
MIPS2C
programming from the machine up

Philip Machanick

C part omitted from this printing



MIPS2C: PROGRAMMING FROM THE MACHINE UP
First edition, 2015
Minor corrections: March 2017, April 2019, October 2020 – re-
formatted without C March 2018
Copyright © Philip Machanick 2014, 2015, 2016, 2017, 2018, 2019,
2020

Published by Philip Machanick in the RAMpage Research imprint
under an Attribution-NonCommercial 4.0 International (CC BY-NC
4.0) licence:
http://creativecommons.org/licenses/by-nc/4.0/
The quick summary: free to use however you like but not for
commercial purposes.

SPIM documentation: Appendix E is copyright to the author as
indicated on the first page and using this material does not imply
endorsement by James Larus of this book.

Picture credits: all illustrations are either by the author or from
public domain sources, as acknowledged in the text.

Publication details apply to full version with C

Author: Machanick, Philip, 1957-

Title: Mips2C: programming from the machine up / Philip Machanick

Edition: 1st ed.

Publisher: Grahamstown, South Africa : RAMpage Research, 2015.

ISBN: 978-0-8681048-7-4 (pbk.)

LoC classification : QA76

Note: this printing differs slightly in layout and omits the C section so do not cite
with ISBN.

Last typeset 27 October 2020

http://creativecommons.org/licenses/by-nc/4.0/


Preface

WHY THIS BOOK? Some years ago I took part in a panel discussion
titled “Programming Early Considered Harmful” at the SIGCSE 2001
conference [Hitchner et al. 2001]. Once of those present was Yale

Patt, whom I had met briefly on a sabbatical at University of Michigan, where
he was at the time a professor working in computer architecture. His role
on the panel was to proselytise his book, Introduction to Computing Systems:
From bits & gates to C & beyond [Patt and Patel 2013], which introduced
programming from the low level up. I found the idea intriguing particularly as
I also was concerned with the problem that students tend to stick with the first
thing they learn. If my concern was correct, it should be better to start with the
programming model you want them to internalize, rather than start with machine-
level programming. Nonenetheless, I am always open to new ideas, and when the
opportunity presented itself to run a computer organization course followed by a
C course, I decided to try the idea for myself.

After reviewing the latest edition of Patt and Patel [2013], I saw a gap for a
treatment that focused more on assembly-level programming as it relates to C, and
less on the hardware. For any who disagrees, there is another book out there.

Another problem is that text books are becoming increasingly expensive.
Patt and Patel [2013] retails for over $150; the fifth edition of the classic
Computer Organization and Design: The Hardware/Software Interface [Patterson
and Hennessy 2014] lists at almost $90.

That takes me to another motivation for writing this book: affordability.
Where I live, South Africa, we are charged European prices for books. While
publishers do sometimes try to lower prices when we ask nicely, books are very
expensive in relation to earning power. We also have a significant fraction of
students from very low income groups. All of that motivates me to explore ways
of pushing cost down. One way I am doing that is by publishing this book with
a Creative Commons Attribution-NonCommercial license, which makes it free to

i



copy for non-commercial purposes. Another way I aim to bring costs down is by
publishing using print on demand (PoD). The cost per book printed using PoD
publishing is higher than the cost per book of a large print run, but a large print
run is only economic if a significant fraction of the books is sold. By using PoD,
I can also cut out the overheads of a publisher, who has to make money out of
successful books to pay for warehouses full of unsuccessful titles.

How well does it work?
My students do this course after a year of object-oriented programming so

it is not in that sense a low-level first approach. They find it hard to break out
of calling functions “methods”, as an example of an entrenched habit. Overall
though my experience is that the approach works. To some extent starting with
a relatively high-level language with classes and objects makes it easy to code
things that provide tangible results. Taking a dive after that into the low level is a
bit discomforting, but so is any real learning.

A few thoughts on my approach.
Standard MIPS-based treatments generally follow a particular standard for

compiler calling conventions; I construct my call stack slightly differently for
two reasons. The first is I find my approach a bit easier to explain. The second is
to get across to students that the stack is not a fixed structure in memory, but the
consequence of conventions that you can change.

I try to avoid teaching things in a way that has to be undone later. Rather,
I use simplifications, then fill in the gaps. For example, I introduce templates
for coding statements into assembly language (such as if statements or for loops)
without taking into account all the requirements for generality, then add in those
requirements.

I use C as a “pseudocode” deliberately in the first part of the book, even though
C is clearly a real language, to create familiarity with the syntax. For students
with a background in a C-like language, this should not present a major issue.
For others, the “pseudocode” is mainly used in small examples and should be
understandable from the context.

My intent is to put students in a position to understand topics like compilers,
recursion and data structures by seeing what happens underneath. I think the
approach works, though the best test is whether graduates who have learnt this
way are able to work more efficiently and with more insight later in life.

Finally, I look forward to hearing from others who use this material. If you
choose to use the free version, your views will be just as valuable as if you pay
for a commercially published copy.



Contents

Preface i

List of Figures vi

List of Tables ix

Definitions x

1 Introduction 1
1.1 Some Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Machine Language versus High-Level Language . . . . . . . . . 5
1.3 Code Translation . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Machine Instruction Sets . . . . . . . . . . . . . . . . . . . . . . 10
1.5 The Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Practicalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.7 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Numbers and the Machine 19
2.1 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Numbers and Logic . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 The Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Assembly by Example 48
3.1 Instructions and their Formats . . . . . . . . . . . . . . . . . . . 48
3.2 Memory access . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3 ALU operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

iii



iv CONTENTS

3.4 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5 Floating Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Memory and Functions 78
4.1 Calling functions . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3 Local Variables and the Call Stack . . . . . . . . . . . . . . . . . 96
4.4 Bigger Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.5 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 Data Structures 122
5.1 Machine-Level Data . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3 Dynamic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.4 Structured types . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.5 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.6 Putting it all Together . . . . . . . . . . . . . . . . . . . . . . . . 167
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6 Performance 171
6.1 More at once . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.2 Memory Hierarchy and Performance . . . . . . . . . . . . . . . . 180
6.3 Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.4 Energy and mobility . . . . . . . . . . . . . . . . . . . . . . . . 185
6.5 Wrap-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

References 190

A ASCII Character Set 192

B MIPS Register Conventions 195

C SPIM System Calls 197

D SPIM Call Stack 199



CONTENTS v

E SPIM Background 201
E.1 SPIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

E.1.1 Simulation of a Virtual Machine . . . . . . . . . . . . . . 203
E.1.2 SPIM Interface . . . . . . . . . . . . . . . . . . . . . . . 203
E.1.3 Surprising Features . . . . . . . . . . . . . . . . . . . . . 203
E.1.4 Assembler Syntax . . . . . . . . . . . . . . . . . . . . . 204
E.1.5 System Calls . . . . . . . . . . . . . . . . . . . . . . . . 206

E.2 Description of the MIPS R2000 . . . . . . . . . . . . . . . . . . 208
E.2.1 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . 208
E.2.2 Byte Order . . . . . . . . . . . . . . . . . . . . . . . . . 211
E.2.3 Addressing Modes . . . . . . . . . . . . . . . . . . . . . 211
E.2.4 Arithmetic and Logical Instructions . . . . . . . . . . . . 212
E.2.5 Constant-Manipulating Instructions . . . . . . . . . . . . 214
E.2.6 Comparison Instructions . . . . . . . . . . . . . . . . . . 214
E.2.7 Branch and Jump Instructions . . . . . . . . . . . . . . . 215
E.2.8 Load Instructions . . . . . . . . . . . . . . . . . . . . . . 217
E.2.9 Store Instructions . . . . . . . . . . . . . . . . . . . . . . 217
E.2.10 Data Movement Instructions . . . . . . . . . . . . . . . . 218
E.2.11 Floating Point Instructions . . . . . . . . . . . . . . . . . 219
E.2.12 Exception and Trap Instructions . . . . . . . . . . . . . . 221

E.3 Memory Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
E.4 Calling Convention . . . . . . . . . . . . . . . . . . . . . . . . . 222
E.5 Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Index 226



List of Figures

1.1 Major components of the memory hierarchy and CPU . . . . . . . 13
1.2 Multilevel caches in a multicore deisign . . . . . . . . . . . . . . 14

2.1 A nand gate used to implement a not gate . . . . . . . . . . . . . 20
2.2 Logic gate symbols . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Exclusive or from nand gates . . . . . . . . . . . . . . . . . . . . 24
2.4 IEEE 754 32-bit floating point . . . . . . . . . . . . . . . . . . . 30
2.5 Half adder logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Full adder logic block . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7 Full adder logic circuit . . . . . . . . . . . . . . . . . . . . . . . 36
2.8 Four-bit adder block diagram . . . . . . . . . . . . . . . . . . . . 37
2.9 SPIM at launch . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.10 SPIM user text segment at launch . . . . . . . . . . . . . . . . . . 40
2.11 SPIM upset about no main entry point . . . . . . . . . . . . . . . 42
2.12 SPIM user text segment: minimal program . . . . . . . . . . . . . 42
2.13 SPIM user text segment: for loop . . . . . . . . . . . . . . . . . . 43

3.1 MIPS common instruction formats . . . . . . . . . . . . . . . . . 49
3.2 MIPS load upper immediate instruction . . . . . . . . . . . . . . 51
3.3 SPIM data segment . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 SPIM data segment: intialized . . . . . . . . . . . . . . . . . . . 55
3.5 SPIM text segment: loads from memory . . . . . . . . . . . . . . 55
3.6 Registers vs. RAM . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.7 SPIM text segment: more efficient loads from memory . . . . . . 58
3.8 SPIM data before and after saving SP . . . . . . . . . . . . . . . 59
3.9 Sign-extending . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.10 Effect of short loads . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.11 SPIM data layout with a short data item . . . . . . . . . . . . . . 62

vi



LIST OF FIGURES vii

3.12 SPIM expansion of mulo pseudoinstruction . . . . . . . . . . . . 63
3.13 Force high halfword to contain only low halfword sign bit . . . . . 66
3.14 Loop templates . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.15 if templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 Abstract stack example . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Conceptual memory layout . . . . . . . . . . . . . . . . . . . . . 80
4.3 Function call tree and register saving . . . . . . . . . . . . . . . . 82
4.4 Saving the return address . . . . . . . . . . . . . . . . . . . . . . 86
4.5 More general loop and if templates . . . . . . . . . . . . . . . . . 95
4.6 Data segment used so far . . . . . . . . . . . . . . . . . . . . . . 97
4.7 More detail of stack storage scheme . . . . . . . . . . . . . . . . 104
4.8 Minimal function call templates . . . . . . . . . . . . . . . . . . 105
4.9 Stack frame: minimal example with two words for variables . . . 107
4.10 More general function templates . . . . . . . . . . . . . . . . . . 111
4.11 Data segment used so far (stack) . . . . . . . . . . . . . . . . . . 112
4.12 Call tree for running a Fibonacci example . . . . . . . . . . . . . 114
4.13 Stack frame at two stages of the Fibonacci program . . . . . . . . 119

5.1 Extracting a character by shifting and masking . . . . . . . . . . . 124
5.2 Indexing elements of 4 bytes . . . . . . . . . . . . . . . . . . . . 134
5.3 Conceptual view of a switch . . . . . . . . . . . . . . . . . . . . 138
5.4 More templates: switch, break and continue . . . . . . . . . . . 139
5.5 Switch as seen in SPIM . . . . . . . . . . . . . . . . . . . . . . . 141
5.6 Linked list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.7 Minimal malloc implementation . . . . . . . . . . . . . . . . . . 143
5.8 Before and after SBRK . . . . . . . . . . . . . . . . . . . . . . . . 146
5.9 Initialized heap: nothing allocated . . . . . . . . . . . . . . . . . 147
5.10 Simple list example . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.11 Implementation of an object . . . . . . . . . . . . . . . . . . . . 162
5.12 Data segment used so far (stack) . . . . . . . . . . . . . . . . . . 167

6.1 The benefits of a better algorithm . . . . . . . . . . . . . . . . . . 171
6.2 The pipeline concept . . . . . . . . . . . . . . . . . . . . . . . . 173
6.3 Timing of determining branch outcome . . . . . . . . . . . . . . 176
6.4 Amdahl’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.5 Locality variations . . . . . . . . . . . . . . . . . . . . . . . . . 181



viii LIST OF FIGURES

E.1 MIPS R2000 CPU and FPU . . . . . . . . . . . . . . . . . . . . 208
E.2 The Status register. . . . . . . . . . . . . . . . . . . . . . . . . 210
E.3 The Cause register. . . . . . . . . . . . . . . . . . . . . . . . . . 210
E.4 Layout of memory. . . . . . . . . . . . . . . . . . . . . . . . . . 221
E.5 Layout of a stack frame. The frame pointer points just below the

last argument passed on the stack. The stack pointer points to the
last word in the frame. . . . . . . . . . . . . . . . . . . . . . . . 222

E.6 The terminal is controlled by four device registers, each of which
appears as a special memory location at the given address. Only a
few bits of the registers are actually used: the others always read
as zeroes and are ignored on writes. . . . . . . . . . . . . . . . . 224



List of Tables

1.1 ASCII encoding example . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Binary and Decimal Units . . . . . . . . . . . . . . . . . . . . . 17

2.1 Nand truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 And and Or truth table . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 De Morgan’s Law truth table . . . . . . . . . . . . . . . . . . . . 23
2.4 And, Or, Xor truth table . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 2’s complement examples . . . . . . . . . . . . . . . . . . . . . . 28
2.6 Half adder truth table . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7 Full adder truth table . . . . . . . . . . . . . . . . . . . . . . . . 36
2.8 Register conventions . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Sizes of standard C basic types . . . . . . . . . . . . . . . . . . . 123

A.1 ASCII encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
A.2 ASCII non-printing character encoding . . . . . . . . . . . . . . . 194

B.1 Register conventions including floating point . . . . . . . . . . . 195

C.1 SPIM system calls . . . . . . . . . . . . . . . . . . . . . . . . . . 197

E.1 System services. . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
E.2 MIPS registers and the convention governing their use. . . . . . . 209

ix



Definitions

A
absolute address – Address that can be used directly. See also address, relative address.
absolute path – A path from the root of the file system, in UNIX designated by starting with “/”.

See also system path, relative path, path.
abstraction – The principle of hiding all but the most essential details.
activation record – See stack frame.
actual parameter – See parameter.
address – Number signifying position relative to the start of main memory (RAM); usually

numbered in bytes. See also absolute address, relative address, pointer.
ALU – See arithmetic-logic unit.
Amdahl’s Law – A version of the speedup formula that emphasises the sequential fraction.
architecture – A consistent design that allows a range of implementations, each running the same

code subject only to available resources (memory, speed, connected devices). The Intel
IA32 architecture for example runs the same 32-bit instruction set across many designs
going back to the 80386, also called Intel386, i386, or 386, going back to 1985.

argument – See parameter: term used in C-family languages for the value passed in.
arithmetic-logic unit (ALU) – component of CPU that decodes and executes instructions.
array – Data structure: elements accessed by (usually) integer index; in C, all elements are the

same type and an array is represented by the address of (pointer to) the first element.
ASCII – American Standard Code for Information Interchange – a 7-bit, extended to 8 bits, code

for representing characters. See also Appendix A.
assembler – A program that translates assembly language to machine code. See also assembly

language.
assembler directive – An instruction to an assembler that does not generate code. See also

assembler.
assembly language – A symbolic representation of machine code that mostly translates directly to

machine code instructions. See also assembler, pseudoinstruction, assembler directive.
B
bias – A way of representing positives and negatives where a bias has to be subtracted from the

number to represent its true value. In IEEE floating point, the exponent is represented this
way (bias = 127). Also called offset or excess.

big endian – Ordering of smaller items like bytes within a word that starts at the high-order (big)
end of the word, so bytes within a word appear in memory in order 0,1,2,3. See also little
endian, endianness.

x



xi

bit – Binary digit (0 or 1 in a number represented in base 2).
boolean algebra – Rules for arithmetic with true (1) and false (0) values.
branch delay slot – The instruction immediately after a branch that is executed whether the branch

is taken or not. See also delayed branch.
branch instruction – Changes flow of control conditionally; encodes a condition and also has a

target address. A branch is taken if the condition is true. The address is usually relative.
See also jump instruction, delayed branch.

bytecode – A machine instruction set designed to be portable, usually interpreted or translated to
actual machine code.

C
cache – A fast memory that is used to fake the effect of the entire memory being faster than a

reasonably affordable memory technology. Decisions as to what is in a faster layer are
made in hardware. The fastest cache is integrated into the CPU in recent designs, and is
the highest-level or level 1 (also: L1 cache). There can be 1 or more lower levels of cache,
usually in current designs integrated into the CPU chip, numbered L2, . . .

CISC – See complex instruction set computer.
compiled – Translated with significant changes in amount and style of code from a high-level

language to a lower-level language (usually machine code.
complement – In logic, inversion of all bits. See also two’s complement.
complex instruction set computer (CISC) – Any design that does not fit the RISC definition.

For example, with variable instruction lengths, instructions that only work with specific
registers and instructions that do arithmetic or logic on memory contents.

complexity – Growth rate of time or extra space needed by an algorithm expressed as the largest
term of a function of size of data N. See also space complexity, time complexity, complexity
class.

complexity class – Classification of a function in terms of its growth rate based on the largest term.
See also complexity.

constant pool – Region of memory containing constant values such as strings. See also heap,
stack, globals.

conditional – A C operator that given a boolean value selects between two alternatives. Written
bool ? alt1 : alt2.

contradiction – In logic, any formula that is false for all values of variables (or in a logic circuit,
all inputs). See also tautology.

coprocessor – An auxiliary processor outside the main logic path. See also floating-point unit,
graphics processing unit.

core – In designs with multiple CPUs on a chip (multicore), each CPU is called a core. Cores
often share the lowest-level on-chip cache.

CPU – See processor.
D
declaration – In C, the place where the type of a program construct (function, type or variable) is

known but does not require runtime resources. See also definition.
definition – In C, the place where a program construct (function or variable) requires runtime

resources. See also declaration.



xii DEFINITIONS

delayed branch – A branch instruction that executes the following instruction whether the branch
is taken or not. See also branch delay slot.

De Morgan’s Laws – In logic, rules to redistribute negation over and and or.
digit signal processor (DSP) – A specialized CPU that is designed for efficient digit-analog

conversion as in audio or video.
dispatch table – Table of addresses that can be used in a jump or similar instruction to direct to

code based on an index. See also jump table.
DRAM – See dynamic random access memory.
DSP – See digit signal processor.
dynamic instruction count – Count of instructions executed in a particular run of a program. See

also static instruction count.
dynamic linking – Linking that is delayed until a program runs. See also linker, library, static

linking, executable file, object file.
dynamic random access memory (DRAM) – RAM usually implemented with a capacitor storing a

bit that needs to be refreshed periodically to maintain its value: relatively inexpensive, but
not as fast as SRAM.

E
embedded system – A computer that is part of another machine or device.
endianness – Intel architectures are little-endian; MIPS can be either. See also little endian, big

endian.
excess – See bias.
executable file – A file that can be run directly. See also linker, object file.
F
floating point – Computer representation of numbers that can include fractions. Most CPUs

that support floating point have a separate set of registers for floating point values. The
IEEE 754 standard defines a range of different sizes of floating-point numbers and includes
concepts like representing ±∞ and not a number (or NaN).

floating-point unit (FPU) – Component of a CPU that handles floating-point instructions, usually
with its own register set. See also coprocessor.

formal parameter – See parameter.
FPU – See floating-point unit.
frame pointer – Register to keep track of the start of the current stack frame. MIPS machine code

convention: register 30 ($fp or $30). Some compilers do not use a frame pointer (if you
know the size of the stack frame, you can work out everything you need from the stack
pointer).

function (procedure, subroutine) – Unit of code that can be invoked with a return address to return
to the point immediately after invocation; optionally can include parameters passed in, local
variables and a return value. In object-oriented languages, a method is the same thing with
added features: the ability to reference a specific object, and the possibility of finding a
different version of the method by inheritance.

G
garbage collector – Recovers memory no longer accessible by a program, usually when memory

starts to fill up. See also heap, managed-memory language – not a feature of C.
gate – Elementary logic function implemented in hardware. See universal gate.



xiii

general-purpose computing on graphics processing units (GPGPU) – Using a GPU to speed up
non-graphics computation.

GPGPU – See general-purpose computing on graphics processing units.
GPU – See graphics processing unit.
graphics processing unit (GPU) – Component of a CPU that handles graphics instructions,

sometimes on a separate chip. See also coprocessor.
H
hard real time – A real-time requirement that if not met means system failure. See also real time,

soft real time.
heap – Region of memory containing dynamically allocated and deallocated data (also the name

of a data structure). See also globals, stack, constant pool.
hexadecimal (hex) – Base 16 – convenient for representing binary numbers since grouping bits in

4s starting from the low end of the number converts directly to hex.
high-level language (HLL) – A language designed for human convenience of programming, not

close to the machine. See also assembly language.
HLL architecture – Machine instruction set designed to be closer to a high-level language than

traditional machine code.
I
IEEE 754 – See floating point.
ILP – See instruction-level parallelism.
immediate operand – An operand value encoded into the instruction. See also operand.
infix notation – Function names are written between operands, as in arithmetic expressions. See

also postfix notation.
inheritance – Ability in object-oriented languages to derive a new class from a parent class with

the option to reuse or override methods of the parent class – not a feature of C (can be built
up laboriously in machine code).

instruction count – See static instruction count, dynamic instruction count.
instruction issue – Transition of an instruction to the execute stage (or first execute stage, with a

deeper pipeline).
instruction-level parallelism (ILP) – Increasing CPU throughput by overlapping execution of

instructions.
instruction set architecture (ISA) – Instruction set as seen by the programmer or compiler.
interpreted – Executed line-by-line, as opposed to compiled.
interrupt – Event that breaks the sequence of execution, often resulting in use of a jump table to

find an interrupt handler. See also interrupt handler, interrupt vector, jump table.
interrupt handler – Code invoked to handle an interrupt. Generally must be short to minimise

backing up other interrupts.
interrupt vector – Sequential (possibly with gaps) locations to which control transfers on an

interrupt, with one location for each type of interrupt.
ISA – See instruction set architecture.
issue – See instruction issue.



xiv DEFINITIONS

J
JIT – see just in time compiler.
jump instruction – Changes flow of control unconditionally; a jump and link instruction stores the

return address. The address may be immediate or from a register but is usually absolute.
See also branch instruction.

jump table – Table of jump instructions that can be used to transfer control code based on an index.
See also interrupt, dispatch table.

just in time (JIT) compiler – A compiler that translates to machine code immediately before the
particular code is needed; sometimes used as an alternative to interpreting bytecode.

L
L1, L2, etc. – First, second, etc., levels e.g. of a cache hierarchy in which L1 is the fastest and

closest to the CPU.
label – A name used in assembly language to mark a location in memory (an instruction or a

location where a constant has been placed; in SPIM’s assembly language, a label has a “:”
after its name where it is defined.

library – Precompiled code available to link into programs. See also linker, dynamic linking, static
linking.

linker – A program that combines separately compiled files. See also object file, library.
little endian – Ordering of smaller items like bytes within a word that starts at the low-order (little)

end of the word, so bytes within a word appear in memory in order 3,2,1,0. See also big
endian, endianness.

load – An instruction that copies memory contents to a register (in MIPS, there are different load
instructions for different sizes and types of operand, e.g., lw loads a word into an integer
register). See also store.

locality – The principle that a program uses a small subset of memory at a time. See also spatial
locality, temporal locality.

M
machine code – Instructions that are directly interpreted by hardware with no further translation.

See also assembly language.
macro – Named text that can be substituted into other text by use of its name. Macros can also

have parameters; distinguished from functions in that they have no clear existence at run
time.

make – A UNIX utility that uses a Makefile (capital “M” optional) containing dependence rules
and actions to resolve failed dependences.

managed-memory language – A language in which inaccessible dynamically allocated data space
is automatically. See also garbage collector.

memory leak – A program not written in a managed-memory language starts to run out of memory
because the program does not correctly deallocate dynamic data when it is no longer
accessible.

method – not a feature of C or machine code (directly – you can make up a similar concept with
some effort) – see function.

MIPS – A RISC processor architecture common in embedded devices.
multicore – See core.



xv

N
null pointer – A pointer value that represents no memory location, usually a zero. See also pointer.
O
object file – A compiled portion of a program that must be combined with other files to make an

executable file. See also linker.
one’s complement (1’s complement) – A way of representing integer negatives, by inverting all bits.

Not widely used since unlike two’s complement, it has a wasted value with zero represented
two ways, as all 0s or all 1s.

offset – See bias.
opcode – Part of an instruction that signifies what operation it performs (in MIPS, modified by

function bits).
operand – In a MIPS instruction or C expression, value to be used or in MIPS a destination for

computed value. See also immediate operand, register, infix notation.
operator – A built-in function with a special symbol, usually in infix notation, such as + or *.
P
parameter – value passed in to a function. In the function definition, called a formal parameter

and in the call, an actual parameter. In C, a formal parameter is called a parameter, and an
actual parameter an argument.

path – Sequence of directory names, in UNIX separated by “/”. See also system path, relative
path, absolute path.

pipeline – Organization of instruction execution overlapping sequential instructions. See also stall.
pointer – A value that contains a memory address. See also null pointer, reference.
pop – Remove an item from the top of a stack, adjusting the stack pointer back an item. See also

stack, push.
portable – Designed to run on more than one machine, possibly very different machines.
postfix notation – Function names are written after an operand, as in arithmetic expressions. See

also infix notation.
procedure – See function: a name used in older languages including Pascal.
processor – Logic unit that interprets instructions and includes the fastest layers of memory,

registers and caches. Also called central processing unit (CPU). See also core, arithmetic-
logic unit.

program counter (PC) – Register to keep track of the current instruction being executed. On
MIPS, it always is a multiple of 4 since instructions are word-aligned. Advances by 4 each
instruction, unless a flow control instruction changes it (jump or branch).

pseudoinstruction – An instruction in assembly language that is not a real machine instruction but
translates to one or more real machine instructions. See also assembler.

push – Add an item onto the top of a stack, advancing the stack pointer. See also stack, pop.
R
RAM – See random access memory.
random access memory (RAM) – Any memory that has an addressing scheme that equally allows

any item to be accesses without e.g., a delay to make that region accessible.
real time – A requirement that a task be done by a time deadline. See also hard real time, soft real

time.
recursion – See recursion.



xvi DEFINITIONS

reduced instruction set computer (RISC) – An architecture in which all memory accesses are via
loads (copy to a register) or stores (copy a register to memory), all arithmetic and logic
is through registers, and instructions have relatively simple formats without variations in
instruction length. Also has a large set of general-purpose registers (MIPS has 32 integer
registers, though register zero –$zero or $0 – is hardwired to zeroes and register 31 – $ra
or $31 – is hardwired as the return address register). See also CISC.

reference – Slightly disguised pointer in languages with a higher-level approach than C.
register – Extra-fast memory designed into the CPU logic; usually a very limited number. Register

addresses are usually hard-coded into instructions for speed. See also spill registers, frame
pointer, stack pointer, program counter, reduced instruction set computer.

relative address – Address that must be added to a given location (usually the PC). See also
address, absolute address.

relative path – Path in UNIX starting with anything but “/”, relative to the current working
directory. See also system path, path, absolute path, working directory.

return address – Usually the address of the next instruction after a call instruction (e.g., jump and
link, jal). The MIPS architecture stores the return address in register 31 ($ra or $31, but
you can overrule this with the jalr instruction, which encodes a return address register).

RISC – See reduced instruction set computer.
S
shell – In UNIX-like systems, the environment where you run programs including a scripting

language.
short-circuit evaluation – Evaluation usually of logical or boolean expressions that stops as soon

as the answer is known.
sign bit – A bit used to signify negative (usually 1) or positive (usually 0). See also two’s

complement and signed magnitude.
signed magnitude – A way of representing integer negatives, by using the same bit representation

for a negative and positive, except the sign bit is 1 for a negative. Used in IEEE floating
point. See also two’s complement.

spatial locality – The principle that a program tends to use memory close to each other. See also
locality, temporal locality.

soft real time – A real-time requirement that if not met can be handled by a fallback option like a
drop in quality. See also real time, hard real time.

space complexity – Complexity expressed in terms of extra space needed by an algorithm over and
above the initial data. See also time complexity, complexity class.

speedup – After a change, tbe f ore
ta f ter

. See also Amdahl’s Law.
spill registers – Save registers to RAM, usually on a function call.
SRAM – See static random access memory.
stack – At hardware level, a region of memory used to represent the state of function calls including

local variables, values that have to be saved across calls, parameters and the return address.
See also push, pop, heap, globals, constant pool, spill registers.

stack frame (activation record) – Contents of the stack representing the state of one particular
function call.

stack pointer – Register to keep track of the top of the stack. In MIPS machine code, by convention,
this is register 29 ($sp or $29). See also frame pointer.



xvii

static definition – In C: function or variable with a name only visible in one compiled source file.
static instruction count – Count of the number of instructions in a program. See also dynamic

instruction count.
static linking – Linking that is done when creating an executable file. See also linker, library,

dynamic linking, executable file, object file.
stall – One or more lost cycles when a pipeline is unable to continue.
static random access memory (SRAM) – RAM usually implemented with a transistor storing a bit

that does not need to be refreshed periodically to maintain its value: relatively expensive,
and is faster than DRAM. Also requires more components than DRAM per bit, and hence
not as dense, which is why it is more expensive. Generally used for caches.

store – An instruction that copies register contents to memory (in MIPS, there are different store
instructions for different sizes and types of operand, e.g., sw stores a word from an integer
register). See also load.

structured data – A data type composed of one or more elements, not necessarily of the same type.
Called a struct in C; a class is the same concept but with methods and inheritance added.

subroutine – See function: a name used in older languages including FORTRAN.
system path – Sequence of path names, in UNIX separated by “:” used to find executables run

with no path name. See also path, relative path, absolute path.
T
taken branch – When the branch condition is true and the branch instruction jumps to the target

address rather than falling through to the next instruction, the branch is taken. See also
branch.

tautology – In logic, any formula that is true for all values of variables (or in a logic circuit, all
inputs). See also contradiction.

temporal locality – The principle that a program is likely to use the same memory again some time
soon. See also spatial locality, locality.

time complexity – Complexity expressed in terms of run time of an algorithm. See also space
complexity, complexity class.

truth table – Table showing all possible values of a logical or boolean function, given all possible
inputs.

two’s complement (2’s complement) – A way of representing integer negatives, by inverting all
bits and adding 1. In 2’s complement arithmetic, an overflow occurs if there is a carry in or
out of the sign bit, but not both. See also one’s complement.

U
universal gate – A gate that can be used to implement all other logic functions.
W
word-aligned – On a byte-addressed machine, an address that is an even multiple of the word size

(in MIPS, a multiple of 4).
working directory – Directory relative to which paths are defined. See also path, relative path,

absolute path.
Z
$zero – See reduced instruction set computer.



xviii DEFINITIONS



1 Introduction

PROGRAMMING IN MANAGED-MEMORY LANGUAGES like Java, Python and
C# takes a lot of pain out of programming, but also takes away the need to
understand at a deep level what is going on. Often, that is good enough.

You just want to get the job done with minimum pain, and with minimal chance
of programmer error.

By “managed-memory language”, I mean one where you do not have to
deallocate memory explicitly. Such languages also often include large libraries
of carefully-worked-out data structures and algorithms, so you don’t have to code
these rather basic things from scratch.

Why, anyway, would anyone want to get rid of such conveniences as automatic
memory management, high-level abstractions of data structures and classes with
inheritance? There are times when extreme efficiency is a concern, such as
programming a very small device, or where a task has to finish within a predicted
time.

How real are these scenarios?

Embedded
Don’t most computers you buy today have multiple cores running at over 2GHz
and RAM measured in Gbytes? Wrong. Most computers sold today are very
small devices that are part of another machine. There are obvious ones like
MP3 players, that you would know are in essence a scaled-down computer, and
slightly less obvious ones like a home ADSL router. But small computers are
part of many other things in less obvious ways – washing machines, cars, smaller
home appliances – to quote a few examples. When a computer is part of another
machine, it is called an embedded system and embedded systems may have severe
cost and power-use constraints. What’s more, they may have to continue running
unattended for years in the field, so they need to be simple and robust – and not

1



2 CHAPTER 1. INTRODUCTION

run out of memory or processing speed because of minor efficiency issues.

Real Time

What of systems where time to complete is critical? A real-time system is one
where specific tasks have hard time limits. A hard read-time task is one where
failure to complete in time means the system is broken. Think anti-lock brakes on
a car. If the computer controlling the anti-lock system doesn’t react in time, the
system is flawed. A soft real-time task is one where there is an acceptable failure
mode if you run out of time. Think digital TV that pixellates when the signal is
lost – quality suffers but to a point you can tolerate that sort of failure.

While real-time and embedded systems can be programmed with managed-
memory languages, there are times when efficiency and timing predictability
are important enough to justify a language close to the hardware so you know
exactly what is going on without a few layers hiding how things work from the
programmer.

Why

Those examples are a partial justification. In addition, for someone studying
Computer Science (or related subjects), a deeper understanding is called for. You
need to know what is going on under the hood, just as a mechanical engineer who
wants to design cars needs to understand how they work, not just how to drive
them (or plug in an automated diagnostic tool).

