transferred to the target system that 

is running KernelGuard. Nothing other than the MD5 hash of the file is tested by 

KernelGuard, which tests file integrity from kernelspace upon attempted execution. 

Configuration of CryptoMark consists of deciding which ELF binaries should 

be tested based on the user identity under which a binary will be executed. For 

example, one could configure CryptoMark to require every binary that will run in 

an administrator context (as r oot , to use Unix parlance) to have a signature. Due 

to the nature of the signing process, only ELF binary files may be tested. The 

performance overhead imposed by CryptoMark is on the order of - 10-12%. 

In [6, p. 4], Beattie, Black, Cowan, Pu and Yang discuss the storage of file 

metrics, ending with the statement that : 

A possible compromise (which has not yet been implemented) would be to use 

embedded certificates for ELF files, and an auxiliary table for other executables. 

This raises the important point that the use of a database and same-file signa­

tures is not impossible - in fact , the two are complementary approaches. It is also 

true that the generality of a database comes at a performance penalty, but if we 

can find a way to reduce this penalty then the database option is certainly the more 

attractive one. 

Another salient point is raised by Beattie et al in [6, pp. 5- 6]: 

Note that if the secret key is stored on the same mach ine that is being pro­

tected, it is very likely t hat attackers who are able to become root on that machine 
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would also be able to st ea l the secret key, and th us wou ld be able to certify their 

own binaries. For this reason we consi der such a confi guration unsafe, and do not 

recommend it. 

Implicit in this is the understanding that the system should be difficult to com­

promise even when an attacker has gained the highest privilege level. Therefore, it 

should feature both some form of self-protection to safeguard itself from tampering 

and also not depend on cryptographic private keys being present on the system. 

2.6 DigSig 

Information in this section, unless otherwise referenced, is derived from [3, 2). 

DigSig is a Linux kernel module written in C that checks for a digital signature 

in ELF binaries. It uses the bsign [61) utility to digitally sign ELF files, creating 

an SHT _N OTE [66] to hold data. The ELF file is tested within kernelspace upon 

attempted execution, and t he only metric used to determine the integrity of the file 

is a cryptographic hash of the file contents . 

DigSig requires no configuration file, t hough it does take parameters upon being 

loaded that determine its behaviour. Only ELF binary files are tested since the way 

signatures are stored makes embedding signatures within arbitrary fil es a difficult 

affair. DigSig uses a caching strategy to reduce the overhead imposed: if a file has 

not been written to in the interval between a previous test and the current test, 

then it is allowed to execute without verification. Only fi les on the local filesystem 

are candidates for caching. 

Signature revocation (see 3.7.2) is addressed by DigSig through the creation of 

a revocation list containing "bad" signatures. This list is accessed as a hash-table 

with the first byte of the signature as the key, leading to reasonably quick lookup 

times as long as the revocation list does not grow to be too large. 

The caching mechanism of DigSig provides a distinct performance boost, with 

Apvrille, Gordon, Hallyn, Pourzandi , and Roy noting in [2, p. 9) that once caching is 

enabled, "there is now hardly any impact when DigSig is used". We should certainly 

consider implementing a similar caching mechanism to improve performance in a fi le 

integrity checker that we design; however, as is pointed out by Apvrille et al in [3, 

p.8): 
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Caching signature validations can be risky. We must ensure that an attacker 

cannot use this feature to cause an a ltered version of a file to be loaded without 

the (now invalid) signature bei ng checked. In the simplest, case, a new file is 

copied in place of the va lidated fi le. 

More complex attacks on a caching mechanism are possible and have been carried 

out successfully by Slaviero, Kroon and Olivier in [47]. On p. 8 of that paper, 

Slaviero et al note that: 

The caching problem is more difficult to solve. By introdu cing caching, se­

curity is weakened. Therefore if security is paramount , the authors recommend 

disabling signature caching. 

Information within this section is derived from [53]. Component systems used by 

I3FS are referenced as necessary in this overview. 

I3FS (i-cubed-FS), written in C, is the In-Kernel Integrity Checker and Intrusion 

detection File System, developed for the Linux kernel. It is a system composed of a 

stackable filesystem, which means that it can be mounted "over" any other filesystem 

such as NFS [52,60] or Ext2 [7, pp. 574-600], and in-kernel Berkeley databases [29] 

that store cryptographic hashes and policies. 

I3FS is configured through policies that are entered in a secure fashion, using a 

passphrase, and are stored within one of the in-kernel databases . Policies are used 

to determine which metrics of each file should be tested, and may be inheritable 

such that files created within a directory can inherit the policy of that directory. 

At runtime, ioctls may be used to modify the behaviour of I3FS. The in-kernel 

databases are populated at boot time using a user-level tool to specify t.he files on 

the filesystem that contain the appropriate data. Any file that has a policy attached 

to it may be tested; however, for performance reasons, an option is included to test 

files every N times that they are accessed instead of every time. A cryptographic 

checksum of file contents may be tested on either a per-page or whole-file basis. 

At runtime, file checksums can be updated automatically by having the adminis­

trator set a flag after entering a password sccurely. This makes upgrading a system 

easier since checksums are recomputed on a mismatch whilst the flag is active. 
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The performance of 13FS is, predictably, directly related to the amount of filesys­

tern activity and the policy used. According to Patil , Kashyap, Sivathanu, and 

Zadok [53], a very IO-intensive workload can result in slowdowns of up to 4.5 times; 

however, a more "usual" workload results in an overhead of around 4% or less. The 

idea of implementing per-page checksums is an attractive one that can be used to 

increase performance of a file integrity checker if performance becomes an issue. 

In [53, p. 3], 13FS authors Patil et al raise the following point about why it is 

necessary to use a hash instead of simply relying on meta-data being changed when 

a file is altered: 

Checksummi ng different fields of the meta data of files helps detect whether 

important files have been ro-written by ma licious programs through the file sys­

tem. Checksumming file data helps detect unauthorized modification of data 

possibly made without the knowledge of the file system. An example of this is 

a malicious process that can write to the raw disk device directly in Unix like 

operating systems. 

We consider raw device access to be a very valid concern, especially if caching 

is used to increase file integrity checker performance, and must take precautions in 

our design to avoid it becoming an issue. 

PaW et al "provide two modes of operations for 13FS: one that allows updates 

and another that does not" [53, p. 51. We believe that this opens a possible security 

hole: in auto-update mode, an attacker can replace an executable file with malware 

and have it accepted as valid in future. It is possible to avoid this by only engaging 

auto-update once the machine is effectively isolated from external attack vectors 

(by disconnecting it from a network, for example), but this is just as convenient as 

unloading 13FS and reloading it with new databases: since the latter option is easier 

to implement, we question the importance of adding an auto-update feature at all. 

In [53, p. 7], PaW et al state that: 

Since whole fi le checksumm ing is a costly operation, we provide an option 

for specifying the frequency of integrity checks in the policy. For performance 

reasons, one can set up a policy for a file such that it will be checked for integrity 

every N times it is opened, where N is an integer va lue. Every time a file with a 

policy is opened, we check if it has a frequency number associated with it . If yes, 

the counter entry for the file in t he access database is incremented by one. When 
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the va lue is equa l to N, integrity check is performed and the counter is then reset 

to zero. 

We believe that including such a feature is a mistake, especially when one con­

siders the problem of raw device access. It is conceivable that an attacker could 

modify a file via a raw device, then execute it at a point where the integrity checker 

is not testing the file for performance reasons. 

2.8 Osiris 

Information in this section is derived from [24]. 

Osiris is a system, written in C, that consists of a server and several clients. The 

server runs a management console program and a management application, and 

each client runs a background process. Checking is done on a scheduled basis, with 

the client sending filesystem data to the server for comparison purposes; checks are 

initiated at the behest of the server. 

Configuration is done through utilities provided on the server, and the range of 

options provided allows for a flexible monitoring scheme to be put into place. 

2.9 Radmind 

Information in this section is derived from [14]. 

Radmind is a system written in C that consists of a set of command-line tools 

and a server. The tools run in userspace on each client machine and relay filesystem 

information to the server. The server contains a number of "overloads", each of 

which defines files to be monitored and managed on each client: a set of overloads 

gearcct towards a particular machine or machine configuration is called a "loadset". 

If the filesystem data sent does not match the appropriate loadset, then data is sent 

from server to client to ensure that it does. The correct metrics are stored on the 

server, and data representing the actual filesystem state is generated on-the-fly and 

sent across a secure connection for comparison. Testing occurs on a user-specified 

basis and is initiated by the client. 

Radmind is configured via positive overloads, which specify files to be monitored, 

and negative overloads which specify files that should not be monitored. In much 
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the same way as Tripwire (see 2.12), performance depends largely on the number 

of files that need to be tested and the computational expense of each metric tested, 

though network traffic and the current workload of the server may playa part in 

any slowdown. 

In [14, p. 1], Craig and I\IcNeal state that : 

Also of note is the degree to which filesystem integrity checking conflicts with 

these [large-scale configuration management] system management tools. Groups 

like SANS and CERT list filesystem integrity checking as one of the basic proce­

dures that a ll system administrators should use to help secure their computers. 

However, if a cluster is running both a filesystem integrity tool for intrusion de­

tection and, e.g., rsync for software updates, each time an update occurs, every 

machine wil l report a security event. For large clusters, these reports are noise 

in which real problems may be lost. In order to update the managed systems 

without triggering security events, the system management tool must be aware 

of (or integrated with) the intrusion detection tool. 

We agree with Craig and I\lcNeal , and conclude that it should be easy to make 

the file integrity checker upgradeable via a system management tool. If we use 

same-file storage exclusively, then the problem does not arise; if we choose to use a 

database either exclusively or as a complement to same-file storage, then the upgrade 

should ideally consist of replacing the database in a secure fashion. 

2.10 Samhain 

Information in this section is derived from [72, 73]. 

Samhain is a system, written in C, that may be used either as a standalone file 

integrity checker for a single machine or to create a larger network of monitored 

machines. If not run in standalone mode, Samhain can be configured to run as a 

server or client. As a client, it communicates with the specified server and obtains a 

database of metrics to test against; as a server, it listens on a specified port and sends 

across a database of metrics that is appropriate for the client. All interactions are 

initiated by t he client. In standalone mode, file mctrics are stored in a database on 

the filesystem which may (optionally) be signed; in client/server mode, file metrics 

are stored on the server's filesystem. Testing of files is done on each client machine. 
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Samhain can test files at specified intervals if run as a daemon; alternately, it can 

test files whenever a user requests it by either starting the file integrity checking 

executable manually or sending a signal to a running daemon. 

Configuration is flexible and powerful, with inclusion rules, exclusion rules, re­

cursion, and more. According to Section 5.15 of the Samhain user manual , Samhain 

may be set to alter it's scheduling priority, only read in a certain number of ki lo­

bytes per second (to reduce IO load), use MD5 [56] as a checksum metric instead 

of TIGER [1] (which is the default) , and so forth; these alterations will decrease 

the performance of Samhain, whose speed is directly proportional to the number of 

files to be tested and the computational expense of the metrics to be tested against, 

but they help to reduce system load at the expense of speedy filesystem checking. 

Samhain also offers the ability to try and hide its existence by taking a number of 

steps, some of which are: 

• Renaming all binaries 

• XOR'ing all strings in the database, logfile and executable 

• SteganographicaUy hiding the configuration file within an image 

Samhain also takes many overt steps to protect itself from being compromised, or 

to at least leave some evidence that it has been compromised in the event that this 

happens. Self-protection measures include digitally signing the Samhain executable 

as well as the database used to store file metrics. 

2.11 Signed Executables for Linux 

Information in this section is derived from [68], which we consider to be one of the 

seminal papers in this research area. 

The paper describing this implementation of digi tally signed binaries for the 

Linux operating system does not give it a name; for the sake of notational conve­

nience, we shall refer to it by the moniker SEFL. SEFL, written in C, consists of a 

set of utility programs used to digitally sign binary files and a kernel module that 

tests the contents of a file from kernelspace. 

Through a process of delegating testing of script files to interpreters, which are 

themselves verified binaries, SEFL is able to verify any executable content, whether 
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script or binary, as valid or invalid. SEFL also uses a cache of verified signatures 

as a performance-boosting enhancement: binaries that have not been altered in the 

interim between a previous check and this one are simply allowed to execute with 

no testing required. According to Van Doorn et al [68], the performance of the 

system without the cache reveals a slowdown of between approximately 1.7 and 25 

times; however, with the cache the slowdown is completely removed: in fact, in 

some instances the executable appears to load more quickly with SEFL+cache than 

without it. Our suspicion is that this effect is due to timing inaccuracies. 

As quoted from [68, p. 2], van Doorn , Ballint ijn and Arbaugh created SEFL for 

two reasons: 

In the design of our system we were primarily focused on providing the fol­

lowing two integrity guarantees: 

• Prevent the modification of authorized executables, and 

• Prevent the addition of unauthorized executables . 

They succeed in both of these aims, and their design is clear and clean enough 

that a reimplementation should not be difficult . Van Doorn et al also raise issues 

of signature revocation, interpreters, and script redirection that few other papers 

deal with and that are important to consider. Despite this, we do not consider 

SEFL's design to be ideal. The project lacks self-protection mechanisms and relies 

on userspace interpreters being modified to verify scripts. This latter cri t icism is 

the most difficult to overcome since it leads to a need to change every interpreter 

on a system to enable them to verify scripts. Other criticisms are t hat SEFL may 

not be able to handle the runtime loading of executable code via functions such as 

dlopen (see 5.1.5) since such calls are not handled by the normal execution path of 

the kernel , and that the caching mechanism is incomplete in that it cannot easily 

handle both nat ive binary executable ELF [66} files and scripts. 

Our design must , if possible, overcome all of these limitations. 

2.12 Tripwire 

Information in this section is derived from [67, 3D}. 

Tripwire is written in C++ and is configured t hrough a policy file consisting 

of which directory trees or files to test and which not to. Any file may be tested. 
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Running Tripwire tests all the files specified in the configuration file, and is thus 

computationally expensive; how computationally expensive it is depends on the 

metrics tested against and the number of files tested. Tripwire is well-known in the 

domai n of file integrity checking, and is included here for the sake of completeness; 

the features of AIDE (see 2.4) are very similar. 

2.13 TrojanProof 

Information in this section is derived from [75]. 

TrojanProof is a set of patches to the OpenBSD operating system kernel that 

takes its name from the ability of a real-time file integrity checker to stop trojan 

horses from executing. It is written in C, and consists of a set of patch files for 

two reference implementations, one on FreeBSD and the other on OpenBSD. The 

only metric tested is a cryptographic hash of file contents . Hashes are stored on a 

filesystem in a database which is tested to ensure that it is effectively read-only. 

TrojanProof requires no configuration and the action taken by it - whether to 

log attempts, do nothing or deny execution - is dependent on the securelevel of 

the operating system. According to Williams [75], the performance of TrojanProof 

is not very good, with 2-40% of processing power being dedicated to calculating 

signatures during a series of workload tests. 

Williams in [75, p. 4] poses the question: "Does the ongoing massive increases 

in CPU processing power and memory bandwidth mean that the cost benefit ratio 

of calculating and comparing a digital signature for each and every invocation of 

an executable or script file is acceptable", and answers it by saying in the next 

paragraph that "The decision must come down to t he the [sic] cost of having the 

information that an attacker has got far enough to tamper with executable fi les 

versus the cost of not knowing". 

As researchers within the security field , we would agree that maintaining system 

security is worth almost any price. However, we also understand that having a large 

performance impact makes users unwilling to use the software, and that (as 2. 11 

demonstrates) t he performance impact is an artifact of design and not something 

that must simply be accepted by a user. Therefore, the most important lesson 

that TrojanProof provides us with is that unless our integrity checker is designed 

with performance in mind, it could easily become prohibitively computationally 
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expensive. 

2.14 Veriexec 

Information in this section is derived from [63,46,43, 44, 45]. Of these, [63] seems 

to be the most recently-updated and reliable. 

Veriexec is a NetBSD operating system kernel subsystem that takes its name 

from the concept of verified execution. Written in C, Veriexec tests the file integrity 

if the file is in a list of "fingerprinted" files. Veriexce may be configured to allow 

or deny execution by modifying the strictness of checks via a sysctl; though its 

coverage is listed as "any" in Table 2.1, at the strictest level it would be listed as 

"all" since execution of files without fingerprints is denied. 

A caching strategy is used to increase performance: if a file has not been modified 

since it was last tested, it is allowed to run with no verification step. Verification 

occurs at both a whole-file and per-page level , with a comparison fingerprint for 

each page being created when the entire file is being verified before execution. 

The configuration file of Veri exec allows one to specify whether a file may be 

accessed directly, indirectly, or only in a non-executable fashion. An interesting 

feature of Veriexec is its ability to enforce indirect execution such that an interpreter 

cannot be run standalone, but. must be run in order to interpret a file. As far as we 

are aware, Veri exec is thus far unique in its ability to enforce indirect execution. 

From Veriexec we can get a better understanding of how best to deal with in­

terpreters and indirect execution. The project is mature; however , it still does not 

feature many self-protection features, which leaves it open to tampering if an in­

truder does gain privileges that he should not have. For example, the database is 

unprotected and unsigned, which means that adding to it or replacing it should not 

be difficult. Furthermore, the fact that files can be added to the list of authorized 

files at runtime is (in our opinion) a convenience that could lead eventually to a 

compromise: unless the strictest checking is being done, a compromised superuser 

account can add any executables to the valid list. Lastly, Veriexec only checks file 

contents and not file metadata, which means that there are integrity violations such 

as a file with incorrect permissions that it will not pick up. 
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2.15 WLF 

Information within this section is derived from [9, 10]. 

WLF stands for "Worldwide Loadable Format", and refers to an executable for­

mat handler introduced into the Linux kernel as part of the WLF project. WLF 

consists of a set of utilities used to manage digital signatures embedded within ELF 

binaries and a set of modified binary handlers, written in C, introduced into the 

Linux kernel. These handlers check both scripts and files with embedded digital 

signatures, following on from the work done in [68] (see 2.11). Signing is done 

in userspace and testing of file integrity is done in kernelspace. Testing is done 

on-execution, when all executable files should be seen by the kernel binary han­

dlers before execution; however, in two cases the kernel binary handlers do not see 

the file before it is executed, and in these cases the approach used in WLF fails: 

when executable code is invoked from a shared object using the dlopen system 

call, and when an interpreter runs code passed to it on the command line (e.g., 

python myScript .py). 

WLF requires no configuration. Any files for which a special binary handler has 

been registered may be tested . To decrease the overhead imposed on a system, WLF 

uses an innovative caching system that copies files to kernel memory and binds them 

to a device; every access to that file is then redirected to the cached copy instead 

of the original. This approach allows for the caching of both remote and local files 

at the expense of kernel memory; all files are subject to caching. However, we do 

not believe that storing entire files in kernel memory is a very scalable approach to 

take, and we are therefore hesitant to recommend this approach. 

Signature revocation (see 3.7.2) is handled through a rather involved hierarchi­

cal system of signing directories as well as files: for more detail on this, see [10]. 
Performance tests done by Catuogno and Visconti in [10, p. 31] show that: 

As we can see, the loading of signed executables takes twice the time needed 

for loading the unsigned ones. The slowdown depends on both the size of the 

files and the number of dynamic objects that have to be loaded together with the 

main program. For example, the slowdown incurred into by rpm is the smallest 

as rpm has no shared objects. 

Anyway, we believe that the overhead shown is decidedly reasonable as it only 

affects the start of the execution process of an executables [sic] and is amortized 

over longer executions of the commands: the table refers to very short executions 
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where only the version nu mber of the program is requested . Moreover such 

overheads should be considered as upper bounds, since measurements have been 

done wi thout using the cache. 

Catuogno and Visconti in [10, p. 36] comment on the fact that: 

Th e user's perception of executables, in a UNIX-like system, actually wraps 

different objects. Binaries and scripts are just invoked in the same way but t he 

system handles them quite differently and , moreover, many differences exist also 

among execution processes of differen t binary formats. Even t he same binary 

format can be differently hand led according to the design of t he program . For 

this reason, the design of a general mechanism of verification at run-time of 

executables is a non trivial task and probably it is not currently possible. We t hink 

t ha t in a "pure" model, integrity verifica tion is simp ly a phase of execution. Thus, 

first : an ent ity that performs the verification has to be always present and , second: 

verification has to be performed on anything is handled as an "executable". 

They then go on to propose changing the way that the Linux kernel execution 

path works to arrive at a "pure model" of execution. It is important to note that no 

kerneJspace file integrity checker for Linux has yet managed to solve the interpreter 

problem as Veri exec (see 2.14) has done on the NetBSD operating system; if our 

design manages to do so, it will be the first of its kind. In fact, Catuogno and 

Visconti in [10, p. 37] go on to say that: 

Handling execution of scripts and binaries in the same way is in some cases 

im possible. Consider, as an exa mple , the source command of the tcsh inter­

preter. For the shell, invoking source, is like a "dynamic cod e loading", but from 

t he kernel point of view, th is operat ion appears simply as a user-level application 

that opens a fi le, hence, involving the kernel in this operation, within the "pu re 

model" , is dearly impossible. 

It is our intention to show that not only is a pure model unnecessary, but that 

interpreted execution can be handled quite well under Linux with the same enforce­

abili ty that is provided by Veriexec on NetBSD. 
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2.16 Other Work 

2.3 through 2.15 represent projects or papers that have had an effect on t his research 

area in terms of their feat ures, innovative implementation, or design. The range of 

file integrity checkers covered thus far examines: 

• The most popular commonly-used file integrity checkers 

• All known file integri ty checkers being actively developed about which infor­

mation has been made available 

• Academic papers and research projects that have had a significant impact 

• Projects that use file integrity checking primarily as a management activity 

instead of a security activity 

In other words, a reader who makes himself or herself familiar with the above­

mentioned file integrity checkers can be assured that they have a good understanding 

of what the current state of the art is, and of the prior work that has been done in 

this research area. 

However, there are far more file integrity checkers than those ment ioned above. 

Other fi le integrity checkers include SOFFIC [69], OODDSS [1 6], YAFIC [58], Nabou 

[35, 36], Integri t [8], Veracity [34], GFI LAN Guard [41], Ionx DataSent inel [28] , 

IBM's Assured Execution Environment [48], and Xintegrity [27]. All of these projects 

(and this is by no means a comprehensive list! ) either have little information avail­

able on them or contain similar features to the ones discussed above, and it would 

add very little to go into a discussion of them as well . 

2.17 Summary 

Whilst Table 2.1 captures important file integrity checker similarities and differ­

ences, it fails to capture all the differences in approach, ext ra features and design. 

For example, the stealth or self-protection features of Samhain (see 2.10) are not 

mentioned in the table . For a more in-depth look at the flaws and strengths of a 

particular fil e integrity checker , reading the section on that file integrity checker is 

highly recommended. We have evaluated each file integrity checker with a view to 
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extracting features which could prove useful in our own design, and finding those 

parts of file integrity design that serve as a guide to what not to do. 

In chapter 3, we create our design for an ideal file integrity checker. We refer 

back to this chapter as necessary, and base our design on what we have learned 

through the above examination of file integrity checkers. 
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Chapter 3 

Design 

The previous chapter saw us examining different file integri ty checkers. In this 

chapter, we build upon what we have learned to create what we consider to be the 

ideal file integrity checker. 

We use terms and examples that are familiar to a user of the Linux operating 

system, as this is the platform that we have selected as being open and extensible 

enough to form a good test-bed environment. However, despite the examples and 

terminology used having a Linux focus, much of t he discussion within this chapter is 

broadly applicable to any currently-popular operating system, whether proprietary 

or opell ; furthermore, many Linux-specific terms have been defined within Appendix 

A, the Glossary. 

3.1 Architecture 

One of the most important decisions to be made, and one of the decisions that will 

constrain many of t.he other choices made, revolves around where t.o t.est. file int.egrit.y 

from - in other words, where to situate the file integTity testing system. The obvious 

places that come to mind are within userspace, possibly within a client/server setup , 

or within kernelspace. We discuss the merits of each of these options below. 

3.1.1 Userspace Advantages 

The advantages of creating a userspace integrity checker are briefly: 
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Language choice Working in kernelspace, one is generally restricted to creating a 

system in the language favoured by the kernel developers (usually C or, less 

frequently, C++). This restriction is removed if one chooses to create the 

system in userspace: one can use the most suitable language for the system 

instead, even if this turns out to be an interpreted language (such as Python), 

a functional language (such as Haskell) or a framework language (such as C# 

or Java). For example , AFICK (see 2.3) is written in PerL 

Extended facilities A userspace program is free to take advantage of functionality 

present in any or all libraries available on the system. In addition, it is able to 

control or be controlled by other programs, and may thus be integrated easily 

into a broader system. An example of such integration is the scheduling of 

integrity checks using the scheduler that accompanies or is part of an operat ing 

system. Extended facilities also allow the programmer to work at a higher level 

than would otherwise be possible, building on what already exists instead of 

having to code it "by hand". For example, Osiris [24] uses the OpenSSL [11] 

library to provide a secure cryptographic base from which to work. 

Portability A userspace program does not necessarily have to be tied to one par­

ticular platform. For example, AFICK [22] and Osiris [24] (among others) are 

able to test files on a number of heterogenous systems . 

Locally Usable Though different file integrity checkers require different privilege 

levels to run correctly, there is nothing inherent to the concept of a userspace 

file integrity checker that says that the person running it must have more 

privileges than an ordinary user. Of course, a user may be able to run an 

integrity checker with only limited functionality since access to all files may 

not be granted, but at least he or she is able to use the tool at will. 

Ease of maintenance Working within userspace, it is easy to modify a file 1Il­

tegrity checker without risking damage to the entire operating system and/or 

machine. This is because if a critical failure occurs, the operating system can 

simply shut t he program down with no further adverse effects. The situation 

is far different when working at a kcrndspacc level, where memory protect.ion 

may be minimal or nonexistent and triggering a bug, or entering an infinite 

loop, could be disastrous for the entire system. In a similar vein, no spe­

cial development environments using user-mode kernels (such as User-mode 

Linux [17]) are necessary for rapid development, and no understanding of the 

interactions of kernel subsystems are required either. 
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3.1.2 Userspace Disadvantages 

In [53, p. 1], I3FS authors Patil et al make the following comments about userspace 

file integrity checkers: 

Th ere are t hree disadva ntages of any such user- mode system: (1) it can be 

tampered with by a n in t ruder; (2) it has s ignificant performance overheads during 

the integrity checks; and (3) it does not detect intrusions in real-time . 

All of these are expanded upon below, and one further disadvantage is noted: 

Insecure In a worst-case scenario, an intruder has already broken into the sys­

tem and has full super-user privileges accorded to him. Given this, it is not 

inconceivable that he is able to tamper with the userspace integrity checker 

or the database of metrics in order to give the impression of false security. 

Some userspace integrity checkers, notably Samhain [72, 73], take measures 

to prevent this or make it obvious that tampering has occurred; however, 

most userspace integrity checkers take few such precautions, and it takes a 

greater effort to secure a userspace integrity checker than it does to secure a 

kernels pace system. 

Performance A userspace file integrity checker must typically test all files listed in 

its configuration once it has been started. This causes a performance impact on 

the system that may reduce the performance of other concurrently-executing 

tasks. However, userspace fil e integrity checkers may take steps to alleviate 

this problem; for example, Samhain (see 2.10) is able to limit its impact on a 

system by limit ing the speed of data reading. 

Periodic checking Running as a userspace program, it is impossible to check every 

file before, during or after it has been opened by some entity. It is not necessary 

for any process to inform the integri ty checker that it is about to either execute 

or open a file. Therefore, the best that a userspace integrity checker can do is 

test files periodically in order to see if any have been modified. As mentioned 

in 1.2.2, this gives rise to an opportuni ty gap that an attacker could take 

advantage of. 