Abstraction is an important design issue both in programming language design
and in programming – hiding the how and allowing the programmer to focus
on the why. Nonetheless, someone has to know what is going on underneath,
otherwise we cannot create new programming languages and tools like compilers.

So, in this book, we take a break from the world of managed-memory
languages and high-level abstractions, and start from the bottom up to see how
things work. By the end of the first part, you should have a good idea of how a low-
level language like C is implemented, and some idea of how higher-level concepts
like objects map to the hardware. The second part switches to C programming to
build on your understanding of the low-level concepts.

The aim is to give you base from which you can move in any direction,
from learning more about hardware to using higher-level languages with a clearer



Some Basics 3

understanding of how they work.
To help you see the big picture, every now and then you will see a grey box.

These are of two types to emphasise different kinds of important points.
The first is a “takehome”, as illustrated here:

The take home message? Sometimes it is useful to focus on one point to
understand the purpose of a particular section.

The second is a “headsup”, of which an example follows:

Heads up: Sometimes you need to know that a particular point or issue
could cause confusion, so you need to pay particular attention to it.

1.1 Some Basics

At its lowest level, a computer is an electronic device that responds to different
voltage levels you can think of as representing 0s and 1s. These binary digits or
bits each represent one of two values but in combination represent as wide a range
of values as we need. Because a 0 can be thought of as a logical false value and a
1 as a logical true value, we can build up complicated operations by combinations
of simple boolean logic. Everything stored in a computer is represented as bits;
the actual interpretation of a given string of bits depends on the program. An
instruction at the machine level is just a string of bits; the same sequences of 0s
and 1s could represent a location in memory, an integer value, a floating-point
value or a sequence of characters.

If you program in a managed-memory language, this very basic feature of a
computer is hidden – you don’t get to see how, for example, locations in memory
are represented, or manipulate them. You may have a high-level construct like
a reference that allows you to store the location of an object in a variable, but
you probably cannot do something like add 4 to the reference to make it point to
another part of memory, or reinterpret the bit string representing the reference as
another type of data.

Why would you want to do things like this?
If you are writing a compiler, one of the things you need to do is create

machine-level instructions. A machine-level instruction, as we will see, includes
components that are a fixed bit pattern, and may include other components
representing data values or locations in memory. To create a machine instruction,



4 CHAPTER 1. INTRODUCTION

Table 1.1: ASCII encoding example: the per cent symbol

char encoding
% 0 1 0 0 1 0 1

you need to be free to switch what a given bit pattern represents at one point (for
example, an integer) to something else containing the same bits (a segment of a
machine instruction). Here, we are not going to look at machine instructions as
bit patterns too often: we use a slightly more convenient notation called assembly
language that can be translated relatively straightforwardly to machine code by a
program called an assembler.

Let’s look at some examples.

Characters at machine level can be represented in various ways. A simple
approach is to use 8 bits to represent characters, as in ASCII (American Standard
Code for Information Interchange). A more modern design, Unicode, uses 16 bits,
sufficient to represent more complex alphabets. For our examples, to keep things
simple, we’ll stick with ASCII. ASCII was originally designed as a 7-bit code,
and the first 32 codes (numbered 0–31) are non-printing characters designed for
purposes like controlling printers or inserting codes in a data stream (such as an
end of file marker). ASCII evolved to an 8-bit code with several variants allowing
for extensions like accented characters in languages that use them. We will stick
to the simple alphanumeric subset of ASCII, including punctuation and control
characters – the original 7-bit design.

Here is an example. The character “%” is encoded as the number 37, or the
bit pattern in table 1.1. This bit pattern represents the binary number 1001012.
There is a full listing of printable ASCII characters and a partial list of the more
interesting non-printing characters in Appendix A.

Already, we have seen that this one bit pattern can represent two completely
different things. In the MIPS instruction set (of which more later), 6 bits are
used to signify operations. The same 6 bits that represent the “%” character (not
counting the 0 at the high end of the number) as a MIPS operation signifies a
logical or between two registers.

The take home message? A bit pattern can represent many things, and
the context and how it is used determines what it actually means.



Machine Language versus High-Level Language 5

1.2 Machine Language versus High-Level Language
How different are the low-level machine instructions from a language you may be
familiar with?

To start with, I will use a made up assembly language to express machine
instructions to give you a taste of what they look like; we will later graduate to
using the MIPS instruction set, which is only a little more difficult. I will express
programs in a pseudocode similar to C and translate them to assembly language.
We will later use a systematic approach for this, to get a feel for how a compiler
would do it.

Let’s take a simple construct – a for loop that adds the first N numbers from 0
up. Here it is in my C-like pseudocode:

sum = 0;
for (i = 0; i < N; i++)

sum += i;

Heads up: You may notice that my “pseudocode” looks suspiciously
like a real programming language rather than an approximate design
notation. This is deliberate: we will do C properly later so we might
as well get used to how it looks. A real pseudocode notation of course
does not follow syntax rules of a programming language and is allowed
to leave out inessential details.

An instruction in general is divided into an operation, encoded in an opcode,
and operands representing the data or machine address to be operated on. Our
machine language has special fast memory locations called registers that we use
to hold data values we are currently working with. Let’s call these R0. . .R16,
and assume that R0 always contains the value zero. Our machine has operations
like test a value against a register for less than, and jump to a location if the
test is true (a branch instruction, written as brlt Ra,Rb,target, meaning go to
target if Ra < Rb – also sometimes called a conditional branch). We also
assume a brge Ra,Rb,target instruction that tests for Ra ≥ Rb. We also can
jump unconditionally to a location in our code (a jump instruction, written as j
target). We can also do arithmetic between a pair of registers and store the result
in a destination register. Finally, we can add comments to our code using a “#”
symbol (the rest of the line after that is purely for the human reader). Our machine
code looks something like this:



6 CHAPTER 1. INTRODUCTION

# assume N is in R1, use R2 to hold sum
# use R3 to store the loop counter i

add R2,R0,R0 # sum = 0;
add R3,R0,R0 # for (i = 0; i < N; i++)

test: brge R3,R1,done # test before first iteration
add R2,R2,R3 # sum += i;
addi R3,R3,1 # increment loop counter
j test # back to the test

done: nop

A few more details: note the addi instruction. This has an example of an
immediate operand – a value built directly into the instruction, rather than fetched
from elsewhere. In this case, the immediate value is a 1. Also note the nop (no-
operation) instruction at the end of the loop. This is to provide a place to branch
to – usually, there would be an actual instruction there that did something useful.
Also note the use of labels – a word followed by a “:” in the left hand margin.

There is a fair amount of variation in notation in assemblers, aside from the
fact that the actual instruction set differs from machine to machine. Some, for
example, use a “;” symbol to mark comments. Another variation is using a “#”
symbol to mark an immediate operand (obviously not so useful if the same symbol
is used to start a comment), or a “$” symbol at the start of a register name. When
we look at how to program a MIPS machine we will see a few of these variants.
If you use a specific assembler, you need to learn its conventions – but the main
thing you need to learn if you switch to a different machine is how its instruction
set differs.

Heads up: The MIPS assembler we use uses the “#” comment convention
but when displaying programs at run time in the debugger, uses a “;” as
a comment separator to keep things interesting.

Here is another variation. If we do the test at the end of the loop, our code
saves one instruction execution every time it goes through the loop body, at the
cost of a wasted jump instruction at the top. Also, if we branch from the test at
the end of the loop, we can eliminate the need to the extra nop instruction:

# assume N is in R1, use R2 to hold sum
# use R3 to store the loop counter i

add R2,R0,R0 # sum = 0;
add R3,R0,R0 # for (i = 0; i < N; i++)



Machine Language versus High-Level Language 7

j test # test before first iteration
body: add R2,R2,R3 # sum += i;

addi R3,R3,1 # increment loop counter
test: brlt R3,R1,body # not done? Go again

The number of instructions executed in a particular run of a program is called
the dynamic instruction count. The number of instructions you count by reading
the program is called the static instruction count. If you don’t count the nop
instruction, the two versions of the code have the same static instruction count
(6 instructions). The dynamic instruction count, however, is lower since the
repeated parts of the loop are shorter by 1 instruction. That may not look like a
lot, but loops are where many programs spend most of their time, and shortening
the loop dynamic instruction count by 25% per iteration (reducing from 4 to 3
instructions) is a significant improvement. Usually, if memory is not tight, you
are prepared to make your code take up more memory (higher static instruction
count) in exchange for reducing execution time (usually lower dynamic instruction
count – though there are other tricks like more efficient memory access that can
reduce run time without reducing the number of instructions executed. For more
on performance, see chapter 6).

The notation I use here for our machine instructions is of course rather
different from the actual machine code on a real machine, which is just a string
of 1s and 0s. Assuming we know how to encode instructions (which bits
signify the operation, which signify the register names, and so on), it is mostly
straightforward to convert our notation to machine code (if tedious and error-
prone). We also need to convert the names “test” and “done” to a numeric
representation in the instructions that use them. Hardly anyone actually programs
directly in machine code because an assembler, a relatively simple program, can
do this sort of conversion from a convenient notation for machine instructions,
assembly language, to real machine instructions. Though assembly language rules
are simple, an assembler can still throw out a program for violating the rules.

In our simple loop example, the conversion from C-like code to assembly
language is quite straightforward. As we will see with MIPS machine code, the
assembly language for which is not far from my made-up assembly language
example, things get a lot more complicated when you deal with examples with
more intricate logic or data structures.



8 CHAPTER 1. INTRODUCTION

The take home message? An assembler provides a more convenient
notation than machine code, though that notation is still very close to
the machine and not at all similar to a programming language you may
be used to.

1.3 Code Translation
An assembler is a relatively simple program – mostly, there is a one-to-one
mapping between lines of code and machine instructions. The assembler must
keep track of names you use for labels, and needs to know how to create the
bit pattern for every instruction. Some assemblers include pseudoinstructions –
instructions that don’t translate directly to machine code, but still can convert to
at most one or a small number of instructions.

In my small example, I translate

sum = 0;

add R2,R0,R0

This is not the only way to zero a variable. You could also do a logical and with
zero. However, to the human reader, an instruction that copies the zero register
(R0) to another register is easier to understand. So an assembly may include a
pseudoinstruction like

copy R2,R0

and this instruction actually translates as machine code for something like
add R2,R0,R0. Since there is no real copy instruction, this is an example of
a pseudoinstruction. The MIPS assembler we will be using has a number of
pseudoinstructions. You do not need to know that they are not real machine
instructions in most cases because the assembler takes care of translation to
machine code. However, in a few cases, a pseudoinstruction translates to multiple
machine code instructions, so it is useful to understand what is going on when you
inspect the program in a debugger.

Converting to machine code where the gap between the language and machine
is bigger is not so trivial. A language that is significantly different from the
machine instruction set is called a high-level language (since “low-level” implies
closer to the hardware). Languages with complex features that have no direct



Code Translation 9

representation in the hardware like methods, objects, variable-sized arrays or lists
require complex translation to machine code. The nearest we see to any of this is
understanding how function call (also called procedure or subroutine call) works,
and how to access data via a memory address. A function call is like a more
primitive version of a method, in which you do not have the benefit of knowing
the identify of the object that invoked the function (there are no objects at machine
code level), or inheritance. Things like inheritance are of course layered on top of
the machine by the language implementation. We get a sense of how that works
in chapter 5.

There are two major approaches to translation to machine code. The first
is compiling, where the original code is translated once to machine code, and
the machine code (possibly with some additional work) can run directly on the
machine. The second is interpreting, where the program is not converted to
machine code but rather a program called an interpreter examines each program
construct and decides what to do with it as the program runs.

Compilers are generally used for languages where it is hard to make sense of
the code by looking at one line at a time. Interpreters tend to be used for simpler
languages like scripting languages, where it is possible to make sense of the code
without reading a lot of surrounding context.

An in-between case is a language that is translated to an intermediate form by
a compiler, and that intermediate form (which is not machine code) is interpreted.
An example is Java, which is compiled to an instruction set called bytecode, which
can then be interpreted. Java is implemented this way for portability: any system
that can interpret the bytecode program can run it. If a program is compiled to the
real instruction set, it won’t run directly on a different machine. Interpreting is
generally slower than compiling so Java systems generally include a just in time
or JIT compiler that converts bytecode to machine code the first time it’s run.

At hardware level, machine code is run by an interpreter, but one implemented
in hardware. Each instruction has to be loaded from RAM, analysed for the type of
instruction, any data movements necessary set up and executed by the appropriate
part of the CPU’s logic.

The take home message? Compilers convert to machine code or
something like it. Interpreters work with a program a small piece at a
time but do not convert the program to machine code.



10 CHAPTER 1. INTRODUCTION

1.4 Machine Instruction Sets

There are many different machine-level instruction sets. The most widely used
in commodity computers is Intel’s instruction set. In the 1970s and 1980s, there
was intensive debate as to the best way of designing machine instruction sets. On
the one hand, there were those who advocated high-level language architectures
(or HLL architectures) – machine instructions that had a direct correspondence
to constructs in programming languages, often a specific language. On the
other hand, there were those who advocated simpler designs that were easy to
implement in hardware. These simpler designs, the argument went, would be
easier to make fast because the hardware logic would be simpler, while any HLL
machine designed to be optimal for a particular language would be bound to have
the wrong design trade-offs for another language.

These arguments came to a head with the case for a reduced instruction set
computer (RISC): the argument was that a very regular design with very simple
modes of memory access would be faster overall, even if it resulted in a higher
instruction count than a more complex design [Patterson and Ditzel 1980]. What
followed was a move to quantitative design, an approach where philosophical
argument gave way to measurement using tools like simulators that allowed
comparison of different design choices [Hennessy and Patterson 2012].

Generally speaking, a RISC design has the following features:

• a relatively large number of general-purpose registers

• simple instruction formats, with all instructions the same length

• memory accesses either copy memory contents to a register (a load
instruction), or copy a register to memory (a store instruction)

The last detail is so important that another name for a RISC design is a load-
store architecture. Why is this a big deal? Registers are the fastest level of the
memory hierarchy, and managing their contents is an important part of machine-
level programming. Ordinary memory is so much slower that allowing arbitrary
instructions (e.g., an arithmetic operation) to work with slower memory makes it
much harder to design hardware for speed.

Instruction sets that do not fit the RISC definition are generally labelled as
complex instruction set computers or CISC.



Machine Instruction Sets 11

The Intel design is firmly in the CISC camp, with details like instructions that
can act directly on memory, different lengths for different types of instructions,
and instructions that only work with specific registers.

This being the case, why is Intel so successful? A comprehensive answer
requires an advanced architecture course as background. A simple answer is
that Intel had the combination of economy of scale and very smart engineers
who rescued a flawed design by very good implementation and industry-leading
fabrication technology. A more complicated answer would have to go into details
of why multicore designs became popular [Olukotun et al. 1996], and the effect
of something called the memory wall, where chasing raw instruction execution
speed became increasingly wasted as the speed gap between conventional RAM
and processing speed grew [Wulf and McKee 1995].

Why did Intel designers make life so hard for themselves? When the
prehistoric predecessor of the Intel 32-bit (extended to 64-bit) instruction set was
designed, memory was very expensive, and an instruction set design that reduced
the memory footprint of compiled code was not a bad choice. A typical RISC
design uses about 25% more memory for compiled code than a typical CISC
design though in some cases the difference can be a lot bigger [Steenkiste 1989].
Unfortunately design trade-offs that made sense in the past are hard to change.
IBM invented the concept of an architecture in the 1960s. Up till then, each new
computer design ran different instructions. The IBM 360 family changed that:
it was a range of computers that could all run the same code, only subject to
constraints like speed, memory and attached devices [Amdahl et al. 2000]. That
was a huge gain, since one set of programming tools and a single operating system
worked across the whole range. Computer designers have since discovered the
cost of a consistent architecture: it’s hard to change once you have thousands –
possibly even millions – of different programs in wide use that rely on decisions
that in retrospect turn out to be mistakes.

If Intel is so successful, why are we looking here at the MIPS instruction set,
a RISC design? Two reasons. The Intel instruction set is very complex compared
with the MIPS design, and MIPS is widely used in embedded systems, so you
are more likely to actually need to know how to program it at hardware level. In
general, RISC designs are most popular at the very high end, where companies
like IBM make very fast designs that are too expensive for the commodity market
(their POWER architecture) and at the very low end, where Intel loses on energy
efficiency. Aside from MIPS, other players in the low-level market are ARM and
PowerPC (a low-cost version of IBM’s POWER architecture). At the high end,



12 CHAPTER 1. INTRODUCTION

the Alpha processor used to be a leader but was discontinued after a series of
mergers, and the SPARC architecture (Sun Microsystems; now part of Oracle)
is still in relatively wide use. ARM is widely used in mobile devices from entry-
level cell phones to high-end smart phones and tablets. ARM gained its initial start
in the market by focussing on low-energy design. MIPS (owned since February
2013 by UK company Imagination Technologies, but founded in Silicon Valley
by Stanford University professor John Hennessy in 19921), like ARM (also a UK
company), does not fabricate its own chips, but licenses designs to others. There
are many niches besides desktop computers – some very big, with annual sales in
the hundreds of millions of units.

Aside from the RISC-CISC divide, there are other specialised architectures
like graphics processing units (GPUs). A GPU is very fast, and some advocate
using a GPU for general-purpose computation, where speed gains are possible
(sometimes. . . [Caragea et al. 2010]) at the cost of high program complexity.
Another specialist style of processor is a digital signal processing unit (DSP), de-
signed to do very specific computations in areas like image and audio processing.
DPSs are in reasonably wide use too – but we do not look at any of these designs
since the complexity involved is not worth mastering unless you specifically need
to do so.

Although there are significant differences between RISC designs, knowing
one puts you close to knowing all of them, since they have a common design
philosophy. Learning a more difficult design only really teaches you that specific
design at the cost of significantly more pain.

All of these issues have roots in the relatively distant past (for a field that
advances so fast) but understanding a little history is always useful – mistakes are
often repeated by those who know no history.

The take home message? RISC designs are simple and regular, and only
access main memory to move data to or from registers (respectively, loads
or stores).

1.5 The Machine

Let’s now take a slightly more detailed look at the machine – what things like
registers are, layers of the memory hierarchy and flow of instructions through the

1http://www.stanford.edu/~hennessy/cv.html

http://www.stanford.edu/~hennessy/cv.html


The Machine 13

core core core core

cache (SRAM)

main memory (DRAM)

paging device (disk or SSD)

HW

SW

(a) Memory hierarchy and
logic

ALU

register 
file

(b) Registers and ALU

Figure 1.1: Major components of the memory hierarchy and CPU

processor.
First, look at figure 1.1a. In most designs you can buy today, the central

processing unit (CPU) or processor is replicated, and each one is called a core. A
multicore design is one in which there is more than one CPU on the same chip.
As illustrated, there are four cores and the memory system is in layers. The cache
is a very fast kind of memory usually made of static RAM (SRAM). SRAM uses
transistors to store bits, and is fast, at the expense of lower density than dynamic
RAM (DRAM), which is used for the main memory. DRAM uses capacitors to
store bits. Lower density means you get fewer bits for your money. Because the
speed of cache is essential to performance, managing what is in cache is usually
done in the hardware to minimise delays. The virtual memory system manages
maintaining most recently accessed items in the main memory, made of DRAM.
Because the paging device is thousands to millions of times slower than DRAM,
managing what is in DRAM and what can be sent out to the paging device is
usually managed in software, though generally by the operating system rather
than by user-level programs.

Figure 1.1a does not show how the fastest level of memory, registers, is
organised. Registers are part of the CPU logic, and are fast enough to access
without delaying instruction execution. Figure 1.1b provides an overview of data
flows in the CPU. Each core has a complete set of logic including an arithmetic
logic unit (ALU) and registers. Not shown are details like communication with
main memory through the cache. For a typical ALU operation in a RISC machine,



14 CHAPTER 1. INTRODUCTION

shared L3 cache

core ALU

L1 cache

L2 cache

core ALU

L1 cache

L2 cache

core ALU

L1 cache

L2 cache

core ALU

L1 cache

L2 cache

Figure 1.2: Multilevel caches in a multicore deisign

a value is retrieved from two source registers, the ALU is signalled as to what to
do with these values and produces a result. The result is steered to the destination
register. The instruction encodes which registers to use for both the source and
destination, as well as what operation to perform.

Heads up: Registers are very different from the rest of memory. Because
there is a limited set of them, you can think of each one as having a name
even if that name looks remarkably like a number. On most machines,
the specific register name is built into the instruction somehow. That is
different from accessing main memory, which is accessed by an address,
and can be many different sizes depending on the specific machine and
how much money you have. A cache is in different category: you generally
do not know it is there, and it is managed purely in hardware. The
operating system may have access to special instructions to do things like
clear a cache but to user-level programs, a cache is invisible.

Real systems often have two or more layers of cache, with the highest-level
cache (sometimes called L1 for first-level cache) tightly integrated into the CPU
for maximum speed. Because the fastest kind of memory is relatively expensive
and consumes a lot of power per bit, lower levels of cache that are still faster than
main memory but slower than L1 provide a compromise solution. The CPU uses
L1 cache whenever it can, and drops down a slower bigger layer if the item it
needs is not in L1. The ideal effect is a memory as big as you can afford based
on the cheapest technology but as fast as the fastest you can buy. In practice, we
achieve something in between – not quite as cheap as the cheapest technology, and
not quite as fast as the speediest kind of RAM. Figure 1.2 illustrates a multicore
design (a general concept, not a specific system, though some Intel designs have a
similar cache hierarchy) with 3 levels of cache – darker colouring implies faster.



Practicalities 15

The cores each have their own caches down to L2, but share L3. Note how the
cache size increases as we go down the hierarchy. In a real design, the lowest-level
cache may be the largest single piece of logic on the chip, as depicted.

We will see more detail later, particularly of how memory is used under
programmer control – a programmer here meaning one who has access to the
hardware. For high-level languages, the “programmer” who sees the issues we
will be exploring is usually a compiler. Nonetheless, even in a managed-memory
language, there are aspects of memory usage you can control with useful (or the
opposite) effects on performance.

The take home message? Memory is organised in a hierarchy from
fastest (smallest) to slowest (biggest). Machine code has more control
over the memory hierarchy than an HLL does, so learning about machine
code is a useful start to understanding performance issues that arise from
memory use.

1.6 Practicalities
While there is a lot of MIPS hardware out there, it is often not in a convenient form
to program, like part of a network switch. So we will use a MIPS simulator called
SPIM. SPIM runs on a variety of platforms, meaning we do not need to worry too
much what sort of computer you want to use to run examples. A simulator is also
a little more forgiving than a real machine. You can crash programs on it as much
as you want, and not risk crashing the whole machine. You can also look in detail
at the state of registers. Unlike simulators used in computer architecture research,
SPIM does not aim to provide accurate statistics on execution time, or allow you
to change fundamental design parameters.

SPIM is a fairly faithful implementation of a MIPS assembler including
pseudo-instructions designed to simplify programming a bit. The notation differs
a little from that introduced on page 5. For example, register names start with “$”,
and some of my previous examples need more MIPS code to do the same thing.
But these are minor details. If you learn assembly-language programming for a
different instruction set, you will find much bigger differences: the approach to
machine instructions will differ a lot more than minor tweaks in syntax. A CISC
instruction set, like Intel’s, is a lot different, and other CISC instruction sets differ
a lot from each other. RISC instruction sets also differ from each other but not
nearly as much.



16 CHAPTER 1. INTRODUCTION

To program using SPIM, you create a text file in a plain text editor. The
SPIM program expects your assembly-language file to have a name ending in
one of “.s”, “.a” or “.asm”. We will stick with “.s” in our examples, which is
consistent with UNIX-type systems. Once you have created your program, you
can load it into SPIM and if your code is syntactically correct (even with a very
simple language you can get this wrong), you can run it. SPIM includes features
to step through a program one instruction at a time, and allows you to see contents
of memory and registers.

Another significant advantage of SPIM is it has a highly simplified system
call interface, allowing you to do things like display numbers as output without
all the complications of the real system calls you would need to do output and the
like on a real machine (all of this is usually hidden from you by the programming
language). The available system calls are listed in Appendix C.

SPIM started as an undergraduate student project in 1990. The author James
Larus now works at Microsoft Research after a long career at the University of
Wisconsin-Madison. You can find extensive documentation on SPIM and the
MIPS instruction set at his web site: http://pages.cs.wisc.edu/~larus/
spim.html. Some history and details of how SPIM runs are in appendix E. Will
any of your projects be this successful? Let me know in 20 years . . .

Finally, a note on units. In the decimal world, we are familiar with multiples
of powers of 10 with prefixes like k for 1,000. In the computer world, particularly
with RAM, which for practical reasons is sized in powers of 2, we use multiples
of powers of 2. Traditional decimal multiplier names, kilo, mega, giga, etc. are
sometimes misused for binary multiples rather than the official standard names
(kibi, mebi, gibi, etc.). We will avoid confusion by using abbreviated prefixes as
in table 1.2. As a general rule, anything that is traditionally made of digital logic
uses powers of 2 multipliers and everything else uses decimal multipliers. The one
exception is flash, which, despite being made of digital logic, usually has sizes in
powers of 10, in keeping with disk sizing2.

The take home message? Programming at machine level can be very
hard. A simulator like SPIM takes away some of the pain and makes it
easier to understand how your code relates to the machine, which is the
whole point of this book.

2Disks were originally sized in powers of 2, until marketing people noticed that decimal units are
smaller and hence make disks sound bigger than when sized in power of 2 units.

http://pages.cs.wisc.edu/~larus/spim.html
http://pages.cs.wisc.edu/~larus/spim.html


Further Reading 17

Table 1.2: Binary and Decimal Units

decimal binary
prefix multiplier name prefix multiplier name
k 103 = 1,000 kilo Ki 210 = 1024 kibi
M 106 = 1,000,000 mega Mi 220 = 1,048,576 mebi
G 109 = 1,000,000,000 giga Gi 230 = 1,073,741,824 gibi
T 1012 tera Ti 240 tebi
P 1015 peta Pi 250 pebi
E 1018 exa Ei 260 exbi
Z 1021 zetta Zi 270 zebi
Y 1024 yotta Yi 280 yobi

1.7 Further Reading

A good source on architecture material including the MIPS processor is Patterson
and Hennessy [2014]. Another take on programming from hardware up is Patt
and Patel [2013].

Exercises

1. Look up Appendix A and compare the encodings of uppercase and lower-
case letters.

(a) Assuming you have a lowercase letter, what arithmetic would you use
to convert it to the representation of the same uppercase letter?

(b) How would you do the reverse conversion (upper to lower)?

(c) How would you check if a character was a digit?

(d) How would you check if a character was a letter of the alphabet?

2. For the two variations on implementation of a for loop, for N=10 (§1.2,
page 5):

(a) Count the number of instructions executed for each of the two
variations (dynamic instruction count). Do you need to include the
nop instruction in the count? Why?

(b) How much do the counts of executed instructions differ between the
two versions of the loop? What percent change does that represent?



18 CHAPTER 1. INTRODUCTION

(c) Was changing the code worth the effort?

(d) Is eliminating the extra nop instruction significant? Explain.

(e) You could eliminate the wasted j instruction in the second example by
testing the loop condition at the top as well as at the bottom.

i. Write out this new version.

ii. Is the change worthwhile? Explain, comparing with the two
versions I give in §1.2, referring to the answers from previous
parts of this question.

3. Java compiles to bytecode and often uses a JIT compiler to achieve
reasonable speed. Find out how Python and C# are usually implemented.

(a) Are they compiled, interpreted or intermediate languages?

(b) Is it possible for a language to be compiled in some implementations
and interpreted in others? Explain.

(c) Aside from achieving portability, why else is Java compiled to
bytecode rather than machine code?

4. When the original predecessor of the current Intel instruction set was
created, a home computer had 16KiB of memory. That’s 16384 bytes.
Really. Discuss why an instruction set design that minimised memory
footprint may have seemed like a good idea at the time.

5. A typical CPU has anything from less than 10 to about 30 registers. A cache
is measured in thousands to a few million bytes. Main memory is billions
of bytes. “The ideal effect is a memory as big as you can afford based on
the cheapest technology but as fast as the fastest you can buy.” Discuss how
this could be possible.

6. Give advantages and disadvantages of using a simulator like SPIM to learn
assembly-language programming.



2 Numbers and the Machine

COMPUTERS GENERALLY DO THINGS BY POWERS OF TWO. This is no co-
incidence. Electronic logic is very easy to construct using exactly two
values that can be represented as two different voltages, or two different

switch positions. Back in the 19th century, an English mathematician, George
Boole, invented a form of algebra for expressing logic. He saw this as an
application of mathematical methods to philosophy. Most people would regard
pure mathematics and philosophy as far removed from practicality, yet his work
became the basis for one of the fastest-developing industries of all time.

Out of recognition of Boole, we often talk of boolean values for data
types representing values in logic (in some languages shortened to bool for
the type name), and we use the terms “boolean” and “logical” interchangeably
when talking about operations (basic built-in functions) and functions (more
complicated logic built up out of basic operations).

In logic, there are two values: false and true. These two values can be
represented, respectively, by the numbers 0 and 1. If you represent numbers in
base 2, each digit is either a 0 or a 1. Operations on numbers can be thought of
then as combinations of logical or boolean operations. To understand how this
all works, we need a little logic and some concept of working with numbers in
different bases.

Integers are relatively straightforward; representing fractions gets more com-
plicated. Let’s start with the absolute simplest thing, logic, and work our way
through to the harder stuff. As we go along, I point to examples in real computers.

2.1 Logic
Logic operations at machine level are very efficient because the machine can work
on a whole machine word at a time. Exactly what constitutes a word depends on
the specific machine, or even on the specific mode in which it is running. It is

19



20 CHAPTER 2. NUMBERS AND THE MACHINE

Table 2.1: Truth table example: nand

A B A nand B
0 0 1
0 1 1
1 0 1
1 1 0

common for a machine word to be 32 bits long (or 4 bytes), though 64-bit words
are increasingly common. Most instruction sets also allow operations on smaller
and sometimes larger units. To keep things simple, I restrict examples in this
chapter to byte-width (8-bit) operations where possible.

The most basic operation at machine level for our purposes is nand or not
and. At hardware level, basic logic operators are implemented in gates – a unit
of hardware that takes one or more inputs and usually has one output. A nand
gate can easily be built out of basic electronics and has the useful property that it
can be used to construct any other logic operation, meaning it is a universal gate.
We can express values of a logic operation with a truth table – a representation of
the output for any input. We can do this because there are only two values, so a
complete table (at least for simple logic operations or functions) is small enough
to write out. Table 2.1 is an example, illustrating the nand operation.

Since we are working close to the machine it is convenient to express boolean
values as 1s and 0s, and I will mostly do that from here on, but remember that
these values represent true and false.

Let’s take a closer look at the table to see how we can use nand to express
other logical operations. Tie both inputs together so A=B, and it becomes an
inverter, i.e., a logical not or negation function. In the truth table, this situation
corresponds to the two lines where A and B have the same input. Satisfy yourself
that this situation corresponds to the truth table for an inverter.

Figure 2.1 illustrates how to implement a not gate using a nand gate; see figure
2.2 for how common gates are illustrated in logic circuits.

Once you have a logical not, you can use your nand to make an and – just
negate its output. How about making a logical or? A logical or produces a 1 if any

Figure 2.1: A nand gate used to implement a not gate



Logic 21

of its inputs is a 1; it produces a 0 only if both inputs are 0. The nand operation
does the opposite: it produces a 0 only if both inputs are 1, and 1 otherwise. So if
we invert both its inputs, we get an or.

Table 2.2 illustrates the and and or functions. Relate table 2.2 to table 2.1 and
make sure you understand the explanation of how the and and or operations can
be derived from nand.

It is tedious to write out and and or in long boolean expressions. There are
several alternative notations for shortening their names. The simplest if you are
in a plain-text world is to write and as a “.” and or as a “+”. This is because and
is a little like multiplying by 1s and 0s (anything you multiply by 0 is 0) and or
is slightly less like addition. Adding any combination of a 1 and a 0 gives you
a 1; adding two 1s should give you the value 2, which is not quite right. And
of course adding 0 to itself should result in 0. The problem with this notation is
that it looks too much like arithmetic and is not exactly the same thing. For this
reason, programming languages often use another notation for logical or boolean
operations. In C-like languages, we use the symbols “&&” for a logical and, or
“&” if we want the operation to apply a bit at a time, and or is spelt as “||” or “|”
for the bitwise equivalent.

For handwritten equations, the most convenient notation is ∧ for and and ∨
for or. If you remember that the version pointing up looks like an “A” for and, it
is easy to remember which symbol is which. Exclusive or (often abbreviated to
xor) is effectively a not equals operation, and is written as a circle around a plus
sign: ⊕. Drawing a tight border around a plus sign makes it look kind of exclusive
(like a gated community with a high fence).

Finally, we need a notation for negation. In C-like languages, a logical not is
written as “!”. Another common notation is “¬”, as with “!”, written before the
expression to which it applies – much as you would put a minus sign before an
arithmetic expression to negate it. Yet another notation (called overbar) is to draw
a horizontal line above an expression you are negating.

Table 2.2: Truth table example: and and or

A B A and B A or B
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1



22 CHAPTER 2. NUMBERS AND THE MACHINE

The following two pairs of equations collectively express De Morgan’s
Laws, often useful for simplifying logical expressions, using alternative negation
notations:

A∨B = A∧B

¬A∨¬B = ¬(A∧B) (2.1)

A∧B = A∨B

¬A∧¬B = ¬(A∨B) (2.2)

I will generally use the A (overbar) notation, since it is a little quicker to write
and easier to read. Also, the overbar notation reduces the need to bracket
subexpressions, since a line over a subexpression indicates that you must calculate
that subexpression as a unit before negating (inverting) it.

De Morgan’s Laws can be summarised like this, for any expression containing
an and or an or:

• swap the and for an or – or vice-versa

• swap negating from the whole expression to the subexpressions joined by
the and or the or – or vice-versa

The following identities are also useful for simplifying logical expressions (it
should be obvious from truth table 2.2 why equations 2.3–2.8 hold):

A∨1 = 1 or-tautology (2.3)

A∨0 = A or-identity (2.4)

A∧0 = 0 (2.5)

A∧1 = A and-identity (2.6)

A∧A = 0 (2.7)

A∨A = 1 (2.8)

A∧ (B∨C) = (A∧B)∨ (A∧C) distribution of and over or (2.9)

A∨ (B∧C) = (A∨B)∧ (A∨C) distribution of or over and (2.10)

A few points to note:

• any formula that is always true no matter what the values of the variables
is called a tautology



Logic 23

Table 2.3: Truth table example: proof of one of De Morgan’s Laws

A B A B A∨B A∧B A∧B
0 0 1 1 1 0 1
0 1 1 0 1 0 1
1 0 0 1 1 0 1
1 1 0 0 0 1 0

Table 2.4: Truth table example extended: xor added

A B A∧B A∨B A⊕B
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

• any formula that is always false no matter what the values of the variables
is called a contradiction

In a logic circuit, a tautology (contradiction) is always true (false) for all inputs.
Back to truth tables – simple proofs in logic can be constructed by writing out

a truth table. Let’s try that with equation 2.1. Table 2.3 demonstrates that for all
possible values of A and B, equation 2.1 holds. To check, identify the columns of
the table that represent the left and right hand sides of the equation, and note that
every entry is the same. To help you, the relevant columns of the table in are in
bold text.

Finally, let’s look at notation for describing logic circuits. There are various
variations again, but we will stick with the most common version, illustrated in
figure 2.2. I’ve added one more useful operation, exclusive or.

If you start from thinking of the symbol for and as looking like the “D” in
“AND”, it becomes easy to remember which is which. A small circle on the
output indicates negating, so it should be clear why a nand looks like an and gate
with a circle at the output. And exclusive or? It has an extra curve at the inputs
like a fence to make it look exclusive. For completeness, table 2.4 extends table
2.2 to include xor.

Ironically the symbol for nand looks as if it is made out of and and an inverter,
whereas in hardware, a nand gate is likely to be a fundamental building block. But
from here on, we use the logic operations and diagrams without worrying about



24 CHAPTER 2. NUMBERS AND THE MACHINE

A

B
Q

(a) Q = A∧B

A

B
Q

(b) Q = A∨B

A

B
Q

(c) Q = A∧B

Q
B

A

(d) Q = A⊕B

Figure 2.2: Logic gate symbols

A

B

Q

Figure 2.3: Exclusive or from nand gates

what the hardware building blocks really are.
The symbols for logic operations are useful for visualising logic circuits.

Designers generally draw diagrams representing logic with information flow from
left to right and secondarily top to bottom.

To illustrate how a single universal gate like nand can be used to build other
operations (nor is also a universal gate), take a look at figure 2.31. Looks
impressive. But is it correct? Let’s write out the exclusive or circuit as a logical
expression (reading left to right and if there is any vertical arrangement, top to
bottom):

Q = (A∧A∧B)∧ (B∧A∧B) (2.11)

This doesn’t look promising as a start – writing a truth table for something this
complicated wouldn’t be much fun, with a lot of potential for error, so let’s try a
little logic algebra. We can simplify this using De Morgan’s Laws (remember, the
overbar groups terms, so we have to add bracketing when we take it away):

Q = (A∧A∧B)∨ (B∧A∧B)

Apply De Morgan’s Laws again (this time, we do need additional brackets):

Q = (A∧ (A∨B))∨ (B∧ (A∨B))

1Image source: http://en.wikipedia.org/wiki/XOR_gate.

http://en.wikipedia.org/wiki/XOR_gate


Numbers 25

This is not looking a whole lot simpler. We will make it look worse in one more
step, then collapse it down to something manageable. Apply equations 2.3–2.10:

Q = ((A∧A)∨ (A∧B))∨ ((B∧A)∨ (B∧B))

= (A∧B)∨ (B∧A) (2.12)

This now is a simple enough expression to put into a truth table to verify that it
matches the xor definition (A⊕B) in table 2.4.

There is a lot more to digital logic than this; a logic design course would cover
design simplification techniques, how design elements like adders and flip-flops
(that can store a bit) work, how clock signals are used, and much more. What
we have covered here should be sufficient to get you started on a programmer’s
perspective of logic. We will go into a little more detail, but not nearly as much
as you would see in a logic design course.

The take home message? Understanding a little boolean algebra can do
wonders for simplifying logic. Even if you never get into logic design, you
can use these concepts in programming.

2.2 Numbers
On now to numbers. Remember, everything in the hardware world is a 0 or a
1. That rather limits your options for counting unless you can represent bigger
numbers using binary digits or bits. First, let’s start with some basics on how we
represent numbers, then look at how we can take this to the logic space.

Regular numbers we use are expressed in base 10. The rightmost (low-order)
digit represents values from 0 to 9. The next digit to its left represents values (if
not 0) from 10 to 90. In general, the digit in position j, numbering from 0 and
from the right, represents its value times 10 j. If we want to extract the decimal
digits one at a time starting from the low-order digit, we can divide by 10, and the
next digit is the remainder of this division. For example, if the number is 342, we
can extract the digits one at a time as follows:

next divide divide result remainder
342 ÷ 10 34 → 2

34 ÷ 10 3 → 4
3 ÷ 10 0 → 3

This example shows how we can create a formula for base conversion. If we
want to see how a number is represented in base 2 – as it would be in computer



26 CHAPTER 2. NUMBERS AND THE MACHINE

hardware – instead of dividing by 10 and keeping the remainder, we can divide by
2 and keep the remainder. Let’s do that for 342 and see what we get.

next divide divide result remainder
342 ÷ 2 171 → 0
171 ÷ 2 85 → 1
85 ÷ 2 42 → 1
42 ÷ 2 21 → 0
21 ÷ 2 10 → 1
10 ÷ 2 5 → 0
5 ÷ 2 2 → 1
2 ÷ 2 1 → 0
1 ÷ 2 0 → 1

So this means the base 2 (binary) representation of 34210 is (low digit from the
first row of the calculation) 1010101102. Let’s check by writing each position as a
multiple of a power of 2, this time starting from the high digit and working down:

power power value multiple contribution
28 256 1 256
27 128 0 0
26 64 1 64
25 32 0 0
24 16 1 16
23 8 0 0
22 4 1 4
21 2 1 2
20 1 0 0

total 342

Heads up: For base conversion, it is not too hard to remember that you
divide to obtain the next digit of a whole number because dividing is like
shifting the number to the right, with the low digit dropping off at the
right end. For obtaining the digits of a fraction, you move the number the
opposite way to obtain the next digit, hence multiplying – as we will see
shortly.

Once we have a number in binary, it is rather long and unwieldy, so a common
trick is to write binary numbers, unless we need to see the bit pattern explicitly,
in hexadecimal (base 16 – commonly called hex). Converting a binary number
to hex is pretty easy. A hex digit represents values from 0 to 15. We write the



Numbers 27

values that require 2 digits in decimal as A-F, representing the decimal values 10-
15. Since a hex digit represents 16 different values and 4 bits also represent 16
different values, we can convert to hex simply by grouping bits in fours (starting
from the lowest-order digit, if the number of bits isn’t a multiple of 4). Here’s an
example (note the split between groups of 4 bits in the binary representation):

42 = 0010|10102

= 2A16

Since writing a subscript 16 is tedious (and not possible in a simple programming
editor), we write hex numbers as “0x” before the digits instead. In this case: 0x2A.

Integers

A practical issue with computer representation of numbers is that we have a fixed-
length storage unit at machine level. In §2.1, I mention units like words and bytes.
Any arithmetic instruction at hardware level (at least in designs in common use)
specifies the size of the operand. If, for example, we have a byte-sized operation,
we have 8 bits, meaning we can represent 28 different values. If you look at the
34210 to base 2 conversion example, we used 9 bits to store that number. What
would the largest number be that we could store in 8 bits? We know it has to be
smaller than 256, because we write 256 in binary as a 1 followed by 8 zeros. In
general, for base r, the biggest number we can store in j digits is r j−1. Think of
base 10: if you have 3 digits, the largest number you can represent is 999, which
is 103− 1. So the biggest number we can store in 8 bits is 255, which is 28− 1,
which is not too surprising really because 28 is the smallest number that needs 9
bits, because it has the 9th bit set, and all the others zero.

This is all well and good if we are only dealing with positive numbers, but we
sometimes need negative numbers as well. There are many ways to represent
negative values but the most popular at hardware level for integers is two’s
complement, also called 2’s complement. In 2’s complement notation, you convert
between positive and negative by two simple steps:

1. invert all the bits

2. add 1

2’s complement notation has several advantages. Negative values always have
the high-order bit set, so you can easily split positive and negative values on that



28 CHAPTER 2. NUMBERS AND THE MACHINE

Table 2.5: Two’s complement examples, in 8 bits

positive base 10 base 2 complement 2’s complement
42 00101010 11010101 11010110
27 00011011 11100100 11100101
1 00000001 11111110 11111111

bit (which you can think of as the sign bit). Arithmetic operations just work.
Testing for ordering is simple: a test for example for “less than” can be done with
a subtraction and checking if the sign bit of the result is set. If you want to test
ordering directly, you have to treat the sign bit as a separate case but once you
have split positives and negatives, the same rule applies to testing for ordering.
A bigger number (closer to 0 if negative) has more bits set at the high end of the
word than a smaller number, whether it is positive or negative.

Another option is one’s complement, which omits the step of adding 1. It is
simpler conceptually but has the drawback that zero has two representations, all
0 bits or all 1 bits, and you cannot separate positives and negatives simply by
looking at one bit. Yet another option is signed magnitude: negation is simply by
flipping the sign bit. We will see signed magnitude and yet another variation on
representing negative values when we look at floating point numbers.

Heads up: Two’s complement representation only works if we store a
number in a predefined number of bits. If you need e.g. an 8-bit number,
you should use all the bits even if the high-order bits are zero, otherwise
you can make a mistake when negating.

Look at the examples in table 2.5. As the positive values get smaller, the base 2
representation has fewer and fewer set (1) bits in the higher positions. Look across
to the last column, which represents the negative version of the same number. As
the absolute value gets smaller, the number of high-order 1 bits increases. In fact
the “biggest” negative number is -1 (in the last row of the table). That is in fact
exactly what we want, since -1 is the largest negative integer.

Another nice feature of 2’s complement is it is easy to widen a number, i.e.,
represent it in more bits. All you have to do is copy the sign bit to the left (the
high-order direction) when copying to a wider representation. This is called sign-
extending. So a an 8-bit representation of 42 is 00101010, and -42 is 11010110. If
we want to move these to a 16-bit representation, all we need do is copy the high-
order (sign) bit to the left 8 times, in the high-order direction. This is obvious for



Numbers 29

the positive number: zeroes to the left of any number do not change its value. Let’s
complement and add 1 to make sure this works for the negative representation,
with the extra 8 zeroed bits added to the left of the binary representation of 42:

0000000000101010 4210 in binary
1111111111010101 complement
1111111111010110 add 1 to get −4210

Check that the first line (4210) and the last line (−4210) are the same as their 8-bit
representations except for sign extension to the left by 8 bits.

Let’s do an example of 2’s complement arithmetic. We will calculate 27 + -1.
From table 2.5 we can look up the 2’s complement representations to add and the
arithmetic is as follows:

00011011
+ 11111111

1← 00011010
. . . and we have a problem – there is a 1 carried out of the last position, but we
only have 8 bits, so where does it go?

But first, what do we expect the answer to be? If the system works, it should
be 26, or, in 8 bits of binary, 000110102 – which is exactly our answer, so we are
OK if we can get away with losing the carry-out bit. That brings me to another
rule of 2’s complement arithmetic: if you carry in to the high-order digit (sign
bit), you have to carry out of it. If not, you have an overflow error. So this time,
we’re good. Also bad: if you carry out of the sign bit when you didn’t carry in.

In general, hardware supports a range of different sizes and formats: unsigned
integers are available if you don’t need negative values, and the extra bit you gain
approximately doubles the range in the positive direction. With 8 bits in unsigned
format you can represent numbers in the range 0..(28− 1) or 0..255. With 2’s
complement representation, you can represent numbers in the range−27..(27−1)
or −128..127. Whether unsigned or 2’s complement values, there are 28 = 256
different bit patterns. There is one more negative than positive value because zero
takes up one of the bit patterns with the sign bit not set.

Multiplication and division at hardware level are much more complicated than
addition and subtraction. What we have so far is enough to illustrate the general
principles.

The take home message? Two’s complement arithmetic relies on a fixed-
precision representation of integers. Converting between positives and
negatives is easy and arithmetic generally just works, as long as you check
correctly for overflows.



30 CHAPTER 2. NUMBERS AND THE MACHINE

S significand

1 bit 23 bits

exp

8 bits

Figure 2.4: IEEE 754 32-bit floating point

Floats

There are various ways of representing fractional values. The most common in
current usage is the IEEE standard for floating point. A floating point number
consists of the digits and an exponent, in effect a scale that positions the divide
between fraction and whole number. You should be familiar with scientific
notation for base 10, for example, 2,345,100 is written as 2.3451×106 in scientific
notation. Usually scientists write numbers in this format as a single non-zero digit
before the decimal, because that makes it easy to compare values across a wide
range of scales. Placing the split between fraction and whole number at a standard
position is called normalising.

In binary representation, a normalised floating point number is represented
with a 1 in the most significant position, and the fraction part starts immediately
after, as with a normalised decimal number. Since this 1 is always there, it does
not have to be stored. The only exception is where the exponent is all zeros.
This convention buys an extra bit of precision (all numbers except 0 have a 1
in them somewhere) at the expense of a little complexity, which is tolerable for
floating point since the basic operations are a lot more complex to implement
than for integer. In other words, we represent all numbers except those with zero
exponents as S1.xxxxxxxxxxxxxxxxxxx×2exp but don’t store the high-order 1.

Rather than using 2’s complement, the widely-used IEEE 754 standard [IEEE
2008] uses signed magnitude, meaning a sign bit is used to indicate negative
numbers, and the bit string for a positive and negative value is otherwise the same.
In addition to the bits representing the digits of the number, there is an exponent.
In the IEEE standard, the exponent is represented in an offset or excess notation.
Just to be different, in the IEEE standard this approach is called the exponent
bias. An exponent uses 8 bits in 32-bit floating point, and the actual value of the
exponent is found by subtracting 127 (the bias) from the stored value. The IEEE
standard has tricks to identify special values representing ∞ and −∞, as well as
values that are “not a number” (or NaN), using the fact that the bit pattern of all 1s
for the exponent does not represent an allowed value. The effect of these special
values is to allow errors to propagate if they aren’t handled immediately.



Numbers 31

Figure 2.4 illustrates the layout of an IEEE-standard 32-bit floating point
number. Although only 23 bits are represented for the significand – the digits
of the number – remember there is an implicit leading 1 unless the exponent is
zero so in effect there are 24 bits of precision. The IEEE standard defines a range
of sizes from 16 bits to 128, though the 32-bit version and a 64-bit double are the
two sizes in common use.

Heads up: If you do anything related to two’s complement such as
inverting all or some of the bits of an IEEE floating-point number you
are doing the wrong thing. Two’s complement is for integer values only.

A number v represented in this format with sign bit S, exponent bias 127,
exponent E and significand F (for fraction) is not simple to define, with variations
using reserved bit patterns (not only the NaN and ∞ concepts above). The common
case is

v = −1S×(1+F)×2E−127 (2.13)

The −1S simply expresses the fact that the sign bit if 1 negates the number (x0 is
always 1). The 1+F part signifies the addition of the missing 1, which we can
add this way because we know the first bit represented is the start of the fraction
part after this missing 1. You should read the F as the binary digits to the right of
the point.

You may be wondering why exponents are represented this way. Testing for
ordering is easier if the smallest exponent allowed is represented as all 0s, and
they increase from there. Putting the exponent at the high end of the word just
after the sign bit, given this excess notation, makes comparison for ordering a lot
easier.

Floating point is a large complicated area of system design. For our purposes
it is sufficient to know the general principles. Let’s see how we represent a couple
of values. First, 12.1. We convert this to binary as follows, starting with the whole
number part:

next divide divide result remainder
12 ÷ 2 6 → 0
6 ÷ 2 3 → 0
3 ÷ 2 1 → 1
1 ÷ 2 0 → 1

So 1210 = 11002 (which you can check easily: 23 + 22 + 0+ 0 = 8+ 4 = 12).
To convert a fraction to another base, multiply by the new base, and the whole



32 CHAPTER 2. NUMBERS AND THE MACHINE

number part of the answer is the next digit to the right (starting at the point).
Each time, discard the digit you used to find the number to the right of the fraction
(unless it’s a zero). So to convert 0.1 to binary:

next multiply multiply result whole number
0.1 × 2 0.2 → 0
0.2 × 2 0.4 → 0
0.4 × 2 0.8 → 0
0.8 × 2 1.6 → 1
0.6 × 2 1.2 → 1
0.2 × 2 0.4 → 0

So far, we have the fraction part is 0.0001102 – and it seems a pattern is developing
since we got back to 0.4. So, strangely if you are used to base 10, 0.110 is a
recurring fraction in binary. If we write out the first 32 digits, it comes out as

0.00011001100110011001100110012

Putting this together, we have
12.110 ≈ 1100.00011001100110011001100110012

to more digits than we have space for in a 32-bit number. Let’s look now at how
we encode this in IEEE single format. We have 23 bits for the significand plus the
high-order 1 we do not represent, which goes before the point. That means our bit
pattern is

10000011001100110011001
Not quite – the next digit we discarded is a 1, so we should round up, and our bit
pattern then is the truncated bit pattern plus 1:

10000011001100110011010
Next, we need the exponent. If we put back the missing 1 and put the binary point
to its immediate right, how many bit positions must we shift the point to get the
right magnitude, and in which direction? To get our number back to looking like
this (with the discarded “1” temporarily back):

1100.00011001100110011010
we need to shift the binary (not decimal!) point 3 places to the right. Shifting a
point to the right is multiplying by a positive power, so our exponent value is 3.
In excess notation, that means the stored exponent value is 3+127 = 130 which
in binary is 10000010. Finally, we must set the sign bit, in this case, to 0. So let’s
pack this all into a 32-bit IEEE single. First the sign bit, then the exponent in 8
bits and finally the significand (without the leading 1) in 23 bits:

0|10000010|10000011001100110011010
Now, let’s split the bits in 4s and express this as a hex number:



Numbers 33

0100|0001|0100|0001|1001|1001|1001|1010
4 1 4 1 9 9 9 a

Here’s a trick to check this. Now we have the hex representation, launch SPIM
and change the register panel to FP Regs. Change any $f register to “4141999a”
in hexadecimal mode, then change the register panel to decimal.

Finally, go back to equation 2.13 and check the working against the equation.
One significant practical issue is that the number of digits represented (about

7, converted to decimal) is much smaller than the range of values (up to about
1038). This means you can easily lose precision by doing arithmetic in the wrong
order.

For example:

a = 1E20;
b = 1E-20;
c = 1E20 - 1;
d = (a + b) - c;

With this example we don’t have enough digits of precision to represent a number
representing the answer to 1020+10−20 so the result of a + b is 1020 after losing
low-order precision. The value of c is close enough to 1020 as well that we lose
the −1 to roundoff. So what is stored in d is 0. If we reorder the calculation as
follows:

d = (a - c) + b;

we still lose a little to roundoff, and get a tiny amount closer to the correct answer
(1+ 10−20; with available bits, the most accurate answer should in fact be 1).
What is now stored in d is 1× 10−20. The FORTRAN programming language
is popular among those who do long chains of calculations because it respects
the order of computation as written by the programmer. Other languages that
take a more permissive approach to code optimisation can destroy the effect of a
carefully selected order of calculation where the programmer is aware of potential
for round-off error.

Heads up: We have only looked at a small fraction of the complications
of floating point. Try to understand what we have covered because it is the
essentials of the subject but if you ever do computations where precision
and error in calculation is really important, study the subject in more
depth.



34 CHAPTER 2. NUMBERS AND THE MACHINE

Table 2.6: Truth table: Half adder (S=A+B ignoring carry; C=carry bit)

A B S C
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Converting between integer and floating point is complicated by the fact that
integer and float registers can’t be used together in most instructions. If, for
example, we want to round a floating point number to the nearest integer, we
need to add 0.5 (or subtract if negative), truncate to an integer and transfer it
to an integer register. MIPS considers the floating point unit (FPU) to be a
coprocessor, and is numbered 1. Instructions specific to movement between the
ALU and the FPU refer to coprocessor 1 (not to be confused with a lowercase
“L”). Another example of a coprocessor is a graphics processing unit (GPU).
Historically, coprocessors were a separate chip, which is still the case for high-end
GPUs, but seldom today for FPUs, though some designs that don’t need floating
point and are cost-constrained leave out the FPU.

The take home message? Floating point arithmetic is very complicated,
and a specialist subject. We only need know generalities of how it works,
and the kind of traps and pitfalls that can catch the unwary.

2.3 Numbers and Logic
Let’s tie some of this together now and take a look at how computer logic to
do simple arithmetic works. Adding numbers is one of the simpler arithmetic
operations, so let’s take a brief look at that. If you add one bit at a time, what are
the possible outputs? If you add anything but a pair of 1s, your answer can only
be a single bit. If you add a pair of 1s, your answer carries out. So the minimum
operation you need is one where you can add a pair of bits and carry out another
bit.

We can draw up a truth table to cover all the variations. Table 2.6 describes
a half adder, so called because it lacks a crucial detail to implement addition: a
carry in from the next lower bit. Observe that the carry bit is only 1 in the case
where the two inputs are 1, as noted above. What kind of logic circuit could



Numbers and Logic 35

A

B
S

C

Figure 2.5: Half adder logic

1-bit full 
adder

A B

CinCout

S

Figure 2.6: Full adder logic block

realise this function? Let’s start with the carry, since that has one distinct case:
both inputs 1. What logic function only produces a 1 exactly when both its inputs
are 1? That looks like and. Now, what about a logic function that produces a 0
when its inputs are the same? That would be xor. We can write this as a pair of
equations for the two outputs, the sum S and the carry out C:

S = A⊕B (2.14)

C = A∧B (2.15)

Figure 2.5 illustrates the logic circuit2. Now we have the low-level construct right,
we can apply our old friend, abstraction, and hide the details. A logic block such
as a half adder can be drawn as if it’s a primitive. However, that’s not terribly
useful as we really want the real deal, a logic block that can take a carry in as
well. Let’s start from what we want the logic block to look like in figure 2.6, then
look at what we need to add to the logic circuit. We want a carry in bit Cin, two
input bits A and B, a sum bit S and a carry out bit Cout . Earlier you may recall I
said we generally want our logic diagrams to flow left to right, then top to bottom.
You will see shortly why this logic block has the flow backwards.

Having decided what we want out of the logic block, let’s define it as before
with a truth table. This time, we have an additional input, the carry in, so that will
double the number of rows of the truth table. The first half is exactly as before,

2Image source for logic circuits in this section: http://en.wikipedia.org/wiki/Adder_
%28electronics%29.

http://en.wikipedia.org/wiki/Adder_%28electronics%29
http://en.wikipedia.org/wiki/Adder_%28electronics%29


36 CHAPTER 2. NUMBERS AND THE MACHINE

Table 2.7: Truth table: Full adder (Cin=carry in, S=Cin +A+B ignoring carry
out; Cout=carry out)

Cin A B S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

A

B

Cin

S

Cout

Figure 2.7: Full adder logic circuit

and the second half reflects the case where there is a carry in.

There are many ways this function could be implemented. You could for
example combine two half adders. The circuit in figure 2.7 is an example. You
can show it implements the truth table of table 2.7 by writing out the truth table of
the circuit and showing the outputs are the same (S and Cout) for the same inputs
(A, B and Cin).

Let’s see how we can use this full adder to build a circuit that can add more
than one bit at a time. Simple. We can cascade our adders. Note now why it makes
sense for the logic to go from right to left. The low-order bits are added on the
right, the natural place for them if we are writing out a number, and carry outs feed
to the left as input to the carry in of the next higher-order bit. Figure 2.8 illustrates
a 4-bit adder using this approach. This is not a super-efficient way of adding, as
there is a delay for the carries to propagate through the entire width of the number.
A real adder will do more of the work in parallel, requiring more complex logic,
and could also use custom-designed components rather than standard logic gates,
since an adder is such a highly used component.



The Machine 37

1-bit full 
adder

A0 B0

Cin

S0

Cout
1-bit full 
adder

A1 B1

S1

1-bit full 
adder

A2 B2

S2

1-bit full 
adder

A3 B3

S3

Figure 2.8: Four-bit adder block diagram

Also missing is logic to check for overflows. For two’s complement arith-
metic, the condition of no overflow requires checking if there is either:

• neither a carry in to nor out of the highest bit or

• both a carry in and a carry out

If neither of these conditions holds, an overflow should be signalled.

2.4 The Machine
Now we have some theory, let’s see how this looks at machine code level, this
time taking a look at actual MIPS instructions rather than our previous simplified
machine code. Recall that on page 10, I said a RISC instruction set has a large
number of general purpose registers. The MIPS design has 32 integer registers
though, strictly speaking, some are not general-purpose. For example, register
0 is hardwired to contain the value 0, and some other registers are reserved by
convention for specific purposes. Since 32 registers is a high number to manage,
when programming at assembly level, the assembler provides special names to
subsets of the registers. One register is reserved for the assembler’s own use (e.g.,
it can construct instructions for you in some cases to keep things simple, and may
sometimes need an extra register). Here are a few more categories of register:

• temporaries – registers that could be overwritten when you call a function

• saved temporaries – registers that are guaranteed not to be overwritten when
you call a function

• result registers – used to return function values as well as targets for
arithmetic expressions



38 CHAPTER 2. NUMBERS AND THE MACHINE

• parameter values – used to pass parameters to functions

• context setup – stored memory locations that help us keep track of where
we are relative to function calls

– global pointer – where to find global variables

– stack pointer – keeps track of where we can add local memory for
function calls and local variables

– frame pointer – where we can find local variables and parameters that
aren’t in registers

– return address – where to go to when we return from a function

We will return to details of function calling, so this is just background for now. At
this stage we will mainly use temporary registers.

The whole register set is numbered from 0 to 31. $0, register number 0, is
the zero register, also called $zero. In simple examples to get us started we will
use temporary registers named $t0–$t9. Let’s work our way towards reusing our
simple for loop example, but this time rewritten as proper MIPS code, starting
from the second version (page 6).

But first, we need some standard details that go with every example. Here are
some preliminaries:

• segment type – we need to tell the assembler whether we are introducing
new code or writing out data values

– text segment – contains code (the reasons for this mysterious usage is
lost in the mists of time3).

– data segment – usually constant values that you will load into registers;
we generally store constant values here, rather than variables, which
go in other memory that we will see later

We can put data and text segments wherever we like but it is easier to see
what is going on in a code file if you have one data segment at the start, and
a single code (text) segment after that

3Why text? This usage goes back at least to the Multics operating system, a project that started
in 1965. Possibly back in those days, machine code was something programmers routinely read?
More about Multics here: http://www.multicians.org/history.html.

http://www.multicians.org/history.html


The Machine 39

• entry point – in SPIM, the convention is you label an instruction as “main”
to indicate where execution starts

• exit from your code – you need to pass control back to the “operating
system” (OS); in this case, the simulator fakes a minimal OS that you can
return to when your code completes

Here is a minimal example – a program that has no data segment, and its text
segment only sets up a system call to exit:

.text
main: li $v0, 10 # system call code for exit = 10

syscall # call OS

Lines in assembly language may be labelled, and you can use these as names
representing a location in your program in branch and jump instructions, among
other things. A label is the first word on a line and is followed by “:”. Here, we
have the required label for the code entry point, ‘main”. Words starting with a “.”
are directives – they generally do not define a machine instruction, but contain
information for the assembler, such as divisions of memory (like .text, which
means what follows goes into the text segment), or indicating the type of data to be
loaded at a given location. The first instruction is a load immediate, an instruction
that puts the value given in the instruction into the named register. Note we are
using a register $v0 to pass a value into our system call. The next instruction is
a system call, a special instruction that takes us out of normal execution and into
the operating system.

Let’s see what happens if you type this program into a text file, “minimal.s”
and load it into SPIM.

First, we need to see what SPIM looks like before we load our program. If
you launch SPIM, it has a big window showing register contents and preloaded
code, as in figure 2.9. There should be another window called “Console”, used for
simple input and output. The smaller top section of code (“User Text Segment”)
is where your code will slot in, and the code (“Kernel Text Segment”) below fakes
the effect of part of the operating system. The user text segment contains code to
pass in information from the environment where the program runs, which we will
ignore. Figure 2.10 shows the part of the user text segment we are interested in.

Let’s take this from left to right, then top to bottom. The first number in “[ ]”
is the machine address. This is displayed in hexadecimal and goes up in steps of
4. Why? Because MIPS addresses refer to bytes, and each machine instruction



40 CHAPTER 2. NUMBERS AND THE MACHINE

Figure 2.9: SPIM at launch

The Machine 29

Figure 2.8: SPIM at launch.

First, we need to see what SPIM looks like before we load our program. If you
launch SPIM, it has a big window showing register contents and preloaded code, as
in figure 2.8. The smaller top section of code (“User Text Segment”) is where your
code will slot in, and the code (“Kernel Text Segment”) below fakes the effect of
the operating system. The user text segment contains code to pass in information
from the environment where the program runs, which we will ignore.

[00400014] 0c000000 jal 0x00000000 [main] ; 188: jal main

[00400018] 00000000 nop ; 189: nop

[0040001c] 3402000a ori $2, $0, 10 ; 191: li $v0 10

[00400020] 0000000c syscall ; 192: syscall # syscall 10 (exit)

Let’s take this from left to right, then top to bottom. The first number in “[ ]”
is the machine address. This is in hexadecimal and goes up in steps of 4. Why?
Because MIPS addresses refer to bytes, and each machine instruction is 4 bytes
(32 bits). The next number is the machine instruction, also in hex. After that is the
representation of the machine instruction in human-readable (assembly-language)
form. Next is a line number from the original source file and finally the instruction
as it appeared in the original source file. We will see shortly why we need the
instruction in two variants. The first instruction, a jump and link, is the basis for
creating function calls. It not only goes to the named location, but also records the
location of the next instruction (in register 31, also called $ra, for return address).

Figure 2.10: SPIM user text segment at launch



The Machine 41

is 4 bytes (32 bits). The next number is the machine instruction, also displayed
in hex (in the actual hardware, all numbers are binary – hex is commonly used to
display memory and register contents and machine addresses because it’s much
easier to read but easy to convert to binary when you need to). After that is the
representation of the machine instruction in human-readable (assembly-language)
form. Next is a line number from the original source file and finally the instruction
as it appeared in the original source file. We will see shortly why we need the
instruction displayed in two variants. The first instruction, a jump and link, is the
basis for creating function calls. It not only goes to the named location, but also
records the location of the next instruction (in register 31, also called $ra, for
return address – needed to get back when the function returns). We will return to
function calls later, so don’t worry about the detail. Next is a nop. For now take
it that this does nothing.

The third instruction has an interesting feature: the original source instruction
has been translated to an ori. What’s going on here? There isn’t actually a
load immediate instruction in the MIPS instruction set, but the assembler is
kind enough to fake the effect with another instruction, ori. The or immediate
instruction takes the logical or of a register value and a value embedded in the
instruction and stores the result in the destination register. Here, the first source
operand is $0, which always contains the value 0 and, if you recall our standard
logic identities, A∨ 0 = A, so the effect of this instruction is exactly the same
as a load immediate. We could of course write our code using the ori instruction
directly, but li makes the intent clearer. This li is an example of a pseudoinstruction
(remember that concept from page 8?): an “instruction” that does not exist in
machine code, but which the assembler fakes with one or more real instructions.