A recent addition to t he Linux kernel (present in version 2.6.13, released 

September 2005) is a feature called "inotify" [38, 39]. This feature allows a 

userspace program to monitor a large number of files and be notified whenever 
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one of them is changed. Using inotify, or a similar feature of other operating 

systems, it may be possible for a userspace program to do realtime integrity 

checking. The ability to monitor many files from users pace is not common to 

many operating systems; however, we feel that it is certainly something that 

should be looked into more seriously. 

Inaction Once a modified file has been found, a userspace integrity checker can 

do nothing but report it and/or stop it from being executed in the future by 

changing its permissions, deleting it, or taking other such measures. However, 

even if an unauthorized change in an executable has been detected whilst it is 

executing, another userspace program may not be able to stop it from continu­

ing execution; and a program that is execut ing with super-user privileges may 

be able to defend itself against being terminated by the super-user account. 

It is important to note that the lack of enforceability, periodic checks, and inse­

curity of userspace have already led to rootkits that allow t rojan horse executables 

to be undetectable by userspace file integrity checkers. In [25], a simple method is 

discussed for creating a kernel module that effectively lets userspace read and write 

operations test a valid executable, but executes a trojan horse executable whenever 

the same valid executable is to be executed . In [62], a more advanced attack that 

accomplishes the same thing is discussed by Sparks and Butler. Clearly, the value 

of a userspace file integrity checker and the validity of its results are called into 

question by the fact that methods are known by which such an integrity checker can 

easily be circumvented. 

3.1.3 Client/ Server 

Taking advantage of the benefits of extended facilities mentioned in 3.1.1, certain 

userspace projects (such as Osiris [24] and Radmind [14]) have been able to overcome 

the insecure disadvantage of userspace software. They have done this by testing 

filesystem data on another machine and/or storing one or more databases of metrics 

on another machine. This has t he added advantage of allowing one machine to be 

used as a monitoring server for multiple clients; on the other hand, a client/server 

approach leads to the disadvantages of requiring a separate machine to monitor 

clients and being dependent on the network infrastructure being usable when tests 

are due to be conducted. A further disadvantage is that network communications 

may be disrupted by a network-based attack, leading to an additional weak point 
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that an attacker can exploit. 

3.1.4 Kernelspace Advantages 

The advantages of creating a kernelspace checker are, briefly: 

Realtime checking Since all access to files must go through the kernel, it is the 

perfect place from which to test the integrity of files. Importantly, only those 

fil es which are accessed are tested, and (depending on the way the integrity 

checker is set up) not even all accessed files need to be tested. 

Actionable From kernels pace a system may have the power to eit her grant or deny 

access to a file depending on an integrity check. This allows for not only the 

detection of unauthorized files on a system, but also the prevention of access 

to such fil es. In some cases, it may even allow remedial action to be taken: for 

example, if the permissions on t he file are incorrect , then they can be corrected 

by the integrity checker. Of course, there is always an option to simply log an 

unauthorized file either as the sole course of action or in addition to denying 

access. 

More secure It is more difficult for even an entity with supernser privileges to 

affect a kernels pace system. Enforceable security measures that could be taken 

include denying all access to kernel-related files on a filesystem (so that they 

cannot be replaced or compromised), ensuring that security modules cannot 

be unloaded, denying write access to kernel memory, and testing all modules 

before they are loaded to verify their integrity. Importantly, security measures 

taken within kernelspace are enforceable, whereas those that are taken within 

userspace may not be. 

3.1.5 Kernelspace Disadvantages 

Some disadvantages of a kernelspace integrity checker are: 

System slowdown Assuming that file integrity is tested in realtime, each execu­

tion and/or file access attempt may be delayed as the file is being tested. 

This contributes directly to a perceptibly "sluggish" feeling and may make 

a system unusable: the performance overhead of CryptoMark (see 2.5), for 
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example, is prohibitive. However, clever design strategies can ameliorate the 

incurred slowdown, as shown by SEFL, DigSig, I3FS and Veriexec (see 2.11, 

2.6, 2.7 and 2.14 respectively). 

Dangerous It is riskier to create a system within kernelspace because of the chance 

that bugs within the system could wreak lasting damage upon a machine. 

Subtle infinite loops, unguarded critical sections and the interactions of \'arious 

other kernelspace systems with one's own system need to be taken into account 

so that one does not deadlock a machine, cause extensive fi lesystem corruption, 

and so forth. 

Fewer facilities From kernelspace, one cannot rely on functionality that exists 

within userspace libraries. If one requires such functionality, one option is 

to modify userspace libraries - assuming that one has access to the source 

code and is legally allowed to do so - and include their code within the kernel; 

another option is to reimplement the functionality required. Another drawback 

is t hat, as one is conceptually working at a low level of the system, it is difficult 

to integrate a kernelspace integri ty checker into other systems and have it 

control or be controlled as is easy to do with a userspace program. 

Arbitrary restrictions Depending on the operating system used to implement a 

kernelspace integrity checker, one could be subject to a number of restrictions 

that have little to do with the conceptual domain of file integrity checking. For 

example, one could find that C or C++ is the language that must be used, 

or that the way the overall kernel is structured may impose requi rements on 

the system that one is developing. These restrictions are why Catuogno and 

Visconti in [10, pp. 36- 37] have decided that handling native and interpreted 

executables in the same fashion is not possible. 

Non-portable A kernelspace system is less portable than a userspace system; it 

is inherently tied to the architecture for which it is made, at least partially 

by the arbitrary r estrictions mentioned previously. In fact, even successive 

versions of the same kernel may change inner workings to such an extent that 

re-working one's own code is necessary! If one wishes t he effort t.o be port able, 

special precautions should be taken to not t ie it too closely to any particular 

kernel subsystem or feature. 
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3.1.6 Decision 

Though creating a users pace integrity checker has many advantages, the few dis­

advantages outweigh them by far. It is, on most systems, not possible to create a 

real-time userspace integrity checker, nor is it possible to create one that can al­

ways decisively act upon data even during a compromise; both of these attributes 

are extremely desirable for a file integrity checker, and (as noted in 1.2.3) there are 

many uses that a real-time integrity checker can be put to that a periodic integrity 

checker is simply unsuitable for. Furthermore, there are known techniques [62, 25] 

for subverting any userspace file integrity checker. This leaves us with the need to 

create a kernelspace integrity checker despite the numerous disadvantages of doing 

so. 

However, by understanding these a priori disadvantages beforehand, we can 

ameliorate or even eliminate some of them through appropriate design. Some ways 

to do this from a design point of view are discussed below . 

• Speed up frequent operations. Upon attempted access to a file, a record for 

that file must be found so that file attributes may be tested against known­

good attributes. This mcans that a system needs to find a file record , do a 

comparison, and return a result. Any of these steps may be sped up: 

Finding a record Keeping records in a hash-table or similar data structure 

that provides good lookup times can make finding a given record efficient. 

A sequential search for a file record makes t he entire system slower [43]. 

Another possibility is using a cache, as has been done by [3, 10, 68] to good 

effect. A cache and an efficient structure for lookups are complementary 

approaches. 

Doing a comparison Metrics (see 3.6) should be chosen to ensure that test­

ing against them is not too computationally expensive, but is still suffi­

cient. 

Returning a result The result returned should ideally be a simple variable 

that expresses a Grant-or-Deny decision. Returning a vast quantity of 

information that requires expensive processing either by the file integrity 

checking system or other systems is not acceptable . 

• Use a "dummy" kernel. The dangers of kernel development can be eased by 

using a project such as User-mode Linux [17], which allows a kernel to run in 
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userspace and has been created at least in part to address kernel development 

issues. A mistake made that causes the userspace kernel to become unstable 

has no effect on the rest of the machine. Similarly, one could use a virtual 

machine such as V11ware to run an entire virtualized operating system without 

endangering the rest of the machine [51J. Both of these options make kernel 

development significantly less dangerous and (possibly) faster . 

• Create a modular system. A system that is modular can address many porta­

bility concerns, is more extensible, and may help to circumvent arbitrary re­

strictions by creating abstractions that separate such restrictions away into 

implementation-dependent parts. 

It is difficult to argue that we could create a userspace checker 3Jld ameliorate 

its disadvantages. The very nature of userspace means that realtime checking, and 

specifically on-access testing, is simply not feasible in most cases, and inaction can 

be partially remedied by granting the checking process super-user privileges - but 

there is still no guarantee that an intruder who has obtained such privileges himself 

would not be able to defend himself against such a process. 

3.2 Dependencies 

A firewall application takes a set of firewall rules , generally from a configuration 

file, and erects a firewall that reflects those rules. One of the more subtle ways of 

subverting a machine, then, is to supply the firewall application with a different 

configuration file that opens up holes within the security perimeter of a machine 

and, therefore, any protected network that lies behind it . A file integrity checker 

would not pick this up, assuming (as is a reasonable assumption) that unknown files 

are allowed to be read and written, but not executed (see 3.4.2). 

In the above scenario we see that a file integri ty checker has not managed to 

stop a system from being subject to a strong intrusion, though the degree to which 

the system has been affected is still far less than would have been possible in t he 

absence of an integrity checker. One way to stop this from happening is to create a 

system of dependencies: files upon which other files rely. Using a specific policy (see 

3.5.2), it can be made explicit that all files listed as dependencies are to be tested 

and read before any other file can be read. This allows us to reduce the danger of 

even the subtle form of strong intrusion mentioned in this section. 
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To continue with the above example, if we made the firewall configuration file a 

dependency of the firewall executable that must be read before any other file can be 

read, the problem disappears. Now it is impossible for the firewall to be started with 

any other configuration file; and, furthermore, since the integrity of the dependency 

can be tested as well, it is not possible to subvert the default configurat.ion file eit.her. 

3.3 Interpreted Execution 

Interpreted execution is handled differently on different platforms. Under Unix­

like systems, "hash-bang" notation I is used to indicate the interpreter for a given 

file: for example, having #! /usr/bin/zsh as the first line of a file indicates that 

the interpreter of that fi le is the program /usr /bin/zsh. This gives rise to an 

interesting implementation problem of how to handle a chain of interpreters; for a 

solution to this, see 4.5.10. On other systems, the file extension may determine which 

interpreter is to be used; this is the case on the Microsoft@ Windows@ operating 

system. On yet other systems, such as BeOS, it is possible for heuristic analysis of 

the file to determine which interpreter should be used. 

Frequently, interpreted files are treated as afterthoughts in integrity checker de­

sign; for example, the DigSig project is designed specifically to cater to native ELF 

files, and authors Apvrille et al "mainly hope to extend [their] work to protect Linux 

systems against malicious shell scripts" [2, p. 11]. However, interpreted files deserve 

more than an afterthought since they pose problems that native binary formats do 

not . Specifically, these problems are: 

Runtime evaluation Many interpreted languages provide the ability to evaluate 

and execute statements provided at runtime. Allowing an interpreter read 

access to any file, including unlisted files, is problematic for th is reason: there 

is a chance that the file could contain statements that would be evaluated and 

executed at runtime, thus defeating the purpose of integrity checks. 

Standalone interpreters A standalone interpreter is one which is invoked without 

an associated script file to be interpreted. Such an interpreter would usually 

accept statements through its standard input stream and execute them. To 

allow standalone interpreters would be to allow the execution of unauthorized 

l termed thus as it uses a uhash" sign, #. followed by an exclamation sign (called "bang" in 
mathematical circles). followed by an interpreter name 
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code, even though such allowance does not necessarily lead to a strong intrusion 

(see 1.2.2). 

Transitive interpretation A transitive interpreter is one which provides an en­

vironment for other interpreters to work within . An example of a transitive 

interpreter on a Linux system is /bin/env, which executes a given program 

in a modified environment. Given the string "/bin/env python" as the in­

terpreter for a file , an integrity checker must register python and not env as 

the interpreter. Given the same string on the command-line, the interpreter 

should be treated as being standalone. 

The above problems can be solved by 

• Disallowing the reading of any unknown file by any interpreter - unless an 

already-loaded and trusted script file is being executed. This solves the prob­

lem of runtime evaluation, since the only files which may be opened by an 

interpreter are known-good files. 

• Ensuring that transitive interpreters somehow transmit the fact that they are 

being invoked as an interpreter to the real interpreter. 

• Disallowing the execution of a standalone interpreter. 

• Always testing the cryptographic hash of a file to be opened by an interpreter , 

regardless of any per-file flags (see 3.5.1) that may specify othenvise. 

Our design , therefore, differentiates between files using a per-file flags (see 3.5.1), 

with one of the available flags being used to mark which files are to be considered 

interpreters. A file marked as an interpreter is subject to all of the problem-solving 

constraints mentioned above. 

3.4 Configuration 

Configuration of an integrity checker should be done in a manner that is convenient 

for the system administrator, and (at the same time) secure. 

49 



3.4.1 Inclusion and Exclusion Lists 

A number of file integri ty checkers such as Tripwire, AIDE and Radmind (see 2.12, 

2.4, and 2.9 respectively) use the concept of inclusion lists, which list fil es or paths 

to be tested , and exclusion lists, which list files or paths that should not be tested. 

Table 2. 1 shows these files as having a coverage of "Any". 

The rationale behind exclusion lists is that some paths, such as t he / tmp/ direc­

tory, or certain files (such as spool fil es found in the /var/spool / hierarchy), are 

temporary in nature and difficult to generate baseline metrics for; therefore , these 

fil es should not be tested. We reject this rationale as being significant in our dpsign 

decisions, and argue that exclusion lists only make it easy for an attacker to hide 

his files within an excluded path or under an excluded name. 

The rationale behind inclusion lists is twofold: 

1. If a certain subset of files can at least be determined to be correct - for example, 

core system utili t ies such as ls , ps and netstat - then, using these, the system 

can be restored to a "good" state after any intrusion. There is no need to check 

every file's integrity as long as we can test a core set of files. 

2. Testing takes t ime and is computationally expensive. T he fewer fil es there 

are t hat need to be tested, t he less the impact of integrity checking on overall 

system performance. This is a greater consideration for userspace projects 

such as AFICK [22] and AIDE [33] t han for kernelspace projects, unless (as 

used to be the case with Veriexec [43]) the number of files to be tested is a 

performance bottleneck. 

Inclusion lists fit in well with the concept of whitelists as discussed in 1. 2.1: they 

determine which files should be tested, and files other than those mentioned in an 

inclusion list should be subject to the default policy of the system. Exclusion lists 

exclude files from being tested; however, since our aim is to test all executables 

so t hat we can stop a strong intrusion, we have no need for exclusion lists in our 

design. Note that an exclusion list is not the same as a blacklist since it does not 

list anything that is considered "bad": it simply leaves certain files unmonitored , 

and therefore compromisable by an attacker. 

Our design, therefore, uses inclusion lists but not exclusion lists to determine 

which files should be tested. 
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Regular Expression Matching 

Regular expression matching allows for one to list the fi les to be tested by creating 

a pattern that captures variation within text. For example, the regular expression 

/tmp/devices\.real\. [[:alnum:]]{6}$ 

would match any file within the /tmp/ directory that began with the string 

devi ces. real . and contained six alphanumeric characters followed by the end of 

the entire string. A descript ion of POSIX regular expressions, such as the one used 

as an example, may be found in POSIX 1003.1 [64], and a discussion on regular 

expression formats is outside the scope of this text . However, it is instructive to 

mention them as they are commonly used by integrity checkers - AIDE, Samhain, 

Osiris, and AFICK (see 2.4, 2.10, 2.8 and 2.3) use them extensively, for example ­

and are a powerful method of specifying many files, the exact names of which may 

not be known beforehand. 

When used to exclude files from being tested, regular expressions open up holes 

in the security of a system due to this imprecision. When used to include files , 

regular expressions are a powerful tool - but a tool t hat cannot, assuming database 

storage, be used from the integrity checker itself (see 3.7.4) . They may still be 

used in the generation of a configuration file, however, and it is in t his role that we 

propose they are most useful in our design. 

3.4.2 Accept or Deny? 

The determination of whether to accept or deny a file's execution once it is found 

to be unknown or invalid should be made dependent on the purpose that the file 

integri ty checker is used for. We foresee the most wide-spread use of the system as 

being a security tool used to monitor the integrity of the filesystem and prevent a 

strong intrusion. However, other uses have been mentioned under l.2.2 and l.2.3 , 

and our design should leave enough room for any of these uses to be made a reali ty 

without substantial reengineering. 

Bearing in mind that files are created and removed by various programs, creating 

a list of all files that could potentially exist on a system (with accompanying metrics) 

is a nightmarish proposition. Instead of doing this, we choose to deny the execntion 

51 

;-
.:...-- .-



of unknown files but leave them readable and writable, to t he extent allowed by 

policy (see 3.5.2). 

3.5 File Attributes 

This section discusses two ways to attach attributes to a file , and the semantic 

difference between them. Attributes are useful to describe what a file is intrinsically, 

and to describe its relationship to other fil es on the system. In 3.3 we have pointed 

to their use as one way to distinguish an interpreter from other files , and in [63] 

attributes are used to distinguish between types of files that Veriexec (see 2.14) 

handles. 

3.5.1 Per-File Flags 

Part of configuring an integrity checker is determining what should be tested for 

each file, and which capabilities should be allowed or denied for each fil e. Flags that 

may be set for each file provide a simple, extensible, fl exible way to specify this type 

of information. Before dealing with the way that fil e flags can be specified, however , 

it is useful to examine why we might want to determine what should be tested; after 

all , is it not more secure to simply test all metrics for each file? The answer to this 

question may be best illustrated through the use of an example. 

On a Linux system the file /etc/ld.so.cache, which holds data used by the 

ELF interpreter, may be recreated periodically. If we assume that the libraries on 

the system have not changed (and they should not have l ), then the file is created 

each time with the same data, but different modification and change t imestamps. 

For this particular file, then, the modification and change timestamps being altered 

is something that happens during the normal functioning of the system, and flagging 

this change whenever it happens would add little but noise to the system logs. 

Therefore , to deal with files such as this, we must implement attribute ignoring: 

the ability to say that certain metrics on a file should simply be regarded as irrel­

evant, and therefore not flagged if they should change. Before a test is conducted, 

we should check whether the metric should be ignored or not, and act appropriately 

by ignoring the metric or testing it . File flags allow us to implement such attribute 

ignoring. 
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It should be noted at this point that a metric should never be ignored due to 

speed concerns since ignoring certain attributes has implications for t he rest of the 

system. For example, ignoring the cryptographic hash of a file means that we can 

no longer be assured of what the content of the file is; therefore, a file that has its 

cryptographic hash ignored should not be readable by an interpreter if the problems 

discussed in 3.3 are to be avoided. Less critically, if the permissions of a file are 

ignored then the security of knowing that a given file is not executing as another 

user is removed. Therefore, ignoring attributes should never be done without full 

knowledge of what the security trade-off inherent in doing so is. 

File flags may be used to add capabili ties as well as to remove them. For example, 

in 3.8 we show how certain executables are allowed to add or remove modules, with 

the executables that are given this capability being specified explicitly using per-file 

flags. 

Importantly, file flags may also be set and unset at runtime to indicate the status 

of a file; for an example of this, see 3.10.3. 

3.5.2 Policy 

Policy reflects the idea that an executable file (whether native binary or interpreted 

script) is not the same as a data file. An executable may, amongst other actions, read 

other files: in the case of an interpreter, or a daemon intended to read from certain 

inputs and write to logfiles, the set of files that may be read should be restricted to 

a known-good set. Policy is a way of expressing how a given executable file should 

relate to other files on the system. 

In this discussion, we call the executable file the main file, and we say that it has 

dependencies (see 3.2). Some of the dependencies of a main fil e might be executable 

files themselves, and may therefore also have dependencies: for example, a script 

file could execute another script file. Nevertheless, we treat all dependencies of an 

executing main file simply as dependencies, and never as main files in their own 

right . 

The following policies have been devised as being general enough to cater for the 

majority of main-file/dependency interactions: 

deny _others This policy indicates that the main file should not be able to open 

any files for reading other than those listed as dependencies. It is suitable 
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for executable files that should be restricted to a certain set of files, and be 

disallowed access to any others. An example of this might be a FTP server 

program which should not be allowed access to any files outside of the tree of 

files that it exists to serve to clients. 

accepLafter This policy indicates that, after opening all files listed as dependen­

cies, an executable is free to open any file at all; if t he file is known to the 

system, it is first tested. This is particularly useful for executables that read 

in configuration files, such as a SSH server, and should then be free to interact 

with any other file on the filesystem. 

accepLanytime The most permissive policy, this is suitable for many applications 

such as grep and email-readers. The policy says that any file, whether known 

to the system or not, may be read by the executable; if the file is known, it is 

first tested. 

deny _not found This policy denies access to any file that is not known to the 

system. It is suitable for executables that might, for example, open any number 

of shared libraries, and ensures that those libraries that are opened will have 

their integrity verified. 

It should be noted that only two of the policies, deny _others and accept_after, 

make specific reference to a file's dependencies. In all other cases, the dependencies 

of a file are not seen as important. 

Another important fact to note is that all the policies above specify that a file 

should be tested if it is known to the system. Even the most permissive of policies 

(accepLanytime) will test a file if possible, but allow it anyway even if it does not. 

This behaviour means that making a file known through adding a signature to it 

or placing it in a database has the effect of ensuring that it is always tested before 

access to it is allowed. 

Runtime policy assignment 

None of the above policies needs to be explicitly set, in the case of many executables. 

Instead, a default policy may be set at runtime. What this policy is should depend on 

whether the file being executed is interpreted or not; see 3.3 for why interpreters must 

be treated specially. We recommend a policy of accepLanytime or deny _others 

for binary files: neither of these policies involves creating explicit dependencies for 
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a fil e. For interpreted files, a default policy of deny _others is recommended unless 

one is certain that the interpreted file cannot take input from a source and interpret 

it at runtime. 

Trust and Restriction 

!\e1loy_otbefS Deny non~dependencies ~ Increasing 
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Figure 3.1: Policy, Trust and Restriction 

Figure 3.1 shows the increasing restrictiveness of the policy options, with the 

upper layers building on the restrictions imposed by the lower layers. At the lowest 

layer (accepLanytime), only files which are in the database but fail an integrity 

check - in other words , those files which we are certain have been tampered with -

may not be read or executed. At deny ..notf ound we add the restriction that only 

files we know about may be read or executed; these files arc those that comprise the 

set G (as defined in 1.2.1 ). accepLafter adds the restriction that certain files must 

be read before any other file is allowed; and deny _others tightens this restriction 

such that no file other than those explicitly listed as dependencies may be read or 

executed. 

Looked at in terms of trust instead of restrictiveness, we can see that the files 

trusted to access almost anything are those to which the lower policies are ap­

plied. Conversely, the files to which the higher policies are applied are trusted to 

access only a known, limited subset of all files. The varying levels of trust give 

some indication of what a good default policy to set for a given machine is: if the 

machine is placed upon a vulnerable network, most files should be set t.o at. least 

deny..notfound or accepLafter, but if it is located in a secure area then the more 

trusting accepLanytime could make for easier administration. 
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3.5.3 Attribute Semantics 

Both policy and per-file flags allow one to set attributes on a file that alter the way 

t hat the file is handled by the integrity checker. However, the relationship expressed 

by using one or the other is quite different. 

Per-file flags express an "is-a" relationship that says that the fil e is an interpreter, 

or that certain attributes of it are changeable (and should therefore not be tested), 

or that it is capable of loading modules . In other words , per-file flags express some 

quality that is int rinsic to the nature of a particular file. Since an entity may have 

more than one quality, it is possible to set more than one per-file flag on each file. 

Policy expresses the relationship between a single file and other files on t he 

system. There cannot be more than one relationship between these; for example, 

a file cannot both be allowed to open any file (as per the accepLanytime policy) 

and denied access to fil es not in the database (as per the d enYJlotfound policy) . 

For this reason , only one policy may be set upon a file. Policy does not express 

what a file is, but it does express how a file should be treated. 

If in doubt as to whether to codify a file attribute as a policy or a per-file flag , 

consider whether the decision may vary with the system or environment that the 

file is within. If it may vary, then policy should be used to express the attribute; 

otherwise, a per-file flag should be used. For example, the python interpreter will 

always have t he interpreter per-file flag set, and the /etc/ld. so. cache fi le will al­

ways have per-file flags set that indicate that its t imestamps should not be tested: 

these attributes are inherent to what the fil es are, and will not vary depending 

on the system. However, on one system the file / bin/ test may be given the a c­

cepLanytime policy, and on another it may be given the deny _notfound policy: 

both specify how it should be treated, and this varies from system to system. 

In reality, the decision to codify a file attribute as policy or per-file fl ag may not 

always be as clear-cut as it has been made out to be. In cases that seem difficult to 

decide it is advisable to try codifying an attribute as one or the other type and , if 

this proves to be incorrect , to change it as necessary. 

It is important to note that per-file fl ags and policy are complementary, and not 

mutually exclusive, approaches. Our design implements both. 
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3.6 Metrics 

The metrics chosen to test a file should be both comprehensive and efficient. Given 

that we shall be doing realtime checking, any significant slowdown will be imme­

diately apparent, particularly in t he case of frequently-accessed files; however, it 

would be better to do the job well and ensure that an invalid file does not pass than 

to pass a file that is invalid because the tests done were insufficient . This section 

details metrics that are desirable in a realt ime file integrity checker. 

3.6.1 Hash 

All systems discussed in chapter 2 use a cryptographic hash, digest or fingerprint 

- the terms differ , but t he meaning remains the same - to ensure the validi ty of 

the contents of a file. Given the weaknesses of the MD5 [56] algorithm [71] which 

was previously thought to be secure, and the weaknesses that may be found in 

the currently-popular SHAI [19] algorithm [70], it seems prudent to ensure that a 

system is able to resort to stronger cryptographic hash functions should weaknesses 

be found in what is currently best-of-breed. This may be done by separating the 

hashing function from the rest of the code and making it general enough to be 

replaced without too much effort; this approach has the additional benefit of making 

it less important to discuss the security of various hashes since one may be replaced 

by another with ease in the event of a problem arising. 

The question of how many hashes should be computed is an interesting one as 

it weighs up the security afforded by having two (or more) methods of testing the 

file contents against the slowdown imposed by needing to calculate each additional 

hash. The benefit of having n hashes is that the byte-stream properties captured 

by each one are (presumably) not the same, and an attacker must find collisions in 

n hashes for the same byte-stream - a difficult proposition. 

Mathematically, we can depict a one-way function that transforms an input I 

into a hash value v using function 1 as f(I) = v . Let us say that a given input I original 

returns hash values vfo and vt. using hash functions 10 and h respectively. A partial 

collision is one in which, for an input [new, either 10(Inew) = vfo or h(Incw) = vt. is 

true; a full collision, which is what an attacker would need in order to be successful 

in deceiving the system, is one in which both hold true. We define the searchspace 

of a hash function 1 as the average number of inputs that must be tried before a 

collision is found, and we can depict the searchspace of 1 as r· 
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Using these definitions, we can sec that it will (on average) take fo difIercnt 

trial-and-error inputs to obtain Incwo that satisfies fo(Inewo) = fo(Jo,;g;nal), and 

that it will take f{ different trial-and-error inputs to obt ain an IncwI that satis­

fies f, (Inewl) = f, (Io,;g;nal). The security obtained from using two hashes can be 

seen as the probability that Incwo = I odg;nal = In•wl , since this is the condit ion that 

must be met for a full collision to occur. 

Statistically, we can say that the probability Po and P, of finding In•wo and In•wI 
using a brute-force method are 

1 1 
Po = f8,PI = ff' 

This assumes that the Po and P, are independent variables; in other words, the 

assumption made is that finding Incwo tells us nothing that will aiel us in finding 

In,wl. The probability Pcolli,;on that Incwo = In,wI is then 

1 
P colhslOn = Po X PI = (s f' 

JO X I 

This can be generalized to show that the chance of finding a collision in n hashes 

would be 

1 1 n 1 
sx ... x-;=TIs 
f o fn ;=0 f i 

Therefore, using mult iple hashes provides much more assurance t hat t he contents 

of the fil e have not been compromised. However, we must ask ourselves whether 

much more assurance is needed. 