What happens if you try to run SPIM in this state? You should see a complaint
something like figure 2.11. Why is it complaining? It points to a specific machine
instruction, at location 0x00400014, the jal instruction. What does it mean by
“Instruction references undefined symbol”? The predefined jal instruction wants
to jump to a location labeled main and there is no such location – we need to add
in some of our own code before it will run. At this point, SPIM has not actually
run much code – it has given up when trying to jump to a non-existent instruction.
When SPIM starts running, it runs whatever has been put into memory. If it runs
into something that is not properly defined (in this case, the main program), the
run can fail in interesting ways. SPIM includes an assembler, which translates to
machine code when you ask it to load a new program. When it assembles your
code, translating from assembly language, it can pick up some mistakes, but not



42 CHAPTER 2. NUMBERS AND THE MACHINE

Figure 2.11: SPIM upset about no main entry point

User Text Segment [00400000]..[00440000]
[00400000] 8fa40000  lw $4, 0($29)            ; 183: lw $a0 0($sp) # argc 
[00400004] 27a50004  addiu $5, $29, 4         ; 184: addiu $a1 $sp 4 # argv 
[00400008] 24a60004  addiu $6, $5, 4          ; 185: addiu $a2 $a1 4 # envp 
[0040000c] 00041080  sll $2, $4, 2            ; 186: sll $v0 $a0 2 
[00400010] 00c23021  addu $6, $6, $2          ; 187: addu $a2 $a2 $v0 
[00400014] 0c100009  jal 0x00400024 [main]    ; 188: jal main 
[00400018] 00000000  nop                      ; 189: nop 
[0040001c] 3402000a  ori $2, $0, 10           ; 191: li $v0 10 
[00400020] 0000000c  syscall                  ; 192: syscall # syscall 10 (exit) 
[00400024] 3402000a  ori $2, $0, 10           ; 2: li $v0, 10 # system call code for exit = 10
[00400028] 0000000c  syscall                  ; 3: syscall # call OS

Figure 2.12: SPIM user text segment: minimal program

nearly as many as with HLL compilers.
Luckily we have an example all ready – the minimal example on page 39.

Here it is again for ease of reference:

.text
main: li $v0, 10 # system call code for exit = 10

syscall # call OS

Ask SPIM to reinitialise and load this file, minimal.s.
Now take a look at the text segment (assuming nothing broke). Note that the

jal instruction now has the correct target address as marked in figure 2.12 – and
the corresponding address in the left column is also marked. Take close look and
identify where our own code is patched in to the predefined SPIM code. As in the
previous example, the li pseudoinstruction is replaced by an ori – but now in two
places, in our own code and in the pre-defined SPIM startup code.

Now we finally have the pieces together to implement our for loop. Let’s start
by rewriting it in MIPS format, and add initialisation of the loop limit N to 4.

.text



The Machine 43

[00400024] 340a0004  ori $10, $0, 4           ; 6: li $t2, 4 # N = 4;
[00400028] 00004021  addu $8, $0, $0          ; 7: move $t0, $zero # sum = 0;
[0040002c] 00004821  addu $9, $0, $0          ; 8: move $t1, $zero # for (i = 0; i
[00400030] 0810000f  j 0x0040003c [test]      ; 9: j test # test before first iteration
[00400034] 01094020  add $8, $8, $9           ; 10: add $t0,$t0,$t1 # sum += i;
[00400038] 21290001  addi $9, $9, 1           ; 11: addi $t1,$t1,1 # increment loop counter
[0040003c] 012a082a  slt $1, $9, $10          ; 12: blt $t1,$t2,body # not done? Go again
[00400040] 1420fffd  bne $1, $0, -12 [body-0x00400040] 
[00400044] 3402000a  ori $2, $0, 10           ; 13: li $v0, 10 # system call code for exit = 10
[00400048] 0000000c  syscall                  ; 14: syscall # call OS

Figure 2.13: SPIM user text segment: for loop

# register use:
# $t0 : sum
# $t1 : i
# $t2 : N
main: li $t2, 4 # N = 4;

move $t0, $zero # sum = 0;
move $t1, $zero # for (i = 0; i < N; i++)
j test # test before 1st iteration

body: add $t0,$t0,$t1 # sum += i;
addi $t1,$t1,1 # increment loop counter

test: blt $t1,$t2,body # not done? Go again
li $v0, 10 # system call code for exit = 10
syscall # call OS

Note use of comments – mainly the original C-style source code, but with a
few explanations of non-obvious details. I also document register usage. Since
this piece of code stands alone and doesn’t call any functions, I can safely use
temporary registers that aren’t saved across a function call.

Load this code into SPIM (using Reinitialize and load file to clear out the
previous example).

Heads up: If you load the file without using the “Reinitialize” version of
the command, SPIM will add the file to the existing contents of memory,
something we don’t want. At least, not right now.

The standard initialisation code is the same; look for your main program
(jal 0x00400024 [main] tells you where to look). Figure 2.13 contains the
relevant part of the user text segment. Note how the test label in the j instruction
is replaced by 0x0040003c by the assembler.

The blt instruction is more interesting. Note that it has been replaced by two



44 CHAPTER 2. NUMBERS AND THE MACHINE

Table 2.8: Register conventions

symbolic name register number usage
$zero 0 zero constant (HW)
$at 1 assembler temporary
$v0–$v1 2–3 function or expression result
$a0–$a3 4–7 function parameters
$t0–$t7 8–15 temporary
$s0–$s7 16–23 saved temporary
$t8–$t9 24–25 temporary
$k0–$k1 26–27 reserved for OS kernel
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address (HW)

instructions (outlined with a rectangle). This is because MIPS does not have a blt
instruction and once again the assembler kindly creates one for us out of two more
primitive instructions. This is an example of a pseudoinstruction that expands to
more than one real instruction. Note also that the branch has the number -12 in
the place of the label. If the condition in the branch instruction is true, it transfers
control to an instruction at a position relative to itself. Since instructions take up 4
bytes (32 bits), an offset of -12 means go back 3 instructions (as indicated by the
arrow). The calculates this offset for us, which is just as well with complications
like pseudoinstructions that can expand to more than one real instruction.

To make it even more complicated, the number stored in the instruction isn’t
actually -12. Since machine instructions are always on whole word boundaries, it
isn’t necessary to store all the bits representing locations that can’t be instructions.
So the actual number stored in the branch instruction is -3 (check in binary: what
is -3 in two’s complement notation?).

It is useful at this point to list register conventions more completely. Except
for $zero (also called $0, fixed to the value 0 by hardware) and $ra ($31, used
to save a return address with a function call), these are strictly conventions,
and are not designed into the hardware. However being able to pass values to
functions, keep track of global variables and other similar purposes makes it
necessary that different parts of a program (possibly created at different times
with different tools) be able to communicate, hence standards for how registers
are used. Table 2.8 lists conventions for the 32 MIPS integer registers; only those
labelled “(HW)” have a purpose actually defined in hardware. This list is extended



The Machine 45

in Appendix B to include floating-point registers. Take a look now at the pair of
instructions highlighted in figure 2.13 that the assembler generated for us. Note
how both instructions use register $1, the register listed in table 2.8 as $at. This
register is reserved for the assembler so it can convert pseudoinstructions to actual
instructions even in cases where it may need an extra register. You should never
use this register in your own code.

Heads up: Many of the MIPS register conventions are purely
conveniences for the programmer: we enforce those conventions in the
way we code to make coding easier. A saved or temporary register (for
example) as far as the hardware is concerned can be used absolutely any
way we like but we should observe the standard conventions so our code
is understandable to ourselves and others and so it can be combined with
other code not written by ourselves.

One final detail: you may be wondering what the slt $1, $9, $10 instruc-
tion does. If we translate it to the symbolic register names, it is a bit easier to
relate to the original code. Let’s also include the branch, with the label put back
to replace the -12:

slt $at, $t1, $t2
bne $at, $zero, body

In our code, we had:

blt $t1,$t2,body

The slt (set less than) instruction computes a less than comparison, and stores
it in a target register (in this case, $at, also known as $1). MIPS only has two
conditional branches, a bne for branch on not equal, and beq for branch on equal.
Other inequalities are constructed by the assembler in much the same way as the
blt pseudoinstruction.

The take home message? Though MIPS is a simple assembly language,
the large number of registers can be confusing, and we rely on conventions
to manage them conveniently. Pseudoinstructions as well as symbolic
register names make things easier for the programmer at the cost of
occasional differences between the real machine code and assembly-
language instructions.



46 CHAPTER 2. NUMBERS AND THE MACHINE

Exercises
1. Use a truth table to prove the second De Morgan’s Law in equation 2.2.

2. Write out truth tables for all the identities in equations 2.3–2.10 and show
that they all hold.

3. Exactly which simplifying equations apply to the simplifying step in
equation 2.12? Show each step in detail.

4. Use a truth table to prove that the final simplified version of equation 2.12
matches the definition of exclusive or in table 2.4.

5. Draw a logic circuit for the final simplified version of equation 2.12.

6. Convert 125 and 130 to binary, and add them using 8 bits, assuming 2’s
complement representation of negative numbers.

(a) Is your answer correct?

(b) Take the 2’s complement of your answer. What do you get now?

(c) Review the rules for detecting overflow in 2’s complement arithmetic.
Do you have a problem with this calculation? Explain.

7. Convert -14.2 into IEEE 32-bit format, and check your answer in SPIM as
suggested on page 33.

8. Is there a way to reorder the calculation on page 33 so that the answer comes
out as 1? Is there a general rule you could apply to minimise roundoff error,
if you know the magnitude of the numbers?

9. Show that the logic circuit of figure 2.7 implements the truth table of table
2.7. To do this, write out the logic expression corresponding to the circuit.
Simplify if possible then write out a truth table for the circuit and compare
the outputs with table 2.7.

10. Design a full adder by combining two half adders. Study the truth table 2.7
to make sure you have the details right:

(a) Draw the logic blocks for two half adders, showing how they combine
to form a full adder, adding any additional logic you may need to link
them. Hint: you want to add the A and B inputs, then add the result to
the carry in Cin, then combine the carry outs from the two half adders.



Exercises 47

(b) Expand your logic blocks to show the combined logic circuit the two
half adders represent.

(c) How much does your circuit differ from that in figure 2.7?

11. Work out the logic for checking for overflow in 2’s complement addition. If
there is a carry in to the sign bit, there must also be a carry out. The value
we are calculating is a bit V for overflow (O looks too much like a zero),
and the inputs are Cin and Cout . V should be set to signal an overflow error.

(a) Write out the truth table showing when V should be set, given inputs
Cin and Cout for the sign bit.

(b) Find a boolean expression that implements the truth table.

(c) Draw a logic circuit that implements the boolean expression.

12. Why do you think only a restricted subset of registers is guaranteed to be
saved across a function call?

13. The SPIM assembler fakes a load immediate instruction (li) using ori
(or immediate), using the fact that A∨ 0 = A and register $zero. What
arithmetic operation could you use instead of ori to have the same effect?

14. Why do you think the MIPS designers did not provide instructions for the
full range of conditional branches?



3 Assembly by Example

LEARNING TO PROGRAM IN ASSEMBLY LANGUAGE is a difficult skill. For-
tunately, we only need to understand the general idea and how to construct
small examples for most purposes, because compilers handle large pro-

grams. The goal is to give you a sense of how high-level language constructs
are built up from below, so you will gain a better appreciation of efficiency issues.
Should you ever get into compiler writing, creating low-level device drivers, or
otherwise need to understand machine code in more detail, you will have the
basics to get started.

Once basics are out of the way, I show how to use standard templates to
generate your code. The first versions of these templates are as simple as
possible, and I later generalise them so they work for more complex scenarios,
like programs with more than one instance of the same control construct. While
assembly language gives you total freedom to write code as you like, using
templates has two benefits:

• you can focus on the hard parts of coding, rather than work out the logic for
basics like loops every time

• using a template gives you some idea how a compiler works, a useful start
if you go on to do a compiler course

In this chapter, I introduce a bit more detail of MIPS instructions and their
formats, then go on to translation of common constructs to MIPS assembly
language.

3.1 Instructions and their Formats
The MIPS architecture has remarkably few instruction types – just three basic
formats for most operations (operating system interactions like system calls are

48



Instructions and their Formats 49

opcode rs rt rd shift amt function

opcode rs rt immediate

opcode address

R

I

J

056101115162021252631

015162021252631

0252631

Figure 3.1: MIPS common instruction formats

an exception to the common layout; floating point instructions are based on a
similar pattern but differ in detail). Figure 3.1 illustrates these three formats.
The first thing to note is that the opcode is only 6 bits. That allows for 26 = 64
different opcodes. However, the function field in effect extends the opcode field
for instructions that don’t allow for an immediate operand in the instruction word.
The function field is also 6 bits long, so a fairly large instruction set could be
encoded if all available bit combinations were used. Even if half the opcodes
were used for the cases where the function field does not exist, encoding over
2000 instructions is possible with this scheme.

Heads up: An immediate operand must be a fixed value that you know
when you write down the instruction because it is embedded in the code
itself. In some cases you can use a name for a value, but that name has
to represent a value known to the assembler. It must also fit in the limited
number of bits allowed for an immediate operand.

Let’s look at the formats in a little more detail. In general, when we write
instructions in MIPS assembly language we usually put the destination – the
place where a value is stored – on the left, which is natural if you are used to
reading assignment statements in common HLLs that write an assignment with the
destination on the left. An exception as we see later is store instructions, where
the memory location to which the store is targeted is written last on the line, not
first, to put memory addressing into a position consistent with load instructions.

The R format is for instructions that use three registers, generally an operation
like

R[d] = R[s] OP R[t]

In this instruction format, you can think of d as specifying the destination. One



50 CHAPTER 3. ASSEMBLY BY EXAMPLE

exception to this general rule is logical shift instructions, which send the result to
R[d] after doing a left or right shift on the contents of R[t]; in this case R[s]
is ignored because the shift amount is built into the instruction. There are also
variable shift instructions where the shift amount is in R[s] (e.g., sllv: shift left
logical variable).

The I format is for instructions that use two registers, and an immediate
operand (a value built in to the instruction), generally of the form

R[t] = R[s] OP immediate

where immediate is a 16-bit value built in to the instruction. Load and store
instructions are of a similar format, but use the registers differently. In both cases,
R[s] plus the immediate operand (which is a signed number) form the address
and R[t] is the source of the value for a store instruction (copy from a register to
a memory location) or the destination for a load (copy from a memory location to
a register).

The J format is for instructions that have a single immediate operand, generally
of the form

OP immediate

where immediate here is a 26-bit value built in to the instruction. A j (jump, or
unconditional branch) instruction is of this format, hence the name.

In all cases, OP is defined by the opcode, as well as the function code in the
case of the R format.

Given that the immediate field is only 16 bits, how do you create constants
in your code that are longer than this? Let’s say you need to initialise a variable
called population with the value 420,000. This number translates to base 2 as
0110 0110 1000 1010 0000 (or in hex, 0x668A0 – note the way I split the bits into
groups of four to make conversion to hex easier). This is clearly longer than 16
bits so how can we create this value in a register either to use directly or to put in
memory to use later (initialise a variable as the HLL types say)?

This is where logical shift instructions are useful. We can load the high 16 bits
into a register, shift left 16 bits, then put the low 16 bits into the register. The high
16 bits (4 hex digits) are 0x0006 and the low 16 bits are 0x68A0.

To build up this example, we will assume we can put a variable in the data
segment. This is not what the data segment is usually used for: we need more
concepts than we have currently to implement variables properly. But first, we
will start with all values in registers.

We start from something like this in a HLL:



Instructions and their Formats 51

0x0006

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

lui $t0, 0x0006

Figure 3.2: MIPS load upper immediate instruction

population = 420000;

Now in MIPS code:

li $t0, 0x0006 # population = 420000;
sll $t0, $t0, 16 # shift the high 16 bits left
ori $t0, $t0, 0x68A0 # combine high and low 16 bits

If you embed this in the minimal SPIM program and run it, you should end up
with register $t0 containing 668a0. Check the Int regs panel in the main SPIM
window. Confirm this is the value you want by switching the register view to
decimal (the heading changes to Int Regs [10]). Which real machine register is
this? If you want to see what the program does in detail, run it a step at a time.
Before you do this, clear the registers so it starts from scratch.

Loading a word in two 16-bit chunks is frequent enough requirement that even
the MIPS designers who favour simpler instructions relented and provide a single
instruction that does the first two lines of our example:

lui $t0, 0x0006 # population = 420000;

This load upper immediate instruction shifts the immediate operand 16 bits to the
left (zeroing the low bits), and puts the result in the target register (here, $t0).
Figure 3.2 illustrates how lui puts a value into a register. The shaded low 16 bits
are always zeroed by the instruction.

For completeness, here is the code with the extra wrappers needed for SPIM
execution. From here on, I assume you can add this extra material and leave it out
of small examples:

# initialize the population variable in register $t0
.text

main: li $t1, 0x0006 # population = 420000;
sll $t2, $t1, 16 # shift the high 16 bits left
li $t1, 0x68A0 # load the low 16 bits
or $t2, $t2, $t1 # combine high and low 16 bits
li $v0, 10 # system call code for exit = 10
syscall # call OS



52 CHAPTER 3. ASSEMBLY BY EXAMPLE

We used two instructions here to do something that is logically a single operation.
The MIPS designers deliberately made choices like this. Creating a large constant
is not something that happens often in code – it is more common to initialise
variables with small values like 0 or 1. If the designers created an instruction that
could initialise a register with a bigger value than 16 bits (e.g., by allowing an
instruction to be longer than one word), it would rarely be used, but would add to
the overall complexity of the design.

On now to a wider range of examples. We will start with memory accessing,
move on to arithmetic and logic operations, and conclude with control (we already
saw a for loop).

3.2 Memory access
Using registers is all well and good but since we only have 32 of them (and some
are not freely available, like $zero), we need to be able to access a bigger memory.
Registers are needed for arithmetic and logic operations, but we do not need to
have all our data available at once. When we are not doing computations on data,
we need to store it in a bigger memory – the main memory or RAM. We need to
be able to load values into registers as well and, to do all this, we need to be able
to access a specific location in memory.

You can think of MIPS integer registers as a small array called R, indexed
from 0 to 31. There are also floating-point registers, a similar-sized array called
F. Floating-point registers can also be combined in pairs to form a double-word
(64-bit) number, in which case you only have even-numbered registers (F0, F2
. . .F30). You can think of RAM as a giant array of bytes, indexed from 0. At
machine level, in fact, that is all it is. Other meanings, as indicated on page 4,
are imposed purely by the way the memory is interpreted. Sometimes, we refer to
registers as array elements, like R[n], when the MIPS assembly notation of $n is
not convenient or clear.

Heads up: Floating-point double precision registers are the same
hardware as single-precision registers, but used in pairs. If you use
double-precision registers, it is up to you not to use either half as a single-
precision register.

Let’s look at some examples of how memory contents is moved between RAM
and registers. Once in a register, any arithmetic or logic operation can be applied,
but any change in value is not permanent until copied back to RAM, because a



Memory access 53

register value at some point is likely to be overwritten simply because there are so
few registers.

An important thing to understand is the concept of a machine address. An
address is simply an index into the RAM array. An address can be absolute – an
index from the zeroth byte in RAM – or relative – an offset from a given location.
Machine addresses in our SPIM implementation of the MIPS instruction set are
32 bits though 64-bit addressing is increasingly common. Because addresses are
so big, relative addresses are useful because they allow much smaller numbers
to be used, an important consideration if the address is built into the instruction.
Machine addresses start from 0 and go up to whatever maximum size the particular
system supports. Absolute addresses consequently are represented as unsigned
integers. Relative addresses, on the other hand, can be negative, since they specify
an offset from a given location. Our simple loop example used both kinds of
address. A MIPS j instruction uses absolute addresses, while branch instructions
use relative addresses. Part of the reason for this distinction is a branch instruction
needs more bits for specifying the register containing the condition whereas a
jump (unconditional branch) can use more bits for the address. Also, branches are
often used for shortish offsets to implement constructs like loops and conditional
code. A jump instruction can be paired with a branch if a branch needs to move a
longer distance than its offset permits.

Relative addresses are useful for another reason: they make it easy to relocate
code, i.e., load it into a different part of memory. If code is relocated, all absolute
addresses have to be adjusted so they work in the new location. We will look at
some of this in more detail later (§5.6, page 167). For now, we are going to do
some simple examples to get a sense of the issues.

First, clear out any previous example from SPIM using Reinitialize Simu-
lator. Now in the main window, click on the Data tab. Figure 3.3 illustrates the
top part of that view. The User data part is supposed to contain constant values;
for now we treat this area as if it contains global variables. We will now look at
how to create a global variable in that space with an initial value and load it into
a register. The way we are going to do this now is a rough approximation to the
way it should be done, to illustrate the principles.

The new instructions we need are one to load an address – the location in
memory where the variable is stored – into a register, and an instruction to use
that address to load the item it points to into a register. In our MIPS examples,
an address is 32 bits (MIPS also has a 64-bit mode, but we do not use that in any
examples). As we saw with the example on page 51, we can’t load a 32-bit value



54 CHAPTER 3. ASSEMBLY BY EXAMPLE

Figure 3.3: SPIM data segment

immediately into a register; we need two steps to do this. That is not always true:
if the lower 16 bits are zero, we can do this in one step using a lui instruction.

Heads up: This method for accessing a “variable” will later be how
we access constants that we know before the program runs. To implement
variables properly, we need to know about concepts like how to implement
a stack and dynamic allocation, and where global variables are stored.

Fortunately, a MIPS assembler has a useful pseudoinstruction to save us
having to think through all this: la Rn, label. This load address pseudoinstruction
uses the assembler’s knowledge of the position the label represents in the data
segment to determine whether it can create an address in one or two steps. Assume
now we have our population variable set up as a global, and another variable,
max_age as well, and we want to load each into a register to perform arithmetic
or logic operations. We need assembly code that looks like this:

.data
population: .word 420000
max_age: .word 120

.text
main: la $t0, population # address of population variable

lw $t1, 0($t0) # load value at population
la $t0, max_age # address of max_age variable
lw $t2, 0($t0) # load value at max_age

In the data segment, you tell the assembler how big an item you want at a given
label and also give it an initial value. Here, we want our value to be stored in a
word (4 bytes). We will later see examples of other sizes.



Memory access 55

hex

decimal

Figure 3.4: SPIM data segment: intialized

[00400024] 3c081001  lui $8, 4097 [population]; 6: la $t0, population # address of population variable 
[00400028] 8d090000  lw $9, 0($8)             ; 7: lw $t1, 0($t0) # load value 
[0040002c] 3c011001  lui $1, 4097 [max_age]   ; 8: la $t0, max_age # address of maximum age variable 
[00400030] 34280004  ori $8, $1, 4 [max_age]  
[00400034] 8d0a0000  lw $10, 0($8)            ; 9: lw $t2, 0($t0) # load value

Figure 3.5: SPIM text segment: loads from memory

Heads up: The load address pseudoinstruction only applies when we are
dealing with a labelled location in our assembler code. When we deal
with variables properly, we need a different approach, since we cannot
rely on the assembler knowing where the variable is stored.

If you make a file with this (plus the usual glue at the end to exit to the
operating system) and load it into SPIM, take a look now at the data segment. In
figure 3.4 the top part shows the user data segment plus part of the stack (more on
that soon) in default hexadecimal view and the lower part of the figure in decimal
mode. See if you can find our initial values 420,000 and 120. What address do you
think 420,000 is stored at? Now click on the Text tab, and see what your loaded
and assembled code looks like (ignoring the standard stuff before your code).

Figure 3.5 shows the main parts of the text segment that are of interest. First,
note how the address of the population variable is loaded into register $t0 (real
register $8). The la pseudoinstruction is replaced by a single instruction, a lui.
Why is this possible? Because the start address of our variable area is an even
multiple of 216: 0x10010000 (you can see this by looking at the data segment; 216

in hex is 0x10000, 65536 in decimal, so any multiple of 216, viewed in hex, has at
least 4 zeroes at the low end of the number).



56 CHAPTER 3. ASSEMBLY BY EXAMPLE

0

1

2

3

4

5

6

7

0

0

0x10010000

0

0

0x42

0

0

0x1000FFE0

0x1000FFE4

0x1000FFE8

0x1000FFEC

0x1000FFF0

0x1000FFF4

0x1000FFF8

0x1000FFFC

0x10010000

0x10010004

0x10010008

0x1001000C

0x10010010

0x10010014

0x1

0

0x2

0xFF

0

0

0x12

0

0x42

0xA1

0

0

0

0

: :

: :

value copied from RAM
by lw instruction using
address in R[2]

no. contents

address: where in RAM

Figure 3.6: Registers (left) vs. RAM (right)

To obtain the address of the max_age variable, the same instruction is used,
followed by ori $8, $1, 4. The effect of this is to add a 4 into the low order bits
of the word. An addition could also be used but a logical or is generally preferred
over addition where possible, as unnecessary extra logic such as checking for
overflow need not happen in the hardware. Now we can do the load instruction to
place max_age in a register, ready for any further processing. Run the example,
and check that the registers $t1 and $t2 (real registers $9 and $10) contain the
correct values.

Note also in this example the use of the $1 register by the assembler, also
known as $at – the assembler temporary register.

You need to be very clear on the difference between a number that represents
a value, such as an integer, and a number that represents a location in memory –
an address. Figure 3.6 illustrates contents of machine registers (only 8 so we can
see clearly what’s going on) for an arbitrary example and a portion of memory
(from machine address 0x1000FFE0 to 0x10010014). The numbers on the side
of the registers and RAM are not actually stored but represent where we are in the
register file or in memory. Register 2 contains a number that represents a machine
address and can be used by an instruction like lw to copy the memory contents
into a register. Assuming that an instruction like lw $5,(0)$2 has been executed,
the contents of the memory location pointed at by register 2 is now in register 5.
Note that I have illustrated the contents of memory with one row representing a



Memory access 57

machine word, which means that the machine addresses go up in units of 4.
For registers in a real MIPS machine, see table 2.8 on page 44.
Remember, a number represents exactly what you use it for. A processor has

no way of knowing whether bits in a register are a machine address (or pointer
in languages with that concept, like C), an integer, or a string of characters. HLL
programming insulates you from that reality because the compiler stops you from
using a bit pattern as something other than its original purpose (less so in C, as
we will see later). In assembly language, you can do whatever you like so, for
example, you can treat the number you have loaded into a register from a location
in memory as an address, even if it was not constructed as one.

If we can only use the efficiency gain of starting the data segment at an address
that’s an even multiple of 216 for the very first variable, that seems a bit of a waste.
The cost of starting variables at a 216-multiple address is wasting memory to place
variables at that location rather than the absolute first free spot in memory. If
you are a compiler, you should know what variables you have placed where, and
should be able to calculate the offset of each variable from the start of the data
segment. Since load instructions include a 16-bit offset, added to the address
given in the register, a compiler can use the offset to avoid using two instructions
to create an address. How big can this offset actually be? Since the offset is a
16-bit signed value, the biggest positive offset is 215−1 = 32767 and the biggest
negative offset is −215 = −32768. The positive offset should be big enough to
deal with most global variables without having to use more than one instruction
to create an address.

When we get to the proper way to handle variables, the issues are a little
different – but this simplified view of how to create variables is a useful
introduction to offset addressing, which we will need later for offsets from the
start of the actual space in which variables are stored, and offsets from the start of
a data structure.

Back to our example. If we are a compiler, we know that the variable
population is at the start of an even 216 boundary, so we can load the address
directly and use it with a zero offset. What about max_age? We know it is
the next variable after population, so all we need to know is how many bytes
population needs. In our definition of the data segment, we say it is a word,
which is 4 bytes. If you look at the code the assembler generated for the la
pseudoinstruction to create the address of max_age, it added 4 onto the address
of the first variable. So that is all consistent. We can now do our example more
efficiently:



58 CHAPTER 3. ASSEMBLY BY EXAMPLE

[00400024] 3c081001  lui $8, 4097 [population]; 6: la $t0, population # address of population variable 
[00400028] 8d090000  lw $9, 0($8)             ; 7: lw $t1, 0($t0) # load value
[0040002c] 8d0a0004  lw $10, 4($8)            ; 8: lw $t2, 4($t0) # load value at max_age

Figure 3.7: SPIM text segment: more efficient loads from memory

.data
population: .word 420000
max_age: .word 120

.text
main: la $t0, population # address of population variable

lw $t1, 0($t0) # load value at population
lw $t2, 4($t0) # load value at max_age

Load this version into SPIM and check again that it runs as it should, and the
right values are in the destination registers. Figure 3.7 illustrates how the new text
segment cuts our previous code from five instructions to load two variables to three
instructions, and only needs to use one lui instruction with no modifications to set
up the address for both load instructions. Note also the offset of 4 highlighted in
the figure.

From now on, when addressing variables in memory, we will use offsets and
create the base address once wherever possible. When we do proper methods of
accessing variables, we will still use offsets, but we will seldom need to create a
base address. There is a dedicated register, by convention, $gp (real register $28)
that should point to the start of the global variables. This means we only need set
up the global variable base address register once at the start of our program and
use it unchanged from there on. Take a look at the registers set up by SPIM. What
address does $gp point to? It is set to 10008000. Not exactly the start address
of our “variables”, 0x10010000. What’s going on? Remember, the area we have
been using for “variables” is in fact a region that would usually be used to store
constant values. I cheated a bit in using this as global variable space because it’s
a quick way of getting started. Let’s leave this for now and get back to memory
layout in detail later, where we can do this the proper way.

Just one more thing on memory referencing for now: storing register values
back into memory. Let’s just store a value already in a register. In the SPIM
register list, you will see R29, also called sp. if you look in the register panel on
the left hand side of the main SPIM window, you will see something like this:

R29 [sp] = 7ffffd6c



Memory access 59

User data segment [10000000]..[10040000]
[10000000]..[1003ffff]  00000000

User data segment [10000000]..[10040000]
[10000000]..[1000ffff]  00000000
[10010000]    7ffffd6c  00000000  00000000  00000000    l . . . . . . . . . . . . . . . 
[10010010]..[1003ffff]  00000000

R29 [sp] = 7ffffd6c

Figure 3.8: SPIM data before (top) and after (bottom) saving SP

We will get to the purpose of this register (the stack pointer) in a while. For now,
since it has a value in it already, let’s see how to store that value to memory. Let’s
create a variable for it in the data segment called saveSP, then store the register
contents there. As before, we have to put the address of the variable into a register
and, as with the load operation, store the contents of the sp register using the $t0
register as the index into the RAM array:

.data
saveSP: .word 0

.text
main: la $t0, saveSP # address of sp save location

sw $sp, 0($t0) # store stack pointer value

Try this example, and check that the memory contents is updated as indicated in
Figure 3.8. Whatever value the $sp register has should be repeated in memory at
the location labelled by saveSP. On page 49, I mentioned that store instructions
have the destination last, in contrast to other instruction types. This is so the
order of operands is consistent with a load, which has the memory address last.
Although this breaks an easy-to-remember rule, it does mean that if you line up
loads and stores, you can easily see if they refer to the same or nearby memory
locations, and if they use the same registers.

Storing the stack pointer in memory is something we will do frequently once
we get to more general code – if not exactly the way illustrated here.

The take home message? Registers are a small array of (mostly)
general-purpose memory. Main memory or RAM is a giant array of bytes
that can be used for longer-term storage. A memory address is a pointer
into the RAM array and is used in a load instruction to copy RAM contents
into a register and a store instruction to copy a register into RAM.



60 CHAPTER 3. ASSEMBLY BY EXAMPLE

4-bit number 8-bit number
decimal original 2’s complement original 2’s complement

-3 1101 0011 11111101 00000011

Figure 3.9: Sign-extending: extended bits shown in bold

3.3 ALU operations

Once we have values in registers, we can use them in arithmetic and logic
operations. Logic operations can be comparisons, as well as operations that
perform boolean algebra on register contents. We have already seen a few
examples – one is the use of an or operation to add in low-order bits after setting
the high order bits of an address. A lot of the rest you can pick up from examples
and the instruction summary (pages 212–221).

A few things might not be so clear though. First, when you have a negative
number in an immediate operand, before it can be used in arithmetic on a register
that is wider than the immediate operand, it must be sign-extended. As explained
on page 28, this means that to widen its representation, the sign bit (0 or 1) has
to be replicated to the higher positions to the left of the narrower representation’s
sign bit. Figure 3.9 contains a reminder of sign extending. The numbers 3 and -3,
represented in 2’s complement, are shown in 4-bit and 8-bit versions. The wide
version of both the positive and the negative number is the same as the narrower
version, except the sign bit is repeated 4 more times in the high-order half of the
8-bit version.

Unsigned operations do not necessarily use unsigned data, but they do not
cause overflows to be picked up. So you can, for example, write something like
addiu $t0, $t0, -32768 (the addiu instruction is add immediate unsigned).
What happens is the immediate operand is converted to the bit pattern for−32768
(the 2’s complement of 0x8000 which for a 16-bit number is also 0x8000, because
the positive number 32768 is too big to fit in 16 bits).

Another thing to note is that as seen after we did the for loop on page 42, the
MIPS instruction set does not have branch instructions that compute comparisons
like less than. Instead, comparisons are generally done in registers exactly as
arithmetic is done. One of the reasons for that is it makes it possible for compiler
writers to use much the same approach for boolean (or logical) expressions as they
do for arithmetic. Everything takes the form of either two register operands used
to compute a value for a destination register operand, or a single register operand



ALU operations 61

User data segment [10000000]..[10040000]
[10000000]..[1000ffff]  00000000
[10010000]    00feface  00000000  00000000  00000000
[10010010]..[1003ffff]  00000000

R8  [t0] = ffffface
R9  [t1] = face
R10 [t2] = fffffffe
R11 [t3] = fe
R12 [t4] = 10010000
R13 [t5] = 10010002

registers memory contents

Figure 3.10: Effect of short loads

and an immediate used to compute a result for the target register operand.
ALU operations generally operate on a whole register, though you can load

load or store a halfword (16 bits) or byte (8 bits). When you load a halfword
or byte into a register in unsigned mode the high bits (that aren’t included in the
loaded value) are set to zero. In signed mode, it is sign-extended (the sign bit is
copied to the remaining high bits to make a valid 32-bit number). If you store a
halfword or byte, only that number of bits is written to memory, so stores do not
have an unsigned mode. You need to be careful that you do not lose information or
break negative numbers in halfword and byte mode. We will however mainly use
full words for numbers (almost always in signed mode) and bytes (using unsigned
loads) for characters, so we should not run into this issue.

Let’s do one example with a few pieces of arithmetic and a logic test to put all
this together. Here’s some C-like code that calculates a boolean value (true if the
given age is less than 10,000 days, false otherwise):

int age = 21;
int daysperyear = 365;
bool ageLessThan10k = false;
ageLessThan10k = age * 365 < 10000;

This time since the example is a bit longer, here is the entire source code, including
the exit code:

# psuedocode with register assignments:
# $t0: base address for variables
# $t1 int age = 21;
# $t2 int daysperyear = 365;
# $t3 bool ageLT10k = false;
# ageLT10k = age * 365 < 10000;

.data
age: .word 21
daysperyear: .word 365



62 CHAPTER 3. ASSEMBLY BY EXAMPLE

age daysperyear ageLT10k

Figure 3.11: SPIM data layout with a short data item

ageLT10k: .byte 0
.text

main: la $t0, age # age address
lw $t1, 0($t0) # load value at age ($t1)
lw $t2, 4($t0) # load value at daysperyear ($t2)
lbu $t3, 8($t0) # load value at ageLT10k ($t3)
mulo $t4, $t1, $t2 # temp1 = age * daysperyear
slti $t3, $t4, 10000 # ageLT10k = temp1 < 10000
sb $t3, 8($t0) # store value at ageLT10k

# standard exit convention
li $v0, 10 # syscall code for exit = 10
syscall # call OS

There are a few things to note here.
First, I put the boolean value in a byte rather than a word. Since I put it last, this

should present no complications. The MIPS instruction set prefers to load words
on a whole-word boundary (an address that is a multiple of 4). In fact if you try
to do a load or store at an unaligned address, you get an exception (crashing your
program). The MIPS instruction set has special instructions to do unaligned loads
and stores. If I placed another variable wider (including a 16-bit halfword) than a
byte after this byte-length variable, I would have to worry about that. The SPIM
assembler takes a helpful view of this: to avoid trouble, it starts each value at an
appropriate boundary (word, halfword, etc.), so you don’t run into trouble if you
follow a byte or a halfword by a longer data value. If you are creating your own
data layout in memory, this is an issue you need to pay attention to.

Figure 3.11 shows how our data is laid out (each block represents a byte).
With this layout, we need an offset of 4 from the start of our data area to get to
daysperyear and an offset of 8 to get to ageLT10k. If we had more byte-sized
data items, the assembler would continue filling the word. If in doubt about the
layout, create your data segment, load your program and see how SPIM has placed
the data items by viewing the data segment.

You may be wondering why, with an offset of 8 from the start of our data
area, why the ageLT10k byte is at the low end of the word, not the high end,
apparently leaving a 3-byte gap. This is because the version of SPIM I am running



ALU operations 63

[00400024] 3c081001  lui $8, 4097 [age]       ; 12: la $t0, age # age address
[00400028] 8d090000  lw $9, 0($8)             ; 13: lw $t1, 0($t0) # load value at age ($t1)
[0040002c] 8d0a0004  lw $10, 4($8)            ; 14: lw $t2, 4($t0) # load value at daysperyear ($t2)
[00400030] 910b0008  lbu $11, 8($8)           ; 15: lbu $t3, 8($t0) # load value at ageLessThan10k ($t3)
[00400034] 012b0018  mult $9, $11             ; 16: mulo $t4, $t1, $t3 # temp1 = age * daysperyear
[00400038] 00000810  mfhi $1
[0040003c] 00006012  mflo $12
[00400040] 000c67c3  sra $12, $12, 31
[00400044] 102c0002  beq $1, $12, 8
[00400048] 0000000d  break $0
[0040004c] 00006012  mflo $12
[00400050] 298b2710  slti $11, $12, 10000     ; 17: slti $t3, $t4, 10000 # ageLessThan10k = temp1

Figure 3.12: SPIM expansion of mulo pseudoinstruction

uses little-endian ordering, which means that bytes are numbered from the little
(low-order) end of the word. MIPS supports both little-endian and big-endian byte
ordering. This is usually not an issue for programmers, except when interchanging
information at a very low level between different types of system (e.g. over a
network).

Second, I used an unsigned load byte instruction to load the boolean value.
This is not strictly necessary since it was a zero value, but signals my intent not to
use it as a signed value.

Finally, the multiply instruction (mulo for multiply with overflow) presents an
interesting issue: if you multiply two n-bit numbers, the product could require up
to 2n−1 bits to represent – for practical purposes, double the width. The multiply
instruction in our code is yet another example of a pseudoinstruction. In this case,
it takes care of the possibility that we overflowed when multiplying. Load the
example, and see what the SPIM assembler generates. Figure 3.12 illustrates what
SPIM turns that one innocent-looking instruction into (look for the lines without
a comment on the side, starting from the mult instruction that SPIM created at
address 0x00400034).

Let’s take the real multiply code sequence one instruction at a time. First,
the real mult instruction does not store its result in a regular register but instead
in a pair of registers containing the high and low parts of the resulting value
(remember, it could be up to double the width, approximately, of the source
operands). So the instruction mult $9, $11 has no explicit destination (the
named registers are the real names of $t1 and $t3, as in the pseudoinstruction,
mulo $t4, $t1, $t3). Look in the SPIM register panel, and you will find two
registers there representing the multiply target called HI and LO. If all goes well,
only the LO register will contain the complete result. To test for this, we need to
check if the high-order bit of LO (the sign bit) is equal to all of the bits of HI. Why?
If the answer is positive, the sign bit of LO will be 0, and the entire contents of HI



64 CHAPTER 3. ASSEMBLY BY EXAMPLE

will be 0. If the answer is negative, the sign bit of LO will be 1, and the entire
contents of HI will be 1s. If either condition does not hold, we’ve overflowed.

Heads up: In addition to the mult, there is a mul instruction that has
the regular 3-register format. Only use this instruction if you are sure the
multiply will not overflow (a compiler can detect this if it has information
about the values being multiplied). This instruction is incorrectly listed
in the SPIM reference as a pseudoinstruction in the SPIM reference
(Appendix E).

The next two instructions SPIM generated copy the contents of the HI and LO
registers to regular registers, where their values can be checked:

mfhi $1
mflo $12

Register $1 is the assembler temporary, so that is OK. Register $12 is the
destination of the pseudoinstruction result, so it’s OK to use that because we
intend to overwrite it anyway. The next instruction needs some explanation:

sra $12, $12, 31

This is an sra (for shift right arithmetic) instruction. Note the shift amount in the
instruction, 31. This has the effect of replicating the sign bit (high-order bit) all
the way to the right of the number (the low-order bit). Since it’s an arithmetic
shift rather than a logical shift, if the sign bit is set, it will sign-extend as it shifts,
i.e., we will end up with $12 containing either all 1s if the sign bit was set, or
all 0s if it wasn’t. A logical right shift by contrast always fills from the left with
zeroes. Remember, $12 was a copy of LO before the shift and $1 is a copy of HI.
Once we have that straight, it becomes clear why the next instruction (branch if
equal)

beq $1, $12, 8

is a check for whether the HI register contains nothing but the sign bit extended
left from the LO register. If we pass this test, because of the 8 in the branch, we
skip ahead 2 instructions (remember, each instruction takes up 4 bytes). If we fail
this test, i.e., the branch falls through to the next instruction, we run into

break $0



ALU operations 65

which forces your program to die with an overflow error.1

If on the other hand the test is passed, the final instruction generated from the
original mulo pseudoinstruction is

mflo $12

which puts the answer in the register where we want it ($t4, our name for the real
register $12).

At this point, it is worth a pause to thank the MIPS designers for the concept
of pseudoinstructions. Imagine if you had to get all this right every time you had
to do a multiply.

Why is this not all put into a real instruction? Multiplies are relatively
complicated to implement in hardware, so splitting some of the logic of how you
handle multiplies into multiple instructions makes it easier for hardware designers
to implement a faster clock speed. The price of 7 instructions instead of one may
seem high, but if the gain is even a modest increase in clock speed, you would have
to have a program with a high fraction of multiplies to lose. Also, compiler writers
can avoid all this complication if they know the answer will be too small to cause
an overflow, and there are special cases where less expensive instructions can
be used (in one instruction: mul $t4,$t1,$t3). The MIPS instruction set was
designed by a compiler expert (John Hennessy), who understood when a compiler
can make choices like this.

Let’s take an example where the compiler may know better: multiplying two
16-bit numbers. If we load two 16-bit (halfword in MIPS terminology, or short int
in C) numbers into a pair of registers, multiplying them should not overflow into
the HI register. On the other hand, if we want to copy the result back to a 16-bit
variable in memory, we need to check that we haven’t overflowed into the high
half of the 32-bit register in which we did the arithmetic. How can we check for
that? As with the 32-bit multiply, the high half of the register should contain the
same bit throughout as the sign bit of the low half of the register. Why? Because
with 2’s complement representation, all the bits to the left of the sign bit if we
widen the number should be the same as the original sign bit, as discussed on
page 28, and narrowing the number should follow the same rule in reverse.

How can we check if the high 16 bits of a word are all the same bit as the
highest bit of the lower half of the word? One trick is to shift the low halfword all

1This is an error in the way SPIM displays the instruction because the break instruction takes an
immediate operand not a register. If you use a break in your own code, SPIM will object if you
use this syntax. It should actually be “break 0”.



66 CHAPTER 3. ASSEMBLY BY EXAMPLE

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

shift left 16 bits

arithmetic shift right 16 bits

Figure 3.13: Force high halfword to contain only low halfword sign bit

the way to the high halfword (16 bits to the left), then do an arithmetic right shift
back to where it started (16 to the right). Since an arithmetic right shift copies
the sign to the right, we can compare the result with the original value. If there
had been an overflow into the high halfword, at least one bit will be different from
the low halfword’s sign bit. We can do this by the following steps, assuming our
value is in register $t0:

sll $t1, $t0 16 # shift t0 16 left into $t1
sra $t1, $t1, 16 # arithmetic shift t1 16 right
beq $t1, $t0, ok # shifts changed nothing? good
break 0 # otherwise error

ok: nop # or next useful instruction

Figure 3.13 illustrates the effect of the two shifts. Shading indicates bits whose
values are created by shifting.

Heads up: Arithmetic right shifts copy the sign bit (sign extension). All
other shifts fill in from the left or right with zeros. The MIPS instruction
set includes five bits in shift instructions so that the shift amount can be
hard-coded into the instruction (like an immediate operand, but using a
different part of the instruction word), but there are also instructions that
allow a register to be used for the shift amount.

Why will this work? If we have not had an overflow into the top half of the
word, all the high 16 bits should be the same as the low halfword’s sign bit. Our
left and right shifting ensures that this is true so our final result (in the example, in
register $t1) should be the same as the original value (register $t0 in our example)
unless an overflow occurred.

You should convince yourself that the test will fail if any of the bits in the
higher halfword differ from the lower halfword’s sign bit. Give it a try. Put the
above code snippet into a runnable program, and run it first with li $t0, 32767,



Control 67

the biggest number that can fit into 16 bits using signed numbers, then with $t0
initialized to 32768, which should be an overflow. In 16 bits, the bit pattern for
32768 (hex 0x8000, binary 1000 0000 0000 0000) represents -32768, but if
you arrive at -32768 in a 32-bit calculation, all 16 of the the high-halfword bits
should be set. If on the other hand you arrive at +32768 in a 32-bit calculation,
none of the high-halfword bits should be set. To see what is happening clearly,
put the SPIM register view into binary mode.

This last example illustrates that you can find relatively simple solutions
to problems like this one if you take a bit of time to check through available
instruction options and think through how best to use them.

The take home message? Most ALU operations are a simple translation
from C-like pseudocode, but multiplies are a lot more complex because of
the high likelihood of overflow. You can use a pseudoinstruction rather
than have to work out all the detail of how to handle multiply overflows
yourself.

3.4 Control

We have already seen a few examples with conditional branch and jump (uncon-
ditional branch) instructions, including a for loop. Let’s now go on to a more
complete set of examples. But first a few definitions.

We have already seen two (real, not pseudo) branch instructions, branch equal
(beq) and branch not equal (bne). Both compare a pair of registers, and use a 16-
bit offset for the branch target address (the place to go to if the branch condition
is true). This 16-bit offset, though MIPS uses byte addresses, is stretched by the
fact that instructions can only occur at whole-word boundaries (every 4 bytes).
This means that the low 2 bits of every instruction address are zeroes, so MIPS
instructions containing instruction addresses simply leave out the low 2 bits. This
means that instead of 16 bits allowing a range of -32768 to 32767 bytes, the
range is stretched by a factor of 4. So most programs are not going to run into
a problem with constructs like for loops being unable to use branch instructions
directly (the alternative: branch to a j instruction to go further). There are a few
other conditional branches, but these plus pseudoinstructions for branches testing
inequalities will be good enough for now.



68 CHAPTER 3. ASSEMBLY BY EXAMPLE

                     # initialise loop counter
      j test         # test before 1st iteration
body:                #   body of loop here
                     #   rest of body
                     # increment loop counter
test: b__ R1,R2,body # not done? Go again

(a) for template

       j test        # test before 1st iteration
body:                # body of loop here
                     # rest of body
test: b__ R1,R2,body # not done? Go again

(b) while template

Figure 3.14: Loop templates

Loops

For completeness, figure 3.14a illustrates a generic template for a the for loop.
Compare it with the specific example we had before on page 42. We will later
generalise this to make it work for programs with more than one loop. Obviously
the branch condition depends how you set up the for loop, but it should be true
for the case where the loop continues.

Heads up: You can still write correct code if you ignore the template
concept but that is a bad idea. Totally unstructured assembly language
code is very hard to read and debug. By using these templates, you also
gain experience of thinking like a compiler, a useful skill if you later study
how to write a compiler.

Now on to another loop construct: while. The general form of a while loop is
in figure 3.14b. The branch condition at the test label is based on the condition
to keep going, as with the for loop. Here is an example, starting with C-like
pseudocode:

// how often can we double an age up to 100?
int doublings = 0;
int age = 42;
while (age < 100) {

age = age * 2;
doublings ++;

}

Our example added into the template looks like this:

# register use:
# $t0 : doublings
# $t1 : age
# $t2 : holds const value 100
main: move $t0, $zero # int doublings = 0;

li $t1, 42 # int age = 42



Control 69

li $t2, 100 # constant 100
# while (age < 100) {

j test # test before 1st iteration
body: add $t1,$t1,$t1 # age = age * 2;

addi $t0,$t0,1 # doublings ++;
test: blt $t1,$t2,body # } not done? (age < 100)

The lines preceding the j test are initialisations, and the rest is just a matter
of substituting specifics into the generic template. This time I didn’t bother with
loading from memory; we have done that enough times now to leave that out until
we do memory layout properly.

What does the example do? It doubles the value we set up for age until it
passes 100. Since we initialise the value for the count of doublings to 0, what we
should end up with is a count of how often we can double the given age without
reaching 100, in this case, twice. Load the program into SPIM and verify that at
the end, $t0 has the value 2.

The two examples in figure 3.14 are obviously very similar, because a for
loop really does the same thing as a while loop, except it puts the initialisation
and increment into the loop header rather than allowing you to put them wherever
you like (or leave them out if they don’t apply).

The take home message? Creating loops using standard templates
reduces the chances of error. Look out for more templates.

Conditional Code

Finally, to straightforward conditional code, an if statement. Let’s take two
examples with and without an else branch. Take a look at the templates in figure
3.15. Unlike with the loops, we have to invert the condition because the branch
instruction jumps us around the true branch of the if. For the first example, ignore
the C syntax for reading a number if you don’t know the language (yet). You can
just take it that “scanf ("%d", &value)” does what you want.

// count numbers read in that are < 0
int value;
int negatives = 0;
scanf ("%d", &value);
if (value < 0)

negatives ++;



70 CHAPTER 3. ASSEMBLY BY EXAMPLE

      b__ R1, R2, done  # invert condition
                        #   true branch
done: nop               # or next instruction 

(a) if template

      b__ R1, R2, else  # invert condition
                        #   true branch
      j done
else:                    
                        #   false branch
done: nop               # or next instruction 

(b) if-else template

Figure 3.15: if templates

To implement this example, which reads in a number and adds to a count if it’s
negative, we need a SPIM system call, coded 5, which returns a value in register
$v0.

At this point it is useful to add another assembler feature: macros. A macro
is a piece of text that has a name and wherever the name appears, it is as if you
had typed that piece of text in. For system calls, it is inconvenient to memorise
what the number is that invokes a particular call. We now have two: one to exit
the program (coded 10) and one to read an integer (coded 5). So let’s give them
names, so we only need look this up once. The syntax for this is pretty simple:

NAME = value

Then, whenever the word NAME appears, whatever was after the = replaces the
word NAME. Let’s look at the whole example this time to see where the macro
definitions fit in as well as their use:

# // count numbers read in that are < 0
READ_INT = 5
EXIT = 10
.text

# register use:
# $s0 : value
# $s1 : negatives
main: li $s1, 0 # negatives = 0

li $v0, READ_INT # sscanf ("%d", &value);
syscall
move $s0, $v0 # copy read int into value
bge $s0, $0, done # if (value < 0)
addi $s1, $s1, 1 # negatives ++;

done: nop # or next useful instruction
# usual exit to OS

li $v0, EXIT # set up exit system call
syscall # call OS



Control 71

Why did I use s registers this time rather than use one of our usual $t temporaries?
When you call a function, as we will see later, if the function changes any $s
register, it is required to restore the value. Here, I do not call any functions.
A system call in a real machine may have protocols on what registers it may
guarantee to save, but that is not an issue in SPIM because SPIM system calls are
faked in C code that runs outside the simulator. Here, for that reason, I could have
just carried on using $t registers, and we will soon see cases where we actually
do need to consider using $s registers. On the whole it is easier to keep track of
what you are doing to use either

• only unsaved ($t) registers in a leaf function (calls no functions)

• only saved ($s) registers if you call functions

At times, you will need to use $t registers when it is not ideal to do so because
there are more of them than $s registers but for simple examples, we will follow
the convention outlined here.

Load the above example into SPIM and run it a few times, resetting the
registers each time to start from scratch. You should see that when you enter a
negative number in the Console window, register $s1 (real register $17) becomes
1. Now let’s add an else branch (count positives including 0 in a different
variable):

// count numbers read in that are < 0
int value;
int negatives = 0, positives = 0;
scanf ("%d", &value);
if (value < 0)

negatives ++;
else

positives++;

Here is the main body of the MIPS code for that:

main: li $s1, 0 # negatives = 0
li $s2, 0 # positives = 0
li $v0, READ_INT # scanf ("%d", &value);
syscall
move $s0, $v0 # copy read int into value
bge $s0, $0, else # if (value < 0)
addi $s1, $s1, 1 # negatives ++;
j done



72 CHAPTER 3. ASSEMBLY BY EXAMPLE

# else
else: addi $s2, $s2, 1 # positives ++;
done: nop # or next useful instruction

Heads up: An if with or without an else is a little challenging because
you need to invert the condition to jump past the true branch.

Finally, let’s consider a more advanced control construct, a switch statement.
If you are unfamiliar with C and its close relatives, this will be a new one. The
switch statement, given a value (in this case, our variable called value), contains
cases, each of which is labeled with a constant value. If the given value matches
a case label, the switch jumps to that case label, and continues down from there.
A break statement jumps out of the switch.

Here is an example to illustrate the concept. Assume we have an int variable,
value, and we want to update a count of how often we have seen a number in one
of these categories: zero, a 1 or a 2, or anything else. Here is a switch statement
that solves the problem:

switch (value) {
case 0:

zeroes++;
break;
case 1:case 2:

onesAndTwos++;
break;
default:

others++;
break;

}

To code a switch statement efficiently in assembly language requires some
concepts we haven’t covered yet. For now, contemplate the example, and try
to think how you could program it with what you already know already.

The take home message? Use named constants and templates to simplify
your code and make it easier to read. You will be thankful you did so when
tracking down bugs.



Floating Point 73

3.5 Floating Point
Since floating point gets complicated without going far into it, I am not going to
do a lot of examples. Here is a complete example containing a few elements we
need for later programs:

• a wider range of system calls (Appendix C, table C)

• storing values that would appear inline in C code in a constant pool

Here is the program. It reads in a floating-point number representing a radius,
squares it, multiplies by π (to a reasonable approximation), prints out the area and
prints out the integer value of the area (rounded, after adding 0.5, so it rounds
to the nearest whole number). You may want to check table B.1 in Appendix B
for floating-point register conventions, though we only really need worry in this
example about registers used in system calls.

READ_FLOAT = 6
PRINT_CHAR = 11
PRINT_FLOAT = 2
PRINT_INT = 1
EXIT = 10

.data
consts: .float 3.141592653589793 0.5
newline: .ascii "\n"

.text
# registers:
# $s0: start address of constants
# $s1: newline character
# $t0: short-term temporary value
# $f0: value returned from syscall, short-term temporary
# $f10: short-term temporary value
# $f12: passed in to syscall, working results
main: li $v0, READ_FLOAT # read radius

syscall # return in $f0
mul.s $f0,$f0,$f0 # radius square
la $s0, consts # no FP immediates
l.s $f10, 0($s0) # const: pi value
mul.s $f12, $f10, $f0 # pi * radius * radius
li $v0, PRINT_FLOAT # print radius (float)
syscall # prints the float in $f12
la $t0, newline # get newline char



74 CHAPTER 3. ASSEMBLY BY EXAMPLE

lb $s1 0($t0) # in saved temporary register
move $a0, $s1
li $v0, PRINT_CHAR # print newline
syscall
l.s $f0, 4($s0) # const: 0.5 to round up
add.s $f0, $f12, $f0 # round up
cvt.w.s $f0, $f0 # convert single to int (word)
mfc1 $a0, $f0 # move from coprocessor 1 = FPU
li $v0, PRINT_INT # print radius (int)
syscall
move $a0, $s1 # newline still in $s1
li $v0, PRINT_CHAR # print newline
syscall
li $v0, EXIT
syscall

A run of this program looks like this on the Console window:

12.1
459.96060181
460

The first line is input I typed. If you check this on a calculator (with the
same number of significant digits as mine), 12.12 = 146.41 and 146.41× π =

459.960580412081593 so the answer is right to about 7 digits, about as good as
we can expect with single-precision floats.

Let’s go through the code. Reading a float is not a new concept – we need to
know the system call number and which register the result is in, otherwise it’s the
same as any other system call. We can’t load immediates for floats, so we need
to load constants like π and 0.5 from the constant pool. To do that, if we load
the address of constpool into a register we can use offsets from that register to
access each constant. We could name each constant but a compiler would not do
that, and it gets tedious with a lot of constants (though easier to see what’s going
on). Here, π is at offset 0 and 0.5 at offset 4, since each constant is 4 bytes long.

Floating-point operations have the size after a “.” to make it stand out, hence
“mul.s” for single-precision multiply and “l.s” to load a single-precision float.
Another giveaway of a floating-point instruction is the “$f” register operands.

Heads up: Double-precision floating point uses the same registers as
single precision in pairs. For double-precision operations, remember that
each register includes the next register in numeric order. So a double-
precision operation on F0 also uses F1 for the double-width number.



Exercises 75

Once we have multiplied by π (with the answer in $f12 where it needs to be
for a PRINT_FLOAT system call), we can print it. To separate lines of output, I
also print a newline character. This time around, since I only want one character,
I don’t need a null-terminated string. I can load the address at the location in
the data segment labeled newline:, and use that address to load the byte at that
location into a saved temporary register so I can be sure it will be available later:
$s0. Then I copy it to $a0 to pass it into another system call, PRINT_CHAR. That
completes the floating-point result and output, so now we need to convert the
answer to an integer. I add 0.5 to round to the nearest whole number before
converting contents of register $f0 to an integer using cvt.w.s. We can’t use
the value like this since it’s not in an integer register. I use mfc1 $a0, $f0,
which copies a value (“moves”) from coprocessor 1 (the FPU), register $f0, to
the main CPU, register $a0. We can now print the contents of $a0 (the parameter
register needed for the system call) as an integer, followed by another newline.

This is a lot to take in. Load the program into SPIM, and check which of the
instructions are pseudoinstructions. Single-step it to see what it does, noting you
can switch the register view to decimal to make it easier to see what a floating-
point value is (remember the trick on page 33?).

The take home message? Floating point requires getting a lot of detail
straight. Aim to understand this example as a starting point for anything
more complex you may need to tackle.

Exercises
1. The SPIM assembler includes a pseudoinstruction lw Rn, address, which

gets converted to a lui instruction, followed by a proper lw instruction using
a register containing the address to copy from RAM to destination register
Rn. When would you use this pseudoinstruction? Can you think of cases
when you wouldn’t use it?

2. How many times can you successively multiply 16-bit integers (assuming
you don’t know how big the numbers are) before you need to check the HI
register?

3. Redraw figure 3.13 for an example where there has been an overflow into
the high halfword (at least one bit will be different from the sign bit of the



76 CHAPTER 3. ASSEMBLY BY EXAMPLE

low halfword). Show that the left shift and arithmetic shift right by 16 no
longer produce the same result as the original register contents.

4. The MIPS instruction set has two instructions that can respectively count the
number of zeros or ones starting at the high end of the word: clz rd, rs
and clo rd, rs. Since the high word sign bit should be the same all the
way through at least to the low word sign bit, any word where there has
been no halfword overflow should have at least 17 leading 0s or 17 leading
1s.

(a) Explain how you could use these instructions to test for halfword
overflow.

(b) Is there any advantage – or not – in this method over that given on
page 66? Explain.

5. Write MIPS code for the following, and check that you get expected results
in SPIM. In each case, document your register assignments. For variety, do
each example first purely in registers, and then using variables in memory.
Where initial values are not given, read them in using the method on page
70.

(a) First, a for loop:

// add the numbers from 1 to 10
sum = 0;
for (i = 0; i < 10; i++)

sum += i+1;

(b) Now, a while loop:

// calculate sum of i-squared up to a max of 100
sum = 0;
i = 1;
while (i*i < 100)

sum += i*i;

(c) Now, an if statement:

// if size > max indicate error: set to -1
if (size > max)

size = -1;



Exercises 77

(d) Finally, an if statement with an else:

// if score < 0 error, else update total score
if (score < 0)

errors++
else

totalscore += score;

6. Do you have any ideas on how you could implement a switch statement?

7. In the if example on page 70, we copy register $v0 over to $t0 straight after
the system call.

(a) Is this step necessary?

(b) Why do you think I did it that way?

(c) Rewrite this example to remove the nop instruction.

8. For the floating-point example of page 73:

(a) Why can we not keep the pointer to newline in register $a0?

(b) In my example output, what difference would it make if I didn’t add
0.5 before converting to integer?

(c) How many digits of π are actually represented on the machine?

(d) Rewrite the example using doubles instead of floats.

i. How does the convention of using paired floating-point registers
simplify or complicate conversion to doubles?

ii. What difference does using doubles make?

iii. Can you justify the extra overheads of doubles in this case?

9. Implement the switch example on page 72 using an if-else template (figure
3.15b). How do you have to adapt the template to deal with multiple uses in
one program?



4 Memory and Functions

WE NOW TURN TO HOW MEMORY is organised in real programs, which
also presents an opportunity to talk about functions since memory has to
be organised so separate program components can work independently

of each other and share information in a controlled way. Some of that sharing, as
we have seen briefly, is through registers.

Remember how a system call is set up? You put a value into a register to
identify which system call you want and if the system call returns a value, you
get it back in another register. Remember how we have two categories of register
we can use to hold temporary values, unsaved ($t) and saved ($s) temporaries?
When we write a function, if we change a “saved” register, we need to save its
previous value and restore it before returning from the function.

All of this just relates to registers; we also need to have ways of handling
passing parameters that for whatever reason don’t fit the limited set of registers
allowed for this purpose, ways of storing variables that are local to the function in
memory if they don’t all fit in registers, and ways of accessing variables that are
global to the current function.

When a compiler allocates registers, the usual way is to take a conservative
view of the possibility for registers to be reused in other parts of code and copy
them more often than necessary. A compiler generally has several levels of
optimisation where among other things, it reduces unnecessary register copying.

A significant part of the organisation of memory to permit function calls is
maintaining a region of memory that grows as we call functions and shrinks back
as we return from a function. A data structure that works in this way is a stack. You
add to the top of the stack, and remove items only from the top of the stack. Figure
4.1 is an example of a stack containing arbitrary items. The common operations
on a stack are

• accessing the topmost item

78



Memory and Functions 79

0

0

0x10010000

0

0

0x42

0

0

top

0x84

0

0

0x10010000

0

0

0x42

0

0

top

push 1 item onto stack

top

pop 3 items off stack

0x10010000

0

0

0x42

0

0

  

Figure 4.1: Abstract stack example

• accessing an item an offset from the top within the stack

• adding to the depth of the stack by a push operation that adds an element
above the top of the stack

• a pop operation that removes the topmost item and reduces the size of the
stack accordingly

A stack is good for organising memory added when a function is called, because
function calls and returns happen in reverse order. In any chain of function calls,
you cannot return from a function called earlier in the chain until you have
returned from the functions that are called later. A variant on this behaviour
occurs with threads, which can execute in parallel and finish at times that don’t
necessarily relate to the order they started. Managing memory for threads is
outside the model we look at here. If you understand how functions work,
extending your knowledge to understanding threads is not a major extension.

In a typical machine-level memory setup, the stack and the rest of your
program’s address space start from opposite ends of available memory and grow
towards each other. This arrangement means that it is not necessary to decide
up front what fraction or memory to allocate to the stack versus other data
requirements. Consequently, the machine-level stack is a little different than a
stack as a conventional data structure. For one thing, the stack grows the opposite
way you would expect: it starts at the high end of its allocated memory space and
grows towards lower addresses. The reason for this is that global data for a simple



80 CHAPTER 4. MEMORY AND FUNCTIONS

global to whole program
global to compiled file 1

constant pool

global to compiled file 2

dynamically allocated data

stack

Figure 4.2: Conceptual memory layout

program without function calls can easily be placed in low memory with no need
for a stack. Having the stack grown from the opposite end of memory makes it
easy to expand global memory space without having to change where the stack
starts.

Heads up: To change stack size, we adjust addresses the opposite way to
that you would expect because the stack grows down from high memory.
Adding to the stack means reducing the address of the top of the stack.
Shrinking the stack means increasing the top of stack address. Despite
this, data structures on the stack within which we calculate offsets work
the usual way: addresses increase as we move along the data structure.

Something that complicates real programs is that there are different kinds
of global data that need to be around for the whole lifetime of the program.
In a language like C where you can compile parts of your program separately
then combine them before running (usually using a linker – see page 167), each
separately compiled file may have its own set of global variables that needs to be
kept separate from those of other separately compiled files. In addition, there may
be variables that are global to the whole program. Figure 4.2 illustrates a possible
layout of memory for a program compiled from two C source files, each with its
own global variables (known only to code in that file), as well as variables global
to the whole program. In addition, the compiler needs a place to store constant
values that may be needed to initialise variables, or possibly are never stored in a
variable (e.g., a string of characters used directly in output).



Calling functions 81

We will not explore the full range of complexity of memory layout, but will
examine how to manage global variables, constant values we keep in memory and
use of the stack for function calls – including providing space for variables local
to the function, and passing parameters that we can’t fit into available registers.
We also need space on the stack for storing registers we may have to save. We

also need to understand how machine code supports calling and returning from
functions.

I start with a simplified view of function calls where we don’t need the stack,
then return to function calls once we have all the machinery for local variables.
To put it all together, I end with an example of recursion: a function defined in
terms of itself.

4.1 Calling functions
When you call a function, the code in the function (the callee) has to be able to run
independently of the place it is called (the caller). This is because a function can
be called from more than one place. For this reason, we have to have conventions
that allow for register use independently in caller and callee. Our division of
registers as temporary holding places for data into unsaved registers numbered as
$t0–$t9 and saved registers numbered $s0–$s7 helps to manage this problem.
From now on, I refer to these two categories of register as t and s registers – but
remember these are just conventions, and these names are just helpful labels for a
subset of the 30 truly general-purpose MIPS integer registers.

Figure 4.3 illustrates 3 cases we need to deal with:

• a root function – in our world, only main has this property – does not have to
worry about anything that preceded it, because it never returns. It only has to
save its own t registers that contain values it needs to keep before any calls
it makes, and restore them afterwards. The easiest way to allocate registers
in a root function is to use only s registers, though you can obviously use
t registers if you run out of s registers, and then preferably for values you
don’t need again after a call.

• an interior function – a function that is itself called, and that calls at least
one other function. An interior function has to save any s registers it uses
and restore them before it returns to its caller. It can use t registers, but
is responsible for saving and restoring them around calls. A good strategy
here is to use t registers for anything that is not going to be needed after



82 CHAPTER 4. MEMORY AND FUNCTIONS

function register responsibility

main
save and restore t registers at 
calls

max nothing if only uses t registers

function call tree leaf

function call tree root

sort
save and restore s registers if 
necessary; t registers at calls

function call tree interior node

swap nothing if only uses t registers

function call tree leaf  

 

Figure 4.3: Function call tree and register saving

another level of call, and s registers otherwise. Why? Because if any callee
does not use an s register that you use, the overhead of saving and restoring
is avoided for that call. You do of course have to save and restore any s
register before you use it and before returning.

• a leaf function – calls no other functions. In this case, it is best to use only
t registers, since there is no need to save or restore them.