Looking at the argument for using a single hash, we find that a popular hashing 

algorithm such as SHAl , assuming that [70] holds true, currently offers a searchspace 

of around 269 , and that even if a collision is found it is not guaranteed to be in a 

form (such as a valid binary executable) that is useful to an attacker. This means 

that if we were able to test hashes at a rate of around 10' 2 per second, it would 

still take approximately 590,295,800 seconds (or around 18 years) to find a collision. 

Furthermore, once additional metadata checks are done it may not be possible to 

find an input in t he form of a valid executable at all: for example, if we tp.st both 

the fi le size and the file hash , then the set of possible inpu ts is constrained to consist 

exclusively of inputs that are a certain size. Within the new, smaller set of possible 

inputs, it is no longer certain that a collision can be found at all , and it becomes 
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even more unlikely that any input found that causes a collision will be in a form 

that is useful to an attacker. 

In essence, we need to consider whether the continual computational cost of 

using two or more hashes is greater than the one-time cost of replacing a single hash 

with a more secure one - if the security of the currently-used hash becomes an issue. 

Both options result in greater security and given the complexity added to a design 

by having to deal with between 1 and n hashes, as opposed to knowing that only 

one hash needs to be dealt with, there is reason to go with the single-hash option. 

As more research is done into the advisability of using multiple hashes, this question 

will become easier to answer; in the interim, lacking any convincing argument for 

either route, our design takes the faster (and simpler) option: a single hash. 

3.6.2 Metadata 

The file metadata that should be stored should be both system-independent and 

orthogonal. By "orthogonal" we mean that the metrics stored should not refer to 

the same property of a file more than once: it makes little sense to have two tests 

that devolve to returning the same semantic content - for example, a test to check 

the file owner ID and a test to check the file owner name. By "system-independent" 

we mean that those properties of a file that are unique but system-dependent should 

not be tested. An example of a system-dependent property on Linux is the inode­

number of a file , which depends on a number of system-dependent factors such as 

when the file was created and how much data was present on-disk at that time. 

Ideally, a third party should be able to supply metrics that can be used to val idate 

a file on any system; if system-dependent metrics arc used, this becomes impossible. 

3.7 Storing Metrics 

The question of where to store the metrics we have decided upon can be reduced to 

two choices: along with the file, or in a separate database. From Table 2.1 we can 

see that of the kernelspace file integrity checkers discussed, Crypto:vIark, DigSig, 

SEFL and WLF use same-file storage; I3FS, TrojanProof and Veri exec use database 

storage. In other words, the ratio of kernelspace file integrity checkers that use 

same-file storage to those that use database storage is 4:3. This gives an indication 

that the question of which to use by preference is still an open one. 
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3.7.1 Same-file Storage Advantages 

Sometimes termed "signed files", files with embedded metrics can hold more than 

just a digital signature. Some advantageAs of same-file storage are: 

Efficiency Each time that a test is done, only one file needs to be opened; as the 

file is read , the metrics can be read in as well. 

Simplicity There is no need to open a database or initialize any structures before 

the first file can be tested. Maintaining a list of files to be tested against is 

also unimportant , and therefore there needs to be no algorithm devised for 

searching quickly through a file-list or associating a path string from a file-list 

with appropriate metrics, among other routines. 

Ease of distribution Data is carried with the file , making the distribution of 

signed fi les extremely easy. 

3.7.2 Same-file Storage Disadvantages 

Some disadvantages of same-file storage arc: 

File-bound Same-file storage means modifying the data that one is to test, and 

not all file-types are amenable to this sort of modification. ELF files [66 , 42], 

for example, have SHT _NOTE sections that are perfect for including informa­

tion that will not appear in the final executable, and many scripting languages 

provide facilities to comment out lines that can be used to store metrics; how­

ever plain-text documents (for example) have no equivalent. Using same-file 

storage, it may not be possible to sign all files without altering their semantic 

content , and even if such a thing were possible each file-type must be recog­

nized to enable the metries to be read from a particular file. In a kernelspace 

model, this may necessitate creating file-type recognition routines that could 

be misled; in any event , the complexity of the system is drastically increased 

by such an approach. 

Backwards-incompatible Alternately, if same-fil e storage is to not be file-bound, 

with all the complexity that that option entai ls, then it must be backwards­

incompatible; this is the choice made by WLF (see 2.15). A decision could 

be made to either append or prefix each file with n bytes containing metric 
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data, which means that the checking system needs only to check these bytes 

in each fil e to get t he information it needs - regardless of file-type. This 

approach would, for certain file-types, mean that they become unusable on 

other systems: the new "secure" format is not backwards-compatible with the 

more general format. In a certain light , this could be seen as a feature as it 

would now be impossible to access any invalid file on a system; however, it 

would certainly be an inconvenient feature to have. 

If a file is made to be backwards-incompatible, another issue that arises is the 

necessary modification of userspace utilities to detect and compensate for this 

change. For example, interpreters would have to be modified to ignore the 

last n bytes of a file, as would graphics programs and document viewers. This 

could easily lead to a rippling series of changes that spread throughout the 

system, necessitating changes in almost everything! 

Speed File metrics cannot simply be left exposed within a file , as they would then 

be easy to tamper with. An attacker would need only to alter a file to his 

specifications, calculate the correct metrics , and add them to the file to have 

it recognized as valid by the system. Instead, precautions have to be taken to 

ensure that tampering is either not possible or at least detectable. The way in 

which to do this, as used by CryptoMark, DigSig and WLF (see 2.5, 2.6, and 

2.15 respectively), is to encrypt the metric data within the file using asymmet­

ric encryption. To read the data, the integrity checker would decrypt it first 

using a public key that is either supplied upon checker start-up or compiled 

into the file integrity checker executable or module. Asymmetric encryption is 

a slow, computationally-intensive process that is orders of magnitude slower 

than symmetric encryption [20, p. 28], and requiring its use every t ime that a 

file needs to be tested decreases the speed of an integrity test by an appreciable 

amount. Apvrille et al in [3, p. 7], for example , state that "Results clearly in­

dicate that the modular exponentiation routines [used for RSA decryption] are 

the most expensive, so this is where we should concentrate our optimization 

efforts for future releases" . 

Symmetric encryption, using keys that are guarded by an appropriate asym­

metric encryption scheme, is an option that has not been used by any project 

known to us. The reason for this is that such an approach creates an issue of 

key storage and key distribution: a system must have access to the symmet­

ric key in order to decrypt the data within fil es, and storing or transmitt ing 

this key is subject to a potential compromise. Even guarded by asymmetric 
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encrypt ion , a system must still have access to a public key that will allow it 

to read the symmetric key - and if t his public key is compromised, obtaining 

the symmetric key is easy. Furt hermore, an attacker who gains access to the 

symmetric key is able to create his own "valid" fil es; by contrast , an attacker 

who compromises a system such as the asymmetric one described above gains 

nothing but the public key, which is of no use to him if he would like to create 

his own set of "valid" files. 

File 

~rYPtion :J­
L Digest/Hash ) 

E rifies 

C--D-::~ 

ensures tamper-res istance; each time 
..... a file is tested, decryption must be 

done before its digest can be read. 

Figure 3.2: Tamper-resistant same-file storage 

Figure 3.2 depicts t amper-resistant same-file storage. Each time that the file 

is tested, asymmetric decryption must be used in order to gain access to the 

hash for comparison purposes. 

Revocation A signed file, X n , can be replaced by a previous version of that fil e, 

X n - h without the replacement being detected. This attack allows an attacker 

to replace X n , considered secure, with a version that contains a security fl aw; 

it also allows an attacker to replace a configuration file or document with any 

previous version . This problem is inherent to the idea of same-file storage as 

t here is no way to tell which version is the "correct" one without referring to 

an external source - and the point of same-file storage is to not have to refer 

to an external source. 

One way to avoid the problem entirely is to make each signed fi le impossible 

to modify. However, this approach does not work well with the concept of 

network-mounted fil esystems, and creates upgrade difficult ies: files that are 

difficult to replace are difficult to upgrade. To solve this last problem it is 

tempting to say that only users with super-user privileges should be able to 

replace files, but if this is the case then anyone gaining super-user privileges 

can defeat t he system with ease. Clearly, making fil es impossible to modi fy is 

not a good solut ion. 
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This problem has no real workaround that does not remove the advantages 

of efficiency and simplicity. One workaround to the problem is to keep a 

database of versioning information, updated each time that a new file is added 

or replaced. Another way is to keep a "revocation list" of file signatures that 

have been declared invalid , and test each fi le against this list before declaring 

it valid or not; this is the approach taken by DigSig and WLF (see 2.6 and 

2.15 respectively). The revocation list is appended to every time that a file is 

replaced. Importantly, the revocation list never decreases in length, and can 

be viewed as a database of inval id fil es: once again, this returns us to the idea 

of using a separate dat.abase as well as same-file storage. 

Note that fil e-bound and backward-incompatible are mutually exclusive dis­

advantages: choosing one will render the other inapplicable. 

3.7.3 Database Storage Advantages 

"Database storage" need not refer to an actual database management system, rela­

t ional or otherwise; used in this paper, it simply means storage that is external to 

the file being tested. The benefits of storing metrics in a separate database are 

Security A database file may be protected by special measures, only be made 

available across the network in a read-only fashion, written to CD or write­

protected flash-media, and so forth. Additionally, the database file may be 

signed to make it easy to detect tampering. It is easier to protect a single 

file with special measures than to protect an entire filesystem, and keeping 

a separate database of metrics is therefore seen as more secure than keeping 

metrics stored in every file. 

Speed T he database contains referenccs to all valid files on a system and is read 

during integrity checker init ialization , before any integrity checking begins. 

This presents the opportunity to store file metrics at least part ially in memory 

before any file is read, reducing the need to refer to the database file upon 

every access to any other file. We can view this as an initial start-up cost that 

is amort ized by t he long runtime of the realt ime integrity checker. 

Having a separate database also presents the opportunity to indirectly digitally 

sign every file on the system. III a same-file storage system, each file should 

be digitally signed - that is, a cryptographic digest of the contents should be 
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encrypted with a private key - in order to detect tampering. In a database 

storage system, the database can be digitally signed instead, thus protecting 

the metrics contained within it from being tampered with; indirectly, then, 

we can see that signing the database is equivalent to signing each file that 

should be tested. The speed increase that results from not having to use 

asymmetric encryption during most of the runtime of the integrity checker 

should be appreciable. 

Database ( ~ :9\ ensures tamper-resistance; when the 
Encryption ~- - i" database is created, decryption must 

I 

- -- I be done before its hash can be read. 

Digest/Hash J File 
verif:--- ., ~ - "Data - -- ) 
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Figure 3.3: Tamper-resistant database storage 

Figure 3.3 depicts tamper-resistant database storage. Upon reading the database 

for the first time, asymmetric decryption is used to gain access to a hash of t he 

database contents. Using this hash, the integrity of the database is verified. 

Verifying the integrity of the database has the effect of verifying the integrity 

of all metrics within the database, and these metrics may now be used under 

the assumption that they are correct. In this fashion we are provided with the 

same guarantees of integrity for file metrics that same-file encrypted digests 

provide us with, but at a fraction of the computational cost . 

For security reasons, asymmetric public keys should be compiled into the mod­

ule. This is because an attacker should not be able to circumvent the tamper­

resistance of the system without being able to replace the entire system. The 

drawback of this approach is that if the private key is compromised, or the 

entity responsible for signing the database is replaced , the IMon system must 

be recompiled with a new key-pair. 

Universal application A database can contain the name of any file, irrespective 

of file format. This allows images, documents , binaries , scripts, and any other 
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such files to be tested without adding complexity to the integrity checking 

system or breaking backwards-compatibility of file formats. 

Low-impact The impact of storing file metrics in a database is small on a produc­

tion system. No files need to be specially modified, and no userspace utilities 

need to be modified to understand changes made to files. 

Version control As discussed in 3.7.2, revocation becomes a problem when using 

same-file storage. Given an upgrade process that only accepts an upgrade 

as valid if the database version is greater than the current database version, 

revocation is not an issue for database storage. Therefore, we can state that 

version control is a benefit of database storage. 

3.7.4 Database Storage Disadvantages 

Some disadvantages of storing metrics in a separate database are 

Upgrade-unfriendly If a separate database is used , it may become inconvenient 

to upgrade a system. The reason for this is that an upgrade to a system would 

require the file metrics to be calculated and the database to be modified and 

possibly digitally signed once again, then re-read by the integrity checker. This 

constitutes an additional step in the upgrade or installation process. 

It should be noted that this may be seen as an advantage instead of as a dis­

advantage since without explicit authorization that files are valid , a file should 

not be allowed to execute - and therefore, without a specific additional secu­

rity step involved in all upgrades, the system becomes insecure. Nevertheless, 

it is mentioned here as a disadvantage since it increases the inconvenience of 

system maintenance. 

Inflexibility Section 3.4.1 deals with the ability to use regular expressions to deal 

with, at runtime, files that match a pattern but may not have existed when the 

regular expression was compiled. If database storage is used, th is flexibility 

falls away: the integrity checker needs to be initialized from t he database 

before any files can be tested, and since it is not possible to know file metric 

information for files that do not yet exist, it is not possible to initialize the 

integrity checker with that information; hence, the flexibility promised by 

regular expressions falls away. 
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3.7.5 Alternatives to Cryptography 

There are ways that could be used to protect the database from tampering that do 

not involve asymmetric cryptography. Keeping certain system components on read­

only media is the idea favoured by AIDE [33], SEFL [68], DigSig [2) and AFICK 

[22) whether the component is a revocation list, a database, or a certificate. 

The three main methods that could be used for tamper-protection via read-only 

media, and the reasons that we did not choose any of them, are 

Physical m edia The component to be guarded could be placed on a flash stick 

that is made read-only, or written to CDROM. This is probably the best way 

in which to guard the component, bu t it is inconvenient. Having to burn 

a CDROM or write flash sticks each time that an upgrade is done is time­

consuming and physically inconvenient, and would hamper the acceptance of 

any system, particularly in the cases of remote or hosted systems. 

Read-only network-mount This approach overcomes the objections made to phys­

ical media, but introduces a new one: the network becomes a single point of 

failure . If it goes down, or if it is unavailable, then the system fails to operate. 

An example of this is a mobile worker who is sometimes out of range of any 

network, or who may be connecting to his home network through the network 

of some entity that impedes his access to t he component. 

A way to get around these difficulties is to keep a copy of the database for offl ine 

use; however, when no \ 'ay of detecting tampering is used, it is not possible to 

do this and be sure that tampering does not occur. If cryptography is used, 

then read-only network media is an attractive option; but if it is not, then the 

problems of connectivity cause it to be far less attractive to us. 

System-specific attributes TrojanProof (see 2.13) tests to see whether the com­

ponent to be guarded is either on read-only media or made immutable . Like­

wise, we could take advantage of certain system-specific attributes to make the 

guarded component unalterable. However, this would make the design of t he 

integri ty checker dependent on whether a given system supported something 

like the "immutable" attribute. 

Given that the design proposed is meant to reside in kernelspace, it might be 

possible to ensure that the guarded component is made effectively immutable, 

whether the system supports the concept natively or not. The drawback of 
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implementing such a thing in preference to using asymmetric cryptography is 

that using the latter allows the component to be given to us by a third-party 

- and allows for this to be verified through the digital signature - whereas the 

former method does not. 

3.7.6 Decision 

It is important to note that, unlike the discussion of architecture (see 3.1), the 

decision of which storage to use for file metrics is not exclusive. In other words, it is 

possible to conceive of a scheme which uses a database to store file mctrics and, if a 

particular file is not found within the database , searches the file for encrypted metric 

information and uses that, if found. This approach would have all the advantages of 

database storage, and most of the advantages of same-file storage, with none of the 

disadvantages of either (assuming that revocation can be handled via the database). 

The only disadvantage to be seen is that of the added complexity inherent in creating 

one as a fall-back method for the other, and maintaining both. 

Despite the advantages of implementing both approaches, we are restricted by 

time constraints to only implementing one. The obvious one to implement is database 

storage as this has fewer disadvantages to it; furthermore , the advantage of being 

universally applicable to both machine-code binaries and interpreted scripts is ex­

tremely convenient. However, we should bear in mind that both approaches are 

possible and, if we can, ensure that the code we write is modular enough to be 

modified in future to handle same-file storage as well. 

In our design, IMon-related files such as the database are placed in a separate 

directory. This is so that any configuration files or other future feature enhancements 

that require permanent storage can he placed in an already-defined location. 

3.8 Self-Protection 

If a security system is itself compromised, the security provided is worse than not 

having any security at all: in the former case, an administrator believes that the 

system is protected and may not make checks that he might have made in the latter 

case. Therefore, limited self-protection is important for a secure system. 

We say that the self-protection is "limited" in the sense that we trust the system 
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to be in a secure state prior to the security system being made active. This can be 

assured through the use of a secure-boot process such as Aegis, which is described 

by Arbaugh, Farber and Smith in [74]. In fact , we need only trust that the operating 

system kernel (and , if provided separately, the file integrity checker kernel module) 

is in a known-good state since if this holds true, we are able to test the m lidity of 

all other components using the file integrity checker. 

Upon starting up, the integrity of the database should be tested using a digital 

signature. If this fails, a warning should be printed and the integrity checker should 

fail to load - and an extremely security-conscious administrator may choose to 

disable access to the system at this point, pending further investigation. However, 

assuming that t he database is in a coherent and reliable state, the integrity checker 

should load successfully and enact the following security measures: 

• Creation, deletion, and renaming of files in the configuration directory should 

be denied. 

• Locking the database should be denied. 

• Loading unknown kernel modules should be denied . 

• Unloading the file integrity checker module should be denied. 

• Writing to kernel memory should be denied. 

• Truncating or opening the database in a mode that allows writing to it should 

be denied. 

These measures are easy to enforce from the operating system kernel, and help 

to ensure a basic level of self-protection that defeats trivial attempts to subvert the 

system. 

3.9 Upgrading 

Upgrading IMon files such as the database can be done from users pace via a ut ility 

program t hat ensures that the replacement file is indeed a valid upgrade for the 

current file. One way of ensuring this is for the userspace program to set up an 

authenticated, encrypted connect ion to a server which provides updates, and to only 

obtain updates through this secure channel; since the server will always provide the 
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latest version of a file, the problem of distinguishing an older file from a newer one 

falls away. 

The upgrade program itself would have a per-file flag set that indicates its pur­

pose, and would therefore be accorded special privileges - such as being able to 

write to the directory in which IMon files are stored - that are not accorded to 

other processes. If we can ensure that the upgrade program works securely and 

correctly, and we can ensure that it has not been tampered with, then the upgrade 

process becomes almost as secure as if we were performing it from the kernel itself. 

To ensure that the IMon system is left in a consistent state, the following steps 

(as modified from our work in [49]) can be followed for a sample file named filename: 

1. The upgrade utility is started. The replacement file is locked such that no other 

entity can replace it with a malicious version. The integrity of the replacement 

file is tested using the digital signature that it contains. 

2. IMon ceases integrity-checking whilst the upgrade is in progress. This stops 

race conditions due to IMon attempting to find file metrics in the database 

whilst the database is being replaced. A side-effect of this is that no execution 

can take place whilst the upgrade process is ongoing. 

3. filename is renamed to filename. old. 

4. The replacement file is copied to the IMon directory under the name filename. 

At this point, both filename and filename. old exist . 

5. Synchronization is done so that any kernel buffers are flushed to disk. 

6. filename. old is removed. 

7. The upgrade utility exits. IMon , detecting this, verifies and re-reads filename 

before continuing with integrity-checking once more. 

A side-effect of this upgrade process is that, on system startup, a test for 

filename. old must be done if a test for filename fails . By using the above pro­

cedure we ensure that the system remains in a consistent state even if anyone of 

these steps is interrupted . 
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3.10 Algorithms 

This section concerns itself with the selection of algorithms that are used within the 

file integrity checking system, based on the preceding design and specification that 

has been laid out throughout this chapter. 

3.10.1 Minimizing Disk Access 

One of the advantages of same-file storage (see 3.7.1) is that it requires only one 

file to be open whilst a test. is done, thus saving t.he time spent reading data from 

an on-disk database. We can minimize the number of t imes that we have to refer 

to the on-disk database through a combination of two methods: on-demand loading 

and reference counting. 

When the file integrity checker is first initialized fTom the database, we do not 

need to read in all the metrics associated with each record. Instead, we need only 

rcad in the path of the file, some bits represcnting the flags associated with it, and a 

reference to where in the database more file metrics are to be found: we call this t he 

"stub" record , and differentiate between it and the "full" record contained in t he 

database. Some files may never be accessed during the runtime of the system, and 

retaining their full metrics in memory would be a waste of resources. This partial 

loading of file records into memory, and the strategy of only loading the full record 

when we must, is on-demand loading. On-demand loading ensures that only those 

files which are actually being used will have their full records loaded. 

When a file is accessed, a request can be made to get the full record associated 

with the file. If the full record is already present in memory - this happens if the 

Sflme file has been opened by anot.her process - t.hen fl reference counter for t.hflt 

record can be incremented, and the record can be returned. Otherwise, the record 

can be read from disk. When a file is closed by a process, we decrease its reference 

count; and when the reference count drops to zero, we free the fu ll record (thus 

returning it to being merely a stub) and must reload it from fi le if it is required once 

again. This illustrates our use of reference counting. 

Figure 4.4 on page 93 shows this process diagramatically. Combined, on-demand 

loading and reference counting help to make the best possible use of memory that 

is available to us whilst maintaining acceptable performance. 
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3.10.2 Lookup 

One of the most common tasks that will be performed is searching for a matching 

record. Therefore, this task must be carried out with the greatest efficiency. Other 

implementations have in the past found this to be a bottle-neck as far as performance 

is concerned [46, 43]; however, we can take advantage of the fact that we create the 

database to ensure that it is sorted lexicographically by file path before we load 

partial records into memory in a way that supports random-access of elements. The 

reason for this sorting is to make file lookups quick and efficient, using a binary search 

(as described by Knuth in [31, pp. 409-414]) instead of a linear search. A binary 

search is an O(lOg2 n) operation; the performance gain is obvious when contrasted 

to the O(n) it would take to perform a linear search - which we would have to do 

had we been forced to use a sequential-access container or not been able to pre-sort 

records. 

Another data structure and associated algorithm that could have been used is 

that of a hash table: it is more complex and slightly slower, but may be better-suited 

to modification to allow both same-file and database storage to coexist, as described 

in 3.7.6. 

3.10 .3 Caching 

Caching the results of a previous integrity check, as shown by SEFL and DigSig (see 

2.11 and 2.6 respectively), can dramatically increase performance. However, if done 

incorrectly, caching can result. in a file t.hat should be checked not being checked 

- and thereby introduce a security flaw into the system. To implement caching 

securely we introduce a per-file flag, which we shall refer to as the cache-flag. This 

flag is initially unset. 

We set the cache-flag for a file after a verification has been done, if all the 

following conditions are met: 

1. The filesystem that the file resides on is not a network filesystem. 

2. The file is not memory-mapped writably. 

We clear the cache-flag for a file if any of the following conditions occurs: 
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1. A request is made which may alter file metrics, such as writing to a file or 

creating a hard link to it. 

2. The file is memory-mapped writ ably. 

3. A request is made to write directly to a block device which may be a hard 

disk. 

In the case of (3), the cache-flags of all files are unset as a precaution. 

3.11 Evaluation 

In the previous chapter ot.her file integrity checking programs were examined, and 

fl aws in them were identified. Now that the design of IMon has taken shape it is 

instructive to compare this project with those, using the same criteria. 

IMon is an Integrity Monitor, used to monitor the file integrity. It is writ ten in C, 

and takes the form of a kernel module and uti li ty programs that generate a database 

for its use. Metrics tested for are comprehensive, including a cryptographic hash of 

file contents, timestamps, permissions, and owner and group of a file. Filc metrics 

are stored in a database whose integrity is ensured by a digital signature. IMon 

protects itself at runtime by disallowing any form of write access to the database, 

restricting those executables which are allowed to load and/or unload modules, and 

denying attempts to write to kernel memory. 

Configuration of 1M on takes the form of setting policies and per-file flags for spe­

cific files. Any file may be tested by IMon. Tests are carried out prior to execution, 

before read access is granted for listed files, and before read access is granted for 

any file to be read by an interpreter. A caching system which stores t he results of 

previous integrity checks is used to increase performance, and on-demand loading 

of records is implemented to minimize disk access. IMon is t.he only realtime file 

integrity checker on Linux that is able to handle both interpreted fil es and native 

binary executables in the same fashion. The performance impact of IMon on a 

production system is negligible. 
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3.12 Summary 

In this chapter we have discussed various aspects of file integrity checker design, 

based on the examination of file integrity checkers done in chapter 2. We have looked 

at possible architectures for a file integrity checker (see 3.1) , touched on issues such 

as interpreted execution (see 3.3) that have not been discussed by many other papers, 

debated open issues such as metrics and metric storage (see 3.6 and 3.7 respectively) , 

proposed the use of implementation-independent algorithms to increase file integrity 

checker performance (see 3.10), demonstrated the importance of dependencies and 

file attributes (see 3.2 and 3.5 respectively), and laid out guidelines for configuration, 

self-protection, and upgrading. 

In chapter 4 we shall describe our implementation of the design that has been 

put forward in this chapter. 
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Chapter 4 

Implementation 

In the previous chapter we discussed the design of an ideal file integrity checker. 

In t his chapter, we shall implement that design on the Linux operating system, 

referring back to chapter 3 where necessary. 

The full source code of IMon and associated utili t ies is available on a compact 

disc that accompanies this thesis. 

The implementation of IMon is split up into several distinct areas, each of which 

may be discussed and understood separately. These areas, and what is discussed 

under them, are: 

System An overview of IMon , ancl how all of the areas fit together to create an 

integrity-checking system. 

Baseline Configuration fi le syntax, creating a baseline database to be used by the 

integrity-checking system, selecting per-file policy, generating keys and signing 

the database. 

Cryptography A basic overview of RSA [571 encryption and decryption, and how 

it is used by IMon. 

Da t a base Access to the database, on-demand record loading, reference counting, 

and searching for records. 

Integrity Checking Situating integri ty checks, implementing policy, and acting 

upon failure. 
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4.1 System 

IMon was built on a Linux system running kernel version 2.6.12, and tested for kernel 

versions 2.6.12 and 2.6.14 (which, as of this writing, is the latest stable version of 

the Linux kernel). At present, the IMon kernel module consists of ",,4250 lines of 

highly-commented C code. This section gives a high-level view of what the kernel 

module does , and references more detailed sections as necessary. 

4.1.1 Hooks 

Actions performed in userspace cause other actions to be performed in kernels pace, 

with the results of these actions usually being returned to userspace. For example, a 

userspace program could request that n bytes be read from a file. This would cause 

the kernel to read a certain number of bytes from the specified file and return n of 

them to t he users pace program. 

The kernel also provides hooks, which one may "hang" code from. Once a hook 

is reached, the code that is associated with it will be run. Hooks are implemented 

using function pointers which (by default) reference dummy functions that usually 

do nothing and return successfully. We shall be using kernel-provided hooks that 

are called during program execution and when a request is made to read or write 

to a file. The hook framework that we shall be using is the Linux Security Module 

(LSM) Framework [13, 12], the essentials of which are covered in 4.5.1. 

4.1.2 Integrity Checking 

utilftiesJ 
Database' Core+-< 

cryptOgraPhY.--J 

Program execution 
Writing to a file 
Reading from a file 
Memory-mapping a file 
Changing mmap protections 
Opening a file 
Deleting a file 
Renaming a file 
Loading modules 
Unloading modules 
Locking a fi le 

Figure 4.1: IMon Runtime Overview 

IMon may be seen as four components (Core, Database, Utilit ies, and Cryp-
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tography) that interact at runtime to do integrity-checking. Figure 4.1 shows this 

diagrammatically, with the tasks affected by IMon being shown to the right as input 

into the Core. 

The Cryptography component (see 4.3) is the simplest, and provides access to 

cryptographic hash functions. In reality this service is provided through separate 

kernel modules, with Cryptography being a set of functions that provides a conve­

nient interface to them. This component is used by 1M on during the testing of file 

metrics. Note that Cryptography does not use the big-number implementation (see 

Appendix C) that we created since asymmetric cryptography is only utilized during 

the initialization phase of IMon. 

Utilities (see 4.5.7) provide functions to: 

• convert a file into an absolute filename 

• determine whether a fi le is testable or not (and, optionally, what the type of 

the file is) 

• get a single line from a file; used during parsing of the database file 

• associate a record with a process, which requires interacting with the Database 

component 

The functions in Utilities have been created for convenience, and are used by 

Database as well as Core. 

The Database component (see 4.4) is used by Core and uses Utilities to obtain 

a lines from the disk-database so that on-demand loading can occur. Core uses 

Database to store, request, and release records. 

The Core component (see 4.5) consists of the LSM hooks described in 4.5 .1, and 

thus forms the interface through which the rest of the kernel interacts with Il\10n. 

It utilizes the other three components to carry out its functions and receives input 

by way of parameters passed from any of the kernel functions that run in response 

to a task listed to the right of Figure 4.1. Since some of the tasks (such as "reading 

from a file") are very common, IMon may have its functionality invoked very often. 

Since Cryptography is simply an interface to other kernel functions , and Utilities 

are helper functions that are not central to the purpose of IMon, we do not spend 

much time describing them in this chapter. Instead, we describe the implementation 
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of Database and Core in detail since those are the two components that are central 

to the functioning of IMon. 

4.1.3 Lifecycle 

The lifecycle of IMon can be seen as comprising three phases: initializat ion, runtime, 

and shutdown. The first occurs when [Mon is loaded, and the third occurs when 

[Mon is unloaded - with the majority of time being spent in the second phase, which 

occurs in the interval between loading being completed and unloading beginning. 

Initialization 

Upon startup , the function imonjnit is called. In this funct ion we first load the public 

key components compiled into IMon, which means translating public-key hexadec­

imal strings into numbers; this is done by way of the big-number implementation 

created for the kernel (see Appendix C) . We then proceed to verify [Mon files (see 

4.3.2) , and (assuming that the verification is successful) release memory associated 

with the keys . The create_database function is called, which calls initDB (see 4.4.3) 

in turn to create the database used by IMon. Lastly, we register the L8M hooks 

that we use with the L8M framework (see 4.5.1). 

If any of the above steps fail for any reason, IMon does not continue with subse­

quent steps. Instead, it refuses to load and prints an error message indicating why 

initialization failed. 

Runtime 

During runtime, hooks registered with the L8M framework (see 4.5.1 and 4.5.6) are 

called, and integrity checking takes place. Every read operation, write operation, 

and execution operation is now monitored by IMon. An oven'iew of this process is 

given in 4.1.2, with more detail being available in 4.5. 

Shutdown 

When a request is made for IMon to be unloaded, the imonJini function is called. 

This function first deregisters I:.ion with the L8M framework (see 4.5.1) and subse-
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quently calls a function to release resources used by the database. 

4 .2 Baseline 

This section describes how a baseline is created for the system. We require a baseline 

to be able to differentiate between "good" and "bad" / "unknown" files using file 

metrics. Creating a baseline for the system is done in 3 stages. 

1. We first create a configurat ion file that determines which files \\'e will be test­

ing. After 1M on is running, only these files will be allowed to execute. The 

configuration fil e also specifies speci fic policies for certain files if the default 

runt.ime policy assignment (sec 3.5.2) is not. appropriate for a part.icular file. 

2. The configuration fil e is t hen fed into a program which generates baseline data 

for those files and produces a flat textfilc ordered by fil ename: this is our 

database. Following each filename are the dependencies and policy for that 

file , and data about the file such as a hash of its contents, timestamp records 

and permssions. 

3. Assuming that the administrator is satisfied with the resulting database, he 

then signs it using his private key, and loads it onto t he workstation. At this 

point it becomes extremely difficult for an at tacker to modify the database; to 

do so, he would require access to the administra tor's private key, which he is 

unlikely to get. 

This process is illustrated in Figure 4.2 and explained fur ther in 4.2.1 through 

4.2.3. 

4.2.1 Configuration File Syntax 

To make administration as easy as possible, the configuration file consists purely of 

filenames, comments, and policies. A filename that begins on a new line and has 

no space prep ended to it is considered to be a main file, and any filenames that are 

indented are considered to be dependencies. Typically, we have an executable as the 

main file and any configuration files or libraries that it depends on as dependencies. 

Policy or per-file flags may be set for a main file by specifying the policy name 
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:.Data .. b.a~~ .9.e.nera!i.~n. prog~a.I11. : 

Unsigned database 

Figure 4.2: Database generation from a configuration file 

(deny_others, accepLafter, accepLanytime, or denYJlotfound; see 3.5.2 for 

details) or the per-file fl ag (ignore_ctime, module_capable, ignore_hash, etc; 

see 3.5.1 and below for details) as a dependency, i. e. indented under the name of 

the main file. If the first non-blank character on a line is a hash ("#"), the line is 

t reated as a comment. 

Since a file must. fall under one and only one policy, if more t.han one policy is 

specified, the last one specified is the one that is used. If no policy is specified , a de­

faul t policy of accepLanytime or deny _notfou nd is used, depending on whether 

the file is interpreted or not (see 3.5.2). The same does not hold true for per-file 

flags , any number of which may be specified in any order. Of course, per-file flags 

may be repeatcd with no ill efl"ects since this would simply turn the same fl ag on 

twice or more, resulting in the flag still being turned on. 

An example excerpt from a configuration file is provided as Code Snippet 4. L 

Policy and Per-File Flags 

Each per-file flag is mappecl from configurat.ion file syntax to a number that rep­

resents a # DEFINE statement. The flags , what they do, and which # DEFINE'd 

symbolic name they are synonymous with are as follows: 

ignore_hash Mapped to IGN _HASH. This specifies that the file hash should not be 

tested; however, in line with 3.3, if t.he file is an interpreted one that is to be 

executed it is tested even if ignore_hash is set . 
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/usr/bin/code2color 
accept_anytime 

/usr/bin/Imhttp 
/home/cynic/module/tests/test5/test5~OW_accept_after 

/lib/libc. so. 6 
/lib/Id-linux . so.2 
/lib/libdl. so. 2 
accept_after 
/home/cynic/modul e/tests/test5/l i btest5_dependency.so 

/usr/bin/python2.4 
interpreter 

/usr/bin/smbmount 
/etc/cups/certs/O 

ignore...1Iltime 
ignore_ctime 

/etc/mtab 
# stuff may get added all the time to mtab. don · t worry about it. 

ignore_ctime 
ignore...1Iltime 
ignore....hash 
ignore_size 

/etc/idmapd . conf 
/etc/Id.so.conf 

ignore_ctime 
ignore...llltime 

l etc/modules.devfs 

Code Snippet 4.1: Example: Configuration file excerpt 

ignore_ctime Mapped to IGN_CTIME. This specifies that the status-change times­

tamp of a file need not be tested. 

ignore_mtime Mapped to IGN_MTIME. This specifies that the modification t imes­

tamp of a file need not be tested. 

ignore_uid Mapped to IGN_U ID. This specifies that the owner of a file need not be 

tested. 

ignore_gid Mapped to IGN_GID. This specifies that the group of a file need not be 

tested. 

ignore_links Mapped to IGN_Ll NKS. This specifies that the number of links to a 

file need not be tested. 

ignore_mode Mapped to IGN _MODE. This specifies that the read-write-exeeute 

permissions of a file need not be tested. 

ignore..size Mapped to IGN_SIZE. This specifics that the size of a file need not be 

tested. 
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interpreter Mapped to FLGJNTERP. This specifies that the file is an interpreter , 

and should be treated as such (see 3.3). 

module_capable Mapped to FLG_MODCAP. This specifies t hat the file is a loader 

or unloader of kernel modules. 

Three fl ags are set and unset at runtime: 

FLG_CACHED This flag is set when a file may be cached at the end of an integrity 

check, and unset when the file is written to. 

FLG_TESTING This flag is set when a fi le is being tested , and unset as soon as 

testing is complete. 

FLG _MMAPW This flag is set when a file is memory-mapped with permissions that 

allow writing to it, and unset when no more references to the file are extant. 

It acts to inhibit t he setting of FLG_CACHED for a file. For an explanation of 

why this flag is necessary, see 4.5.4. 

These runtime fl ags need no representation in configuration-fi le syntax since they 

are only toggled at the behest of IMon. 

4.2.2 Database Generation 

The configurat ion file is run through a database generation program which deter­

mines file metrics given fil enames, resolves symbolic links, removes duplicates, sorts 

the database by filename , adds data to make records easy for a computer to read, 

turns file references into database indices, and more. Essentially, the database gen­

eration program does most of the menial tasks that would take a great deal of t ime 

to do manually (and , most probably, imperfectly!). Eventually, the database gener­

ation program outputs a database that requires only that the administrator sign it 

with his private key. Figure 4.2 illustrates this process. 

Code Snippet 4.2 expresses the database format in Extended Backus-Naur Form 

(EBNF) . The "DepIdx" token in this Snippet requires some explanation. It repre­

sents the dependencies of a given record, with each dependency being represented 

by a particular index number into the database array. If we were to instead list the 

dependent filenames in each record, populating the dependencies array of a single 
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record would require us to search through the entire database to find the correct 

record , then place it in the correct slot in the dependencies array - and this would 

be repeated for each dependency that a record has. Listing the index numbers of 

dependencies, which we can calculate at database compilation time, is a far easier 

and simpler solution that gives us a performance boost during the lookup procedure 

at runtime. 
Database := Signature NumRecords MaxRecordLen Record' 
Signature := HexNumber 
NumRecords := Number 
MaxRecordLen := Number 
Record := StrLen Filename Flags Polic), DepSize DepIdx* Stats 
Stats := Hash UID GID Mode Links Size CTime MTime 
StrLen := Number 
Filename l := Character+ 
Polic), := '1' I '2' I '3' I '4' I '5' I '6' 
Flags := Number 
DepSize := Number 
DepIdx := Number 
Hash := HexNumber 
UID := Number 
GID := Number 
Mode := Number 
Links := Number 
Size := Ntrmber 
CTime := Nwnber 
MTime := Nwnber 
Number := Digit+ 
HexNumber := HexDigit+ 
HexDigit := 'a' I 'b' I 'c' I 'd' I 'e' I ' f' I Digit 
Digit := '1' I '2' I '3' I '4' I '5' I '6' I '7' I '8' I '9' I '0' 

I uFilenallle" is preceded by the I.IStrLen" token which gives it.s 1ength. It consists of any 
characters at aUi to denote this, the (undefined) token ':Character" is u::;ed. 

Code Snippet 4.2: Database EBNF 

The first ten lines of an actual database configuration file are provided as Code 

Snippet 4.3. 

82 



35!97102c:c:d87dla351a381!! 1 781a345Bd4bb598d67 a18178bae60a6f6!92d61Bb090344eed3c:90c:3!Ocfi78:!1b60abal b.b4 .J 
09c:4188b&.15!93119c:689! b347t 180 16bd61c:8t02083e69id90966bf3bab2c:6Bc:Ba660666ed09/6b5 b3bc:d8t Id7t fe7t5!60a .J 
27306dd4a7d8S1d997 td56948518..td2al1abd2at69a81 c:5tf 12:2d!49ad0451Jbld459457ct827b3aOf 1944~23006c:c:3c: .J 
304t3666e6a4~0125dc:809bd660602 1 2tOd881692b9e8o2dedb04 2c:81428 ... 3331 t 14c:6681 ... 8816c:6261 0443e682t73c:t72 .J 
d2d68aI5478090Ja.106o:l6,,tde6a6387oe2aac:c:3cc:7t6760e3b6f7d6a4127680086c:b2t9eal 089cd27! !Jt 22 ... 9Sc:068a6c:6 .J 
b837ab3ba.3.7d.297.42991f92b7b268t6ct8da.38758.,4dSBc34f83gedeOb2c:d71.769fb71092e;;;e6ff9!39S84311d2bt069 .J 
fc:B9d5t a61312ca.c:Oaffcc7389fbl64be9a:t6S3nd446f4cI6914e16b6S1bf3f412dd96e10794dl01t.099dla6b5f97 2d32 .J 
goale3llO! .. lib931 c:9nSda28ca67Q.c:7e31a6a7bbdI9d68068d9aa8b9281051 d5d8d7211acte86820951tbldc: 12b3e 762c76 .J 
F>4626d06ec093363d684bb1661000D778b.,Ob88B801aB4c:b32B420 1cc:898c:7 c:853825d2281 U4t99Sdabe.6t 4123ba174dc:0 .J 
ed7 c0665b02S0b67atc:eS""I!Od37d99ac:d2Ie1b17 c6086e.la6415geI410dt5f6c5e3'r1t1t c:8d61 c:edl 060cdte2tbI46d 10a41 .J 
63c:ed283bseac:b99546a.4361 
14&614 :1'29 
9 /biD/arc:h 0 1 0 e12c:bb033f3d"1l310d96S2!46t23bdtOc:OB47090 0 0 33261 1 3825 1152056966 1128683129 
9 /bin/8ttr 0 t 0 88344696047668a3c:6ccb9a.hi92tllc:c2a14791l8 0 0 3326 1 1 704l:1 1132066956 1125842622 
13 /bll1/buenQ. 0 1 0 66oe017622c:881c8581l67li9-Hlea2311C:13e18b4 0 0 33261 1 15991 1132066975 1128583026 
9 / bill/baah 0 1 0 dOe2a7491~7c:a1ec:all1be4d3e14be3543253b2. 0 0 33261 1 673663 1132613300 11 32673303 
1 /blll/bb 0 1 0 t lldd449U4294d50b16bdec6386bc:d64525a9f18 0 0 33261 t 13362:23 1132Q56941 1124111603 
12 /blll/bullyboll: 0 1 0 24a6 1bc0340bt18a429t65c:13483bc317814fc:b2 0 0 33261 1 600412 113:105e976 1124711503 
11 /bl:</bzdUf 0 1 0 65b21d1b6b4dOc2324c:1abalb7c:a50 .. 218C:bfBd 0 0 33261 1 2106 112158<10266 1121584266 
11 /blll./bzgrep 0 1 0 9608187020a83d801cObOla6 .. b06~61a2t8138 0 0 33261 1 1682 1121584268 1121684288 

Code Snippet 4.3: Example: Database excerpt 

4 .2 .3 Signing the Database 

To detect tampering with the database, it is digitally signed. We use the OpenSSL 

[11 , pp. 31-32] set of tools to generate keys since it has been peer-reviewed and is 

considered to be a good enough key-generator for our purposes. Generating a key 

need only be done once, and is accomplished via the command openssl genrsa 

-out filename numbits: this command generates a key of length numbits and 

places it in fi lename. The length of the key can prioritize security above speed 

since the database is verified only once, during initialization. Key components are 

extracted using a custom script to make the keys easily usable during the signing of 

the database. 

The actual signing of the database is done Via two utili ties: shalsum [18] and 

yyyRSA [65]. The former is used to create a cryptographic digest for the database, 

and the latter applies the RSA [57] algorithm to that digest, using the keys generated 

by OpenSSL, to create a digital signature. We do not use OpenSSL for generating 

the signature because yyyRSA creates a signature that contains no padding and is 

thus easier to decode. This signature is then prepended to the start of the database 

as the very fi rst line. 

It is intentional that we have separated the step of creating the database and 

signing it so that signing may be done after a manual inspection (if necessary), and 

so that it may be done offline. 
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4.3 Cryptography 

The security provided by a file integrity checker depends on the strength of the 

cryptography used. If an attacker is, for example, able to find a collision in t he 

cryptographic hash that represents the file contents, then the assurance provided 

by the integrity checker about the file contents being correct is lessened. Likewise, 

if the database is not guarded from tampering by asymmetric cryptography, t he 

assurance that any content within it is valid is decreased. 

Support for the manipulation of "big" numbers, hundreds or thousands of bits 

long, does not currently exist within the Linux kernel. The security of asymmet­

ric encryption lies within the evaluation and manipulation of such numbers. Our 

options upon discovering this were to either "port" routines for big-number manip­

ulation to the Linux kernel as has been done by SEFL and DigSig (see 2. 11 and 

2.6 respectively ), or create the routines ourselves. The former has the advantage 

of being faster and more tested, and the latter has the advantage of being smaller. 

Hesitant about increasing the memory footprint of our kernel module, and secure 

in the knowledge that we only needed enough code to do decryption and that de­

cryption would not have to be done very often, we chose to create the necessary 

routines. 

As it turned out, the saving in terms of code size was not as great as we expected 

it to be, and the memory saved was ofiset by the memory required to store partial 

records after a successful database ini tialization (see 3.10. 1). On the positive side, 

the big-number implementation that we created is , to the best of our knowledge, 

the first aimed specifically at the Linux kernel' 

This big-number implementation is discussed in Appendix C since it is not central 

to the purpose of the fil e integrity checker, and it was felt t hat including it in t his 

chapter would distract the reader from the more important discussions of how t he 

database and core components of IMon have been implemented. For the rest of this 

section, we shall describe the basics of asymmetric cryptography and how it is used 

by IMon. 

4.3.1 Asymmetric Cryptography 

All cryptography relies on some "key" that is used to unlock a secret, transforming 

it from encrypted to decrypted form. Asymmetric cryptography is termed such be-
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cause the key used to encrypt is not the same as the key used to decrypt. Generally, 

one key is kept private, and the other is made public. RSA encryption is used in our 

digital signature on the database; a full explanation of how the entire system works 

is to be found in [20, pp. 229- 235] or [57], and we shall not go into the intricacies of 

it in detail here. However, it is necessary to understand the mathematical basis of 

how RSA works in order to understand an optimization that we have made. 

RSA works using a trapdoor function, and the security provided depends on 

the difficulty of finding the trapdoor value in a reasonable amount of time. The 

trapdoor value in RSA is the public key (if a message has been encrypted with the 

private key) or the private key (if a message has been encrypted with the public 

key). 

The difficulty of finding the trapdoor value in a reasonable amount of time de­

pends, in turn, on the number of bits of the key used: hence the need for manip­

ulating big numbers, hundreds or thousands of bits in length. A message m may 

be encrypted to give the ciphertext c using the formula c = mX mod n, where 

the tuple (n, x) is the encryption key; the same message may be decrypted using 

m = c' mod n. x, e and n have a relationship that ensures that it is difficult to 

substitute other numbers in their place. 

A small optimization that has been made is to select the exponent e used for 

decryption as being a small value, as described by Ferguson and Schneier in [20, 

p.231]: 

Choosing a short public exponent makes RSA more efficient , as fewer compu­

tations are needed to raise a number to the power e. We therefore try to choose 

a small value for e. [ ... J Choosing fixed values for e simplifies the system and 

also gives predictable performance. 

Currently, we use a 4096-bit RSA key as generated by OpenSSL [11] to secure 

the database from tampering. The e that has been chosen is the fixed value 10001 ,6 

(6553710) . A 4096-bit key is thought to be large enough to make a brute-force 

attempt at finding the correct trapdoor (that is , t he private key) infeasible. 

4.3.2 Verifying IMon Files 

1MoIl needs to know the public key - specifically, the e and n components - to be able 

to decrypt the digital signature placed on any H.10n files, such as the database. This 
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key is compiled into IMon as a hexadecimal string, and translated into a structure 

usable by our big-number implementation (see C.1) at runtime. 

To verify a file called filename, we first obtain the internal kernel data structure 

associated with the IMon directory. We then test to see whether either filename or 

filename. old exist, in that order - see 3.9 for why this is done. If neither exist, we 

assume that the system has been compromised and return an error. Otherwise, we 

verify that the file has not been tampered with by validating the digital signature 

within it, returning successfully if the digital signature is correct and returning an 

error if it is not. 

4.4 Database 

The database component of IMon initializes an array of records (which is our in­

memory database) from a database file, stores stub records and performs on-demand 

loading (see 3.10.1), handles reference counting transparently, and releases memory 

associated with the database when IMon is shutting down. By making extensive 

use of the C preprocessor, the database component is both compilable as part of 

IMon and as a standalone program that simulates requests for records and tests the 

database lookup process. 

In this section we describe the implementation of the database. We begin by 

describing the data types that represent a stub and full record, and then describe 

the interface by which the database is used by the Core component discussed in 

4.1.2 . We then describe the workings of core functions that initialize the database, 

release memory associated with it, and search for a record. Lastly, we discuss the 

locking strategy used by the database to ensure that race conditions do not occur. 

From this point on, we shall use the following terminology: 

record A single set of metrics for a file. The exact data structure that holds these 

is noted in 4.4.1. A record may either be full or stub, depending on whether 

it is populated with all the metric data of the file or just some of it. 

disk-database The file that contains the complete records for each file. 

database The in-memory array of records. 
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4.4.1 Records 

The record data structure must be small so as not to waste memory, but flexible 

enough to be modified should one wish to test a new metric (such as a secondary 

file digest or hash). We have achieved this by making the stub data structure 

(imon...security) very small, and placing all data that is not strictly necessary into a 

second data structure (imon_data) that the stub holds a pointer to. 

001 struct imon_data { 

002 unsigned char hash[HASH_LENJ; /' non-NULL-terminated SHAl1 6D--bit hash */ 
003 mode_t perms; /* read-write-execute bits */ 
004 unsigned int uid, gid: / * File user and group */ 
005 int links; /* number of links */ 
006 size_t size; /* size in bytes * / 
007 time_t ctime, mtime; /* creation/change time, modifica tion time */ 
008 char policy; 

009 atomic_t refs; /' for database: number of references extant * / 
010 unsigned int num_deps; /* number of dependencies ' / 

011 struct imon~ecurity **dep; /* array of poin ters to dependencies */ 
012 }; 

013 struct imon.seeurity { 

014 ehar *fi lepath ; /' absolute path '/ 

015 unsigned short flags; /* per-file flags */ 
016 unsigned int line_no; /* Which line is it on in the DB file? '/ 

017 struet imon_data *full ; / * what is the ideal? */ 
018 }; 

Code Snippet 4.4: Database data structures 

The core data structures for the database are depicted in Figure 4.3, which 

reflects Code Snippet 4.4. In this Figure the overall database structure is abstracted 

such that each record is represented by an "R", with the index number of the record 

listed below it. If the record is full, then a full circle is shown next to it; if it is a stub, 

then the circle is empty. All stub records have NULL imon_data pointers, as shown 

by the lack of " ... " in the boxes that they point to . Populating the pointer-to­

imon_data within an imon_security structure results in a full record. A dependencies 

array, which is part of the imon_data structure, is shown pointing to various other 

records in the database array. 

imon_security, shown on lines 13- 18 of Code Snippet 4.4, consists of the absolute 

path of the fil e (filepath) , per-file flags (flags) , a number indicating the byte within 

the database file at which the record data begins (line_no), and a pointer to more 
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Figure 4.3: IMon Record Database Structure 

data (full ). All data in the stub , with the exception of the full member, are set at 

init ialization t ime. 

The creation of a stub set of records with initialized dependencies is made easier 

by Step 2 of t he baseline creation process (see 4.2). We are able to generate the total 

number of records, sort them, and include much information that removes the need 

to ever handle more than a single record at a time. For example, each fil ename string 

is preceded with its length, making it easy to read in a set number of bytes and call 

it the filename without having to resort to using "special" delimiter characters to 

show where a filename begins and ends. This can be seen in Code Snippet 4.3. 

It is important to note that in Step 2 of the baseline creation process we order 

records by filename, as mentioned in 4.2. Since we read each record in-order, we end 

up with an initialized database that is sorted. This fact is used to greatly increase 

record lookup speed, as described in 3.10.2. 

imon_data , shown on lines 1- 12 of Code Snippet 4.4, holds baseline and non­

essent ial data and is init ialized on-demand. Importantly, this structure can be added 

to and extended by simply adding fields and creating the appropriate functions 

to test those fields: the rest of the program need not change at all . Due to the 

on-demand loading and unloading, the size of imon_data can be increased without 

affecting the memory impact of IMon overmuch. The current set of metrics that 

IMon tests, and the lines of Code Snippet 4.4 that t hey are shown on, are: 

hash, line 2 A SHA1 160-bit hash (currently). HASH_LEN refers to the size of the 

hash in bytes. By changing two lines of the source code, not shown above, 
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the hash used can be altered to be any crytographic hash supported by the 

Linux kernel. As of kernel version 2.6.12, this list consists of four algorithms 

at various digest lengths that have been created specifically as hash functions: 

IvID4, IvID5, SHA1, SHA256, SHA384, SHA512, Whirlpool-256 , Whirlpool-

384, Whirlpool-512, Tiger-128, Tiger-160, and Tiger-192. Any of these may 

be easily substituted for SHAl. 

perms, line 3 The mode of the file, expressed in terms of read-write-execute bits 

for owner-group-other entities. 

uid, line 4 Numeric representation of file owner identity. 

gid, line 4 Numeric representation of file group identity. 

links, line 5 Number of hard links made to a file. 

size, line 6 File size in bytes. 

ctime, line 7 Time of last status change. 

mtime, line 7 Time of last modification. 

Non-metric-related fields of imon_data are: 

policy, line 8 The policy (see 3.5.2) associated with this file. 

refs, line 9 A reference counter used to reduce the number of times the disk­

database needs to be accessed (see 3.lO.1). 

num_deps, line 10 The number of dependencies (sec 3.2) that this file has. 

deps, line 11 An array of pointers-to-dependencies. 

4.4.2 Database Interface 

The database component of IlvIon presents an interface through the following four 

functions, which are discussed in detail in subsequent sections: 

int initDB(struct file*) This function initializes the database from a specified disk­

database. It allocates memory for storing database stub records , reads record 

stubs into the database, and tests the database for consistency before returning 

successfully. 
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void freeDBO This function releases all memory related to the database. 

struct imon _security* geLrecord( const char*) This function returns a specifieo 

record, or NULL if no record is found. It will act to load a full record if only 

a stub exists in the database, and increments the record's reference count in 

any case. 

void pULrecord(struct imon _security*) This function releases a record by decre­

menting its reference count and, if the reference count reaches zero, freeing the 

memory that differentiates a full record from a record stub. 

4.4.3 initDB 

The initDB function initializes the database from the disk-database. It is called 

during IMon's initializat ion phase (see 4.1.3) and can be seen as having three phases: 

1. Setup: preparation is made to read in records efficiently 

2. Init ializing: records are read in 

3. Testing: the database is validated for consistency 

Setup 

By the time that initDB has been called, the database has already been declared 

either valid or not (see 4.1.3); if invalid , then initDB is never called. Therefore, the 

first thing that we do in the function is read past the digital signature at the top of 

the file . The second line of the database consists of two numbers: t he first specifies 

the total number of records in the file , and the second specifies t he maximum length 

of a record. This makes reading records exceptionally easy, as we have merely to 

loop until all records have been read in, and can read each record into a holding 

buffer that we know will not overflow as we know the maximum size that a record 

could possibly be. 

Allocating memory for the record buffer is easy: we shall only need a few hundred 

bytes, and this is easily given to us by the kmalloc function of the kernel. However, 

allocating memory to the database is not as easy to do since kmalloc returns a 

contiguous memory block, ann contiguous memory is oifficult to find as the amount 
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requested grows larger - resulting in kmalloc returning an out-of-memory error. 