A compiler (or you, if writing in assembly language) knows whether a function
is a leaf function, because it contains no call instructions (including system calls,
which may be an issue in a real system). It is less clear whether a function is a
root or interior function. If we take the view that only a function called main is a
root function, anything that is not a leaf function should be treated as an interior
function when we allocate registers.

Heads up: Following these rules for writing functions allows us to code
a function that can be called from anywhere, without knowing in advance
where or how it will be called. Make sure you understand how this is
possible.

When we develop a few concepts about passing parameters, you will see that
our understanding of the main function is not totally correct, and even main could
be seen as an interior function, but as long as the way we exit main is by an EXIT
system call, our current understanding is good enough.



Calling functions 83

Let us move on now to a simple example of call and return, where we do not
need to set up the stack or pass parameters, and add details a few at a time.

Call and return

The most elementary requirement for being able to call a function is being able
to return to the next instruction after the call. For this reason, instruction sets
usually have a single instruction that can both jump to a new location and record
the address of its successor instruction. In the MIPS instruction set, the simplest
option is the jump and link instruction, which has a 26-bit immediate address built
into the opcode, and stores the return address in register $31, also called $ra (for
“return address”). Here is an example of this instruction:

jal max

where max is a label known to the assembler. The instruction has 26 bits available
for the address but, as with a branch offset, the designers took advantage of the
fact that an instruction has to be on a whole-word boundary, so the low 2 bits are
not actually stored in the instruction, meaning the address actually represents 28
bits, short of the full range of addresses on a 32-bit machine.

The MIPS instruction set also includes an instruction that can jump to a
register (jump and link register) and save the return address in another register.
You need this instruction if the target address falls outside the range addressable
with 28 bits (from 0 to 228−1 = 268435455, or 0xFFFFFFF). Not many programs
have code space this big. Here is an example, assuming the destination address is
in $t0:

jalr $t0, $ra

Note that you can use any free register in this case for the return address, though
you need a very good reason to do so since using any other register for the return
address breaks a standard and makes for code that is hard to maintain. The SPIM
assembler in fact allows you to leave out the second register and if you do that,
assumes you mean the $ra register (so jalr $t0 is a pseudoinstruction that has
the same effect as the above example).

Let’s illustrate the concept with a simple example. Assume we want to display
a prompt that looks like this when we want user input from the Console window:

input ?>



84 CHAPTER 4. MEMORY AND FUNCTIONS

so the user can see they should type something.
That gives us the opportunity to introduce a new kind of data value we can set

up in the assembler, a string, as well as a new system call to print one of these
(remember the table of system calls in appendix C). Let us use a previous lesson
and define the system call code as a macro.

First, here is C-like code for our example:

void prPrompt () {
printf ("input ?>");
return;

}

// in the main program
prPrompt ();

Don’t worry too much about the extra details of C syntax – we will get to
those later. The main thing is we have a function named prPrompt that has
no parameters and we can call it to display the desired text. The return
in the function is not strictly necessary as a C function that returns no value
automatically returns when it hits the last line of the function. But this little
addition makes it easier to see how to translate to MIPS assembly language:

# // call function to display a prompt
PRINT_STRING = 4
EXIT = 10
.data

prompt: .asciiz "input ?>"
.text

main: jal prPrompt # prPrompt ();
# usual exit to OS

li $v0, EXIT # set up exit system call
syscall # call OS

# prPrompt function: no parameters, no return value
# uses global constant: prompt
prPrompt: la $a0, prompt

li $v0, PRINT_STRING # printf ("input ?>");
syscall
jr $ra # return



Calling functions 85

Since there are several lessons in this example, I again include all the code
including the standard details like exiting to the OS.

First, there is the PRINT_STRING system call. I define its numeric code up at
the top. It takes an address passed in through register $a0 (a standard parameter-
passing register), and is invoked the usual way, by putting its code into $v0 and
doing a syscall instruction.

Next, there is the way I set up a string constant using the .asciiz directive.
This directive places what follows in double-quote symbols into memory and
the label with the directive can be used to find that data. The “z” at the end
means zero-terminate the string. This is a standard convention in C. The character
represented in ASCII by the numeric value zero is a non-printable character called
“nul”. Since this character cannot be displayed and has no other common use, it
is used to mark the end of a string. So what is stored is the quoted characters plus
one more character: this special end of string marker. In general, when creating
strings or string constants, we will use this convention. Another way of storing
a string is to include a number representing its length but the drawback of that
approach is you need to decide how long that number should be. If you make it 1
byte to keep the overhead the same as the C approach, you are limited to strings
of length 255. If you make it bigger, very short strings may have an unacceptable
overhead. The drawback of the C representation is calculating string length takes
n steps for a string of length n, since you have to search for the end of string
marker.

What if you leave out the trailing “z” in the .asciiz directive? You could be
lucky and the very next byte in memory is a zero, but don’t count on that. You can
get interesting and subtle bugs from errors like this.

Now look at the main program. It contains only one thing besides the usual
exit to OS code: a jal instruction to transfer control to the prPrompt function.
Since the function does not use any information from the caller or any temporary
registers (saved or otherwise), it does not need to do any saves or restores.
Likewise, the main program needs no saves or restores.

Finally, look at the code for prPrompt. Here, we use a constant value set up
in the user data segment and a system call to display it. The major new feature is
using the saved return address in $ra. Note that nothing in the code explicitly sets
this register: the value is created by the jal instruction, which always saves the
return address in $ra.



86 CHAPTER 4. MEMORY AND FUNCTIONS

[00400024] 0c10000c  jal 0x00400030 [prPrompt]; 7: jal prPrompt # prPrompt ();
[00400028] 3402000a  ori $2, $0, 10           ; 9: li $v0, EXIT # set up exit system call
[0040002c] 0000000c  syscall                  ; 10: syscall # call OS
[00400030] 3c041001  lui $4, 4097 [prompt]    ; 14: la $a0, prompt
[00400034] 34020004  ori $2, $0, 4            ; 15: li $v0, PRINT_STRING # printf ("input ?>");
[00400038] 0000000c  syscall                  ; 16: syscall
[0040003c] 03e00008  jr $31                   ; 17: jr $ra # return

R31 [ra] = 400028

Figure 4.4: Saving the return address

Heads up: We now see the proper use of the data segment. From now on,
we switch to using it to store constants and put variables in the correct
place, working out what that correct place should be in stages.

Load this program into SPIM, and step through it, watching the register values
as you go. Another register to watch is the PC at the top of the register panel. This
is the program counter and contains the address of the next instruction to execute.
The effect of a return from a function should be to reset the PC to where it should
have been had the call (jal instruction in this case) not actually transferred control
elsewhere. Make sure you understand how the hardware knows where to go back
to when it returns from a function.

Take a look at figure 4.4. When the jal instruction executes, it saves the return
address in $ra. If you single-step the program until it reaches the jal instruction
at address 0x00400024, the return address in $ra will change when you take one
more step. You should verify that the return address is now that of the instruction
right after the jal. The next instruction executed should be the one whose address
is built into the jal instruction at address 0x00400024. Take a close look at that
line: the jal is translated to machine code as 0c10000c. A jal is a J-format
instruction so the low 26 bits should be the target address, so why does it not end
in “30”? Remember, the low 2 bits of the target address are not actually stored
in the instruction. Write the target address 0x00400030 in binary and remove
the low 2 bits. First, write the hex number with 4 spaces between each digit and
expand each hex digit to 4 binary digits, then shift the number to the right 2 bits,
and convert back to hex:

0 0 4 0 0 0 3 0
0000 0000 0100 0000 0000 0000 0011 0000

00 0000 0001 0000 0000 0000 0000 1100
0 0 1 0 0 0 0 C

Take a look now at the instruction word for our jal in figure 4.4: 0c10000c. Does



Calling functions 87

it look more like the target address now we have dropped the low 2 bits?

The take home message? A function call requires that control revert to
the place where it was called, which means saving the return address. In
the MIPS world, the convention for this (built in to the jal instruction) is
to use the $ra register, which is real machine register $31.

Passing parameters

I now turn to an elementary example of passing parameters. We have already
seen this from the point of view of a function caller, since we use some of this
machinery for system calls. Recall that registers $a0–$a3 (real registers $4–$7)
are used for passing parameters1. Things can get complicated if we need more
than 4 parameters or values that don’t fit an integer register, but we start as usual
with the simple case.

Assume we are calling a leaf function (one that calls no others), we do not need
more than 4 parameters and our called function only uses unsaved temporaries
(t registers). If the main program only uses saved temporaries (s registers) for
arithmetic and logic, we can do everything in registers without saving anything to
memory.

Here is a simple example, with a few more parts to it (again, take it that the
C-like code for reading in values with scanf and printing with printf work – we
explain C constructs in the second part of the book omitted in this printing:

void prMax (int a, int b) {
int biggest;
if (a > b)

biggest = a;
else

biggest = b;
printf ("%d\n", biggest);

}

// in the main program
int myscore, yourscore;

1In case you are wondering why “a”: in C and related languages, values passed into functions are
called arguments. I stick to “parameters” here because it is the more widely used term.



88 CHAPTER 4. MEMORY AND FUNCTIONS

prPrompt();
scanf("%d", &myscore);
prPrompt();
scanf("%d", &yourscore);
prMax(myscore, yourscore);

Let’s build this up a step at a time. First, we have our prPrompt example from
before that we can recycle. Second, we can look up our template for an if
statement with an else, and use that. Finally, we need to handle passing parameters
in to our new function. This time around I leave out the return statement, since it
is not necessary – we have to return from a function when we reach the end.

First, let’s put in the main program, which prints the prompt twice, each time
also waiting for an integer to be typed, then calls our new function:

# registers: $s0: a, $s1: b
# int main () {
# int myscore, yourscore;
main: jal prPrompt # prPrompt ();

li $v0, READ_INT # scanf("%d", &myscore);
syscall
move $s0, $v0
jal prPrompt # prPrompt ();
li $v0, READ_INT # scanf("%d", &yourscore);
syscall
move $s1, $v0
# prMax(myscore, yourscore);
move $a0, $s0
move $a1, $s1
jal prMax
# usual exit to OS

li $v0, EXIT # set up exit system call
syscall # call OS # }

Now to do the prMax function, we need to use the values passed in using $a0
(representing a) and $a1 (representing b) in an if statement. We could copy these
values over to another register and we would do this if the function was longer, or
if we needed to call another function and therefore recycle the parameter registers,
but that is not necessary here. To keep things simple I leave a and b in their



Calling functions 89

respective parameter registers. What we need for the rest of the function logic is
an if statement template from figure 3.15. Which variant do we need? In this case,
we have the else branch, so we need

b__ R1, R2, else # invert condition
# true branch

j done
else:

# false branch
done: nop # or next instruction

If we put our logic into this template the simplest possible way, it looks like this:

ble $a0, $a1, else # invert condition
move $t0, $a0 # true branch
j done

else:
move $t0, $a1 # false branch

done: nop # or next instruction

However, it is easier to read if we put our C-like code in as comments. We can
also complete the example by replacing the nop by the actual next instruction.
Here for completeness is the entire function:

# prMax function: pass in int a, int b, no return value
# register use: $t0 biggest; keep a, b in $a0, $a1
prMax: # void prMax (int a, int b) {

# int biggest;
ble $a0, $a1, else # if (a > b)
move $t0, $a0 # biggest = a;
j done

else: # else
move $t0, $a1 # biggest = b;

done:
move $a0, $t0 # printf ("%d\n", biggest);
li $v0, PRINT_INT
syscall
jr $ra #}



90 CHAPTER 4. MEMORY AND FUNCTIONS

There are a few things to note.

First, you can put a label on a line of its own. The assembler will treat the
label as belonging to the next line, so do that if it aids readability.

Second, note that we are relying on the value of the return address staying valid
in $ra across a syscall instruction. We can do that because a system call does not
use the conventional return address mechanism (and a SPIM system call does not
actually use simulated registers except to define the call type, pass values and
return results). If, however, we were to call another function within our function,
we would need to save the return address before doing another jump and link or
similar instruction that clobbers the $ra register. The easiest strategy for that is to
save the return address as one of the first things that happens in the function and
restore it just before the function returns (which may be at more than one place).

Heads up: SPIM system calls are faked – they go to code outside the
simulation. On a real machine, you may need to worry more about a
system call clobbering registers.

Third, the parameter registers can actually be used for arithmetic and logic
– copying into t or s registers is only necessary if you may do another level
of call and lose the values in the parameter registers. Also, you can safely do
calculations using the return value registers $v0 and $v1 ahead of where you are
going to return, as long as you do not do a system call that uses them or another
call.

Another important detail is that we have so far had at most one example of one
of our standard templates in a program. If we have more than one if or loop, we
need to rename the labels since there is no concept of local names in an assembler
program file.

Remember these points as we develop more complex examples. Try to think
through now how you could handle these details ahead of where I get to them.

The take home message? Passing parameters in simple examples is just
a matter of putting the values you want the function to use into as many
of the $a0–$a3 registers as you need. Once in the function you need to
decide whether to copy these into other registers or keep the values where
they are.



Global Variables 91

4.2 Global Variables

Let’s use a small example again to illustrate how global variables can be managed.
Here is a whole C program that reads in integers in a loop and counts how many
are positive and how many are negative, stopping after processing a value of -1.
Note how even for very simple functions I summarise the purpose as a comment
to aid the reader:

#include <stdio.h>

int plus = 0;
int minus = 0;

// print a prompt when requesting input
void prPrompt () {

printf ("input ?>");
}

// print how many positives and negatives counted
void printSummary () {

printf ("%d positives, %d negatives\n", plus, minus);
}

// read numbers until -1, counting positives and negatives
// including the final -1
int main () {

int next = 0;
while (next != -1) {

prPrompt();
scanf("%d", &next);
if (next < 0)

minus ++;
else

plus++;
}
printSummary ();

}



92 CHAPTER 4. MEMORY AND FUNCTIONS

As before we will not worry too much about the detail of how C does things like
input and output but rather focus on what’s new about the example. Just one detail
I will mention: the printf prints the two given values using a format string that
has two placeholders, %d, that mean the given values will be printed in decimal
format, and ends with a special “\n” character that represents a line break.

We need a way of accessing global variables. The locations where plus and
minus are stored need to be independent of any changes in memory layout as we
call functions. The convention in MIPS code is to use a register $gp (the global
pointer) to keep track of where these variables are stored. A compiler will know
the relative offsets of each global variable from the start of the global variable
area. We can fake this effect by defining a macro representing this offset for each
variable:

GL_plus = 0
GL_minus = 4

I prefix these names with “GL_” so you can easily tell them apart from other
names in the program. We can now use these names as offsets in a load or store
instruction. Let’s see how this all translates into an assembly language version
of printSummary. This time around I use more extensive comments on how the
function is defined and used, since our programs are getting more complex, and
we need to make sure they are adequately documented. Note that I not only say
how the function is called, but what it does.

Heads up: The $gp register is set for you before your program is loaded.
It defines the global address space for the whole program. It is up to
the programmer (or in the HLL world, compiler and linker) to split it up
between separately compiled source files and variables within each file.

################################################################
# ####print how many positives and negatives counted####
# printSummary function: no parameters, no return value
# no need to restore globals to memory: not modified
# printf ("%d positives, %d negatives\n", plus, minus);
printSummary: lw $a0, GL_plus($gp) # plus value replaces %d

li $v0, PRINT_INT
syscall
la $a0, format1 # " positives, "
li $v0, PRINT_STRING
syscall



Global Variables 93

lw $a0, GL_minus($gp) # minus value replaces %d
li $v0, PRINT_INT
syscall
la $a0, format2 # " negatives\n"
li $v0, PRINT_STRING
syscall
jr $ra # }

In this example, we only read values of global variables. That means we need to
know where they are, but we do not need to write modified values back to memory.
Since this is a leaf function (if we don’t count syscall as a function, as discussed
earlier), we don’t need to worry about other functions clobbering globals either.
So we can just load them once into registers and use them in registers from there
on.

The main program is a different matter. Here, we first of all need to initialise
the globals and, if any function is called, store them back to memory. If another
part of the code needs to see what a variable contains or change it, it should be in
memory where it can be found in a standard way. Saving a register to memory like
this is an example of register spilling. This term also applies to the case where
you run out of registers and need to copy some to memory; we will not run into
that issue with simple examples.

The main program is a little more complex than examples we’ve seen before,
so let’s take it in stages. Here it is, separate from the rest of the code:

int main () {
int next = 0;
while (next != -1) {

prPrompt();
scanf("%d", &next);
if (next < 0)

minus ++;
else

plus++;
}
printSummary ();

}

First, we need to initialise the globals. Although they are not part of the main
program, this code has to go somewhere and so we insert it at the start of the main
program:



94 CHAPTER 4. MEMORY AND FUNCTIONS

main: li $t0, 0 # minus = 0
li $t1, 0 # plus = 0

Note at this point we can safely put these in registers, since we aren’t transferring
control to some other part of the program that needs to see them. However, to
emphasise the point that these need to go to memory before any other function is
called, I put them in t rather than s registers2. After that, we need to initialise the
local variable next:

li $s1, 0 # int next = 0;

This one can be in a saved temporary (an s register) since no other part of the code
needs to see it.

Now we have a while loop containing first a call to our old friend prPrompt
and after that, an integer read followed by if with an else. Finally, outside the
loop, there is a call to printSummary. Most of these, we have seen individually,
so it is a matter of putting the pieces together and not garbling anything. For the
loop and the if-else, we can use our templates (figures 3.14 and 3.15). We need
however to add in a strategy to avoid reusing the same label if we use the same
template twice. Here, that is not an issue, but it will be as our programs get more
complex.

First, I rename any of the labels I had in the earlier templates to make sure
they differ for different constructs. For example for a for and while loop, I used
the label body for both. Where there is any possibility for confusion, I prefix a
label with a letter indicating what construct it represents:

• “F” – for loop

• “W” – while loop

• “I” – if

Figure 4.5 updates our previous templates. Every time you create a new loop or if
statement, you need to replace the XXX by something that uniquely identifies that
construct. The simple thing is to use a number you increment each time you add
another one of these constructs. A compiler might create less readable names, but
would also use a strategy like numbering each name to keep them unique to each
specific usage.

2On the whole it is easier to use s registers in the main program, since you need not worry about
saving or restoring them in a root function.



Global Variables 95

                         # initialise loop counter
      j FtestXXX         # test before 1st iteration
FbodyXXX:                #   body of loop here
                         #   rest of body
FnextXXX:                # increment loop counter
FtestXXX: b__ R1,R2, FbodyXXX # not done? Go again

(a) for template

       j WnextXXX        # test before 1st iteration
WbodyXXX:                # body of loop here
                         # rest of body
WnextXXX: b__ R1,R2, WbodyXXX # not done? Go again

(b) while template

      b__ R1, R2, IdoneXXX # invert condition
                           #   true branch
IdoneXXX: nop              # or next instruction 

(c) if template

      b__ R1, R2, elseXXX # invert condition
                          #   true branch
      j IdoneXXX
elseXXX:                    
                          #   false branch
IdoneXXX: nop             # or next instruction 

(d) if-else template

Figure 4.5: More general loop and if templates

Heads up: We now see the weakness of the simplified template strategy
and the degree of care demanded of the assembly language programmer
to use templates properly. If you are not very careful and systematic
about naming your labels, you code could do completely the wrong thing,
resulting in a bug that is very hard to track down.

Here is the main program using the new templates. Make sure you can
translate the individual constructs. Note also the points where register spills
happen. Since our plus and minus variables are global, other functions in our file
are allowed to see their values and manipulate them. If we kept these variables
in registers, it would be much harder to coordinate use between different uses
in different functions. This sort of register management is not impossible: a
good compiler can handle this: it is called inter-procedural register optimisation3.
Nonetheless we will generally spill registers conservatively, since that makes
programming simpler – except when we do exercises that require you to minimise
wasted instructions.

################################################################
# main entry point
# registers: $s0 = next, $t0 = minus, $t1 = plus
# initialize globals first
main: li $t0, 0 # minus = 0

li $t1, 0 # plus = 0
# now locals initialized

li $s1, 0 # int next = 0;
# while (next != -1) {

3“Procedure” is another name for a function, common in the family of languages that includes
Pascal.



96 CHAPTER 4. MEMORY AND FUNCTIONS

j Wnext1 # test before 1st iteration
# spill globals before jal calls a function; restore after
Wbody1: sw $t0, GL_minus($gp) # ---spill---

sw $t1, GL_plus($gp) # ---spill---
jal prPrompt # prPrompt ();
lw $t0, GL_minus($gp) # +++restore+++
lw $t1, GL_plus($gp) # +++restore+++
li $v0, READ_INT # scanf("%d", &next);
syscall
move $s1, $v0

# if (next < 0)
bge $s1, $0, else1 # invert condition
addi $t0, 1 # minus++;

j Idone1
# else
else1: addi $t1, 1 # plus++;
Idone1: nop # or next instruction
Wnext1: bne $s1,-1,Wbody1 # not done? Go again
# } // while

sw $t0, GL_minus($gp) # ---spill---
sw $t1, GL_plus($gp) # ---spill---

# printSummary ();
jal printSummary

# no need to restore globals to registers, all done
li $v0, EXIT
syscall

The take home message? The global pointer kept in register $gp, real
register $28, makes it possible to access global variables anywhere in a
program – provided you know the offset from the start of the global area
at which to address a given variable.

4.3 Local Variables and the Call Stack

One major detail we have left out is local variables. We need a way to represent
space for them that grows as function calls that create local variables occur, and
we also need a way to create space to spill registers that do not represent global
values. The region of memory we want for this should grow and shrink in the
opposite order – as we return from a function, it should cut back to the size it was
before.



Local Variables and the Call Stack 97

global to whole program

global to compiled file 1

constant pool

global to compiled file 2

dynamically allocated data

stack

free space

10008000

$gp+4 10008004

$gp

format2

= not yet covered

input ?> \0positives,  \0negatives\n\0 

format1
10010000

prompt
........

(a) schematic layout

User data segment [10000000]..[10040000]
[10000000]..[10007fff]  00000000
[10008000]    00000003  00000002  00000000  00000000    . . . . . . . . . . . . . . . . 
[10008010]..[1000ffff]  00000000
[10010000]    75706e69  3e3f2074  6f702000  69746973    i n p u t   ? > .   p o s i t i 
[10010010]    2c736576  20002020  6167656e  65766974    v e s ,     .   n e g a t i v e 
[10010020]    00000a73  00000000  00000000  00000000    s . . . . . . . . . . . . . . . 
[10010030]..[1003ffff]  00000000

User Stack [7ffffd50]..[80000000]
[7ffffd50]    00000002  7ffffdcb  7ffffda2  00000000    . . . . . . . . . . . . . . . . 

(b) SPIM layout

Figure 4.6: Data segment used so far: compare the schematic and SPIM
layouts, and make sure you can identify which bits match in the two views. Not
shown in the schematic view: memory contents for variables plus and minus
though their locations are shown (respectively, $gp and $gp+4).



98 CHAPTER 4. MEMORY AND FUNCTIONS

Take a look at figure 4.2, where I illustrate conceptual memory layout –
updated in figure 4.6, where I illustrate what we have used in the last example
(parts of the data segment not covered are shown hatched out). Also shown: the
part of the data segment as viewed in SPIM that we have used. So far, we have
covered an approximate approach to global variables, where we only have one
global area. We also have a constant pool (the names and values we set up in the
assembler, like strings used in prompts). We have not yet touched on dynamic
allocation – you can look forward to chapter 5 for that.

What we are going to add in now is the stack. If you recall the discussion back
at the start of the chapter, the stack grows upside down: it starts at the high end of
our code space, and grows downwards. Up to now, we have managed to fudge the
need for the stack because we have had no local variables and also have not had
many levels of call.

When you call a function, you need not only to be able to return to where it
was called from (the caller), but also to all levels back to the outer level if calls are
several layers deep. For this to work, you need a consistent strategy for storing
the return address – you can’t leave it in the $ra register, because it would be
clobbered the next time you did a jal or similar Instruction. The obvious place to
store the return address is on the stack, since this provides a standard place to find
it, as well a number of locations for saving return addresses that naturally scales
with the depth of calls.

Heads up: It is very important to have a picture in your head of the stack
growing as levels of call increase and shrinking as functions return.

That leaves us with another problem: how do we know how big the stack
region is for a given function? We need to know how much to cut it back when
we return, and we need to preserve that information so we can cut the stack back
correctly even if we do several more layers of call.

As before we will resolve these various mysteries by working through an
example.

Up to now I have been fudging the details of how the main program is started.
Take a look at the code SPIM sets up to do that (the comments on the right hand
side):

lw $a0 0($sp) # argc
addiu $a1 $sp 4 # argv
addiu $a2 $a1 4 # envp



Local Variables and the Call Stack 99

sll $v0 $a0 2
addu $a2 $a2 $v0
jal main

Ignore most of it for now: focus on the last line. Where have we seen a jal
instruction before?

Reload a program – any one will do – and single step it up to this jal main
instruction. Look at the register panel. What we are interested in is the 3 registers
below. The PC is the address of the next instruction. Here, we have paused at the
location where the jal is the next instruction, and is is at location 0x400014, so
we expect the PC to reflect this.

PC = 400014
:
R29 [sp] = 7ffffd50
:
R31 [ra] = 0

Now step through the jal instruction. How do the registers change? The $31
or $ra register should now contain a number that is the same as the address of
the instruction after the jal, and the PC should have skipped to the target of the
jal main. Here is the resulting snapshot of these registers:

PC = 400024
:
R29 [sp] = 7ffffd50
:
R31 [ra] = 400018

Note that the stack pointer ($sp or $29) is unchanged. Remember how you return
from a function? You do this:

jr $ra

If you did that at some point in the main program, assuming you have not
meantime clobbered the return address by calling another function, where would
you go back to? Let’s see what address 0x400018 corresponds to in the code
segment:

[00400018] 00000000 nop ; 189: nop
[0040001c] 3402000a ori $2, $0, 10 ; 191: li $v0 10
[00400020] 0000000c syscall ; 192: syscall # syscall 10 (exit)



100 CHAPTER 4. MEMORY AND FUNCTIONS

The nop instruction does nothing4. What follows loads the value 10 into register
$v0 then does a syscall – an exit. So it looks as if the setup code is intended to
invoke our main program is if it was a function, and we should return from main
rather than do an exit system call, because the startup code already has an exit
system call set up for us.

Is it wrong for our own code to do an exit system call, rather than to use a
function return to get back to the startup code? Not really. As a C programmer
can tell you, doing an exit system call is a legitimate way to terminate a program,
and you can do that from anywhere, not just the main program. Nonetheless, this
standard startup code gives us a simple example to illustrate use of the stack for
calls as well as for local variables and spilling registers that do not correspond to
HLL variables.

The absolute minimal program you need that treats the main program as a
function and returns looks like this:

# minimal main program that returns to startup
# environment rather than invoke EXIT syscall

.text
main: jr $ra # return to startup code

So, you will be wondering, why I didn’t do it this way all along? Why do that
complicated 2-step syscall setup, when 1 instruction will do it? The problem
is, if you call another function (using jal or similar), the return address in $ra
would be overwritten, and we need the concepts we are getting to now to have a
consistent way to save it from this fate.

On now to more detail of how we can manage a more complex situation of
saving state from one call to the next. So far we have taken the most optimistic
case, where we don’t need to save anything on the stack. We have 1 level
of call, and can keep all data in registers, except globals, for which space is
already allocated. This is not an unrealistic scenario because a compiler that does
interprocedural register allocation could generate code like this in some cases.
But let’s back off from the most optimistic case, and explore the opposite end of
the spectrum: the case where we need to store pretty much everything in memory

4 Why a nop? The original MIPS architecture always executed the instruction after a branch or
jump instruction before jumping to the target address to simplify hardware implementation. This
feature is called a delayed branch and the instruction after the jump or branch is in the branch
delay slot. SPIM does not do delayed branches unless you ask for that feature but to keep the
program startup simple, it always has this nop. For more on delayed branches, see page 176.



Local Variables and the Call Stack 101

(for example, because the function we are calling is not known in detail to the
compiler at compile time). What might we need to store that we currently only
put in registers?

An important principle guiding the design of what we put on the stack and
who does it is that detail of the called function (callee) may not be known to the
caller at compile time. This can be because your language has security features
that hide details from parts of the program that call a function (or method: this
sort of information hiding is common in object-oriented languages). Another
possibility is that the caller and callee are separately compiled and only later
brought together by a linker (see page 167). Either way, the caller and callee
have limited information about each other. They should both know the number
and type of parameters and whether a value is returned; you cannot rely on them
knowing internal details of each other like local variables.

First, when you call a function, the previously-stored return address can’t be
kept in the $ra register. So that’s the first thing we need to save in memory. Then,
because we are adjusting the top of the stack, we need to remember the previous
top of the stack, so we need to save the stack pointer. Next we need space for local
variables (if any) and finally space to spill registers. One additional thing we may
need is space to store parameters if the 4 registers usually used for this purpose
are insufficient. And anyway, we may want to spill these registers to memory, so
in the pessimistic case we need to make space for them.

This is not quite everything you could ever need to put on the stack, but is
enough for our examples.

Heads up: Since the return address is always stored in the same register
by a jal instruction, we need to have a way of saving the return address
somewhere more permanent before we do another jal.

We call the information placed on a stack to represent the state of a function
a stack frame; it is also sometimes called the function’s activation record. In
addition to the stack pointer (register $sp or $29 in the MIPS universe), we will
also keep the previous top of the stack in another register that we call the frame
pointer, which makes it convenient to find start of the stack frame. The frame
pointer, register $fp, by convention in MIPS code, is register $305. When we add
to the stack (push another stack frame), we have to save the previous stack pointer.
The stack pointer is copied to the frame pointer, and the stack pointer is advanced

5Although you can use $fp in SPIM, the register is listed as “s8” rather than “fp” in the SPIM
register panel. Using $fp in SPIM correctly translates in machine code to $30.



102 CHAPTER 4. MEMORY AND FUNCTIONS

to the end of the new frame. To pop a frame off the stack, we have to restore the
stack pointer to the saved value, and adjust the frame pointer back to the start of
the previous frame.

The strategy I develop here differs a bit from that used by MIPS compilers,
since the goal is to help you understand how HLLs can be implemented. My
approach is designed to be easy to program, which is less of a concern for compiler
writers. For more detail on standard approaches, see appendix E.

The frame pointer is not strictly necessary – we can actually find anything we
need in the current stack frame as an offset from $sp, though the frame pointer
makes it a little easier to understand what is going on, and reduces complication
if we need to expand the stack frame (e.g., if we find we need to spill registers).

Heads up: Many details of machine coding, such as the layout of the stack
frame, are totally up to the programmer. However so you code works with
other code, conventions must be adopted. I show that these conventions
can be changed by making up my own variant on stack organisation. This
is perfectly fine as long as I always do it the same way, and make any
necessary adaptation when interfacing with anyone else’s code.

In HLL programming, we usually implement a stack with a pointer or
reference to the topmost element. Because element sizes are not an inherent
property of machine code, in machine code it is easier to make the stack pointer
point at the next free space after the top of the stack6. Since MIPS prefers word-
aligned accesses, even if the top element of the stack is smaller than a word, we
make the $sp point to the next word boundary after the top of the stack. This
convention makes it very easy as well to restore $sp when we pop a stack frame
off the stack: all you need do is copy the $fp register to $sp. That leaves only
$fp that strictly needs to be preserved across a call, since the previous value of
$sp is actually saved in $fp.

The next question is who is responsible for creating space on the stack. Is it
the caller or the callee? Once we decide that, that will help us work out the order
information must go on the stack. Information only known to or provided by the
caller should logically go first, while information only known by the callee should
go onto the stack afterwards, as it can only be pushed onto the stack once the
callee takes control. We need a strategy for saving the return address. The easiest
way to do this is for each function (including the main program, now we know it

6MIPS compilers point the stack pointer at the word at the top of the stack.



Local Variables and the Call Stack 103

is a function) to save the contents of $ra on entry and to restore it immediately
before returning.

The callee has to save $ra since this value is only known after the jal
instruction completes, taking control into the function.

At this point it is worth reminding you that the stack grows from high memory
down, so pushing onto the stack results in a new value of the stack pointer that is
smaller than the previous value. If the frame requires 20 bytes, the value of the
frame pointer is $sp+20 after $sp is adjusted. Since the new value of $fp is just
the old stack pointer in my scheme, this means that we have to adjust $sp by -20.

Heads up: Stop and read the last paragraph again. It is very important
to understand how a new stack frame is made by decreasing the stack
pointer.

The caller has some of the necessary information and in particular knows what
parameters are to be passed. The callee on the other hand should know how much
space it needs for local variables and spilling registers. So the roles can be split as
follows:

• caller responsibility:

– spill any registers that need to be preserved that are not the callee’s
responsibility (usually t registers; it should have saved $ra on entry)

– copy up to 4 words of values to be passed in into parameter registers
$a0-$a3

– copy any parameters that don’t fit into 4 registers into start of new
stack frame that starts at the address in $sp

– call the function using jal

• callee responsibility; each item is copied into the next location in the stack
frame, which needs N bytes in total:

– copy the return address from $ra into the stack frame

– save the frame pointer from $fp into the stack frame

– initialise the frame pointer as $sp

– adjust the stack pointer to $sp-N



104 CHAPTER 4. MEMORY AND FUNCTIONS

stack
:

register spill space
local variables
saved registers  
return address
parameters

$sp

$fp
stack

:

$fp
register spill space
local variables
saved registers
return address
parameters

$sp
register spill space
local variables
saved registers
return address
parameters

increasing 
addresses

Figure 4.7: More detail of stack storage scheme

Figure 4.7 is a schematic view of the stack before and after pushing a new frame,
with the frame contents reflecting the order of events listed above.