Three options present themselves at this point : 

Minimize imon_security size imon-.Security currently holds members that could be 

reduced in size, at the cost of limiting their range. An example is the policy 

and flags member variables: since flags is simply a bitset, it could be set to use 

only as many bits as there are flags; and since policy may be encoded in only 

three bits (assuming that more policy-types are not implemented), the two 

could be combined to form a single int-type variable. Alternately, a C bit-field 

specification! could be used to achieve the same effect. So far , we would have 

gained space by removing bits that would never have been used; however, if we 

are willing to remove bits that could be used the potential savings increase. For 

example, if we are willing to reduce the maximum number of references that 

can be extant, or the maximum number of dependencies, then these members 

can be changed from the int type to the short int type. 

The primary drawback of this approach is that we will be presented with 

exactly the same problem at a later date, as more and more records are added: 

the approach does not scale. In addition , the system becomes increasingly 

inflexible as we reduce the range of member variables to what we believe to 

be reasonable - which may not be what another user of t he system considers 

to be reasonable at all. 

Allocate in smaller blocks Instead of allocating a single list, we could allocate 

several smaller lists and sort each one. Alternately, we could make imon_data 

consist of nothing but the filepath, and create a new structure, perhaps called 

imon-.Stub, which contains stub data. This approach would result in a greater 

total amount of memory being allocated since the size of each pointer-to­

imon_stub would have to be factored in; however, the size of each individual 

allocation would be smaller, and thus more likely to succeed in terms of kalloc 

requirements. 

The primary drawback of this is that it is a workaround that actually m­

creases the amount of memory allocated, and makes accessing members of 

imon_security more difficult: one would now have to go through another level 

of pointer indirection to get to needed data. Another disadvantage is that, 

once again, this simply puts off the problem until a later date, when allocating 

an array of n objects - no matter how small - will become problematic. 

lsuch as "unsigned int policy:3;" 
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Use a different allocation function kmalloc, and functions that interface with 

it, are not the only memory allocation functions that we could use. Another 

function that fits our needs is vmalloc , which allocates virtually-contiguous 

memory space; in other words, the memory that is presented to us is not 

necessarily contiguous, but is made to seem so through use of the hardware 

paging unit. 

The main drawback of this approach is that memory access to areas allocated 

with vmalloc is generally slower. 

Since the last option is the only one that scales well and allows us to maintain 

code simplicity and readability, we choose to use vmalloc to allocate the database 

array. 

The last thing that we do as part of preparing to read in records is to initialize 

the database to be in a defined "uninitialized" state. When we test for consistency 

later on, this makes it easier to detect if a certain element has not been initialized 

by seeing if it is still in the defined "uninitialized" state. 

Initializing 

Using a for-loop, we iterate through the disk-database and initialize each element 

in turn. For each element, the filepath, per-file flags (flags), and the line number 

(line_no) at which further metrics may be found are set. 

Testing 

Testing is done by iterating through each record in the database and testing to 

see whether the filepath member is uninitialized. Since it is set to be uninitialized 

during the setup phase, this test should be able to catch any errors in the database 

file. Whilst testing could be made more extensive and comprehensive we rely on the 

assumption that the creator of the database would have checked it before signing 

it, and that the digital signature is a stamp of approval as well as a verification of 

authenticity. Therefore, we only test for completeness and consistency rather than 

checking for a deliberate mangling of the database. 

If the database passes all tests, we set a global variable called imon _d b_usa ble 

to be equal to one. This variable is used in IMon to determine when it is safe to 
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obtain a record; when it is set to zero, IMon will not attempt to get a record from 

the database. 

4.4.4 freeDB, get _record and puLrecord 

These three functions are grouped together as they are not complex to explain , nor 

is much discussion of their workings necessary. 

freeDB 

freeDB goes through the database sequentially, releasing all memory associated with 

each record; at the end, the memory allocated to the database itself is released. 

After a call to freeDB , the database refuses to return any records until a successful 

call to initDB has been made. 

geLrecord 

geLrecord takes a const char' as the pathname to find. It does a binary search 

(as described by Knuth in [31 , pp. 409-414]) of the database to find the correct 

record. A binary search can be used because, as mentioned in 3.10.2, the database 

file is sorted lexicographically by file path. If no record is found , NULL is returned. 

If a matching record is found, the reference count is incremented and a check is 

performed to see if the record is a stub: if it is, we read in the full record using a 

function called readjmon _record and return it, otherwise we simply return the record 

as-is. 

Find correct stub 
record: getJecord 

Record found? >-'x'-_________ -, 

Record is stub? 

x 

Increment record ./ 
reference count 

Create full rec ord 
from stub: 

read_imon_record 

Success? 

Figure 4.4: Requesting a record 
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Figure 4.4 shows the request process , sans locking (see 4.4.5), diagramatically. 

put..record 

puLrecord takes a pointer-to-i mon _security as an argument and decrements its ref­

erence count. If the reference count is zero, the FLG_MMAPW flag (see 4.5.4) OIl 

the record is unset and the record is turned into a stub by releasing the memory 

associated with the full record . 

4.4.5 Locking Strategy 

If compiled for a system capable of symmetric multi-processing (SMP), or if com­

piled with support for preemption, the Linux kernel is effectively multi-threaded. 

This means that shared data structures such as the database must be protected 

against concurrent modification, and necessitates the use of appropriate kernel syn­

chronization methods. In this discussion of database locking strategy, we assume 

that the reader is familiar with such concepts as concurrency, deadlock, and critical 

sections; such concepts can be reviewed by reading through [40, pp. 119-130]. 

As described by Love in [40, pp. 119- 156], the synchronization primitives pro­

vided by the Linux kernel are extensive, covering atomic bit-operations through 

memory barriers and per-CPU preemption-disabling to spinlocks and semaphores. 

A full explanation of all of these (and more) is provided in the aforementioned ref­

erence work. In this section, however, we shall content ourselves with discussing 

only those synchronization primitives that are most pertinent to our specific syn­

chronization problems, and ignore topics such as per-CPU preemption disabling and 

condition variables. 

Spin Locks A spin lock is an extremely lightweight lock which may be both ac­

quired and released with very little overhead. Upon finding the critical section 

unlocked, a spin lock claims the lock and enters. Upon finding the critical 

section locked, the spin lock will spin - that is, enter a tight loop during which 

the lock status is tested repeatedly, and during which no other task may run2 

- until the critical section may be entered once more; at this point, the lock is 

2This is true on SMP machines; on uniprocessor machines, a spin lock simply disables preemp~ 
tion so that the lock may never be contended . 
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claimed and the section is entered. Locking a spin lock more than once results 

in deadlock. 

Since a spin lock takes up processor time whilst spinning, it is not good to hold 

a spin lock for a lengthy period of t ime. There are certain functions t hat may 

block until a resource is available: these functions are said to be able to sleep. 

Calling a function that may sleep whilst holding a spin lock is not advisable 

since it may be necessary for another task to release resources in order for 

the sleeping function to gain them - and since a spin lock effectively disables 

preemption, the sleeping function will never be able to obtain the necessary 

resources and a system freeze will occur. 

Semaphores A spin lock busy-waits until the critical section may be entered; a 

semaphore sleeps instead, periodically waking up to see whether the section 

may be entered. This is the fundamental distinction between the two, and 

one of the side effects of it is that semaphores may be used whilst sleeping 

functions are called. The overhead incurred by sleeping, waiting, and waking 

up means that semaphores impose a far greater synchronization penalty than 

do spin locks, and should therefore only be used either when spin locks cannot 

be used or when the lock is to be held for a long time [40, pp. 143- 144]. 

The locking strategy employed does not use semaphores, but it could conceiv­

ably have done so. Semaphores are described here so that one may compare 

them to spin locks and thereby understand why the spin lock synchronization 

primitive has been chosen as the speedier alternative. 

Atomic Operations Atomic operations ensure that a read and write to a memory 

location either occurs as an atomic transaction or does not occur at all. For 

example, they ensure that a given integer , if incremented concurrently by two 

threads of execution, will have the correct value. Atomic operations are carried 

out on variables of type atomict , which are integers that are "wrapped" by 

strncts to ensure that it is difficult to accidentally modify them non-atomically. 

An example of an atomic integer that has already been seen is the refs member 

variable shown on line 9 of Code Snippet 4.4. 

Both semaphores and spin locks come in default and reader-writer varieties . The 

default versions allow only one thread of execution to be within a critical section at a 

time, as is expected of synchronization primitives. Reader-writer versions allow one 

to gain a reader-lock or a writer-lock; any number of threads may obtain reader-locks 
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at the same t ime, but only one thread of execution at a time may hold a writer-lock, 

and no reader-locks may be held whilst a writer-lock is held. Reader-writer locks 

therefore allow for a safer form of concurrency and improved performance. 

We perform no locking during the database initialization phase, reasoning that 

at this point the database is not yet in use - and, therefore, there is no danger of 

concurrent operations causing corruption within it during initialization. It is during 

geLrecord , readjmon _record , puLrecord and freeDB that care must be taken. 

Locking Primitives 

There are two primitives that we use in our locking strategy: a reader-writer spin lock 

(imon_dbJock) and an atomict variable called imon_db_usable. When imon_db_usable 

is set to zero, it is assumed that the database is being freed and is therefore not 

usable; after initialization, imon_db_usable is set to 1, and it is only in the freeDB 

method that it is set to zero. In most places where a lock is obtained, the first thing 

done is a check to see whether imon_db_usable is unset, though this is usually not 

mentioned explicitly in what follows for reasons of brevity and clarity. 

imon_dbJock is used to protect the consistency of the database during most 

operations, and will be referred to the most in the following subsections. 

Locking: Reading in a Record 

During the binary search for a matching record, a reader-lock is held. If the search is 

successful and the record already exists, the lock is dropped and the correct record 

is returned. If the record is not found, the lock is dropped and NULL is returned. 

These are the simple cases; the complex case occurs when the record is found, but 

has not yet been populated. 

In t he complex case, the reader-lock is dropped, and the read j mon _record func­

tion is entered. A writer-lock is now obtained. At this point, we check to see if 

the record has already been populated by another thread of execution, and exit 

successfully if so. Otherwise, a copy is made of the stub record to be obtained, and 

the writer-lock is dropped. The spin-lock cannot be held whilst the record is being 

populated as this involves allocating memory and reading from disk, which are both 

operations that may sleep. The imon_data field of the copy is now fill ed in , and a 

writer-lock is again obtained. Once again, we test to see if the record is already 
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populated, returning successfully if so. Otherwise, we populate the real record entry 

with data from the copy, drop the writer-lock, and exit successfully. In this fashion 

we never hold the writer-lock for any operation lengthier than a couple of tests and 

an assignment. 

Note that since a semaphore can be held whilst a function that may sleep is called, 

the use of semaphores instead of spin locks could have reduced the complexity of 

locking in read-imonJecord , but would have incurred a greater performance penalty. 

Locking: ReleaBing a Record 

In pULrecord , we obtain a writer-lock, release memory (if necessary), and drop the 

writer-lock. The lock is never held for more than the length of a couple of tests and 

the time taken to release non-stub memory. 

Locking: Freeing the DatabaBe 

As mentioned above, the first thing that freeDB does is set imon_db_usable to zero. 

After this, all memory associated with all records is freed in a t ight loop that tra­

verses the database and, for each record, obtains a writer-lock, frees any non-stub 

memory associated with that record, then drops the writer-lock. Finally, a writer­

lock is obtained and all remaining memory - the filepaths of t he records, and the 

memory used to create the database array - is freed. At the end, t he writer-lock is 

dropped. 

4.5 Integrity Checking 

This section deals with the part of the system that actually performs integrity checks, 

and the logic that underlies those checks. Consequently, it is the largest section in 

this chapter. Before discussing this, however , it is necessary to understand some 

aspects of the Linux 8ecurity Module (L8M) [13, 12] framework and the processes 

of execution and file access on a Linux system. Only as much detail as is necessary to 

understand the workings of IMon is presented. After examining the L8M framework, 

we explain how the Linux kernel handles a request to execute a program, and how 

t he Linux kernel handles a request to read from or write to a file. This is necessary 
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so that the reader can understand where in these respective processes we are able 

to intervene using an LSM-provided hook. 

Once we have covered the background necessary to understand how 1Mon fits 

into the existing processes of the Linux kernel, we move on to discussing problems 

related to memory-mapping and incorrect fi le permissions that have arisen during 

the implementation and our solutions to them. After this, we briefly describe a 

per-process data structure that we have found necessary, and the reasons why it is 

necessary in our implementation. 

At this point we are ready to examine the functions that 1Mon registers to be 

called when certain LSM hooks are reached. Each of these functions is described 

in detail, with flowchart diagrams being provided whenever necessary to clarify the 

underlying algorithm behind the code and description. Utili ty or helper functions 

used by 1Mon are then described. 

The testing functions of 1M on first apply policy and then test files; the policy 

applied depends on the currently-executing executable. We describe these functions 

next, followed by a section on a function that takes action once an integrity check has 

been failed. Lastly, we discuss transitive interpretation (see 3.3) and trace through 

an example that demonstrates how 1Mon handles it. 

For reasons of brevity and clarity, whenever 1Mon code is discussed certain el­

ementary checks - for example, testing that the pointer to a structure passed is 

non-NULL - have been omitted from the descriptions below. Note further that 

whenever an operation is denied , the function immediately returns without consid­

ering any further checks; again, for reasons of brevity and clarity, this may be not 

explicitly mentioned in the text. 

4.5.1 Linux Security Module Framework 

The Linux Security Module (LSM) framework, explained more fully in [13, 12], 

consists of a series of "hooks" in the Linux kernel: places at which security functions, 

initially dummy functions, may be run. Also provided are void' pointers within 

certain structures that allow data related to security to be saved there. Hooks are 

placed strategically at places where information is available to make an informed 

decision about whether to allow or deny a given operation, and in this fashion LSM 

provides an excellent way to support a number of different security models. 
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Implementation-wise, the hooks are provided as a structure of function pointers 

and functions that call t hem at the correct point. This is best illustrated through 

an example. 

001 struct security_operations { 

002 / . ... . / 

003 int (*bprm _a lloc.security) (struct linux_binprm * bprm); 

004 / •...• / 

005 }; 

006 extern struct security_operations *security_ops; 

007 static inline int security_bprm_alloc (struct linux_binprm *bprm) 

008 { 

009 return security_ops~bprm_alloc.security (bprm); 

010 } 

Code Snippet 4.5: LSM Example, security.h 

Code Snippet 4.5 consists of excerpted lines from the file security.h in the Linux 

kernel tree. This file defines a structure called security_operations which contains the 

function pointer seen on line 3, bprm_alloc_security, among other function pointers 

not included in this example. Line 6 indicates the existence of a global variable 

called security_ops, which is of type security_operations*; this global variable points 

to the table of security-related functions that will be called. Lines 7- 10 show the 

function securi ty _bprm_alloc, which serves as a "wrapper" for calling the function 

pointed to by security_ops--+ bprm_a llocsecurity. The wrapping process is shown in 

F igure 4.5. 

In context, this is called by two functions which are responsible for executing 

files: we shall examine one of them3 , do_execve, here. Sections of this function are 

shown in Code Snippet 4.6 in a simplified form. 

001 int do_execveV'args 'lJ 

002 { 

003 / •... • / 

004 retval = secu rity_bprm_alloc(bprm) ; 

005 if (retva I) 

006 goto out; 

007 / •.. . • / 

008 out: 

3The other function, compaLdo_execve in compat. c, is a backwards-compatible version of 
do_execve that handles 32-bit userspace-supplied pointers. 
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009 return retval ; 

010 } 

Code Snippet 4.6: LSM Example, exec. c 

Line 3 replaces a large portion of the error-checking code that the do_execve 

function contains. By the time that the flow of control reaches line 4, where 

security_bprm _a lloc is called, basic sanity-checks have already been passed. secu­

rity_bprm _alloc , as we have seen, is simply a wrapper that calls the appropriate func­

tion pointer and returns the result. On lines 5-6, we see that if a non-zero result is 

returned by this function pointer, we leave the function immediately, returning the 

error value returned by the security hook. Thus the security hook acts to deny an 

operation. 

The paradigm of doing a security check after basic error-checks is repeated 

throughout the Linux kernel in much the same fashion as shown above. In fact, 

a security module may not get to see all attempts made to perform an operation , 

since some attempts could be deemed invalid on grounds other than those of secu­

rity - for example, a file that one t ries to access could be a symbolic link whose 

target does not exist . If a sanity check is failed, no further checking is done and the 

function is exited as soon as possible. 

By default , when no security module is registered with the system the security 

function that is actually called does nothing but return a default value - generally, 

this is a value that indicates success and allows the operation to proceed. "Reg­

istering" a security module therefore means setting selected function pointers in 

the security_ops global variable to point to one's own functions; a utility function, 

register _securi ty , is provided by LSM to do this for us. 

do_operation { 

) 

/' ... 'f ........................................................ cal ls . 
retval <s.e .c.uri.tX.~c. ~ .eck(~.r9.~' .. a~9.2.);.:,~ secunty_check( ... ) 
if (retval) goto exit; 
,. ••. Of 

wraps 

security_ops 

points to ,. ... ·f . . 
actual security (heek(. .. ) .... __ ._. __ ._. __ .. _. _ secunty_check_functlon - - ,. ... , / 

Figure 4.5: Linux Security Module Framework 

Figure 4.5 shows this process graphically. Note that, in reality, actua l-Becurity_check 

may return its value directly to the do_operation func tion; in the diagram, the value 
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passes through the wrapper function, security_check, first. However , since the wrap­

per function simply consists of a return statement, it is possible that an optimising 

compiler could replace all calls to it with a call to the function pointer instead. In 

any case, including such details serves only to make the diagram less clear, and they 

have therefore been omitted. 

Summary 

To summarise, there are two things which should be understood about L8M in order 

to see how the framework is used by IMon. 

l. L8M provides void* pointers in various structures that provide a way to attach 

security fields to those structures. 

2. L8M provides hooks that allow a security function to deny what would other­

wise be permitted. 

Another point to keep in mind as being very important in the explanations 

t hat follow is that the currently-executing process may always be obtained by IMon 

through the current variable; this is restated for emphasis in 4.5.2. 

The exact workings of the hooks, as explained earlier, are important to know so 

that one can understand why registering with the L8M framework is necessary, why 

IMon might not get to see all fil e accesses, and so forth. 

IMon security fun ctions 

The most important L8M-provided function pointers that are registered for file 

integri ty use by IMon are: 

bprm_allocsecurity This is called at the beginning of program execution, before 

the search for a binary handler - a function that understands the file format 

- has started. 

bprm_free_security This is called unconditionally if the search for a binary han­

dler has ended successfully. 
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bprm_check-Becurity This is called at the point before various binary handlers are 

tested to see if they understand the binary format. It is passed a linux_binprm 

structure which represents the binary that is to be executed, and data (such 

as environment and command-line arguments) that is associated with that 

binary. 

file_allocsecurity This is called when memory allocation is being done for a file 

structure, before it is to be used. 

file _free_security This is called when memory is being released for a gIven file 

structure. 

file_mmap This is called when a file is memory-mapped. Linux uses memory­

mapping to load pages from binary executables, scripts, and shared libraries, 

making this an excellent point at which to ensure that the file that is being 

memory-mapped is valid. One of the arguments passed to it is the file that is 

to be mapped, which may be NULL to indicate that the memory-map is not 

backed by any file at all. 

file_mprotect This is called when the protection applied to a memory-mapped 

region is changed. The protection of a region refers to the operations - read, 

write, and execute - that may be performed on that region. 

file_permission This is called by functions that read or write to an open file. It is 

passed the file that the operation is requested for, and a bitmask that indicates 

the read, write and execute permissions requested for that file. 

tasLalloc_security This is called when a process is created. 

task_free_security This is called when a process is destroyed. 

capable This is called by functions that wish to request a process's capability set. 

Less important function pointers are used for self-protection (see 3.8) and occa­

sionally to unset t.he cache-flag on a file. These are: 

inode_create This is called whenever a regular file is to be created. 

inode_unlink This is called whenever a regular file is to be deleted. 

inodeJ'ename This is called whenever a regular file is to be renamed. 
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inode_permission This is whenever a request is made to open a file for reading or 

writing. 

inode _link This is called whenever a hard link is to be created. 

inode_setattr This is called when certain attributes of a file are changed . 

fil e_lock This is called whenever a request is made to lock a file; that is, to deny 

access to a file to any other process. 

The less important function pointers are not discussed in detail. It suffices to say 

that they forbid certain operations (such as truncation, deletion, and locking) to be 

performed on the IMon database or within the directory used to store I~lon-related 

files, ann that they may unset FLG_CACHED as necessary. 

All function pointers that are registered for use by 1M on are set to point to func­

tions named using the scheme imon_<funcptr_name>; for example, file_mmap_security 

points to imon_file _mmap_security. IMon functions that are not called by security 

hooks are not subject to this naming policy. 

4.5.2 Executing a Program 

Linux uses the following simplified process when executing a program: 

1. Allocates memory for a linux_binprm structure, and initializes said structure. 

linux_binprm will hold data necessary for execution to occur such as the inter­

preter of the executable, environment variables, and arguments passed. As 

part of the init ialization process, the bprm_allocsecurity hook is called. 

2. Calls the search_binary_handler function, which attempts to find the correct 

way in which to load the file format. The "correct way" may involve invoking 

another file as an interpreter for this one, in the case of special formats or 

script files. The bprm_check_security hook is called from this function. 

Each known executable file format can be registered with the kernel, and is 

then associated with a structure that contains, among other things, function 

pointers to functions that can handle t hat format" Therefore, searching for 

a binary handler becomes a case of cycling through each known format and 

4It is instructive to compare this approach to that detailed in 4.5. 1; the same technique for 
runtime insertion of code is used there. 
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calling the load_binary function pointer until a handler returns success or all 

handlers fail. 

3. The functionality of load_binary does not vary too much across machine-code 

file formats, each of which resorts to calling do_mmap in order to load the file 

into memory - and do_mmap invokes the file_mmap hook. 

Interpreted script files are handled slightly differently: the script handler in­

vokes the correct interpreter , which is loaded with the sh_bang member of its 

associated linux_binprm structure set to a value greater than zero: t his indicates 

that the program is being loaded as an interpreter. Note the implicit recursion 

of this approach: at some point, a native-code interpreter must be found to 

interpret a file, which may in turn interpret another file, and so forth. As soon 

as such an interpreter is found, the recursion terminates . The machine-code 

interpreter, upon being successfully loaded into the current process space, is 

passed the filename to be interpreted as if it were a command-line argument. 

4. If the search for a binary handler is successful, the process currently running 

is replaced by an image of the new process, after which the bprm_free_security 

hook is called. 

5. If the search for a binary handler is not successful, the bprm_free_security hook 

is called only if the security member of the linux_binprm structure has been set 

by bprm_aliocsecurity. 

The above is derived from the do_execve, search_binary_handler and the various 

load_binary functions in the Linux kernel tree (source files exec . e and binfmL* . c), 

and is documented in more detail by Love in [7, pp. 678-6831. A more detailed and 

expansive look at the execution process is described in 4.5 .10 which includes the 

explanatory Figure 4. 10. 

The process that is currently executing may always be obtained by IMon through 

the current variable. Furthermore, Linux does not load the entire file into memory at 

once, but only maps certain sections that are being used. As more of the executable 

is needed, it is mapped using the do_mmap function, which calls the file _mmap hook; 

this holds t rue for all types of executable files. 
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4.5.3 File Access 

To the Linux kernel, a "file" is an entirely temporary abstraction created to model 

the interaction between a process and a filesystem object; it is created when the 

object is opened, and destroyed once the object is closed. In the interim, it is 

represented by a file structure. Files as they exist on a filesystem are represented by 

inode structures, and linked to directories through dentry structures. fi le structures 

contain data that links them to the relevant inode, which stores actual data (such 

as file size, mode, and owner) about the file, and to the enclosing dentry, which can 

be followed to obtain the full path of the file. 

Linux supports multiple filesystems which are unified through a layer known as 

the Virtual Filesystem (VFS). This abstraction layer does basic management of data 

related to filesystems and is the layer that LSM hooks are called from. If a security 

check is failed at this layer, it is possible that the underlying filesystem-specific 

non· VFS code never even sees the request. 

USERSPACE r", open( ... ) read(f, ... } wnte(f, ... ) close(f} ......................... + .............. -} ................ ···············1········ 
SYSTEM FUNCTIONS get_empty_fllpO iVfsjead() vfs_wrlt~() put_fIIpO 

KERNELS"ACE ••••• _ •• -} -. - _ ••••• - •••.• \. -. -- - -.- ---/-- - _.- -_._ •••• - i· -... --
SECURITY FUNGTIONS flle_allOC_securttyO Vle_permlsslon_securltyO flle,Jree_secuntyO 

Figure 4.6: File access 

The simplified life·cycle of a file structure can be seen as follows: 

1. A request is made to open a file: the geLemptyJilp function in file . table. c 

is called. Among other things, this function calls the file.alloc.security hook. 

geLemptyJilp allocates memory for a file structure, and returns it. 

2. During the lifetime of a fi le, read, write, seek, and other operations may be 

performed upon it. We are concerned only with read and write operations, 

which occur as follows: 

(a) When a read request is made, vfs.read in read.write. c is called. In this 

function, the file.permission..security hook is called with the permission 

mask set to MAY.READ. 
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(b) When a write request is made, vfs_write in read_wri te. c is called. In t his 

function, the fi le_permission_security hook is called with the permission 

mask set to MAY_WRITE. 

3. When t he process closes the file, puLfi lp in file _table. c is called. As part of 

releasing memory associated with the file, this function calls the file _free _security 

hook. 

Figure 4.6 depicts the abovementioned life-cycle. It is split up into two main 

sections: userspace and kernelspace. Kernelspace is further categorized into system 

and security functions, with the security functions being the LSM hooks that are 

called. When a user uses the open system call , geLempty_filp is called, which 

as part of its normal workings calls file _alloc_security; this is point (1) in t he 

enumerated list above. (2) and (3) are similarly depicted, with the same security 

function being called by both read and write calls. 

This process as well as other VFS processes are documented more fully by Love 

in [7, pp. 374-420]. 

4 .5.4 Memory-Mapping and File Permissions 

A file may be written to in two ways: by opening it in the appropriate mode and 

writing to it, or by memory-mapping it with the appropriate protection and writing 

to it. Whilst the first method invokes the LSM file _permission hook, the second does 

not; and, t herefore, we have no way of telling whether a file is being written to once 

it has been memory-mapped writably. 

For a writable memory-map to be successful, a file's permissions must allow it to 

be written to by the user who wishes to memory-map it. However, the super-user 

account (root ) is allowed to write to a file no matter what the permissions of the 

file are - and whilst we can stop this from the file_permission hook for direct writes 

to a file, we have no way of even detecting it from within the LSM framework for a 

memory-mapped file. Fortunately, we can reduce t he capabilities of the super-user 

account from the kernel (see 4.5.6) so t hat this is no longer a problem. 

Another facet of the issue is that many Linux systems are by default set up with 

file permissions that grant the super-user account to write to shared libraries. This 

is not necessary and a well-configured, secure Linux system that follows t.he principle 
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of least privilege5 has shared libraries set with permissions that deny writing to them 

by anyone, 

We are faced with the following two alternatives for dealing with writably memory­

mapped files: 

Patch the kernel source It might be possible to patch the kernel source code to 

add in a call to the correct L8M hook at the appropriate places, This removes 

the problem entirely, but involves stepping outside of the L8M framework and 

risking having to maintain a number of different patches, one for each kernel 

version or variation, 

Don't cache If we refuse to cache file integrity checks for writably memory-mapped 

files, we will always test them, Therefore, it does not matter whether they are 

written to and we cannot detect the write, since a subsequent test will be able 

to detect any changes, This increases the overhead imposed by IMon on the 

system since there are certain files which may be tested repeatedly, whether 

they have really been updated or not, on the mere suspicion that updates 

might have occurred, 

Neither of these options is attractive, We have chosen to implement the second 

option as we are not certain that the first is practical: there may be race conditions 

and side-effects (which could change from one kernel version to the next!) that we 

are not aware of that would affect the logic of IMon in unknown ways; furthermore, 

we may not have all the information required to make an informed judgment about 

allowing or denying an operation at the point that a memory region is written back 

to disk_ 

To implement the second option , we set a runtime flag (F LG_MMAPW) which 

indicates that the file is mapped writably, This flag inhibits caching for the file, and 

is only unset once no further references to the file exist, 

4.5 .5 Per-process Data 

To deal with transitive interpretation (see 4,5 ,10) and policies such as accepLafter 

(see 3_5,2) that require keeping t rack of which files have been opened by a spe­

cific process - as opposed to which files have been opened by any process - we 

5 A well-known security principle, this states that an entity should be assigned the lowest 
privilege-level that still makes it possible for a task to be accomplished, 
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attach a small amount of per-process data to each process. This is done via the 

imon_task_a llocsecurity and imon_task_free_security functions . 

001 struct imon_procsec { 

002 canst char* script; 

003 u8' deps_checked; /* bitmask */ 
004 }; 

Code Snippet 4.7: Per-process data structure 

The per-process data structure is shown in Code Snippet 4.7, and consists of only 

two member variables. The first, script, is set to point to the full path of the script 

being interpreted, or NULL if there is no script being interpreted by this process. 

The second, deps_checked, indicates how many dependencies have been checked by 

this process; it is only used by the accepLafter policy at present. 

The deps_checked array of 8-bit characters requires some explanation. If a de­

pendency is opened then it should be listed as having been checked by the process. 

However, we cannot keep a simple count of the number of dependencies that have 

been checked: if the same dependency is opened twice, the count would be artificially 

increased. Therefore, we must also retain information about which dependencies 

have been checked. We can do this by setting bits in an array; for example, if the 

third dependency on a file's dependency list has been opened, then we can signify 

this by setting the third bit of the first character in the array. Similarly, if the 

twelfth dependency has been opened, then we can signify this by setting the fourth 

bit of the second character in the array - which is equivalent to the twelfth bit of 

the array. Opening a single dependency twice now simply sets the same bit twice, 

and does not contribute to the number of dependencies checked. Finding the total 

number of dependencies set is as easy as counting the number of bits in the entire 

array that have been set. 

4.5.6 Integrity-Checking Hooks 

This section looks at the functions that are called via hooks mentioned in the course 

of the processes detailed in 4.5.2 and 4.5.3, and the logic followed by each hook. To 

decrease the amount of repeated code, any sufficient ly complex code-path that is 

used by more than one function has been turned into a utility function (see 4.5.7); 

to increase the maintainability of the code, only hook-spcC'!fic testing is carried out 

in each hook, and the application of policy and testing metrics has been centralized 
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into two separate functions (see 4.5.8). This approach has led to the code within 

each hook being short and readable, and has also made each hook quite simple to 

describe. 

imon_bprm_allocsecurity 

This function is passed a pointer-to-linux_binprm as an argument, argo. It obtains the 

name of the file that is to be loaded from this argument 's file member, then attaches 

a database record to the file's Lsecurity member. If no database record exists, an 

error is returned (in which case execution is denied) . By the end of this function, 

argo->file ->Lsecurity is either NULL (if no matching record is found) or initialized to 

point to the correct record. 

Note that we set argo->file->Lsecurity, and not argo->security. Accordingly, by the 

process detailed under 4.5.2, if a binary handler is not found then imon_bprm_free_security 

will not be called; in this case, the security field is released by a call to imon_fi le_free _security 

made when t he kernel releases the file member of argo. 

imon_bprmjree...security 

This function is passed a pointer-to- linux_binprm as an argument , argo. We first 

allocate a per-process data structure (if necessary), and alias current->security to 

psec. If the argo->sh _bang is non-zero and psec->script is NULL, we can assume that 

the current process will be replaced with an interpreter for the current file (see Step 

3 of 4.5.2); if this is the case, then we set psec->script to be the current fi lename, as 

pointed to by argo->security, thereby indicating that it is eit her an interpreter or a 

transit ive interpreter. 

Note that we need not release argo->file ->f..security in this function since it will 

be released when the fil e structure argo->fil e is destroyed. 

imon_bprm _checLsecurity 

This function is passed a pointer-to- linux_binprm as an argument, argo. Its workings 

are graphically represented in Figure 4.7. 

If argo->file ->Lsecurity is NULL, one more attempt is made to populate it; if this 
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fails, then execution is denied on the grounds that the executable is unknown to 

IMon. If the flags associated with argo->file indicate that the file is an interpreter, 

and neither argo--->sh _bang nor current->security--->script are set, then we deduce that 

the file is neither being executed as an interpreter nor is it part of a chain of transitive 

interpretation; on the grounds that it must, therefore, be a standalone interpreter, 

we deny execution. 

If argo---> security is NULL and it is not registered as an interpreter (cu rrent ---> 

security--->script is NULL), then this might be an interpreted file. Until imon _bprm_free_security 

is called, we simply cannot know; therefore, to be on the safe side, we modify the 

value of argo --->security to point to the path of the current file, as obtained from the 

database record's filepath member. 

The last thing that we do is test the file to see if its metrics are correct. If they 

are not, then execution is denied; otherwise, execution is allowed. 

T his function is passed a pointer-to-file as an argument, argo. If t he the name 

associated with the file argo lies within the directory reserved for IMon's files, 

the function returns successfully; none of the files within this directory are ac­

cessible from userspace, and the directory itself is not writable. Otherwise, the 

imon _file_allocsecurity requests a record for the file, and places the result in argo---> 

Lsecurity. By the end of this function, argo-tLsecurity holds either a record or NULL. 
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Note that, unlike imon_bprm_allocsecurity above, this function always returns 

successfully. This is because not having a database record for a given file is not 

critical, whereas not having a database record for a file that is being executed is 

critical. For example, even if /tmp/myfile has no record associated with it, we 

don't mind if it is read - unless the process that is doing the reading happens to be 

an interpreter, in which case the matter is dealt with in the test function described 

in 4.5.8. 

This function is passed a pointer-to-fi le as an argument , argo. If argo ....,Lsecurity is 

not NULL, the entry is released back to the database. 

imonJile_mmap is passed four arguments, one of which is a pointer-to-file which we 

shall call argo and another of which is a bitmask, argl, that indicates the protection 

to be applied to this memory region. imon _f ile_mprotect is passed three arguments, 

one of which is a pointer-to-vm_area_struct which we shall call arg~ and another 

of which is a bitmask that indicates the protection to be applied to this memory 

region. One may obtain the file (if any) that is being mapped by argo by looking at 

the arg~-+vm_file member. 

The workings of both functions are almost identical (see Figure 4.8). For this 

reason, a separate function has been created to handle the common parts which 

deal with the setting of FLG_MMAPW and FLG_CACHED; this function is described 

following this subsection. 

If argo - or argo....,vmJile, in the case of imonJile_mprotect - is not testable, then 

we allow the operation: the memory region is not backed by any file that we are 

able to test. We call _mmap_common (described next) to do the bulk of the work 

necessary. Afterwards, imonJile_mprotect returns successfully; imon Ji le_mmap tests 

the file against the database metrics that reflect what its state should be and returns 

a value that allows or denies access based on this. 
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Set FLG MMAPW; 
Unset FLG_CACHED 

Set FLG MMAPW; 
unset FLG_CACHED. 

Figure 4.8: imon _fi le_mmap and imonJile_mprotect 

This function populates (if necessary) the Lsecurity member of the pointer-to-file 

that it is passed, and tests to see whether the pointer-to-file and protection bitmask 

passed should result in FLG_MM APW being set. It is called from both imon_file _mmap 

and imonJile_mprotect. If the bitmask indicates the memory region is to be writable, 

and the file passed has a record associated with it, and t.he file content matters (as 

determined by whether I G N _H AS H is set or not), and wri ting to the file is allowed 

by its permissions - then FLG_MMAPW is set, and FLG_CACHED is unset. 

This function is passed two arguments: a pointer-to-file (argo) and a bitmask (a rgl). 

The bitmask contains the value(s) MAY_READ or MAY_WRITE, indicating the ques­

tion being asked of the securit.y module. imon _file_permission is the most complex 

of the hook functions and consists mostly of a series of simple checks, as shown in 

Figure 4.9. This figure should be examined closely in conjunction with a reading of 

the text as it resolves any ambiguities that may exist within the textual description. 

We first test to see if argo is a regular file. If not, and it is a block device 

that could hold filesystems that is being written to, we remove FLG_CACHED on 

all files as a security precaution, thereby nullifying all cached results. Likewise, 

if it is a character device that could affect writable memory maps, we also unset 

FLG_CACHED for all files . As a self-protection measure, writing to kernel memory 

using the kmem character device is not allowed; if we detect that this is the character 

device being written to, we deny the operation. If argo is any special file other the 

kmem device, we allow the operation; otherwise, we are sure that it is a regular file, 
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Figure 4.9: imon_fi le_permission 

and we continue with the function logic. 

We next check whether argo is the database file. If so, and we are attempting 

to write to it, the operation is denied; if we are requesting read permission for the 

database file the operation is allowed. 

If argo->Lsecurity is not NULL, then we know t hat it is listed in the database. 

If a write operation is being requested, then we unset FLG_CACHED and allow the 

operation. This has the effect of forcing the next test of the file to revalidate all its 

metrics. 

If FLG_TESTING is set, we allow the operation: the file is currently being tested , 

and we allow permission to read t.he file so that it can be tested. Failure to do this 

results in a subtle infinite loop: 

1. The file is read during a test (for example, to calculate a hash of file contents). 

2. Reading the file causes imonJile_permission to be called. 

3. imon_file_permission requests that file metrics be tested. 

4. GOTO (1). 

If the operation requested is not a read, we allow the operation. If no record is 

associated with the file as yet, we try to associate a record with the file and proceed 

to test it, returning a status of allowed or denied depending on the result of the test. 
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imon_task_alloc_security, imon_task-Ereesecurity 

These functions take an argument, argo , of type task_struct. imon_task_allocsecurity 

allocates an imon_procsec structure (see 4.5.5) to argo->5ecurity, and imon_task_free _security 

releases all the memory associated with argo->security. 

imon_capabJe 

An LSM hook that is used equally for self-protection and during integrity checking 

is imon_capa ble , which is called to determine whether a process has the capability 

to perform a given operation. 

Under Linux, the mot or super-user account can do many things that ordinary 

users simply cannot do. One of these things is to bypass the usual permissions checks 

when reading from, writing to or executing a file, so that the super-user is always 

able to write to any file; this problem is described in more detail in 4.5.4. Whilst this 

is not a problem for 1Mon to handle, it does impose a performance penalty to not 

be able to cache any file that is opened by a super-user process - as must be done to 

ensure that a malicious process wit h root privileges is unable to modify any fil e, no 

matter what the permissions on the file might be. This performance penalty can be 

removed by reducing the privileges of the super-user account slightly. Specifically, 

the CAP _DACOVERRIDE capabili ty (which allows the aforementioned bypassing of 

checks) is disallowed. 

Module loading and unloading requires a process to have the CAP _SYS_MODULE 

capability. For self-protection purposes, only certain executables are allowed to load 

or remove modules; for these executables, the FLG_MODCAP flag must be set in 

the 1Mon configuration file. Given this restriction, an attacker is unable to usc a 

flaw in a program executed with super-user privileges to execute code that could 

remove IMon from memory; in addition, if only module-loading utili t ies are given the 

FLG_MODCAP flag , removing 1M on or otherwise corrupting or disabling its activities 

once it is loaded becomes much more difficult t.o do. As a secondary benefit, t.he 

same security benefit is extended to any other loaded modules . If said module­

loading utili ty is given the policy of deny_others and a selection of allowed modules, 

it also becomes a non-trivial task for an attacker to load any untrusted code into 

the kernel! 

The imon_capa ble function is passed two arguments: argo, which is a pointer-to-
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task_struct indicating which process is requesting the capability, and argJ, which is 

an integer representing the capability asked. If arg, is CAP_SYS_MODULE, a record 

is associated with argo and the operation is denied unless FLG_MODCAP is set in 

argo-tmm-tmmap-tvm_file-tLsecurity-tflags. 

If arg, is CAP _DACOVERRIDE, permission is denied; otherwise, permission is 

granted or denied according to the capability set accorded to argo. 

4.5.7 Utility Functions 

A number of utility functions have been created to make the hooks mentioned easier 

to implement. Since these are not fundamental to the workings of IMon, only a brief 

description of how each is implemented is given here. 

fullpath Passed a pointer-to-file, this function traces up the directory tree, storing 

names as it goes, to obtain the full path of a file . 

fullpath _dentry This performs the same functions as ful lpath, but is passed a pointer­

to-dentry instead. 

geLtask-.Security Given argo as a pointer-to-task (which is a structure used to rep­

resent an executing process), this function requests a record for the file used to 

create the process, and places the record in the argo-tmm-tmmap-tvm_file-t 

L.security field, if this field is not already filled in. geLtask_security also allo­

cates a per-process data structure to argo-tsecurity, if one does not already 

exist . 

isTestable This function tests to see whether the pointer-to-file passed refers to a 

file that can be tested. It is possible that the file passed is a swapfile, or a 

directory, or a block device, or a symbolic link, or exists on a virtual filesystem, 

and so forth; this function returns non-zero if the file is none of these, and is 

therefore testable. Optionally, isTestable also fills in a parameter that indicates 

the type of the file. 

fgets This takes similar parameters to the Standard C Library function fgets, and 

performs a similar function. The kernel only provides basic file-reading func­

tions, and fgets was built on top of these. 
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4.5.8 Testing 

Testing of a file is done by two functions, one of which applies policy and the other 

which tests the metrics of a single file. This split of functionality makes adding new 

policies and new metrics to be tested extremely easy. 

test 

The test function takes as a parameter a single pointer-to-file, which we can call 

argo, and applies a policy to it. The function makes two assumptions: 

1. A best-effort has been made before test was called to associate a record with 

argo-+f...security , and 

2. argo is a regular, testable file. 

It first obtains a filename for argo, placing it in the variable filename. Then a 

record, sec, is associated with the currently-executing process; an error is returned 

if the executable that started the process has no record associated with it , since no 

record being associated with it means that the executable is unknown to the system. 

Next, which executable to test is determined. In the case of a native binary 

executable, sec is the correct file to use for policy purposes. However, in the case of 

an interpreted fi le, it is the script itself which should be used to determine policy 

and not the script interpreter. We create a pointer-to-imon _security called testfile 

and use it to point to the correct file: if current-+security-+script is not NULL then 

we assign the script's record to testfile; otherwise, we assign sec to testfile. 

If the policy testfile-+full -+ policy is currently unset, we perform runtime policy 

assignment to set testfile-+full -+policy as follows: 

• If testfile is a script, we set the policy to DEFAULTJNTERPRETER (which is 

currently an alias for DENY_NOTFOUND) . 

• Iftestfile is a native binary executable , we set the policy to DEFAULT_BINARY 

(which is currently an alias for ACCEPT_ANYTIME). 

Policy is now applied based on the value of testfile-+full -+policy: 
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deny _others For each dependency of testfile, we compare filename to the depen­

dency's fil epath member. If a match occurs, then we return either success or 

failure depending on the result of testing the integri ty of argo. If no match is 

found , we return an error . 

deny_notfound We return either success or failure depending on the result of testing 

the integri ty of argo. 

accepLafter VVe first create a pointer- to-imon_procsec, proc, to refer to the currently­

executing per-process security field; this is done for ease of reference. If proc-> 

deps_checked is NULL, we allocate an array that is large enough to store bits 

for each dependency (see 4.5.5). We test to see if all dependencies have been 

checked by counting t he bits set in proc->deps_checked ; if all dependencies have 

been checked, t hen we either return a result based on testing argo, or (if argo 

has no associated record) return successfully. 

If all dependencies have not been checked, then for each dependency of testfile , 

we compare filename to the dependency's filepath member. If a match occurs, 

then we test argo and set the correct bi t in proc->deps_checked if the test is 

successful; we return either success or failure depending on the result of the 

integrity check. If no match occurs, we return an error. 

dependency, accepLanytime If argo has an associated record, we return either 

success or failure depending on the result of testing the integrity of argo. Oth­

erwise, we simply return success. 

Note that in the application of the above policies, a file is always implicitly 

assumed to be a dependency of itself. This means that, for example, if fil e /bin/test 

is set to have the policy deny_others and has no dependencies, but wishes to read 

from /bin/test , the operation is allowed. 

testJile 

This function takes two arguments: argo, which is a pointer-to-fi le , and arg l, which 

is a boolean variable that determines whether a check of the file hash should be 

forced. tesUile is usually not called from an LSM hook, but via test instead; this 

ensures that policy of the currently-executing executable is always checked before a 

file's metrics are tested, and that a file's metrics are never needlessly tested. The 

exception to this is when testJile is called from bprm_check-.Security, as the only 
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important factor during the execution of a file is that thc file is a valid executable; 

it is for this reason that when testJile is called from bprm_check_security, argl is set. 

testJi le first tests to see whether argo->f...security is NULL; if so, it returns failure. 

This is because a nonexistent file does not pass any integrity checks. Next, it tests 

to see whether the FLG_CACHED bit of the associated record is set and argl is unset, 

and returns successfully if it is. This is because the results of the previous integrity 

check were successful and are still valid. FLG_TESTING is set (see 4.5.6 for the 

details of why this is necessary). From this point on, no matter what the outcome 

of the test, FLG_TESTING is unset before the function returns; for clarity, this is not 

stated explicit ly in what follows. The FLG_CACHED fl ag is also unset, pending the 

result of the tests. 

For each attribute, if the corresponding ignore-flag is set or the actual attribut.e 

matches the ideal attribute, a pass is recorded. If an actual attribute fai ls a check, the 

function immediately returns an error without proceeding to the next test. "Cheap" 

tests that only involve looking up values within internal kernel data structures are 

done first , with the more time-consuming calculation of a hash of fil e contents being 

done last. The hash check is always done, even if the IGN _HASH fl ag is sct for argo's 

associated record, if current->security->script indicates that it is an interpreter or if 

argl is set. 

At the end of the tests, if argo is not on a network-mounted filesystem (as tested 

by checking whether it has a block device associated with it ), and if FLG_M MAPW 

is not set for it, t hen FLG_CACHED is set. The fun ction finally returns successfully. 

4.5,9 Taking action 

If a fil e failure is detected , some action must be taken. The exact action to be taken 

should be easy to change, and for this purpose the _action function has been created. 

Its function prototype is efl'cctively 

int _action{ const char* argo, const int argl , const struct file *arg2, const char 

*arg3); 

_action is usually called using a line such as 

returnValue = action(test(f), f, "Lack of turnips"); 
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The first thing to notice about this line is that action (note the lack of a leading 

underscore l ) is a macro, defined as 

#DEFINE ACTION(X,y,Z) _ACTION( __ FUNC __ ,X,y,z) 

It adds the function name of where it is being called from as the argo of _action. argl 

(test(f) in the example) provides a return code, and arg2 provides a pointer-to-file 

(if any) that indicates the file that has played a primary role in the failure. The last 

parameter, arg3, indicates extra information and is useful for mentioning why the 

failure has occurred. 

The _action function is in this fashion provided with enough information to pro­

vide useful log messages and take appropriate action. Currently, if argl is zero, the 

function returns zero. However, if it is non-zero, a message is sent to the system log 

and argl is returned. Note that since the return code of _action typically determines 

the return value of [Mon, it is quite possible to handle file fai lure by doing nothing 

at all - as might be done on a honeypot system, for example. 

Oct 12 11:31:04 [kernel] [imon] [Warning] test~ile: No database entry 
for 
' /src/r ead_write .c' exists . 

Oct 12 11 :31:05 [kernel] [imon] [Warning] test: '/usr/bin/per15.8 .7' 
is 
interpreter . Denying access t o '/src/read_write.c'. 

Oct 12 11:31:05 [kernel] [imon] [Action] _action : Failure occurred in 
, imon~ile_permission ' . task • /usr/bin/per15 . 8. 7' and file 
'/src/read_write.c'; extra info : File has failed an integrity check. 
See previous message . 

Code Snippet 4.8: Example: log file excerpts 

Both test and tesUile functions output complementary information to the system 

log, which leads to very informative log messages that indicate which file failed a 

check, why the check was failed, which process was running at the time, and so forth . 

Example log messages are shown in Code Snippet 4.8. From this Code Snippet we 

can clearly see the chain of events that has led to _action being called. 
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4.5.10 Transitive Interpretation 

This section gives a broad picture of how transitive interpretation works, and follows 

a single example through from beginning to end using a diagram and trace table to 

ease understanding. Transitive interpretation relies on small code sections imple­

mented in various parts of IMon. This section summarizes how and why it works in 

a step-by-step form. It may be regarded as a more expanded and explained version 

of the steps found in 4.5.2 and is suitable for understanding transitive interpretation 

in totality. 

Through this ent.ire section we shall use the example of a file, /tmp/ eee , that 

has the string # I /bin/aaa /bin/bbb at the top of it . This string causes /bin/aaa 

to be executed as the interpreter and passed the fi lename /tmp/ eee as an argument; 

/bin/aaa subsequently executes /bin/bbb and passes it /tmp/eee , from userspace, 

as an argument. Thus, the kernel does see / bin/ bbb as the interpreter, and treats 

the case as though /bin/bbb were invoked from the commandline as /bin/bbb 

/ tmp/ eee . Transitive interpretation allows the kernel to understand that / bin/ bbb 

is the actual interpreter and that it has not been invoked standalone. 

Figure 4.10 shows the logic underlying transitive interpretation. Grey blocks 

indicate those instructions that are carried out within the ambit of IMon, as opposed 

to in userspace or in the rest of the kernel. Words in square brackets indicate that 

a particular variable has been allocated at that step and will be called by the name 

in brackets for the rest of the explanation. For example, "allocate bprm--> fi le--> 

security [record]" means t hat "record" will be used as another name for "bprm-->file--> 

security", which has been allocated in this step. Since transitive interpretation relies 

to a great degree on state changes, Table 4.1 has been provided to trace through steps 

that alter significant variables: once again , it is based on the example mentioned 

previously. 

After going through each step , we should be able to understand how transitive 

interpretation works for this example, and should also be able to use Figure 4.10 to 

generalize from this example to any others that might come to mind. 

o. This represents the userspace command to fork-and-execute /tmp/ eec, the 

interpreted file. We assume t hat this is done by some shell process , named sh 

in Table 4.l. 

l. This step shows part of the initialization of the new process as imon_task_aliocsecurity 

is called, and by the end of this step the process creation is complete. 
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File: /tmp/ccc 
#!/bin/aaa /bin/bbb 

( 0"; fork && exec "/tmp/ccc" 
' ... ' ~ 

(C'; allocate process~security [procsec] 

' .. '. ~------, 
i,2)allocate bprm [bpsec] 

(3" ;allocate bprm~file~security [record] 

' ... ' ...... procsec~script == NU LL && 

',.~) bpsec == NULL? 

... i 

x/ '.,-,/ 
('6>S it a script? - bpsec = record-filepath (.s) 

... "/ '{ ..... 
f 7 )bprm~sh bang++ load executable '. B) .... - ~ ' ... 

, ..... bprm~sh bang != 0 && 
'9 ' - . ....... procsec~scnpt == NULL? 

-,// x'., ... 
i,l.o.;procsec-script = bpsec ------ exec "/bin/bbb /tmp/ccc" (~i) 

Figure 4.10: Transitive interpretation 

imon .. task_alloc..security creates and initializes the process's security field , ali ased 

to procsec in this explanation. All members of procsec are zeroed . 

2. T his represents the creation of the bprm structure that will be used during 

the execut ion; we shall call the security part of this structure bpsec. bpsec is 

initialized to NULL 

3. In imon .. bprm .. alloc..security, we allocate the imon .. security structure that gives 

the correct metrics of bprm , and alias it to record. 

4. When both of these condit ions are t rue, then this is the very beginning of 

what might be a chain of transitive interpretation. Referring to Table 4.1, we 

see that procsec-tscript will be NULL until (8), and that bpsec is NULL once 

we reach (2) again; therefore, neither of these condit ions alone can establish 

t hat this is the beginning of a possible chain. 

5. If we have established that this is t he very first fil e in a possible execut ion 
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Step procsec bprm record process name 
script bpsec sh_bang filepath 

0 - - - - sh 
1 NULL - - - sh 
2 NULL NULL 0 - sh 
3 NULL NULL 0 /tmp/ccc sh 
5 NULL /tmp/ccc 0 /tmp/ccc sh 
7 NULL / tmp / ccc 1 / tmp/ ccc sh 
3 NULL /tmp/ccc 1 /tmp/aaa sh 
8 NULL /tmp / ccc 1 /tmp / aaa aaa 
10 / tmp/ ccc /tmp / ccc 1 - aaa 
11 /tmp/ccc - - - aaa 
2 / tmp/ ccc NULL 0 - aaa 
3 /tmp/ccc NULL 0 /tmp/bbb aaa 
8 /tmp/ccc NULL 0 /tmp/bbb bbb 

Table 4.1 : Partial trace: transitive interpretation 

chain, we set bpsec to point to record->filepath ; from this piece of dat a we can 

resurrect the entire record at will by requesting it from the database. 

6. The kernel decides whether the executable is a script . 

7. If so, t hen bprm->sh_bang is incremented and the same bprm structure has 

certain members filled with new values; however, bpsec is not altered at all. 

After this, we end up at (3) again. 

8. If not, then an executable is loaded. 

9. In this step, which occurs within bprm_free_security, we can fin ally test t hat 

this is an interpreter by examining bprm->sh_bang; we can also be certain that 

we have reached the end of an execution, and test that is the original script 

fil e in the interpreted chain (since procsec->script is NULL). 

10. We assign bpsec to procsec->script, recalling that bpsec was set (5). 

11. This step shows the return to userspace; the userspace program may opt to 

execute another interpreter, and this takes us back to (2). Table 4.1 t races 

through this second visit to (2) . 
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4.6 Summary 

In this section we have described in detail the implementation of IMon on Linux. 

We have given an overview of the system, illustrated the process used to create a 

baseline, touched upon cryptography, spent some time understanding the workings 

of the IMon database and delved deeply into the inner workings of the IY!on file in­

tegrity checking code. Implementation problems have at every stage been explained 

and solved, with possible solutions being explored where necessary. The design that 

was conceived in chapter 3 has been faithfully followed throughout. 

At present we can safely claim that IMon is the most complete and comprehensive 

realtime integrity checker for Linux. It protects itself from tampering, tests both 

scripts and native executables and is the very first integrity checker to accomplish 

this on Linux, uses multiple metrics, and is the only realtime integrity checker we 

know of that, via policy, understands files not only as individual entities but also as 

dependencies of each other. 

The reader now has an understanding of the IMon codebase, and is prepared 

to understand what occurs "behind the scenes" during each test. In the following 

chapter we evaluate the implementation described in this chapter. 
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Chapter 5 

Evaluation 

At this point we have seen the prior work in the field of file integrity checking, 

created a best-of-breed design, described a concrete and usable implementation, 

and can now proceed to evaluate such an implementation. This chapter evaluates 

1M on in terms of security provided, performance impact, and applicability. 

5.1 Security 

In this section we examine the security that IMon provides to a system, and expand 

on how each security feature has been tested to ensure that it works correctly. Note 

that due to the fact that shared executables are linked to system libraries such as 

/lib/libc. so, there are more dependencies added for certain executables than have 

been mentioned below. To make explanations simpler, system dependencies have 

not been listed. 

5.1.1 Binaries 

IMon stops binary files from being executed via the execve system call unless those 

binary files are listed in the IMon database. We have tested this by creating both 

statically-linked executables (a. static and b. static) and dynamically-linked bi­

nary executables (a. dynamic and b. dynamic), and placing the a. * executables in 

the database whilst leaving the b . * executables out. As expected, a. * could be 

executed once IMon was running, and b. * could not . 
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5.1.2 Shared Libraries 

Depending on the policy set for a binary file, IMon mayor may not allow access to 

a shared library requested by the executing binary. 