All of this of course presumes we need a stack frame – a leaf function doesn’t
need one unless it has too many variables to keep in registers.

Returning from a function requires unwinding the stack to its previous state, as
well as restoring registers. Caller and callee responsibilities reflect the call setup.
The stack and saved registers should look the same after the return as they did
before the call (and the PC will point to the instruction after the call). The callee
should restore the $sp and $fp registers, and any $s (saved temporary) registers it
modified. The callee on the other hand does not need to worry about $t (unsaved
temporary) registers. Any local data created in the stack after the return may linger
in memory for a while until it is overwritten, but its value should be considered
invalid. That also applies to any parameters the caller put on the stack – they have
the status of local variables in the sense that their lifetime begins and ends with
the lifetime of the callee.

So the complete sequence of events for the return is:

• callee responsibility:

– restore any spilled or saved registers including $fp, $sp and any $s
registers used in the function

– return using a jump to the return address: jr $ra (restored from the
stack, if this function called any others)

• caller responsibility:



Local Variables and the Call Stack 105

COPY $ai, VALi! # reg params i=0..3
jal functionname

(a) minimal call

sw $ra, 0($sp)! # save return address
sw $fp, -4($sp)! # save frame pointer
move $fp, $sp! # fp = old sp
addi $sp, $sp, -8! # move SP past frame

(b) minimal function start

move $sp, $fp! # restore SP
lw $fp, -4($sp)! # restore FP
lw $ra, 0($sp)! # restore return address
jr $ra! # return to caller

(c) mimimal return

Figure 4.8: Minimal function call templates. The COPY pseudoinstruction
should be replaced by a move or a load instruction, depending on whether the
source is respectively a register or a memory location. Remember that a store
instruction in MIPS assembler language reverses the order of the operands: the
source is first then the destination – we will need this in later versions of COPY.

– restore any temporary registers spilled before the call

If the function returns a value, there is one more detail to take care of. At some
point before the function returns, that value should be put in registers used for
returning values ($v0-$v1, real registers $2-$3 – the number of registers depends
on the size of the value returned, which should be known to the caller and callee).

Finally, what registers should you spill? If your function does not use the
whole set of saved temporaries (s registers), it need not save those it doesn’t use.
Any other function earlier in the call chain that does use them will have to save
them and restore them, so they will not get lost.

Figure 4.8 illustrates templates for a function call that doesn’t need to allocate
space on the stack for parameters in addition to those that can be passed in registers
or space on the stack for local variables or spilling registers.

Heads up: Call templates get more complicated when we add in more
detail. Make sure you understand the simpler case before you go on.

Let’s construct a simple example to put this all into context. We want
a minimal function that has parameters and returns a value, so we can see
how to construct the stack frame. Once we have done that, we can adapt the
same template to more complex examples. Let’s redo our previous maximum
calculation, this time using our rules for setting up the stack frame and returning
a value. This time we will be conservative about allocating space for variables on
the stack, rather than maximising use of registers. Here is the core of the code



106 CHAPTER 4. MEMORY AND FUNCTIONS

(leaving out details like printing prompts to keep it simple):

// show use of local variable
int max (int a, int b) {

int biggest;
if (a > b)

biggest = a;
else

biggest = b;
return biggest;

}

int main () {
int myscore, yourscore;
scanf("%d", &myscore);
scanf("%d", &yourscore);
printf("%d\n", max (myscore, yourscore));

}

First, let’s redo the main program on the basis that it has been called from
elsewhere, and needs a stack frame. The code that calls our main program passes
in three parameters (read the comments in the code SPIM provides): argc in $a0,
argv in $a1 and env in $a2. We will ignore these – since parameter values are
discarded at function return, if we don’t use them, we need not save them. What
we do need to save is the stack pointer and return address. We also need space for
local variables and any other registers we may need to spill. The way to work all
this out is to write out the main program, then see whether we need space to spill
registers. main return

To start with, we need to create the stack frame at the main entry point:
addi $sp, $sp, -4 # move sp off last item (SPIM fix)
sw $ra, 0($sp) # save the return address
sw $fp, -4($sp) # save the frame pointer
move $fp, $sp # frame pointer = old stack pointer

# need space for two local variables, each 4 bytes
addi $sp, $sp, -16 # move stack pointer past frame

Heads up: We now see the one place where my decision to be different
requires a fix-up. The fix we need to make the stack correct for entering
and returning from the main program only applies in this situation, not in
any calls or returns for other functions we write.



Local Variables and the Call Stack 107

stack
:

stack
:

$fp

0x...... (v2)
0x...... (v1)
0x...... ($fp)
0x400018 ($ra)

$sp

0x7ffffd68
0x7ffffd6c
    :

0x7ffffd58
0x7ffffd5c
0x7ffffd60
0x7ffffd64
0x7ffffd68
0x7ffffd6c

    :

$sp

address memory contents address memory contents

Figure 4.9: Stack frame: minimal example with two words for variables

The first line is to fix the fact that SPIM leaves the stack pointer pointing at
the top word on the stack, which is not the way we are using the stack for calls.
We need to remember to reverse this correction before returning from the main
program(see the last line). From there on, the only difference from the template
in figure 4.8b is adding space on the stack for local variables (see figure 4.10 for
a more general template).

Note we use negative offsets and increments because the stack is growing
downwards to find each item within the stack. If you need an offset within a
variable on the stack, that offset is still positive because once we have found a
variable on the stack, the address of that variable starts from the same place as if
the variable was anywhere else in memory.

I have allowed no space for passing parameters into main because they have
been passed in registers and we don’t use them (so we need not spill them if main
is not a leaf a function). I have not yet allowed for register spill space. If I need
this, I will have to up the -16 by which I change $sp. How do I get to that amount?
I need space for $sp and $fp, each 4 bytes, as well as for two variables, each 4
bytes. That totals 4×4 = 16 bytes. Let’s make a minimal main program that only
does this and step it through SPIM.

Heads up: It’s worth repeating once more: offsets that represent where
a given variable or saved register is on the stack are generally negative
because the stack grows from high memory down. Offsets within a data
structure are positive, no different than when the data structure is stored
anywhere else in memory.

Figure 4.9 illustrates the stack before and after we create the new stack frame,
with the values of $sp and $fp set. To save space in the picture, I call the two



108 CHAPTER 4. MEMORY AND FUNCTIONS

variables v1 and v2 (of course the labels in parentheses like “(v2)” don’t actually
exist in memory). Since SPIM does not use $fp, it is zero at start up but we should
save and restore it anyway, since SPIM treats it as saved temporary called $s8.
Run this minimal example and single-step it to make sure you know what is going
on.

Next, let’s extend our main program to read in two integers using system calls.
We don’t need to mess with stack frames to do that. However, I will copy the
results to local variable space to illustrate how to do that:

li $v0, READ_INT # scanf("%d", &myscore);
syscall
sw $v0, -8($fp) # --copy result to myscore
li $v0, READ_INT # scanf("%d", &yourscore);
syscall
sw $v0, -12($fp) # --copy result to yourscore

Why do we have negative offsets from the frame pointer for these? Because the
stack grows downwards, and the frame pointer points to the start of the frame.
These offsets reflect how far into the frame we have put our variables. Since the
$fp register is the old $sp value, our first variable is at offset -8 to clear the first
two words (4-byte quantities) we put on the stack before setting up the frame
pointer. Check figure 4.9 to make sure I have this right.

Next, I need to get a value out of the max function, and print it. Let’s forget
printing for now, which is just another system call, and focus on how to set up the
call to max.

Go back to our template: we need the call set up in figure 4.8a.

lw $a0, -8($fp) # myscore into 1st parameter register
lw $a1, -12($fp) # yourscore into 2nd parameter register
jal max

Note how I translate the COPY $ai, VALi “pseudoinstruction” (not strictly a
pseudoinstruction, because I, rather than the assembler, convert it to code) into a
couple of load instructions, because the source of the data is a memory location.
In this case, I am passing in local variables, hence finding them at an offset from
$fp.

Heads up: Following the template systematically takes concentration and
even more so with more complex calls. It is worth doing this; coding the
stack frame from scratch is easy to get wrong.



Local Variables and the Call Stack 109

Now I can start coding the max function. I need to catch the parameters passed
in, do the calculation, unwind the stack and return. Going back to my template, I
need the start of function code first. Here it is:

max: sw $ra, 0($sp) # save the return address
sw $fp, -4($sp) # save the frame pointer
move $fp, $sp # frame pointer = old stack pointer
# need space for 1 local variable of 4 bytes#######
addi $sp, $sp, -12 # move stack pointer past frame

Note that I start with a label for the entry point of the function, and I have again
had to adjust the stack frame for space for local variables. This time there is only
one local variable, so the adjustment is smaller than for the main program, which
has two local variables. Otherwise the code is straight from the template in figure
4.8b. Check it and make sure you could have produced this code yourself.

Next, I need the code to do the actual work (remember the parameters are
already in registers, since the main program

passed them in that way: $a0 and $a0). Here we can invoke our if-else
template (figure 3.15b):

ble $a0, $a1, else # if (a > b)
sw $a0, -8($fp) # biggest = a;
j done

else: # else
sw $a1, -8($fp) # biggest = a;

done:
lw $v0, -8($fp) # return biggest;

In this case, since we have a small program with only one if, we do not need our
more general template of figure 4.5d, where we allow for modifying the branch
target labels.

We can now apply the template of figure 4.8c to handle the return:

move $sp, $fp # restore stack pointer
lw $fp, -4($sp) # restore frame pointer
w $ra, 0($sp) # restore return address
jr $ra # } return to caller

We do not need to make any adjustment for the presence of local variables since
we can restore the stack pointer directly from the frame pointer, and use the offsets
from $sp that are not altered by the presence of optional extra items on the stack.



110 CHAPTER 4. MEMORY AND FUNCTIONS

The last instruction in the max function should take us back to the main program
at the instruction past where we called max, with the stack restored to its previous
state, and a value returned in $v0. The main program can now use this value and
when it has done all its work, return to the code that called it:

# get out return result from $v0
move $a0, $v0 # printf ("%d\n", biggest);

li $v0, PRINT_INT
syscall

# restore stack frame ################################
move $sp, $fp # restore stack pointer
lw $fp, -4($sp) # restore frame pointer
lw $ra, 0($sp) # restore return address
addi $sp, $sp, 4 # move sp back to last item (SPIM fix)
jr $ra # } return to caller

Note the last line before our code returns that fixes up the stack to take into account
the fact that SPIM wants the stack pointer to point at the topmost word instead of
the first free space above the top of the stack.

The take home message? Creating a stack frame requires systematic
application of a standard set of rules given here as a template that allows
caller and callee to communicate, and caller to continue where it left off
after the callee returns.

4.4 Bigger Parameters
To complete the picture, let’s look at how to pass parameters that do not fit
into 4 registers. To do so is an extension of the way we set up space for local
variables, except the caller has to initialise their values. Figure 4.10 contains more
general function templates that include this case, as well as the details the previous
example added that aren’t in our earlier simpler function templates. I will not go
through a detailed example to illustrate how to set up bigger parameters since
there are no new principles involved.

Take a look at the more general template, and see how it applies to our max
function. The main thing added is the ability to make the stack frame bigger
to accommodate both extra parameters and local variables. Our max function
includes local variables. When using the simpler templates, I fudged the extra



Bigger Parameters 111

COPY $ai, VALi! # reg params i=0..3
COPY -4x(j-1)($sp), VALimax+j!# more params j=1..
jal functionname

(a) call

sw $ra, -4xjmax($sp)! # save return address
sw $fp, -4x(jmax+1)($sp)! # save frame pointer
move $fp, $sp! # fp = old sp
addi $sp, $sp, -4x(jmax+2+vars)!# move SP past frame

(b) function start

move $sp, $fp! # restore SP
lw $fp, -4x(jmax+1)($sp)!# restore FP
lw $ra, -4xjmax($sp)! # restore return address
jr $ra # return to caller

(c) return

Figure 4.10: More general function templates

space. It is worth your time to redo the example using the templates of figure
4.10. There are a few things to note about the more general templates, including
some details not explained about the simpler templates:

• i counts parameters that fit in registers, numbered from 0 to imax, imax < 4

• j counts extra parameters, numbered from 0 to jmax, with jmax = 0 if no
extra parameters

• vars is bytes for local variables and spilling registers

• once you set up $fp, you address relative to $fp carrying on from the way
you addressed relative to $sp before advancing $sp. For example:

– if you have one parameter on the stack you would have pushed it
onto the stack with COPY -4×(j-1)($sp), VALimax+ j; to make this
concrete

* assume the value we want to pass is in $t5 (it is the imax+1st
parameter to be passed, hence VALimax+ j with imax = 3, j = 1)

* then our COPY is (remembering we have to reverse the order of
operands for a load):
lw $t5, 0($sp)

There are two important rules in managing larger values on the stack:

1. be consistent in your approach – the caller and callee in a compiled HLL
may be in separate files and compiled at different times, so the approach to
setting up parameters – whether in registers or the stack – has to follow a
consistent set of rules to that both at call and in the function the strategy
matches



112 CHAPTER 4. MEMORY AND FUNCTIONS

global to whole program

global to compiled file 1

constant pool

global to compiled file 2

dynamically allocated data

stack

free space

= not yet covered

Figure 4.11: Data segment used so far: stack added

2. keep the top of the stack word-aligned – it is common (as with MIPS) that
instructions fetching words prefer that the data be at a word-aligned address
so if you have a parameter (or for that matter local variable) on the stack that
is not a whole number of words, adjust the stack pointer to a word boundary
(a multiple of 4 bytes).

We have filled in a lot of the picture first illustrated in figure 4.2. In figure 4.11 we
can now remove cross-hatching from the stack region of the data segment.

The take home message? Passing bigger parameters or more than 4
parameters is much the same as setting up local variables except the
caller has to initialise them; once in the function you access them exactly
like local variables.

4.5 Recursion

I would now like to switch to something that really illustrates how function call
works – but still with a small example. Recursion is a definition of a function
in terms of itself. This works if you have one or more base cases that can be



Recursion 113

calculated directly, and each time the function calls itself, it reduces the problem
size so that it eventually reaches a base case.

Here is a very simple example (one that can easily be computed in a loop, but
we have to start somewhere). The Fibonacci function is defined as

f ib(n) = f ib(n−1)+ f ib(n−2),n > 2

f ib(1) = 1

f ib(2) = 1 (4.1)

We have two base cases, for n = 1 and n = 2. The function is only defined for
positive integers. Let’s take an example where n = 4. We can expand the function
as follows:

f ib(4) = f ib(3)+ f ib(2) = ( f ib(2)+ f ib(1))+1 = 1+1+1 = 3

This formula generates a sequence of numbers for f ib(1), . . .7:

1, 1, 2, 3, 5, 8, 13, ...

Here is how we can express the Fibonacci function if C:

int fib (int N) {
if (N > 2)

return fib(N-1) + fib(N-2);
else

return 1;
}

Translating this function to MIPS assembly language is a simple (relatively)
matter of applying our minimal template. Since there is no local variable, and
we can pass the parameter in a register, all we need to consider is whether this is a
leaf function. Since it calls a function (in this case, itself not another function), it
is not a leaf function, so we need to spill any registers that should be stored across
a call. Let’s write out the code first, then look at what we need to spill and how
much space we need.

Let’s make a trivial main program that calls this after reading in a value
for N, and prints out the result. We should check that any integer passed in is
non-negative, but I leave this out to keep the example simple. Here is the main
program:
7You can also start the sequence at 0, if you you define f ib(0) = 0. But that complicates
programming the example slightly.



114 CHAPTER 4. MEMORY AND FUNCTIONS

main

fib(3)

fib(2) fib(1)

(3)

(2) (1)1 1

2

N = 2
returns 1

N = 1
returns 1

readin = 3

N = 3
returns

fib(N-1) + fib(N-2) = 1+1

Figure 4.12: Call tree for running a Fibonacci example

int main () {
int readin;
scanf("%d", &readin);
printf ("fib(%d) = %d\n", readin, fib(readin));

}

A little more about C-style input and output: the first thing in a printf or scanf
is a format string. Words in the string that start with “%” are placeholders for
values. In our case, “%d” is a placeholder for a number expressed as decimal
(hence “d”) digits. A proper implementation of printf is a lot more complicated,
but we can implement this by splitting the format string into the parts that
only stand for themselves, and separately print out each fragment and print the
numbers in between. Another little detail: in C notation, a backslash “\” is an
escape character that makes what follows signify something other than the direct
interpretation of that character (or characters). Here “\n” signifies a line-break
character.

Figure 4.12 illustrates the order of calls for a small example, with parameters
passed (in parentheses) on downward arrows, and returned values on upward
arrows. It is important that recursion return to the right place because we need to
pick up where we left off. In this example, after the first recursive call fib(n-1)
you need to get back to the place it was invoked not only to pass its result back
but also to invoke the second recursive call fib(n-2).



Recursion 115

Heads up: Write out a call tree for a bigger example (not a lot bigger, it
grows fast). Make sure you understand what has to be saved at each call
so the function can get back and carry on from where it left off.

Let’s do the obvious parts first, then fill in the fib function. As usual our
rather tiny main program expands out a lot.

READ_INT = 5
PRINT_STRING = 4
PRINT_INT = 1
EXIT = 10

.data

prompt: .asciiz "input ?>"
format1: .asciiz "fib("
format2: .asciiz ") = "
format3: .asciiz "\n"

.text

# We need no main program variable space because we read in the value to
# pass to fib(N) and print it before the call, and never use it again;
# to be safe use an s register so we know it will be saved across
# calls if we rewrite the code so we do need the register later
# registers: readin in $s0
# int main () {
main: addi $sp, $sp, -4 # move sp off last item (SPIM fix)

sw $ra, 0($sp) # save the return address
sw $fp, -4($sp) # save the frame pointer
move $fp, $sp # frame pointer = old stack pointer
addi $sp, $sp, -8 # move stack pointer past frame

##### do stuff that could trash registers etc.
# int readin;
# scanf("%d", &readin);

jal prPrompt # prPrompt ();
li $v0, READ_INT # scanf("%d", &myscore);
syscall
move $s0, $v0

# printf ("fib(%d) = %d\n", readin, fib(readin));
la $a0, format1 # print first part out format
li $v0, PRINT_STRING
syscall



116 CHAPTER 4. MEMORY AND FUNCTIONS

move $a0, $s0 # print given int value readin
li $v0, PRINT_INT
syscall
la $a0, format2 # print second part of format
li $v0, PRINT_STRING
syscall

###### call fib here #######

move $a0, $v0 # function result to print parameter
li $v0, PRINT_INT
syscall
la $a0, format3 # print final part of format
li $v0, PRINT_STRING
syscall

# prepare to return from main
move $sp, $fp # restore stack pointer
lw $fp, -4($sp) # restore frame pointer
lw $ra, 0($sp) # restore return address
addi $sp, $sp, 4 # move sp back to item (SPIM fix)
jr $ra

# }
#

So far this is all standard stuff (if with a bit more prettified output). Check the
main program through and make sure you understand how the output works. If
you run this program (with the prPrompt function we had before – see page 84)
it will give the same output for every number you enter. Read the program and
work out what that number signifies.

Now, let’s look at how to call the fib function from the main program, and
how we need to set it up so it can call itself. As before, I start from standard
templates, and work out what I need to change after applying the formula. Before
getting into the call setup, let’s do the basic logic of the function, an if statement.
Here it is without the call, using our generalised template (figure 4.5d):

# if (N > 2)
li $t0, 2 # invert condition
ble $a0, $t0, else01 # true branch:
# now we use $a0 to set up another call
# knowing we can recover it from the frame

# return fib(N-1) + fib(N-2);



Recursion 117

########fill this in next############
j Idone01

else01:
# else
# return 1; # false branch
Idone01: nop # or next instruction

Before we go any further, note that the last thing done in either branch of the if
statement is a return, so the jump out of the if to label Idone01 will never happen,
so we can eliminate the last nop as well as the jump out if the true branch:

# if (N > 2)
li $t0, 2 # invert condition
ble $a0, $t0, else01 # true branch:
# now we use $a0 to set up another call
# knowing we can recover it from the frame

# return fib(N-1) + fib(N-2);
########fill this in next############
else01:
# else
# return 1; # false branch

Now to do the function call and setup, note that fib has one parameter that
will need to be preserved between calls because it is not a leaf function. After
fib(N-1) there is another call to fib(N-2), and we will need to know what N
was after the first call. For the same reason we need to preserve the return address.
That puts us into the case of our more general function template of figure 4.10.

The start of the function then looks like this ( jmax = 0 since there are no
parameters passed in via the stack, but we need to add 4 bytes to store the
parameter between calls, which is spill space, making vars = 4):

sw $ra, 0($sp) # save return address
sw $fp, -4($sp) # save frame pointer
move $fp, $sp # fp = old sp
addi $sp, $sp, -12 # move SP past frame

Let’s look now at how we will handle the recursive calls. After the first call, we
need a place to store the result, so we need space to spill the register containing
this intermediate result. I therefore need to make the stack frame 4 bytes bigger



118 CHAPTER 4. MEMORY AND FUNCTIONS

(correcting vars to 8), so let’s fix the last line above and add in saving the
parameter, since we should do that while we remember:

addi $sp, $sp, -16 # move SP past frame
sw $a0, -8($fp) # save parameter

Why is the parameter at an offset of -8 from the address in $fp? We have already
used up 8 bytes for the return address and saved frame pointer.

Now we have our function set up for entry, we need to look at how to call
it, since we have to do that in the function itself. There is one parameter so we
pass that in $a0. That means we need to spill $a0 into the space already allowed
before calculating the value to pass in to the call. The first call is easy: we have
the parameter in the right register, so we just decrement it, and do a call:

addi $a0, $a0, -1
jal fib

At this point, the call can go a few layers deep but we need not worry about that
here, as the stack will eventually be cut back to where it is now, and any registers
that we need should be restored to their former values. Once the function returns,
we need to spill the value it returns to the stack, since we are going to call the
function again with N− 2. Then we can pick up the value of N from the stack
where we saved it, and call again with N−2:

sw $v0, -12($fp) # spill result of fib(N-1)
lw $a0, -8($fp) # retrieve saved N
addi $a0, $a0, -2
jal fib

Now we have our two results, so we can do the addition into the return value
register $v0, cut the stack back to where it was on entry and return (using the
saved return address).

lw $t0 -12($fp) # previously saved fib(N-1)
add $v0, $v0, $t0 # add the two results
# set up return
move $sp, $fp # restore SP
lw $fp, -4($sp) # restore FP
lw $ra, 0($sp) # restore return address
jr $ra # return to caller



Exercises 119

7ffffd74

7ffffd78
stack
:

7ffffd7c

7ffffd70

$sp

00400018

0

xxxxxxxx

7ffffd6c

7ffffd68

$fp

(a) main program

7ffffd74

7ffffd78
stack
:

7ffffd7c

7ffffd70

$sp

00400018

0
004000ec

7ffffd6c

7ffffd68
7ffffd707ffffd64

7ffffd60

7ffffd5c

7ffffd58

xxxxxxxx

xxxxxxxx

$fp

(b) top-level call

Figure 4.13: Stack frame at two stages of the Fibonacci program. xxxxxxxx
represents memory not yet initialised.

The final part of the function is returning 1 for the base case. This is pretty
easy if we can do the recursive case. All you need is to put the value 1 into
the $v0 register, then reuse the set up return steps from the last sequence of code
above. Complete the function, including the main program, and run it in SPIM.
Completing the main program should be easy because you have an example of
calling fib where the recursive call occurs. Check that the results are as you
expect, and single-step it to see how the recursive calls work.

Figure 4.13 illustrates the state of the stack frame when it is first set up in the
main program and when it is first set up in the top-level call of fib. Make sure
you understand how the stack frame is set up and ended up looking like this.

The take home message? Once you have the function call mechanism
right, recursion comes naturally. Each call adds to the stack to remember
how to get back to where you were. Calling the same function again works
exactly the same way as calling a different function.

Exercises

1. In our simple examples with just a main program and no calls, did we ever
need to use s registers rather than t registers? Explain.

2. A jal instruction is encoded with a 6-bit opcode containing the number
3, and a 26-bit offset. Work out the bit pattern for jal 0x00400024,



120 CHAPTER 4. MEMORY AND FUNCTIONS

remembering that the low 2 bits of the address are not actually stored. Does
your answer match the hex representation of the instruction in figure 4.4?

3. Put together the various pieces of the prMax example of page 87, picking
up values for system call codes from Appendix C, then:

(a) Run it in SPIM. Single-step it to check the register values.

(b) Rewrite it so that you copy parameter values into temporary registers
(saved or unsaved, as appropriate) and explain your strategy.

(c) Save the return address as the first step of each function, and restore it
just before returning. Explain where you save it and why.

4. For the prMax function of page 89:

(a) Rewrite it to use the minimum number of registers.

(b) How much shorter is your code?

(c) Is the gain worth the potential difficulty of understanding nonstandard
use of registers?

5. Rewrite the main program of page 95 to minimise wasted instructions, such
as register spills or restores. How far can you take this, if you are able to
manage register use across functions?

6. In figure 4.6b:

(a) Based on the SPIM data contents, what values do you think should be
stored at the locations pointed at by $gp and $gp+4? Explain.

(b) How many positive and how many negative numbers were read in to
have produced the numbers seen in the SPIM data segment? Why?

(c) The rightmost part of the panel shows the ASCII representation of
memory. Why is there a “.” at the end of each string stored in the
constant pool? Can you remember what an .asciiz directive does?

(d) What value would you expect to find if you look in the register panel
for R29 [sp]?

7. You have a programming language where functions compiled in separate
files each have their own global variables accessed via a different base
address using the $gp register. How would you have to change our rules



Exercises 121

for setting up a stack frame if you the caller and caller were compiled from
different files?

8. For the entire program of pages 106–110:

(a) Using SPIM check in detail that it works, using single-step mode and
checking registers and memory contents as you go.

(b) Redo the example using the templates of figure 4.10, making sure you
apply the formulae for calculating offsets and the stack frame size.

9. In the code on page 108, what would happen if I mis-counted the offsets of
my main program local variables and put my variables at offsets of -4 and
-8 instead of -6 and -12?

10. For the Fibonacci example:

(a) Draw the call tree for f ib(4). This time, each time you create another
tree branch, write on the branch either “call N−1” or “call N−2” so
you know where to return.

(b) Redo the code with base cases f ib(0) = 0, f ib(1) = 1.

(c) Add in a check in the main program for an invalid value of N before
calling the function.

(d) Rewrite the main program to use a while loop that reads a value for N
and terminates if negative N is read in but otherwise calls your function
and reports the result for each new value.

11. Complete the Fibonacci program of pages 113–119.

(a) Test the program and observe it in SPIM in single-step mode.

(b) Write out the $sp and $fp values as you step through a single instance
of fib up to the point where it does a recursive call. Make sure you
understand how it gets back correctly to do the second recursive call.

(c) Are there any situations where we did not need to save the return
address? Is it worth trying to fix this sort of unnecessary overhead?



5 Data Structures

DATA STRUCTURES ARE ONE OF THE FUNDAMENTAL differentiators of dif-
ferent levels of language. A lower-level HLL has data structures you
have to manage in detail including allocating and deallocating memory.

A managed-memory language hides all this from you. At machine code level,
there are no data structures.

Heads up: Read that again. At machine code level, there are no data
structures.

Remember I told you a few times earlier, at machine code level everything
is just bit patterns, and you can interpret those bit patterns as you like. You can
of course construct data structures, just as an HLL compiler constructs them out
of machine code, but there is nothing at machine code level (or assembly level,
which is just a slightly more convenient notation for the same thing) that enforces
any of this.

Already, we have seen that bits can stand for characters, integers, floating
point numbers, instructions and address. We now need to see how these things
can be packaged up into more complicated data structures. Since programming
complexity scales up a lot faster than data data complexity at assembly language
level, I limit the scope to examples that illustrate principles.

5.1 Machine-Level Data
Let’s start with the kinds of data that have direct representation in the machine.
Using C for examples helps here, as C was designed from the start as a language
close to the machine. C was designed in 1970 when writing operating systems
in assembly language was proving too hard. C was originally designed to make
systems code efficient on what were then small computers and today would be
extremely tiny computers [Ritchie et al. 1978; Kernighan and Ritchie 1988].

122



Machine-Level Data 123

Table 5.1: Sizes of standard C basic types. Alternative names given where that
applies.

bytes type name examples type name examples
integer types floating point types

1 char 'c', '\n'
2 short, short int 42
4 int 42 float 42.0F, -1E56F
8 long, long int 42L double 42.0, -1E56
16 long double 42.0L, -1E56L

Let’s look at a few of C’s built-in elementary types and see how they relate to
machine data representation.

First, integer values. On our MIPS machine, these are represented in machine
words of 32 bits using 2’s complement. When C was originally designed, a
standard integer (type int) was 16 bits; today most compilers implement type
int using 32 bits. When we write down values in our programs as a constant
number (or literal), how do we distinguish values that may look similar but could
be stored in a different number of bits? Table 5.1 gives some examples. C defines
suffixes you can write at the end of a numeric literal to tell the compiler exactly
what you mean. In examples in the table where there is no suffix, that means the
specific type is the default for values written like that.

Generally speaking, C is quite permissive about converting between variants
on a type. Floating point numbers are by default represented as type double, but
if you put a double in a context where a float is expected, the compiler will
convert the value (if possible: it may be out of range of the allowed values). The
“long” suffix (“L” or “l” – not a one, so better to use uppercase to avoid confusion)
may be necessary because you may want to write down a value that is too big for
an int or float. Mostly though we just write down numbers without the suffix
and get away with it.

There is no way to label an integer value specifically as a short but the compiler
can detect if such a value has too many bits if it needs it to be short. With floating
point, it is more useful to be precise about how many bits you want because you
can lose precision especially with numbers that do not convert to an exact fraction
in binary.

In addition to suffixes for long (“L” or “l”) or float (“f” or “F”), you can
specify an integer is unsigned by adding a “U” or “u” suffix. An unsigned value
can be a bigger positive integer than if it is unsigned because of the extra bit.



124 CHAPTER 5. DATA STRUCTURES

a

01000110
4   6

F

01100001
6   1

01110011
7   3

01110100
7   4

s t

01000110011000010000000000000000

11111111
F   F

shift right 16 bits

000000000000000000000000

a s
4   6 6   1

∧

01100001000000000000000000000000

original word

mask

final word

6   1
a

Figure 5.1: Extracting a character by shifting and masking

Even if a compiler can work out the actual type from a constant value, there is
documentation value in making these things explicit.

Heads up: We will shortly be looking at C in more detail, hence this
foray into more about how C does things. There is a lot of variation in
how machine data types are handled in HLLs.

Let’s relate all this now to what we can do on a MIPS machine. We have
already seen arithmetic and logic operations on words that correspond to the C int
type. We have also looked at halfwords that correspond to the C short type (also
called short int). On page 66 we looked at techniques for detecting overflow in
halfword arithmetic. We have not explored unsigned arithmetic, though chapter
2 explains the concept. We have not looked at floating point in detail. MIPS
(in models that support floating point: embedded devices often don’t) has single-
precision floating point operations, corresponding to C’s float type, as well as
double-precision, corresponding to C’s double type.

Although the MIPS instruction set does not have character-specific operations,
it can operate on byte-sized quantities including loading and storing a byte.
Usually, when dealing with characters, you would use a load byte unsigned
instruction (lbu) meaning that the high bits in the register are left zero, rather than
sign-extending. Operations to manipulate byte-sized units packed into a word can
be put together using shifts to put the byte of interest into a particular part of the
word and masking, the use of logical operations to make selected parts of a word



Arrays 125

zero. For example, if we have a word containing 4 bytes and we are only interested
in the byte second from the high end of the word, we can shift the word right by 16
bit positions, then apply a logical and to the word and a mask containing 1s only
in the low 8 positions. Figure 5.1 illustrates the general idea, with numeric values
for each character in hex as well as binary (see appendix A for ASCII codes). That
sounds easy enough to code so let’s make a minimal program that loads a preset
string of 4 characters into a register, does all this and stores it back:

.data
word: .asciiz "Fast"

.text
main: la $t0, word # address of word

lw $t1, 0($t0) # fetch our word
srl $t1, $t1, 16 # 2nd-highest byte to low end
andi $t1, $t1, 0xFF # mask all but low byte
sw $t1, 0($t0) # store back to memory
jr $ra # back to caller

Run this and what would you expect the value in memory to be? No, not “a” –
unless you are on a machine with big-endian byte ordering. The second byte from
the high end of the word in a little-endian machine (like an Intel family processor)
is actually “s” (for more on endianness see page 63).

Heads up: Endianness is a nasty concept particularly as it is not
consistent across machines. You sometimes need to understand this stuff,
like when you unpack data sent over a network from a machine with
different endianness. Mostly, fortunately, it is hidden behind the scenes.

We really want a more orderly way of accessing bytes one at a time that does
not rely on how they are stored within a word. That brings me to the first example
of a more complex data structure.