Policy I Listed I Unlisted I Condit ions 
accept-anytime ./ ./ 

accept-after ./ ./ 
If listed as dependency, or if all 
dependencies have been tested 

deny _others ./ X If listed as dependency 
deny _notfound ./ X 

Table 5.l: Policy-based shared-library loading 

Table 5.1 shows whether access would be granted to a shared li brary for each 

policy, and t he conditions that must be met before access is granted. Using this 

table, we can determine whether a particular shared library would be allowed to 

load given the policy associated with the file t hat wishes to load it. For example, 

if we have a file /bin/test that wants to load /lib/library. so, and the policy 

deny _not found is associated with / bin/ test, then access to / li b/ li brary. so 

would only be allowed once it has been found in the database (and , hence, tested). 

However, if /bin/test had the policy accept-anytime associated with it, access 

to /lib/library . so would be granted whether it has been found in the database 

and tested or not . 

Testing 

To test whether the security of policy-setting works, we created four executable 

files: 8deny _others J 8 denY-llotfound , 8accepL after and 8accept _anyt i me. These were assigned 

appropriate policies. We also created three libraries: 

• Idep, a dependency of all four executables. 

• Inon--<iep, listed in the database but a dependency of none of the executables. 

• lunkno~ , unlisted and therefore unknown to IMon. 

We then ran an exhaustive series of tests during which we linked each library to 

each executable such that each executable was at some point linked to every possible 

combination oflibraries. The results of these tests bear out the expectations of Table 
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5.1 exactly. One caveat to be aware of is that the order in which libraries are loaded 

can be crucial: for example, if e.ccepLafter attempts to load InoD_d,p or lun""o.m before 

Idep, it will abort execution before ever loading Idep; however, if Idep is loaded first , 

the other two libraries will be loaded successfully as well. Using dlopen (see 5.1.5) 

instead of linking directly to a library ayoids this pitfall. 

5.1.3 Scripts 

IlvIon stops interpreted files from being executed unless those files are listed in t he 

IMon database; in addition, interpreters are not allowed to read unlisted files, and 

the standalone execution of an interpreter is forbidden. We test that this is so by 

running the tests listed in 5.2. As this table shows, the expected result was obtained 

in each case. 

I Test Descript ion Result Expected 
Executing the interpreter /usr/bin/python standalone [failure] [failure] 
via the system Standard C function. 
Executing the interpreter /usr /bin/python standalone [failure] [failure] 
via tha execve function. 
Executing a test-script listed in the database. [success] [success] 
Executing a test-script not listed in the database. [failure] [failure] 
Reading an unlisted file via a listed script. [failure] [failure] 
Executing a listed test-script which is subject to a two- [success] [success] 
stage chain of transitive interpretation. 
Executing a listed test-script which is subject to a three- [success] [success] 
stage chain of transitive interpretation. 
Executing an unlisted test-script which is subject to a [failure] [failure] 
three-stage chain of transitive interpretation. 
Executing the command-line: python [failure] [failure] 
listed_script. py. 
Executing the command-line: python [failure] [failure] 
unlisted_script. py. 
Executing a pipe-line involving a standalone interpreter [failure] [failure] 
as one of the stages. 
Executing the source command from a tcsh script to [failure] [failure] 
read a file that is not in the database. 

Table 5.2: Script security 
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5.1.4 Raw Device Writes 

Writing to a raw device can allow an attacker to modify the content of files on a 

system without altering the metadata associated with those files, since the modifi­

cation is carried out at a level lower than that of the filesystem. This is especially 

dangerous in the case of a caching file integrity checker since a cached file will not 

have its content revalidated unless a write to the file is detected at the level of the 

filesystem - and writing directly to a raw device allows an attacker to bypass th is 

detection. 

IMon uncaches all files once a write to a block device that could affect a filesyst.em 

is done. We test for this by modifying IMon slightly to print a message to the system 

log just after beginning a test of a file. This message is usually only printed once 

since the cached result is used subsequent to the first test of the file; however, once 

a write is made to a block device and the file is read again, the message is printed 

once more. This indicates that the file is no longer cached, and another test is being 

done. 

5.1.5 Dynamic Linking Loader 

The function dlopen allows a program to open a shared binary object at runtime 

and obtain a function pointer that can then be used to execute code from the shared 

object. Semantically, this is akin to loading functionali ty from a shared library at 

runtime, and the same rules that apply to loading code from shared libraries should 

apply to the use of dlopen. Given this similarity, we tested dlopen using the same 

methodology used in 5.1.2, and arrived at the same results noted in that section. 

5.1.6 Memory-maps 

Memory-mapping a file is an alternative way of gaining read and/or writ.e access to 

it. Importantly, this method bypasses some of the LSM hooks that would ordinarily 

be called for a read or write operation, such as the file_permission hook which deter­

mines whether a request to read or write to a file should be granted (see 4.5.4). A 

conceivable attack that uses memory-mapping to bypass a caching integrity checker 

is: 

1. The attacker memory-maps file writably. This causes an integrity checker to 
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uncache any entry for file. 

2. The attacker now reads file. This causes the integrity checker to cache the 

file . 

3. The attacker modifies t.he memory-mapped file, and then unmaps it. , causing 

the changes to be written to disk. This is not detected by the integrity checker. 

4. A user opens file. The integrity checker uses the cached (and now invalid! ) 

result of the previous check, and allows access to file. 

In (4), the correct action for the integrity checker to take is to test the file again 

and deny access to it if necessary. To test IMon's handling of memory-mapping, 

we have implemented the above attack and found that , once IMon is running, t he 

attack is no longer possible. We have also tested the above style of attack as it may 

be applied to code execution: 

l. The att acker memory-maps library writably. This causes an integrity checker 

to uncache any entry for library. 

2. The attacker uses dlopen to execute a function from library. This causes the 

integrity checker to cache the file. 

3. The attacker modifies the memory-mapped file, and then unmaps it., causing 

the changes to be writ ten to disk. This is not detected by the integrity checker. 

4. A user accesses a [unction from library. The integrity checker uses t he cached 

(and now invalid!) result of the previous check, and a modified version of the 

function is executed. 

Once again, IMon detects this attack and stops it from occurring. 

5.1. 7 Deletion, Truncation, and Replacement 

The simplest attack that can be carried out on a caching integrity-checking system 

is as follows: 

l. The attacker reads file. This causes the file to be cached. 
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2. The attacker now removes file and replaces it with a custom executable. 

Alternately, he may truncate file, or copy another file in its place. 

3. A user accesses file. This access is allowed since the fil e is cached. 

The correct action to take is to uncache the file at (2), so that it is tested once 

again at (3). IMon does this, and testing a number of simple attacks of this sort 

have all resulted in the attacks being defeated. 

5.1.8 Policy 

Policy aids an administrator in setting up programs that may only ever access certain 

files, or may only access files after a configuration has been read, and so forth. By 

setting up the minimal fil e access permissions that a program needs , an administrator 

can increase security by "locking down" a given application to using only certain 

files and denying accp.ss to all other fil es. 

To test whether the created policies allow and deny access as intended, we created 

four executable files ( edeny_others, eaccept _afterl e accept_anytime and 9deny...not found) and 

assigned each of them a certain policy. Each executable e is identical, and merely 

opens files passed on the command-line in sequence and attempts to read each 

one; for example, running the command e.eeep,_anyUme aye bee see would cause 

e.ee.p,_anyUm. to attempt to open and read first aye , t hen bee , and lastly see. 

We then created three files: 

• f d•p, a dependency of all the e executables. 

• fDoD_d.p , a file that is listed in the database but is not a dependency of any of 

the e executables. 

• f unknoon , a fil e that is not listed in the database and is therefore unknown to 

IMon. 

The following command-lines were then executed, with expected results being 

given after each command-line: 

• edeny _otbers fnon_dep f dep f unkno1m 

Expected: only f d•p should be readable. 
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Expected: f dep and fnoo_dep should be readable. 

Expected: all files should be readable. 

Expected: fno"-dep and f unkno,," shold not be readable init ially. After f dep is 

read successfully, t hey should be readable. 

In each case, the expected results were obtained. We then ran the same tests 

using interpreted files instead of binary executables, and obtained exactly the same 

results. 

5.1.9 Modules 

Modules loading and unloading can be restricted to a known-good set of modules, 

and only certain executables can be allowed to load or unload modules. To test this, 

we made copies of the rmmod and insmod executables which are used to remove or 

insert a module respectively. We then changed the database entry for the real rmmod 

and insmod to allow them to load and unload modules, and placed both of them 

under the d eny _other policy after providing suitable modules as dependencies. 

As expected, running rmmod,opy and insmod,opy resulted in no change to the 

modules loaded; in addit ion, attempting to insert a module that was not on the 

dependency-list of allowed modules failed. This demonstrates that the functionality 

to secure module loading and unloading is effective. 

5.1.10 Corrupted Files 

IMon stops corrupted files from being accessed, providing that metrics that would 

indicate corruption are not specifically ignored. To test this, we modified fi les used 

in previous tests that could be accessed, and noted the results . As expected, IMon 

denied access to such files no matter what policy was attached to them. 
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5.1.11 Attack Vectors 

As with any complex system, IMon may be susceptible to attacks that we have not 

considered as yet. In this section we consider two possible attack vectors. 

Ignoring attributes 

In 3.5.1 we discuss the necessity of ignoring changes to certain attributes. The most 

dangerous attribute to ignore, in our estimation, is the cryptographic hash of the 

file: ignoring it opens the way for an attacker to make undetected changes. IMon 

attempts to ensure that this does not become a problem by forcing the hash of any 

file being executed to be examined before it is executed, no matter what the per-file 

flags of the file may be. We are, however, uncertain as to whether every possible 

avenue that could exploit attribute ignoring has been found. 

For this reason, we recommend that attributes never be ignored unless it is 

absolutely necessary to do so. It is worth emphasising that, as recommended in 

3.5.1 , attributes should not be ignored in order to increase the speed of the system. 

Caching 

Testing whether the implementation of caching may introduce security holes is a 

difficult proposition since all possible combinations of operations that may cause a 

file to be cached and uncached are difficult to work out . In the implementation of 

IMon we have chosen to set the cache-flag in only one place: after a test has been 

successfully completed. We have also ensured that it can be overridden within the 

tesLfile function, should the caller so desire; and we have uncached a file whenever 

there might be a possibility that a metric could be changed. Despite these pre­

cautions, some combination of operations that leaves a file erroneously cached may 

exist, and we therefore consider caching to leave open a possible attack vector. 

For performance reasons caching has been left in the IMon system. Should it 

prove to be a security risk that cannot be surmounted, it can be removed entirely 

from the system by commenting out a single line of the source code. 
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Database size I Average number of comparisons I 
10 3 
100 6 
1,000 9 
100,000 16 
500,000 18 
1,000,000 19 
10,000,000 23 
10,000,000,000 33 

Table 5.3: Database size vs. average comparisons 

5.2 Performance 

As mentioned in l.3.2, a file integrity checker must be efficient, and a realtime file 

integrity checker must be very efficient. In this section we discuss the performance 

impact of IMon on a running system. 

5.2.1 Scalability 

Ilvlon has been tested with a database of over 280,000 files, with no perceptible 

slowdown in either lookup speed or verification. Since lookup is an O(log2 n) oper­

ation (see 3.10.2), we can see the impact on the lookup algorithm of increasing the 

database size by examining Table 5.3. 

Assuming that there are 500,000 files in the database', it would take only 18 

comparisons to find the correct record. As can be seen from Table 5.3, the lookup 

of records is not a scalability issue, nor is it likely to become one: even with ten 

billion files in the database, only 33 comparisons (on average) are required to find the 

correct one. Note that both Table 5.3 and the statements made in this paragraph 

are based on t he work of Knuth in [31, pp. 409- 414]. 

A more pressing scalability concern is the amount of memory used by the IMon 

database: at "" 63 bytes used per entry (including memory used by filepath mem­

bers) , a database with 500,000 files would take up 500000 x 63 = 31500000bytes "" 

30MiB of memory whilst IMon is running. Due to the on-demand loading process, 

this memory will not increase overmuch whilst IMon is active; however, it is still a 

significant amount of memory to be taken up. Modern systems, fortunately, have 

1 V\'e estimate that there are ~320,OOO files, iucluding lIoll-executable files, un an averagt:: Linux 
desktop machine 
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more than enough physical memory to make the impact of IMon negligible and this 

is therefore not as great a scalability concern as it might once have been. Never­

theless , we discuss ways in which the memory impact of IMon could be reduced in 

6.2.1, and leave it as fut ure work. 

5.2 .2 Efficiency 

The efficiency of Il\-[on can be discussed either in terms of the amount of overhead 

that IMon adds to the execution of the Linux kernel, or in terms of the performance 

impact experienced by a user whilst IMon is running. We have chosen to evaluate 

the efficiency of 1M on in both these spheres. 

Kernel Overhead 

To test the overhead of IMon on a running kernel, we added simplistic benchmarking 

variables and tested the duration for which each non-trivial function ran. We also 

tracked how many t imes each function was called, and how long the entire execution 

of 1M on took from init ialization to shutdown. All durations were measured using 

the kernel-provided jiffies variable which is incremented by a timer interrupt every 

millisecond. Therefore, our measurements have a granularity of one millisecond. 

By measuring these two items, we were able to calculate the performance impact 

of IMon in terms of milliseconds/call for each function. Adding together all of the 

milliseconds/call t imes gives us a rough idea of how much overhead is imposed by 

IMon on a running kernel. 

We then created a short test program that executed itself a configurable number 

of times. Bytes were added to the end of the test executable to change its size; 

this was done to simulate the execution of fil es of various sizes. Finally, we set 

the number of processes to be created to be 20,000, and collected benchmark data. 

Figure 5. 1 shows the results of this test. 

The jagged nature of the lines shown in 5. 1 can be explained through a combi­

nation of the limited granularity of the Linux timer and the interruption of IMon 

processing by other system operations (which, on a preemptive kernel , may interrupt 

IMon at almost any stage) . There is also a possibility that certain measurements 

were lost due to the fact that no locking mechanism was used to guard against race 

conditions involving the global benchmarking variables. Even taking these method-
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ologicallimitations into account, however, it is clear that the impact of 1M on is low 

enough to be imperceptible - and would still be low enough to be imperceptible if 

they were three or four times as great . 

We also created other performance tests to read in files of different sizes byte-by­

byte, and to memory-map and unmap files of different sizes. These tests revealed a 

performance impact that was less than that shown in 5.1. This is intuitively correct 

since starting a program tests both file-reading and memory-mapping, and would 

therefore impose a greater overhead on a running kernel than doing either operation 

alone. 

System Impact 

Compilation of a large program results in files being read, files being memory­

mapped, programs being executed, data being piped from one process to another , 

and so on: such a workload is ideal for testing whether 1Mon's impact on a system 

is perceptible. We first compiled a freshly-uncompressed 2.6.14 kernel source tree 

without the 1Mon module running, and timed the entire process using the time 

command. We then repeated the same procedure with 1Mon running. Before each 

test, the test machine was cold-booted to ensure that OS and CPU caches did not 

unduly skew results. The results can be seen in Table 5.4. 

Table 5.4 presents three measurements. The fi rst, "Real time", is the amount of 

objective time that has passed; that is, the amount of time as could be measured 
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Metric I With IMon (s) I Without 1M on (s) I 
Real time 486.782 489.320 

Userspace time 439.231 441.092 
System time 33.378 29.062 

Table 5.4: System impact of I110n 

from start to end using a wall-clock or stopwatch. "Userspace time" and "System 

time" refer to the time spent in users pace and kernelspace respectively. As expected, 

with IMon running the amount of time spent in kernelspace is higher; however, the 

increased time is almost unnoticeable when compared to the total running time 

of the entire compilation. Indeed, the real time of the compilation without IMon 

running is higher - quite possibly due to other processes running on the system at 

the same time. 

Based on the results obtained, we can conclude that the system impact of l110n 

is negligible. 

5.3 Applicability 

In this section we discuss where IMon may be most suitably deployed. The section is 

broken into unsuitable deployments, possibly troublesome deployments, and suitable 

deployments; at the end of the section, a partial list of security problems that Il10n 

does not address is presented. This section acts only as a guide, and should not be 

mistaken as a comprehensive list of what is or is not a suitable use for Il1on. 

5.3 .1 Unsuitable Deployments 

IMon is not suitable for the following systems: 

Badly-configured systems A system that has shared libraries whose permissions 

allow them to be written to is one that may take an enormous performance hit 

if IMon is used. As described in 4.5.4, such shared libraries cannot be cached if 

security is to be maintained. Since the functionality within shared libraries is 

often invoked, being unable to cache the results of testing them could impose 

a large performance overhead on the system. 
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Fortunately, this problem is easily solved by modifying shared library permis­

sions to disallow writing to them. 

Development systems A system that is used for developing applications is un­

suitable for use with 1Mon. This is because newly-compiled executables will 

not be able to run unless they have been placed in the database - or unless they 

are specified in the database with an appropriate combination of per-file flags 

such as [1GN_HASH, 1GN_S1ZE, 1GN_CT1ME, 1GN_MT1ME, 1GN_MODEJ. 

However, this "solution" to the problem is in reality a security hole: an at­

tacker is now able to replace a file with such per-file flags with any other file 

of his choosing, and is able to execute that file without 1Mon being aware that 

anything is wrong. 

5.3 .2 Troublesome Deployments 

Deploying 1Mon on a laptop could prove troublesome due to the additional hard­

disk accesses that it necessitates . If the laptop is to function on battery power 

for an extended period of time, such activity could increase its power consumption 

drastically. However, no tests have been conducted to determine how serious the 

effect of 1M on on a laptop system is; therefore, the hypothesis that it is unsuitable 

for a laptop could prove unfounded. The same arguments that apply to a laptop 

apply equally well to any other battery-powered device that 1Mon may be executed 

on. 

5.3.3 Suitable Deployments 

1Mon is especially suited to the following environments: 

Stable-configuration machines Routers, firewalls, web servers and mail servers 

are examples of machine configurations that are not expected to execute new 

code very often, and are expected to be secure. 1Mon is suitable for use in any 

configuration that is expected to be stable or unchanging, and adds a level of 

security to the configuration. 

Special-purpose machines Laboratory machines used in schools, officc machines 

used for work, and internet cafes are examples of special-purpose machines 

that are expected to run a limited number of very specifi c applications, and 
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nothing else. For these machines, IMon is suitable for restricting the number of 

applications to those allowed by a system administrator, and for decreasing the 

chance that a strong compromise of the machine will occur either maliciously 

or accidentally. 

Corporate desktops As described in 1.2.3, a medium or large organization could 

find it beneficial to maintain a single set of executables and libraries , with 

multiple defined execution profiles. As an additional advantage, organizations 

that use IMon also derive the benefits of licence compliance (as described in 

1.2.3. 

Honeypots A honeypot , especially one that is intended to capture and analyze 

foreign executables, is a well-suited environment for IMon. With some modi­

fication , IMon can be made to hide its existence and store foreign executables 

in a safe location instead of denying their execution outright. This would be 

a useful ability to have on such a honeypot. 

IMon is suitable for more than these, of course; any situation that is not an 

unsuitable one (see 5.3.1) is a possible situation in which the added protection 

provided by IMon can be used. 

5.3 .4 Completeness 

It should be noted at this point that IMon is not a complete security solution. 

IMon addresses certain attack vectors, most notably those posed by unauthorized 

code, and prevents (to t he best of its ability) strong intrusions from occurring. If a 

more complete (but much more complex) security solution is required on the Linux 

platform, a project such as SELinux [37] is recommended. However, it should also 

be kept in mind that IMon provides security guarantees that SELinux does not: for 

example, IMon can guarantee that an executable is uncorrupted, whereas SELinux 

tries to ensure that even a corrupted executable is unable to act in an untoward 

fashion. 

Specifically, the following two attack vectors are not handled by IMon: 

Buffer overflows Buffer overflows and similar methods of tricking a program into 

executing unauthorized code are not dealt with by IMon. If the file from 

which the executing process was started has a more restrictive policy than 
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accept-anytime attached to it, the damage done by an attacker who manages 

to corrupt the process image might be reduced; however, 1Mon makes no 

attempt to stop the attack from occurring in the first place. 

Macros It is possible for macros embedded within documents to act in a malicious 

fashion. 1Mon makes no attempt to stop such macros, which are efIectively 

interpreted by the document viewer, from executing; indeed, IMon has no way 

of telling whether the document viewer is executing a macro at a given time 

or not. 

Despite the fact that 1Mon does not block the above attack vectors, it may still 

prevent either of the above attack vectors from resulting in a strong intrusion. 

5.4 Features 

The performance of 1Mon is comparable to that of DigSig (see 2.6), which is currently 

the most actively-developed kernelspace file integrity checker for the Linux operating 

system. However, the feature set provided by IMon is far greater than that provided 

by DigSig; in fact , certain features are (to the best of our knowledge) not to be found 

in any other file integri ty checking system for the Linux operating system. Selected 

innovative features of 1Mon are: 

Policy and per-file flags The abili ty to attach file attributes to a file to specify 

what it is and how it should be treated is a feature not found in any other 

kernelspace file integrity checker. The fact that dependencies can be specified 

as part of policy is also something not found in any other realtime file integrity 

checker, though userspace systems such as Radmind (see 2.9) do implement a 

form of file attribute assignment. 

Transitive interpretation This feature is not found in any other realt ime ker­

nelspace file integrity checker for the Linux operating system (and is not cyen 

possible for a userspace file integrity checker to achieve). SEFL (see 2.11 ) at­

tempts to address the problem of interpreters via userspace modifications of 

interpreters; however, that approach is fl awed , as pointed out in 2.11. 1M on 

provides a much cleaner solut ion that is, as far as we are able to ascertain, 

able to cover all cases of transitive interpretation. 
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Stopping standalone interpreters IMon is the only system for Linux that allows 

interpreters to execute only when interpret ing allowed files, and disallows their 

standalone execution. 

Binary and script equality IMon allows policy to be assigned to both binary 

and script executables, and allows both to be treated equally. This feature is 

not only not found in any other realtime integrity checker made for Linux, but 

has been described by Catuogno and Visconti in [10, p. 36] as "a non trivial 

task and probably [ ... ] not currently possible". 

5.5 Summary 

In this chapter we have evaluated IMon in terms of security, performance, and appli­

cability. We have discussed possible future attack vectors and the comprehensiveness 

of the security that IMon provides. In 5.4 we detail features that set IMon apart 

from other file integrity checkers. 

Our conclusion is that IMon is a system that has a very low performance impact 

on a running system, and that the security it provides can prevent a strong intrusion 

from taking place. In addition, the system of policies that IMon provides is not found 

in any ot her realtime integrity checker, and provides a flexible way to handle the 

relationships between files. 
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Chapter 6 

Conclusion 

In this chapter we look back on what we have achieved during the course of this 

investigation, propose future research directions, and present our final conclusions. 

6.1 Goals 

In 1.3.2 we discussed several worthy goals and ranked them by importance. Looking 

back, we ask ourselves to what extent these goals have been achieved. 

Comprehensive checks IMon tests every system-independent aspect of a file that 

it can. The checks made are comprehensive and complete, and test the meta­

information of a file as well as the data within it. IMon also tests every 

executable file, whether binary or interpreted. This goal has been met. 

Realtime checking IMon detects untrusted or unknown executables before they 

have been executed, and thereby helps to prevent a strong intrusion. Whilst 

1M on is running, no opportunity gap exists for an attacker to execute a file 

between scans of the filesystem. This goal has been met . 

Efficiency IMon is extremely efficient and imposes no noticeable slowdown on a 

system. It uses a good design for looking up records, implements a caching 

system, and minimizes disk access to arrive at this level of efficiency The 

efficiency of IYlon makes a system that is running it indistinguishable from 

a system that is not running it, as far as a user can tell, thus achieving the 

secondary goal of transparency. This goal has been met. 
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Automation IMon does not depend on being run periodically, and takes action 

automatically to log and stop any possible intrusion. It enforces policy without 

any intervention, and has a number of policies that can be used for greater 

flexibility. This goal has been met. 

Relevance IMon provides output only when a problem has occurred, and the out­

put is sufficiently detailed and relevant for an administrator to be able to 

identify exactly what has occurred, and why it has occurred. Furthermore, 

all IMon system-log messages are prefixed with the string "[imon]", making it 

easy for an automated tool to identify any entries made by IMon. This goal 

has been met. 

Self-protection Once running, IMon protects itself by disallowing operations that 

could compromise its database and stopping unknown modules from being 

loaded. It also makes it difficult to unload modules by restricting the capability 

to unload modules to one or more selected programs - and makes it impossible 

to unload modules if no such unloading programs are specified. IMon also 

verifies its database using public-key encryption before using it. This goal has 

been met. 

Maintainability The configuration file syntax of IMon is simple and easy to use, 

and databases can be created by a third party and transferred to a system 

easily. However, no structured upgrade process has yet been implemented, 

though one has been designed. This goal has only partially been met: more 

work needs to be done before IMon can be said to be easily maintainable. 

6.2 Future Work 

In this section we discuss possible future work on the IMon file integrity checker. 

The system, as implemented in chapter 4, is both modular and highly-commented; 

therefore, modification should not be difficult once the core implementation has been 

understood. 

One possible extension that we would like to see is another implementation of 

the design laid out in chapter 3. Ideally, this would occur on another platform such 

as Windows@, OS X, or FreeBSD, and thus validate our claim that the design is 

reasonably platform-agnostic. 
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The rest of this section is split into two subsections: improvements and exten­

sions. The former discusses improvements to the current way that IMon works, and 

the latter discusses changing the way that IMon works to implement a new feature, 

or to extend a feature already present. 

6.2.1 Improvements 

Separation The big-number routines are only used during Itllon initialization whilst 

verifying the integrity of the database, and are used only through a defined 

interface; looking at 4.1, one can see that they are not used during runtime. It 

is therefore possible to separate the big-number portion of IMon into a sepa­

rate kernel module that may be loaded and unloaded as the need arises. This 

would have the benefit of a cleaner code-base. 

Memory-saving measures As mentioned in 5.2.1, the memory requirements of 

IMon may become a scalability problem in fu t ure or on smaller systems. These 

memory requirements can be reduced by a number of measures, two of which 

are: 

• Splitting the filepath member variable. To illustrate , if we have the records 

/usr/bin/test and /usr/bin/arch we can split them into t he compo­

nents usr/bin, test , and arch. We could then save memory by hav­

ing the pathname of both records point to the same string in memory: 

usr/bin . 

• Noting that each pathname begins with the 'f' character , we could opt 

to remove this character from start of the filepath variable. This would 

save one char of memory per record , which does not sound like a lot until 

one considers that it is a saving of 500,000 chars (or half a megabyte , 

assuming that a char takes up one byte of memory) when 500,000 records 

are created. 

Of course, more complex memory-saving measures - such as compressing the 

database within memory - are possible; these are simply two of the easier 

measures to implement . 

Lookup cache If we assume that a record that is requested and released may be 

requested again within a short span of time, then we can keep a small cache 

of recently-requested full records instead of immediately releasing the memory 
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associated with a record. When the cache is full, we could evict the least­

recently-requested cache item and release memory associated with it , returning 

it to being a stub record. A cache hit would mean that no disk access needs 

to be made to read in a record. 

Compiling a program generally involves multiple sequential invocations of the 

compilation tool-chain: a compiler front-end , an assembler, a linker, and so 

forth. Such an execution sequence could be expected to give us cache hits 

quite often, and the performance impact (if any) of the cache across different 

workloads would be interesting to examine. 

Slab allocation There are certain objects that are frequently allocated and deal­

located by 1Mon, such as imon_data structures. The Linux kernel provides 

a slab allocator [40, pp. 194- 201] that can make such operations much more 

efficient. A possible improvement to 1Mon, then, is to alter all components 

that deallocate and allocate objects frequently to use the slab allocator. For 

example, imon-.Security and imon_procsec data structures are frequently created 

and destroyed: using the slab cache would make the functions in which such 

creation and destruction takes place more efficient. 

6.2.2 Extensions 

Upgrade process Currently, all features mentioned in chapter 3 have been im­

plemented, with the exception of an upgrade utility and an upgrade process. 

These are important [or 1Mon to be easily maintainable, and the infrastructure 

to support the upgrade process is already available in the 1Mon verify routine 

as well as the 11\1on database routines. The main difficulty in implementing 

this is the creation o[ a secure users pace upgrade utility. 

De-modularize 1Mon may currently only be loaded as a module since its initializa­

tion phase requires a number of pieces of kernel infrastructure to be available. 

By shifting those pieces to a separate function and initializing at the latest 

possible moment, 1Mon can be built into the Linux kernel directly. 

Password security A cryptographic digest of a password supplied as a module 

parameter could be used to provide additional security [or unloading mod­

ules. An administrator would enter a password (via sysfs [40, pp. 291- 305] or 

another mechanism) , which would then act to allow a single module to be un-
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loaded. Without both the password being input and the executing file having 

the FLG_M ODCAP flag set, a module may not be unloaded. 

Information provision Statistics on frequently-accessed files, memory usage , av­

erage time spent on integrity testing, and so on could be provided through 

the virtual filesystems procfs [40, pp. 87-88] or sysfs [40, pp. 291- 305]. This 

information could be used by a system administrator to assess the impact of 

IMon, given the specific workload of a certain machine. Administrators may 

also be able to tune their systems by, for example, removing files that they 

notice have not been used for a very long time. 

Same-file storage As mentioned in 3.7.6, using a database and using same-file 

storage are not mutually-exclusive design decisions. Attempting to find a 

same-file signature if a database lookup fails could be implemented in the 

geLrecord and puLrecord functions of IMon. 

Additional policies The policy mechanism that IMon implements is flexible, ef­

ficient, and extensible. The policies mentioned thus far can be seen as simple 

examples of what could be done with it. It is left as an exercise for interested 

parties to experiment with creating new policies that enhance the flexibility 

of IMon and the security of a system. 

Additional uses In 1.2.3 we discuss uses that a realtime integrity checker could 

be put to. With a minimal amount of work, IMon could be modified to be 

used for any of these purposes. 

Remedial action In 3.1.4 it is briefly suggested under the Actionable point that 

remedial action could be taken in the case of certain integrity checks failing. 

This has not been implemented by any realtime integrity checker that we are 

aware of, but there seems to be no logical or technical reason that it could not 

be implemented. Such an extension would make the integrity checker more 

resistant to reversible file metadata changes sllch incorrect fi le permissions, or 

the incorrect file owner. 

6.3 Conclusion 

In this thesis we have examined projects and research related to file integrity check­

ing, laid Ollt the design of a best-of-breed file integrity checker, and implemented a 
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proof-of-concept that illustrat es this design. The implemented design meets almost 

all of the goals set out at the start of this t hesis. Importantly, there are innova­

t ive features that arise from this design that , to the best of our knowledge, are not 

found in any currently-available integri ty checking system that exists for the Linux 

operating system today. 

The original problem of unauthorized code execution via a strong intrusion, as 

described in 1.1.1 , is solved in its entirety by IMon. The security of the system 

has been evaluated and attacked using all cases that we considered and, whilst we 

do not claim that we have thought of all possible cases, we do claim that IMon 

is not trivially circumvented. Furthermore, performance tests carried out reveal 

that IMon imposes almost no performance impact on a running system. Lastly, 

there are several innovative features described in 5.4 that mark IMon as the best 

currently-available file integri ty checker for the Linux operating system. 

We submit that all significant goals laid out in the introductory chapter of this 

thesis have been met, and that IMon represents a best-of-breed file integrity checker 

that builds upon the work of others to produce an innovative, well-considered de­

sign and a modular, extensible implementation; we also submit that this thesis has 

added to the body of knowledge in the field of fi le integrity checking by examining 

crucial theoretical issues such as blacklisting and whitelisting (see 1.2.1) and explor­

ing open issues such as metric storage (see 3.7) to arrive at conclusions t hat are 

well-supported, reasonable and coherent . 
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Appendix A 

Glossary 

A.I Format 

This glossary is in alphabetical order, with the page on which the term first occurs 

referenced after the term itself. Example: "quux", first seen OIl page i, would 

appear here as 

quux, i This text defines what "quux" means. 

The first time a term is referred to, it appears in boldface italics as a visual 

indicator that it may be looked up in future in this glossary. 

A.2 Terms 

atomic, 94 An atomic operation is one that either succeeds completely or does not 

occur at all. An atomic variable is one used in atomic operations. 

baseline, 4 A baseline is a known-good set; "baseline metrics" are therefore consid­

ered to be known-good. Similarly, a "baseline file" is a file that is known-good, 

and a "baseline system" is one that only contains known-good files . An exam­

ple of a baseline system is a newly-installed operating system. 

blacklist, 3 A list of that which is denied; anything that is not on the blacklist is, 

by default, allowed. Blacklisting implies a default-allow security stance. See 

also: whitelist . 



block device, 72 A device on which data can be accessed using a block number 

(as opposed to only being accessible via a byte offset). A block device is a raw 

device. 

capability set, 102 The privileges accorded to a process are called its capability 

set. 

daemon, 2 A process designed to run in the background. For example, a SSH 

daemon listens for incoming SSH connections and handles them appropriately. 

default-allow, 5 This security stance classifies that which is unknown as being 

allowed. 

default-deny, 5 This security stance classifies that which IS unknown as being 

denied. 

ELF, 26 ELF stands for Executable and Linkable Format, and is the default bi­

nary format of executables as well as shared and static libraries on the Linux 

platform. 

execution profile, 11 a set of executables that is recognized as valid by the real­

timc filc integrity checker 

hard link, 72 Each file can be separated into "name" and "data". A hard link is 

a name by which a file 's data can be known. 

hash, 2 A hash is used to describe both the result of a one-way function and the 

function itself. A one-way function is a function f : A ....... B for which it is 

difficult or impossible to create 9 : B ....... A. A hash function , furthermore, 

maps A to B in as uniformly-distributed (and therefore collision-resistant) a 

fashion as possible. Syn: digest , fingerprint. 

honeypot, 10 a system that exists to be attacked, and to log and! or perform 

analyses of attacks as they are in progress. 

inode, 59 Each file on a Unix-style filesystem has an index node or inode associ­

ated with it. This internal kernel data structure may be uniquely identified 

by its inode number, and stores file metadata such as file size, owner, and 

t imestamps. 

ioctl, 28 An ioctl allows one to control a device by sending dat a to a file that 

represents that device. However, it is quite possible for the device to be virtual 
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and have no real-world analogue; for example, the null device simply receives 

whatever data one sends to it and discards it. An ioctl can therefore be seen 

quite simply as a way to communicate with the kernel. 

immutable, 66 In BSD parlance, this refers to an attribute of a file that makes it 

unmodifiable unless the securelevel is low enough and the user attempting to 

change it to not be immutable is the super-user. 

kernels pace, 23 Kernelspace refers to the memory area used by the operating 

system kernel, device drivers, and kernel extensions. This memory may not 

be swapped to disk. Kernelspace processing is done from a more privileged 

perspective than userspace processing due to the fact that anything running in 

userspace is able to be affected by any processing done in kernelspace, whilst 

the reverse does not hold true. 

malware, 7 Malware is "any software program developed for the purpose of causing 

harm to a computer system" 1 

one-way function, 57 A function f that takes an input and produces an output 

can effectively be reversed if one can find a second function, 1', which takes 

(as input) the output of f and produces (as output) the input of f. A one-way 

function is a function f for which l' is difficult or impossible to find . 

opportunity gap, 3 That space of time between a file being altered and the file 

being tested. During the opportunity gap, an invalid file is accepted as being 

valid. 

page, 28 Memory may logically be divided into discrete units called pages, with 

each page being a fixed size (such as four kilobytes, or two megabytes) . Each 

page can be granted different permissions and thus be made read-only, or 

execute-only, or read-write, and so forth. Storing a file or portions thereof 

in memory may be done by allocating an appropriate number of pages and 

placing the file contents into those pages. Entire pages may also be "swapped" 

to disk, in which case they are reloaded from disk whenever they are needed 

once again. The term "page" is synonymous with the term "frame", as found 

in Operating Systems literature. 

paging unit, 92 The hardware paging unit translates linear addresses , which are 

logical in nature, to physical addresses, which refer to the correct location in 

memory. 

1 Wikipedia, http: lien. wikipedia . org/wiki /Malware, 5 July 2005 14:56 
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permissions, 3 A traditional Unix model for filesystem security uses bits that spec­

ify which users are allowed to perform which operations on a file. These bits 

are called permissions, or one may refer to them as the mode of a file. Tra­

ditionally, read/write/execute permissions may be specified separately for the 

file owner, for members of the file group, and for all other entities. 

raw device, 29 A file resides on a filesystem; in turn, a filesystem typically resides 

on a hard drive, fl ash stick, memory, or other such storage. This storage that 

a filesystem resides on is called a raw device, and modifications to a raw device 

occur beneath the level of the filesystem - and thus beneath the level at which 

the filesystem can detect them. 

rootkit, 1 This is a specific type of trojan horse that replaces important system files 

(usually executables or kernel modules of some sort) with malware designed 

to hide suspicious activity. Rootkits can open up "backdoors" (unauthorized 

gateways for an attacker into the system) or attack other systems, among other 

behaviours . It is usually difficult to detect the presence of a rootkit as they are 

designed to make the system act as though it is functioning perfectly normally 

- or at least report that it is functioning normally when it is not. 

securelevel, 34 In BSD parlance, the securelevel of the operating system refers to 

an increment-only variable that determines how security policies on a system 

should be enforced. 

spyware, 1 A program that collects and sends information about the user across 

a medium (usually a network) , without the user being aware of it. 

swapfile, 115 A file used to simulate a greater amount of primary memory than 

actually exists on a system. 

sysctl, 35 A sysctl is used to configure kernel parameters at runtime. It is a way of 

modifying a predefined variable that exists within the kernel , after appropriate 

kernel-level checks have been done. 

trapdoor function, 85 A function or computation that is difficult to reverse with­

out knowing a certain value, but that is easy to reverse once this value is 

known. 

trojan horse, 1 This is malware disguised as a useful program. A trojan horse per­

forms unauthorized (and usually unwanted) actions in addition to performing 
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a useful function; these actions usually include creating a "back-door" into the 

system for an attacker to use. 

unauthorized code, 13 Executable content (whether native or interpreted) that 

an authorized entity (such as an organization, system administrator or user) 

has not specifically allowed the execution of. 

userspace, 23 Userspace refers to the memory area used by all user mode ap­

plications. This memory may be swapped to disk at any time. Userspace 

applications are less privileged than kernelspace applications due to the fact 

that they are treated as processes under the control of the kernel. 

virus, 1 Executable code that attaches itself to a host (such as an executable binary, 

shared library or script), either appending itself to the host or overwriting 

portions (sometimes the entirety!) of the host. Usually infects other hosts 

either by its own initiative or by being unwittingly propagated by a user's 

action. 

whitelist, 3 A list of that which is allowed; anything that is not on the whitelist 

is, by default, denied. Whitelisting implies a default-deny security stance. See 

also: blacklist. 

worm, 15 Similar to a virus, but does not require a host. A standalone program 

that infects other machines; usually alters the system to ensure that it is 

executed across reboots. Worms generally feature active replication across a 

network. 
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Appendix B 

Set Notation 

In this Appendix we briefly describe standard set notation for those readers who are 

not as familiar with mathematics as they are with computer science. 

A set of elements or items is usually denoted by a capital letter such as A, G, or 

P. This capital letter may be decorated, as in A or Z. The symbol f/J denotes the 

empty set, which is the set that contains no elements. 

An B produces the intersection of sets A and B; that is, the set comprising those 

elements that are common to both sets. 

AU B produces the union of sets A and B; that is, the set comprising those elements 

that are in either or both sets. 

A = B indicates that sets A and B are equal, and therefore contain the same ele­

ments. 

A # B indicates that sets A and B are not equal, and therefore at least one element 

of them differs. 

An B ¢'} CuD indicates that A n B implies and is implied by CU D ; viewed 

another way, it shows that both sides of the ¢'} are a way of saying one thing. 

A \ B produces the set which contains all elements of A that are not also elements 

of B. 

A c B indicates that all elements of A are also elements of B. 

A (;;: B indicates that there are some elements of A that are not elements of B. 
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Appendix C 

Big-Number Implementation 

T his appendix looks at the big-number implementation that was developed. The 

implementation is, through extensive use of the C preprocessor, compilable both as 

a standalone program that tests algorithms and as part of the IMon kernel mod­

ule. Code Snippets presented in this appendix are not complete, and are generally 

presented in a form that ignores memory management and error handling. The ad­

dition, subtraction, and multiplication algorithms are based on those described by 

Knuth in [32, pp. 265-270]. 

C.l Data Structure 

001 #DEFINE INT_TYPE UNS IG NED LONG 

002 typedef struct { 

003 signed int used; /* Index of last cell used */ 
004 int allocated; /* Number of cells available */ 
005 INLTYPE *cell ; /* the cells themselves */ 
006 } bignum ; 

Code Snippet C.l: Big-number data structure 

Code Snippet C.1 shows the basic data structure that represents a big-number: a 

bignum. Each bignum is allocated a certain number of "cells", which may be altered 

during the course of operations; cell is an array of unsigned long integers, each of 

which is half-filled with data. In other words, if an unsigned integer is 32 bits long, 

16 of those bits is used in each of the elements of the cell array. This is done to 

make multiplication (see C.5) easier. 
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C.l.I Allocation 

Before a bignum , X, is used, it must be passed as an argument to the bn j nit func­

tion. This function allocates CELLSI ZE elements (where CELLSIZE is some constant , 

currently 128) to X. cell , and changes X.allocated to reflect this. It then zeroes all 

elements of X.cell. 

All allocations of memory occur in blocks of CELLSIZE elements. If CELLSIZE is 

too small, then many reallocations will be done to increase the amount of memory 

allocated to a bignum in the course of its lifetime; if it is too large, then the excess 

memory will be wasted. 128 was chosen as a t rade-off between the two. 

C_l.2 D eallocation 

Once a bignum is no longer required , it must be passed to the bnJi ni function, 

which deallocates the memory allocated to it and sets the allocated member to be 

zero. After deallocation, any attempt to use the bignum without passing it to bn j nit 

beforehand leads to undefined behaviour! 

C.2 Utility Functions 

Certain common operations to be performed using bignums are not supported in a 

syntactically-friendly fashion by C. Functions needed to be created to 

• Set a bignum, or a particular section of a bignum , to zero: bn_clear(bignum*), 

bn_cleadrom(bignum*, int), bn_clear_until(bignum*, int). 

• Assign a bignum to another bignum: bn_assign(bignum* to, bignum* from) . 

• Output a bignum in hexadecimal: show_num_hex(bignum*). 

• Append a value to the end of a bignum: bn_append(bignum*, unsigned long) . 

• Read in a bignum in hexadecimal: bn_geLnum(bignum*, const char*). 

• Compare two bignums, returning a signed integral result indicating whether the 

first operand was less than, equal to, or greater tban the second: bn _c mp(bignum* , 

bignum*). 
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Creating these functions is an interesting but elementary exercise; t hey shall not 

be discussed here, 

C.3 Addition 

001 int bn_add(bignum ' res, const bignum *a, const bignum *b) { 

002 int ret; 

003 long end = bn_max(a- used, b--+used), carry = 0; 

004 bn_c1ear( res) ; 

005 res--+used = end ; 

006 for (long j = 0; j <= end ; ++j) { 

007 res--+cellUl = a--+celiUl + b--+cellUl + carry; 

008 carry = (res--+cellUl & (1 « 16» » 16; 

009 if (car ry) { 

010 res--+cellUl &= Oxffff; /* remove 'carry' bit */ 
011 } 

012 } 

013 if (carry) { 

014 if (res--+used+ 1 >= res--+allocated) bn_a lloc_more(res) ; 

015 res--+cell[++ res--+used] = 1; 

016 } 

017 return 0; 

018 } 

Code Snippet C,2: Addition 

This code assigns the result of adding a and b to res , We start by zeroing res, 

then add each cell from a and each cell from b together; if there is an overflow, we 

add the "carry" to the next cell. Once all additions have been done, we check for a 

final "carry", then return successfully. 

C.4 Subtraction 

001 int bnsub(bignum *res, const bignum *a, const bignum *b) { 

002 long end = a--+used; 

003 bn_c1ear( res); 

004 res--+used = end ; 

005 short carry = 0; 

006 while (res--+allocated <= end) bn_allocmore(res); 

007 for (long j = 0; j <= end; ++j) { /* Going from least to most significant */ 
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008 long tmp = (Ox10000 + a~ceIlU]) - carry - b~ceIlUl ; 

009 res~cell[j] = Oxffff & tmp; 

010 carry = tmp & OxffffOOOO ? 0 : 1; 

011 } 

012 for (int i = bn_min(res~allocated-1,end); i && !res--+cell[iJ ; --i) res~ used = i-1; 

013 return 0; 

014 } 

Code Snippet C.3: Subtraction 

This function subtracts b from a, assuming t hat the former is smaller than the 

latter , and assigns the result to res. The logic follows that used in C.2: we start at 

one end of the array, subtract cell from cell, and compensate for borrows as we go 

along. Once all subtractions have been done, we set res.allocated appropriately and 

return successfully. 

C.5 Multiplication 

001 int bn_mul(bignum *res, const bignum *a, const bignum *b) { 

002 const long n = a---+used , m = b--+ used; 

003 bn_d ear_until (res,m+ n+ 2) ; 

004 a--+cell[n+ 1J = 0:/* Necessary, in case a--+ used+ l has junk in it OJ 
005 for ( long j = 0; j <= m; ++j) { 

006 unsigned long carry = 0; 

007 for (long i = 0; i <= n+1; + +i) { 

008 unsigned long temp = a--+cell[iJ * b--+celiUl + res--+cell[i+jJ + carry; 

009 res--+cell[i+ jJ = temp & Oxffff; 

010 carry = temp» 16; 

011 } 

012 res-cell[j] &= Oxffff; 

013 } 

014 res--+ used = m+ n- 1 >= 0 ? m+n- 1 : 0; 

015 int end = bn_m i n(res~used+3 , res--+allocated) ; 

016 for (int i = 0; i < end ; i++) { 

017 if (res--+cell[i]) res~used = i; 

018 } 

019 return 0; 

020 } 

Code Snippet C.4: Multiplication 

Mult iplication is implemented naively through a series of cumulative additions, 

and ends up with the product of a and b placed into res. We start on line 3 by 

x 



zeroing the result until index m+ n+ 2, which is the maximum size of the product 

of the two operands. We begin two for loops that do cumulative addition on line 

5, using the res .cell array to store partial results; and , noting that we go to n+ 1 on 

line 7 to deal with overflow from a previous loop iteration, we set that posit ion to 

zero on line 4. 

The outer loop merely contains the inner; and the inner loop body should be 

familiar if C.2 has been studied as it follows much the same idea of doing an op­

eration, then compensating for overflow. Lines 15- 18 determine where the end of 

res lies, and on line 19 we return successfully. Note that multiplying two unsigned 

integral values, each of which is n bits long, will give a result that is a maximum of 

2 · n bits in length; this is why it is important to store only ~ bits in each n-bitlength 

cell (see C. 1). If we did not store only ~ bits in each cell, part of the product from 

a given multiplication done on line 8 might be lost , leading to an incorrect result! 

Similar to the above, there is also a bn_mul_ui function that mult iplies a bignum 

by an unsigned long. This function does not require an inner loop, as each cell is 

simply mult iplied by a single fixed number to return the product: this is the only 

real difference between the above code and bn_mul _ui . 

C.6 Division 

001 void bn_div{bignum ' quot ient, bignum ' remainder, const bignum 'a, const bignum *b) { 

002 bignum working_dividend, result , dividend , divisor; 

003 bn_assign{&dividend, a); bn_assign{&divisor, b) ; 

004 const unsigned long d = Ox10000/ {divisor.cell[divisor.used)+ I); 

005 int temp = - 1, m = 0; 

006 unsigned long q_hat; 

007 bn_muLui{&divisor, &divisor, d) ; 

008 bn_muLui{&dividend , &dividend, d); 

009 for (long j = dividend.used; j >= 0;) { 

010 while (bn_cmp{&working_dividend , &divisor) < 0) { 

all bn _append{&working_dividend , dividend .cellO)) ; 

012 quotient~cellm = 0; 

013 j-; 

014 if U < 0) break; 

015 } 

016 if (bn_cm p{&working_dividend, &divisor) < 0) break; 

017 if (temp == - 1) { /* i.e., th is is the first number to be placed on '/ 

018 temp++; 

Xl 



019 m = j+1 >= 0 ? j+l : 0; 

020 } 

021 if (working_dividend .cell[working_dividend.used] == divisor.cell[divisor.usedJ) { 

022 q_hat = 1; 

023 } else { 

024 q_hat = ((working_dividend.cell[working_dividend .used] « 16) I 

025 (working_d ividend. used > 0 ? working_dividend .cell [working_dividend.used- l] : 0)) 

026 / divisor.cell[divisor.used]; 

027 if (q_hat & OxffffOOOO) q_hat > >= 16; 

028 } 

029 if (q_hat = = 1) { 

030 bn_mul _ui(&result, &divisor, Oxffff) ; 

031 if (bn_cmp(&working_dividend, &result) >= 0) { 

032 q_hat = Oxffff; 

033 goto qhat-correct; /* optimization * / 
034 } else { /* Passed? WeI!, try this one. * / 
035 bn_mul _ui(&result , &divisor, Oxfffe) ; 

036 if (bn_cmp(&working_dividend, &result) >= 0) { 

037 q_hat = Oxfffe; 

038 goto qhat-correct ; /* optimization */ 
039 } 

040 } 

041 } 

042 bn_muLui (&result, &divisor, q_hat); 

043 if (bn_cmp(&working_dividend, &result) < 0) { 

044 bn _mu l_ui(&result, &divisor, -q_hat) ; 

045 if (bn_cmp(&working_dividend, &result) < 0) { 

046 bn_mul_ui(&result , &divisor, -q_hat); 

047 } 

048 } 

049 qhat-correct: 

050 quotient-ceIID+ l] = q_hat; 

051 bn..sub(&working_dividend, &working_dividend, &result) ; 

052 } 

053 quotient --> used = m; 

054 bn_div_ui( rema inder, NULL, &working_dividend, d) ; 

055 } 

Code Snippet C.5: Division 

Division provides us with an interesting problem: whilst addition, subtraction, 

and multiplication could all be done in a "schoolbook" fashion - much as one would 

do them by hand, on paper - division requires one to divide in order to divide. A 

quick reflection on how division is done by-hand shows that this is t rue: to obtain a 
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digit of thc quotient , one must first find the minimum number of significant dividend 

figures that form a number greater than (or equal to) the quotient , and then divide 

one by the other to find the quotient digit in question. 

To accomplish division , we use part of the algorithm found in [32, pp. 271-

274], and assume in the code above that the divisor is smaller than or equal to the 

dividend. The first step in this algorithm is to normalize divisor and dividend. We 

do this by multiplying each one by d, defined on line 4 to be 

celLmaximum_value + 1 

mosLsignificanLcell 

assuming a 32-bit architecture. This normalization assures us that the process of 

finding a good estimate for a quotient digitI (lines 21- 28) works , and finds a digit 

that is at most 2 greater than the correct digit. After normalization, the steps taken 

diverge somewhat from those of the algorithm, and are as follows: 

Bring-down, 10- 15 A working dividend, consisting of significant digits from the 

dividend proper, is created as being just larger than the divisor. Each time 

that the working dividend is not greater, we add a zero into the correct position 

in the quotient. If the dividend proper ends whilst the working dividend is 

less than t he divisor (line 14) then we break out of the loop. 

Exit-test and set-length, 16- 20 Line 16 tests if working_dividend is the remain­

der; if so, we break out of the loop. Lines 17- 20 are only executed once, using 

temp as a flag variable, to set the final length of the quotient so that we don't 

have to calculate it at the end. 

Calculating q, 21-28 q_hat , or q, is the trial quotient value that we arrive at. We 

calculate this by Knuth's method, by assigning q = 1 if the most significant 

digits of the working dividend and the divisor match, and calculating q based 

on the two most significant digits of the working dividend and t he most sig­

nificant digit of the divisor; if this results in overflow, we shift to the right to 

get the correct answer. 

Estimation correction, 29- 48 As noted above, the estimate made may be 1 or 2 

greater than it should be. Lines 29- 41 test to see whether the estimate should 

"wrap around" to become Oxffff or Oxfffe instead of 1; lines 42- 48 test all other 

INote that when we say "digitI! in this context, we are referring to an entire 16-bit number\ a 
full cell of the quotient answer. 
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cases. Between 1 and 3 multiplications by an unsigned integer will occur in 

this entire step. By the end of this step, result holds the product of q and 

divisor, and q is correct. 

Quotient digit, subtraction, 50- 51 The quotient digit is assigned and subtrac­

tion of result from working_dividend occurs to give us the new working dividend 

that should be appended to. 

Remainder, 54 At this point , after the loop has ended and all digits of the quo­

tient have been calculated, the remainder is found by calling bn _d iv_ui to un­

normalize it. This function follows the much same steps that bn_div does, save 

for the calculating q and estimation correction steps; this is because since 

our divisor is only the length of a single bignum .cell element, we can divide 

without needing to do these steps at all. 

C.7 Power-Modulus 

001 int _bn_powm(bignum *a, const bignum *b, const bignum *c, const bignum *d) { 

002 int ret = 0; 

003 bignum bPower[4)' temp; 

004 bn_clea'-Until(a,l) ; 

005 a-->cell[O] = 1; 

006 if (c ..... used == a && c-->cell[O] == 0) { 

007 if (d ..... used == a && d ..... cell[O] == 1) 

008 a ..... cell[O] = 0; 

009 goto exit ; ;* 'a' is fine. *; 
010 } 

all if (b-->used == a && b ..... cell[O] == 0) { 

012 a-->cell [0] = 0; 

013 goto exit; ;* Always zero *; 
014 } 

015 bPower[O] .cell[O] = 1; ; * bP[O] = 1 *; 
016 bn_assign(&bPower[l)' b); ; * bP[l] = b *; 
017 bn_mul(&bPower[2] , b, b) ; / * bP[2] = bOb ' ; 

018 bn_mul (&b Power[3], &bPower[2J, b) ; ;' bP[3] = b' b*b *; 
019 bn_div(NU LL, &bPower[l] , b, d) ; 

020 bn_div(NU LL, &bPower[2)' &bPower[2J, d) ; 

021 bn_div( NULL, &bPower[3], &bPower[3] , d) ; 

022 int i = c--+used; 

023 INT_TYPE ci = c ..... cell[i] ; 

024 int ciBits = 16; 
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025 while (l(ci & Ox8000)) { ci «= 1; ciBits-; } 

026 if (ciBits % 2) ci »= 1; 

027 short j; 

028 do { 

029 j=O; 

030 do { 

031 bn_mul(a , a, a) ; 

032 bn_mul(a , a, a) ; 

033 bn_div(NULL, a, a, d); 

034 bn_mul(&temp, a, &bPower[(OxCOOO & ci) » 14)); 

035 bn_div(&temp, a, &temp, d); 

036 ci «= 2; 

037 j += 2; 

038 } while U < ci Bits); 

039 ciBits = 16; 

040 i -= 1; 

041 if (i > = 0) ci = c--->cell[iJ; 

042 } while (i >= 0); 

043 exit: 

044 return ret; 

045 } 

Code Snippet C.6: Power-Modulus 

Power-Modulus is the operation ab modulus c, as used in RSA [57] decryption. 

We build upon the functionality discussed above to create the above function . The 

mathematics underlying this function are beyond the scope of this discussion, and 

are described in [59]. 
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