5.2 Arrays
An array is a data structure of individual elements, each accessible through an
integer index. There are variations on array indexing but to keep it simple, we will
always start our index values from zero. We will also insist that every element of
the array be the same size. Languages that relax these assumptions generally do
so at the cost of a few extra instructions, which is good if someone else wrote the
compiler and performance is not absolutely critical.



126 CHAPTER 5. DATA STRUCTURES

Using an array breaks down into three essential operations:

1. initialise – create storage for the array and put in initial values

2. access – retrieve a value from a location in an array, e.g., value = a[i]

3. update – change a value in a location in an array, e.g., a[i] = value

In some languages you may be responsible for disposing of resources an array
uses when you finish with it but this is enough for us to get started. Let’s redo
our simple example of accessing the second character from the start of a string
treating the string as an array. Our array indexing operation is:

1. base address – obtain the address of the first element

2. calculate offset – multiply the array index by element size

3. element address – add the offset to the base address

Once we have the element address, we can either access the element by using a
load instruction to place it in a register for whatever operation we have planned
for the contents, or use the address to store a new value into the element. All this
assumes a value in the array that fits into a register: working with larger values
is a little more complex but the same operations apply up to the point where we
have to find some other option than fitting the entire element into a register.

You may recall that our memory addressing operations generally include an
offset, e.g., the “-12” in lw $t0 -12($fp). However, we can’t use that offset
for array indexing because it is built into the instruction, hence having to calculate
the element address by adding to the base address as a separate step. If you think
back to the way we calculated offsets from the stack and frame pointers, they
went in steps of 4 because we were using word-sized items (addresses or integers
in most examples). So the notion of increasing an offset by the size of the element
should be familiar.

Heads up: Address offsets cannot be used for array indexing, because an
array index is a value that may only be known at run time. An offset in a
machine instruction has to be known when the instruction is created.



Arrays 127

Strings

C has a particular definition for strings that we encountered before without much
explanation (the “.asciiz” MIPS assembler directive we use in SPIM defines a
value in this format). A string in C is an array of char with an extra character at
the end to mark the end of the string. That extra character has an ASCII code of
zero, and is written as '\0' (a backslash – the escape character – followed by a
zero). Because this character is called an ASCII NUL for “null character”, so this
string convention is called a null-terminated string, and ASCIIZ implies a string
of ASCII characters ending in a zero.

Heads up: A character written with a backslash such as an ASCII NUL
is stored in a single byte: the backslash is an escape character, signalling
that what follows must be specially interpreted, and is not stored.

Let’s implement a a standard C function for finding the length of a string that
assumes the string ends with a null character. In C notation this is:

int mystrlen (char string []) {
long i;
for (i = 0; ; i++)

if (string[i] == 0)
return i;

}

A for loop in C can leave out the stopping condition, which then in effect means
the loop will not terminate except if you break out of it (in this case, using return).
Let’s convert this to a MIPS assembler program with a simple test main program.

The first question is how do we pass an array as a parameter? If we think of
the array as being represented as the location of its first element, it’s easy: we just
pass the address of the start of the array. If you think about our array indexing
operation, this is what we need. Also, strlen is a leaf function, so we do not
need to save anything on the stack as long as we only use unsaved temporary (t)
registers. The parameter registers (a) also need not be saved. Since this is a single-
parameter function, we expect the value to be passed in through $a0 so we can do
as much of the calculation as possible in this register to save copying. To put this
all together then we need a minimal function and templates for for and if (without
else). This is a reasonably straightforward implementation of the templates, with
a few unnecessary details left out.



128 CHAPTER 5. DATA STRUCTURES

#int strlen (char string []) {
# int long i;
strlen: # initialise loop counter

li $t0, 0
# for (i = 0; ; i++)
Fbody01: add $t3, $a0, $t0 # set up element address

lbu $t4, 0($t3) # $t4 = string[i]
# if (string[i] == 0)

bne $t4, $0, Idone01 # invert condition
# return i;

move $v0, $t0 # true branch -- return i
jr $ra

Idone01: addi $t0,$t0,1 # increment loop counter
j Fbody01 # not done? Go again

#}

Refer back to figure 4.5 (page 95) to make sure you understand how I derived
these from the templates. The important details here are the parts that access the
array. Note how I have a loop counter that I also use to index the array. This time,
indexing is easy because each element is a byte and hence the next element is just
1 addressable location in memory away. If I have an array with larger elements, I
have to scale the index before adding it.

To drive home the point that accessing an array is just about adjusting a base
address by an index, let’s see how a machine-oriented language allows you to
access an array using addressing. In C, a pointer represents a machine address,
and we can do arithmetic on pointers. Here is another version of our strlen
function using pointer arithmetic:

int strlen (char *string) {
char *pos = string;
while (true) {

if (*pos == 0)
return pos-string;

pos++;
}

}

To make it clearer as to what’s going on, I changed the type of the parameter from
an array type to a pointer type, though in C the two are closely related – an array
in C is represented as a pointer to its first element. In C, a “*” after a type name
means you want a pointer to an item of that type, rather than the item itself. In
other words, our parameter string and variable pos hold a memory address that



Arrays 129

contains an item of type char, a single-byte unsigned integer at machine level.
When you want to access the value that the pointer refers to, you use a “*” before
a variable name – not quite the same usage as when naming a pointer type.

Incrementing a C pointer means moving it on as far as the size of the thing it
points to. In the case of a byte-sized element, that means moving 1 every time we
increment, so applying the increment operation “pos++” means take the address
in variable pos on to the next byte in memory. What does “pos-string” do? If
you subtract one pointer from another, you get how many elements of the pointer
type they are apart. In this case, since I am subtracting the start position of the
array from the place where the null terminator is stored, that tells me how many
elements there are in the array not including the null terminator.

Heads up: In C, as we will see later, an array is always treated as a
pointer to its first element. This concept makes a lot more sense if you
understand array implementation in machine code. C pointer arithmetic
is an arcane mystery unless you understand machine code. So pay close
attention: you will need this material to understand C arrays.

The take home message? Strings are a convenient representation of
characters, with many variations in different langauages. The C approach
has the benefit of mapping simply to machine code, and hence is fast to
implement even though finding the length of the string requires visiting
every element.

More General Arrays

Strings are interesting and useful but do not illustrate the full complexities of array
access because the index advances the memory location (address) of elements at
the same rate as the index changes because the element size is 1.

Still keeping things simple, let’s search through an array of integers for the
largest element, and return the index of that value. In the main program, we will
use the index to access this element and print it. Let’s look at whole C program
for a change, with some details I didn’t mention before:

#include <stdio.h>

// find biggest element in array size N and return its index
// if duplicates, the first biggest item is found



130 CHAPTER 5. DATA STRUCTURES

int arraymax (int data [], int N) {
int i; // loop counter
int imax = 0; // biggest element index so far
int max = data[0]; // biggest element so far
for (i = 1; i < N; i++) {

if (data[i] > max) {
max = data[i]; // update biggest
imax = i; // update biggest’s index

}
}
return imax;

}

int main () {
int testdata[] = {23, 42, 57, -1, 12};
int N = sizeof(testdata)/sizeof(int);
int imax = arraymax (testdata, N);
printf("max at %d = %d\n", imax, testdata[imax]);

}

First, what is “#include <stdio.h>”? This is a preprocessor directive (of which
more later in the C part of the book) that tells the C compiler to include the declar-
ations in a header file (again, more later) that declares standard input and output
operations. Then I define a function, int arraymax (int data [], int N),
which means it returns a value of type int, has a name arraymax and has two
parameters. The first parameter is an array (indicated by “[]”) of int values, and
the second is its size (number of elements, not bytes).

In the body of arraymax I declare some variables: a loop counter i, a variable
to hold the maximum index imax and a variable to hold the maximum value max.
I initialise max as the first element of the array and imax as its index, 0. That
means I can start the for loop at 1 instead of 0.

Note also that I put a top-level comment above the function (C comments
are anything from // to the end of the line – for now, more later) describing its
purpose. That is more important than comments that reword the C statements into
English, since a good programmer does not need to be told that kind of detail.

The main program declares an array to use to test the function, and initialises
it. The variable N can be initialised using a C idiom, as illustrated. If you are in a
place where an array has just been declared and the compiler knows its size, you
can use sizeof to find out how many bytes it takes up. To find how many elements
it has, which is what we want, you divide the number of bytes by the bytes per



Arrays 131

element, sizeof(int). Unfortunately, you can only use this trick where the array
declaration occurs, which is why we have to pass the value of N as a parameter.

Heads up: You can use sizeof on any variable, value or data type, and
it tells you how many bytes it takes up, even if it doesn’t exist in memory
at the time.

Given all that we can call our function and use the returned value, as well
as look up the location in the array that it indexes and find the value stored
there (testdata[imax]). You should have some idea of what printf does from
previous examples: the main new thing I add here is that printf is declared in
the header file stdio.h.

One final point: I put the function before the main program so that when the
compiler reaches the place where the function is called, it already knows what the
function looks like. This is necessary because the compiler needs to know what
machine resources any name represents before you use it in a way that requires
knowledge of those resources. For a function, the critical thing the compiler
needs to know is the parameter types. Assemblers are less fussy, because you
explicitly code things like parameter passing, so it doesn’t actually matter what
order the main program or any functions occur in your assembly language file. In
some examples where I show use of the stack, numbers may differ, e.g., return
addresses, from your own version of these examples if you put the functions in
the file in a different order.

On now to MIPS code for all this. First, registers and the stack. I will leave
out the stack setup and teardown code you need for the main program. We are
only calling a leaf function, so we can get away with putting all our variables in
saved temporaries (“s” registers) in the main program, unless they are values we
don’t need to preserve across a call, and unsaved temporaries (“t” registers) in
the function. We’ll think about whether we need a stack frame for the arraymax
function when we look at how to implement it. First, let’s set up output formats
and our test data in the data segment:

.data
format1: .asciiz "max at "
format2: .asciiz " = "
format3: .asciiz "\n"
testdata: .word 23, 42, 57, -1, 12

Note that I can put a name (in this case, testdata) next to a list of values. That
label is the address of the first of these values, exactly what we want for the name



132 CHAPTER 5. DATA STRUCTURES

of an array.

Heads up: I am cheating again, using the data segment for a variable,
testdata. What I should really do is use this space to contain the initial
values for the array and copy them into a data structure in the appropriate
part of memory.

Now the main program:

# registers -- only one leaf call so we can use s registers here
# and t registers in the function
# testdata : $s0 (address of int array)
# N : $s1 (int)
# imax : $s2 (int)
#int main () {
######stack setup#######
main: addi $sp, $sp, -4 # move sp off last item (SPIM fix)

sw $ra, 0($sp) # save the return address
sw $fp, -4($sp) # save the frame pointer
move $fp, $sp # frame pointer = old stack pointer
addi $sp, $sp, -8 # move stack pointer past frame

# int testdata[] = {23, 42, 57, -1, 12};
la $s0, testdata

# int N = sizeof(testdata)/sizeof(int);
li $s1, 20 # we are the compiler and can count bytes

# int imax = arraymax (testdata, N);
# set up the call: leaf function so no stack needed

# #### need address of array in $a0, length in $a1
move $a0, $s0
move $a1, $s1
jal arraymax ##### call our function
move $s2, $v0

# printf("max at %d = %d\n", imax, testdata[imax]);
la $a0, format1
li $v0, PRINT_STRING
syscall

move $a0, $s2 # imax from return value
li $v0, PRINT_INT
syscall
la $a0, format2
li $v0, PRINT_STRING



Arrays 133

syscall

mulo $t0, $s2, 4 # scale index imax
add $t0, $s0, $t0 # address of testdata[imax]
lw $a0, 0($t0)
li $v0, PRINT_INT
syscall

la $a0, format3 # finish off printf
li $v0, PRINT_STRING
syscall

######undo stack setup#######
move $sp, $fp # restore stack pointer
lw $fp, -4($sp) # restore frame pointer
lw $ra, 0($sp) # restore return address
addi $sp, $sp, 4 # move sp back to item (SPIM fix)
jr $ra

# }

Note how I do occasionally use t registers in the main program – I only do this
where the value will not be needed later so I don’t need to spill them. I should
really document these too at the top of the main function but left this out to keep
the example short.

Let’s focus on how we deal with the array, since the rest should be familiar.
First, initialisation: we rely on setting up a named value in the data segment,
testdata. A compiler at the point where you initialise an array can find its size
as in our use of sizeof, but there is no simple and consistent way to get this
right in assembly language so rather than explain a complex way, I assume, like
a compiler, we can count and put the value 20 into the code as a compiler would
when setting the size of N. We can now access elements as an offset from the
location the testdata name signifies, just as we did with the string example.
Here is how we access testadata[imax]:

mulo $t0, $s2, 4 # scale index imax
add $t0, $s0, $t0 # address of testdata[imax]
lw $a0, 0($t0)

Figure 5.2 illustrates how an index of 2 turns into an offset of 8 from the start of
an array with elements of size 4 byes. If you load this main program into SPIM
(without function arraymax defined), it will load but get upset when it reaches
the jal arraymax function since that is not there, but you should be able to find



134 CHAPTER 5. DATA STRUCTURES

23 = 0x17
42 = 0x2a
57 = 0x39
-1 = 0xffffffff
12 = 0xc

10010000
10010004
10010008
1001000C
10010010

address contents

imax = 2

offset = 2x4= 
8 bytes

offset

testdata[imax]

Figure 5.2: Indexing elements of 4 bytes

the data in memory – I provide hex versions in the figure so you can find them
easily without changing the display to decimal mode.

The indexing code is actually quite expensive. Remember the mulo pseudoin-
struction? That expands to quite a long sequence of code. In this case, because
we are multiplying by 4 and all values are positive integers there should be no
overflow issue (there can’t be if we are within the range of addresses allowed by
the hardware), so we don’t need all this machinery. Here is the sequence of code
SPIM puts in the place of the mulo pseudoinstruction:

ori $1, $0, 4
mult $18, $1
mfhi $1
mflo $8
sra $8, $8, 31
beq $1, $8, 8
break $0
mflo $8

The thing that generates much of the extra work is that pesky “o” on the end of
the pseudoinstruction, telling the assembler we want it to check for overflow. If
we take the view that checking for overflow is an unnecessary expense, we can
remove the “o”:

mul $t0, $s2, 4 # scale index imax

For this pseudoinstruction we get only two real instructions1:

ori $1, $0, 4
mul $8, $18, $1

1If you use three registers in mul it is a real instruction; the SPIM assembler has to generate an
extra instruction to set up the constant value 4 in a register, since there is no multiply-immediate
instruction. Note the register used for this: $1, which is the assembler temporary register.



Arrays 135

Even this is more than we need – multiplying by 4 is a matter of shifting a binary
number 2 places left. If we are confident that our index won’t overflow, we can
reduce this to 1 instruction:

sll $t0, $s2, 2 # scale index

This is a trick we can apply whenever the element size is a power of 2, otherwise
we must multiply.

Heads up: Whenever we calculate offsets in a data structure, we need
to remember to multiply by the number of bytes of any elements we are
skipping. Unless we use the next trick, keeping a separate counter for
array indexing that goes up in steps of element size.

On now to the function. Now we have the trick for array indexing, it is fairly
straightforward. Since it is a simple leaf function, we only use unsaved temporary
registers aside from the parameter and return value registers, and do not need a
stack frame. You should check the loop and if against the standard templates.
Also note how I document register use at the top of the function. As I find need
for more registers I add to this so I can keep track.

#// find biggest element in array size N and return its index
#// if duplicates, the first biggest item is found
# leaf function with minmal variables we can keep in t registers
# so no need for a stack frame; keep parameters in $a0, $a1
# other registers:
# i $t0
# imax $t1
# max $t2
# temps $t3, $t4
#int arraymax (int data [], int N) {
# int i; // loop counter
# int imax = 0; // biggest element index so far
arraymax: li $t1, 0

# int max = data[0]; // biggest element so far
lw $t2, 0($a0) # $a0 is address of 1st element

# for (i = 1; i < N; i++) {
li $t0, 1 # initialise loop counter
j Ftest01 # test before 1st iteration

Fbody01: # body of loop here
# if (data[i] > max) {



136 CHAPTER 5. DATA STRUCTURES

sll $t3, $t0, 2 # scale index
add $t4, $a0, $t3 # find ith item
lw $t3, 0($t4) # $t3 = data[i]
ble $t3, $t2, Idone01 # invert condition

# max = data[i]; // update biggest
move $t2, $t3

# imax = i; // update biggest’s index
move $t1, $t0

# }
Idone01: add $t0, $t0, 1 # increment loop counter
Ftest01: blt $t0,$a1, Fbody01 # not done? Go again
# }
# return imax;

move $v0, $t1
jr $ra

#}

In this case, we actually need the loop counter, since we return that value (imax).
Often when we iterate through an array, we don’t, in which case we can scale the
index up. If we have a value that starts on zero and goes up in steps of 4, we can
use it directly as an offset into the array. Even better, if we initialise a register as
the start address of the array and increment it by 4 each iteration, we can use that
value directly to access the next item, rather than adding an offset. Here are a few
snippets from the revised code illustrating how this can work:

move $t3, $a0 # $t3 points to current element
##### bits left out #####

lw $t4, 0($t3) # $t4 = data[i]
ble $t4, $t2, Idone01 # invert condition

##### bits left out #####
Idone01: add $t0, $t0, 1 # increment loop counter

add $t3, $t3, 4

Finally, here is how you could implement the arraymax function in C, using
pointer arithmetic:

int arraymax (int data [], int N) {
int *current = data; // pointer to current item
int imax = 0; // biggest element index so far
int max = data[0]; // biggest element so far
for (; (current - data) < N; current++) {

if (*current > max) {
max = *current; // update biggest



Arrays 137

imax = (current-data); // update biggest’s index
}

}
return imax;

}

If you have really understood the concept of offsets all you need for this to make
perfect sense is to understand that pointer arithmetic in C is automatically scaled
by the size of the element pointed to, here 4. Note also that you can leave out the
initialisation of a for loop, which translates to nothing in that part of our standard
MIPS code template for a for loop. Finally, remember that if you subtract a pointer
from another, the result is the distance between the two pointers scaled to the
element size. So in our example, current-data will in effect return the index of
the element current is pointing to.

The take home message? Arrays with bigger elements add a com-
plication: scaling the index to the element size can be computationally
expensive, though good compilers can find short cuts, like using an
separate counter that increments by element size instead of by 1.

Back to switch

Way back on page 72, we had an example that looks like this:

switch (value) {
case 0:

zeroes++;
break;
case 1:case 2:

onesAndTwos++;
break;
default:

others++;
break;

}

At the time, I skipped explaining how to implement it. Let’s think about that now.
What we want is a way of using the value given to jump to a specific location in
the code. Figure 5.3 illustrates the concept, ignoring for now the role of the break



138 CHAPTER 5. DATA STRUCTURES

switch (value) {
    case 0:
      zeroes++;
    break;
    case 1:case 2:
      onesAndTwos++;
    break;
    default:
      others++;
   break;
}

value entry point

0

1

2

other

Figure 5.3: Conceptual view of a switch

statements. That looks mighty like an array, wouldn’t you say? We have a value
we use to find an offset into a table to look up something. The only things a little
different are that what we look up in the table is where to go next in the code, and
generally aren’t interested in changing the table once it’s set up.

An array that contains entries that are used as targets for changing flow of
control is called a dispatch table, Sometimes a table like this is called a jump
table – I prefer to use this term for a table that actually contains jump instructions
rather than jump target addresses (see page 184 for an example where a jump table
is useful). The values in the table at machine code level are addresses – this time
addresses of locations in our code, not of data.

Looking up switch targets in an array will obviously only work if the range of
labels is reasonably small (e.g., if the biggest label is 2-billion and the smallest
close to 0, the table would be ridiculously large). If the range is too big for
an array to be practical, a different strategy has to be used. Since we have
just covered arrays, we will stick with that approach, bearing in mind that a
compiler will need other options. Anything much more complex would be hard
to understand in assembly language but if you know about more advanced data
structures, extending a dispatch table to other look-up structures is not too hard.

The other little detail we need to take care of is the break statement. This not
only takes us out of a switch but also allows us to get out of a loop immediately.

Let us focus on break for loops, since that is the more common case, and a
break in a switch is much the same. For completeness, let’s add one more C-style



Arrays 139

      j YdoneXXX     # exit the loop now

(a) break template
      j YnextXXX     # start next iteration

(b) continue template

            .data
SlabelsXXX: .word SlabelXXXval0, …, SlabelXXXvalN

(c) switch data template

      blt Rval, Rmin, SdefaultXXX
      bgt Rval, Rmax, SdefaultXXX
      la R1,SlabelsXXX # get base address
      sub R2,Rval,Rmin # subtract min label
      sll R2,R2,2  # scale index to word size
      add R3,R1,R2 # add offset
      lw R3,0(R3)  # get jump target
      jr R3        # go to target
SlabelXXXval1: # code for this case
    :
SlabelXXXvalN: # code for this case

SdefaultXXX:   # code for this case

SdoneXXX: nop  # or next instruction 

(d) switch code template

Figure 5.4: More templates: switch, break and continue

flow of control construct, continue. A continue skips the rest of a loop body and
goes straight to the increment of a for loop; other loops go straight to testing the
stopping condition. Using continue and break takes a little care because they
apply to the innermost loop, so they can be confusing with nested constructs. We
can summarise break and continue using our template notation (figures 5.4a-
5.4b). In these templates, “Y” translates to the letter that matches the prefix used
in labels for the loop (or for break, possibly a switch) the statement applies to.

Let’s also develop a general template for a switch. What figure 5.4c illustrates
is that you can use the data segment constant pool to set up the dispatch table. A
label you use whether in your text (that’s the code, in case you forgot) segment or
data segment is a symbolic name for the next item in memory. Thus, if we have
labels in our code and put those same labels into a position where you expect a
value to be placed in the data segment, those labels get translated by the assembler
into the address of the instruction with that label. If you have more than one label
before the next location (whether labelling in the data or text segment), they all
stand for the same address.

Let’s now look at the code part of the template (figure 5.4d), a large part of
which is setup. As in other templates, I use symbolic names that must you translate
to actual registers in your code:

• R1 – base address of the dispatch table

• R2 – index, subsequently scaled to an offset into the table



140 CHAPTER 5. DATA STRUCTURES

• R3 – jump target

• Rval – the value in the switch used to make the choice

• Rmin – the lowest value of any case label

• Rmax – the highest value of any case label

The end result of the initialisation code is we have an array of addresses that, if
indexed using the switch value, scaled to start from 0 and go up in steps of 4 rather
than 1, gives us the address of the code we want for that case. Check through the
template and make sure you understand why it works, and why it is not a great
approach if there is a big difference between the minimum and maximum case
value.

Heads up: The switch template illustrates how complex some HLL
constructs can be to implement – and we have not explored this one in full
generality. Try to understand this one: if this is the only control construct
that bewilders you, you are not doing too badly.

Once you have all that straight, the rest of it is not that complicated. You look
up an address in an array, and jump to it. Here is code that implements the given
example. First, the data segment:

.data
Slabels01: .word Slabel01val0, Slabel01val1, Slabel01val2

We need a single label for our constant array Slabels01, and it is the starting
point of a several word-sized items, and we define them using the labels from the
code below. Now the code segment:

# switch (readin) {
######set up dispatch table and jump

blt $s4, 0, Sdefault01
bgt $s4, 2, Sdefault01
la $s6,Slabels01 # get base address
sub $s3,$s4,$s5 # subtract min label
sll $s3,$s3,2 # scale index to word addr
add $s6,$s6,$s3 # add offset
lw $s7,0($s6) # get jump target
jr $s7 # go to target

# case 0:
# zeroes++;



Arrays 141

[10010040]    0040008c  00400094  00400094
(a) data segment

[00400088] 02e00008  jr $23                   ; 80: jr $s7 # go to target 
[0040008c] 22100001  addi $16, $16, 1         ; 82: addi $s0, $s0, 1 # code for this case 
[00400090] 08100029  j 0x004000a4 [Sdone01]   ; 83: j Sdone01 
[00400094] 22310001  addi $17, $17, 1         ; 85: addi $s1, $s1, 1 # code for this case 
[00400098] 08100029  j 0x004000a4 [Sdone01]   ; 86: j Sdone01 
[0040009c] 22520001  addi $18, $18, 1         ; 87: addi $s2, $s2, 1 # code for this case 
[004000a0] 08100029  j 0x004000a4 [Sdone01]   ; 88: j Sdone01 
[004000a4] 00000000  nop                      ; 89: nop # or next instruction

(b) code segment

Figure 5.5: Switch as seen in SPIM

# break;
Slabel01val0: addi $s0, $s0, 1 # code for this case

j Sdone01
# case 1:case 2:
# onesAndTwos++;
# break;
Slabel01val1:
Slabel01val2: addi $s1, $s1, 1 # code for this case

j Sdone01
# default:
# others++;
# break;
Sdefault01: addi $s2, $s2, 1 # code for this case

j Sdone01
# }
Sdone01: nop # or next instruction

Relate this to the template and make sure you understand why it works. If you
make a minimal example using this code (you will need a main entry point, but
need not make a full working example) and load it into SPIM, you should be able
to see that the data segment contains the addresses of the individual cases. Note
how labels “Slabel01val1” and “Slabel01val2” have nothing between them
and so represent the same address in the code.

Figure 5.5 relates what the data segment looks like in the area where I asked it
to store the dispatch table to the code. The start location, 0x10010040, reflects the
fact that I have a few other things in the data segment in my example. Relate the
addresses in figure 5.5a to those down the side of the code. The first instruction
listed in figure 5.5b is the jump that uses the dispatch table entry. The instruction
after that at 0x00400088 is the first case, and is at the address that is the first entry



142 CHAPTER 5. DATA STRUCTURES

42 12 6

Figure 5.6: Linked list

in the dispatch table. Each subsequent jump implements a break. Take some
time to understand this example – it captures a lot of concepts including the use
of addresses both as instruction targets and as ways of accessing data in memory.

The take home message? A switch statement is deceptively complex to
implement. Knowing how it works internally could save you from writing
unnecessarily inefficient code. If labels are not close together, consider
using an if instead – though a clever compiler may work this out for you.

5.3 Dynamic Data

To implement more complex data structures mostly requires the ability to allocate
memory on demand. I start by showing how we can construct a compound data
structure a bit like an object without the concept of methods. In C, we call such a
type a struct. We can then use these structured types as a basis for creating data
structures that grow on demand. Remember, as with arrays and our fundamental
types, none of this exists at machine level – we impose structure and meaning on
the raw bits2.

A difficulty with programming at assembly level is that even a low-level
language like C has built-in support for dynamic memory management. Managing
memory that can be allocated an deallocated on demand requires ways of keeping
track of free memory, reclaiming memory no longer in use and allocating new
chunks efficiently. All that is too complex for a quick introduction, so I fake the
effect with a small example to show how it can be done. When we switch to C
programming, we can revisit this in more detail.

To keep this as simple as possible, I work towards implementing a simple
structured data type for a linked list in which each element has two things: an
integer value and a pointer to the next item. Figure 5.6 illustrates an example
of my minimal list structure. I use arrows to illustrated pointers, and a special
symbol to indicate a null pointer that marks the end of the list.

2If you like sushi, will be a fan of raw bits.



Dynamic Data 143

first 
free

next 
free

next 
free

next 
free

(a) nothing allocated

first 
free size next 

free
next 
free

var

(b) one block allocated

first 
free

next 
free

next 
free

next 
free

var

(c) one block allocated (no header)

Figure 5.7: Minimal malloc implementation: before and after var =
malloc(N)

What do pointers actually mean at machine code level? Addresses, as we’ve
seen before. A null pointer is a special value that cannot point to real memory,
and we use an address with a zero value to represent a null pointer.

Introducing malloc and free

Let’s look now at how a very minimal dynamic memory allocator could be
implemented. Taking our cue from C, we have two functions:

• malloc(N) – allocate N bytes of memory, and return the address of the first
byte of the newly allocated memory (usually to be stored as a pointer value)

• free(addr) – deallocate the memory at the address addr (usually stored
in a pointer variable).

Figure 5.7 illustrates how a very simple memory allocator could work. In
addition to the memory seen by your program, each allocated block has a
header containing among other things a pointer to the next free block. In a real



144 CHAPTER 5. DATA STRUCTURES

implementation, malloc has to record the size of the block as well so that free
knows how much is being handed back to it. As illustrated in figure 5.7b, the next
pointer is replaced by the size of the allocated block when malloc provides that
block, and the next free item becomes whatever was previously pointed to by the
header (next pointer) of the newly allocated block. We can get away with this
minimal scheme if malloc always allocates blocks in a fixed size and fakes the
effect of bigger chunks of memory by coalescing adjacent blocks.

Making all that work would be far too complicated for purposes of illustrating
the concept – a real implementation of malloc would in any case be written in
a HLL such as C. To be able to do simple examples, I restrict my malloc to
allocating the same sized block every time. This way we do not need to keep a
header as illustrated in figure 5.7c. Consistently with the C implementation, if
you try to allocate a bigger chunk of memory than is available (in this case, bigger
than the fixed block size, as well as really running out of free memory), it returns
0 instead of a pointer to the new memory. If you ask for less, good – you just get
a bigger chunk of memory than you really need.

Heads up: The header of an allocated block is an important feature of
dynamic memory allocation. In C, common implementations of malloc
use a strategy like this. But in C, a pointer can point to any location in
memory not just a block created by malloc, so calling free on a pointer
not pointing to malloc-created block is an error. Many implementations
of malloc do extra checks to catch this sort of error at run time.

Where does malloc find memory to allocate? In the space between global
variables and the constant pool in low memory and the stack, which grows down
from high memory, space is available to use for other purposes. Data that is
dynamically allocated and whose lifetime is under direct programmer control lives
in a space called the heap3. Here is a summary of lifetimes of space for variables
in RAM:

• globals – space allocated at program launch and never lost, even if in a part
of the program where the variable is not visible

• stack – space allocated at call time and lost at return

• heap – space allocated at programmer request and released at programmer
request

3A heap is also the name of an interesting data structure, a kind of tree that can be implemented in
an array.



Dynamic Data 145

In a managed-memory language, lifetime of data on the heap is taken care of for
you. Even if you have to ask for something to be allocated, you do not need
to deallocate it. When the system is low on memory, it automatically searches
for items that are no longer reachable from any code and reclaims them. This is
called garbage collection. In a lower-level language like C, you have to deallocate
explicitly, otherwise memory will fill up – a situation called a memory leak.

Let’s implement our really minimal malloc. First, I define some macros to
get started. To test the program, I will make a very small number of blocks in the
heap (3 blocks of 32 bytes). I also create a name for the SBRK system call, used to
expand available data space.

SBRK = 9
HEAPCHUNK = 3 # MALLOCCHUNKs by which to expand heap
MALLOCCHUNK = 32 # bytes for each malloc

Initializing is the biggest chunk of code; you need to do this just once before doing
anything with dynamic memory. I want to set up a free list in memory so provided
there is at least one unallocated block, I can take it, and move the start of the free
list on to its successor (if any). The rest, once you have your head around the
mallocinit function, is surprisingly simple.

Heads up: Remembering to initialize is something that some modern
HLLs take care of for you by mechanisms like constructors. I avoid the
issue here of how we could enforce the calling of mallocinit because
different languages do that different ways.

In case you forgot, the global pointer $gp, register 28 ($28), is used as a base
address for global variables. We are going to use two global variables: one to
represent the start of our heap, and the other to represent the first item in the free
list (initially the same, but the free list can change).

# uses no registers that need to be preserved
# uses 2 words at the $gp: the start of the heap (will not change)
# and the address of the first free block (will change)
mallocinit: # initialise our malloc heap

li $t0, HEAPCHUNK # units to allocate
# convert to bytes -- no overflow test: we know the numbers
mul $a0, $t0, MALLOCCHUNK # mul, not mulo
li $v0, SBRK
syscall
sw $v0, 0($gp) # save start address in a global



146 CHAPTER 5. DATA STRUCTURES

User data segment [10000000]..[10040000]
[10000000]..[1000ffff]  00000000
[10010000]    75706e69  3e3f2074  00000000  00000000    i n p u t   ? > . . . . . . . . 
[10010010]..[1003ffff]  00000000

User data segment [10000000]..[10040060]
[10000000]..[1000ffff]  00000000
[10010000]    75706e69  3e3f2074  00000000  00000000    i n p u t   ? > . . . . . . . . 
[10010010]..[1004005f]  00000000

Figure 5.8: Before and after SBRK called with 96 (0x60)

sw $v0, 4($gp) # save first free block as a global
li $t1, 0 # initialise loop counter
addi $t0, $t0, -1 # 1 less iteration: last gets null pointer

j Ftest01 # test before 1st iteration
Fbody01: addi $t3, $v0, MALLOCCHUNK # body of loop here

sw $t3, 0($v0) # rest of body
move $v0, $t3 # advance pointer

Fnext01: addi $t1, 1 # increment loop counter
Ftest01: blt $t1,$t0, Fbody01 # not done? Go again

sw $zero, 0($v0) # null pointer at end
jr $ra

Figure 5.8 illustrates the effect of the SBRK system call (historically, the top of
allowed memory was called the “break” and this system call extends that limit,
hence the name). Here, I have invoked it for my toy example. You may notice I
also have a string constant in memory. The difference between the top and bottom
part of the figure is the range of allowed addresses in the user data segment, where
the upper limit went from 0x10040000 to 0x10040060.

Figure 5.9 illustrates what the user data segment looks like once we have
initialised the heap with our toy example of 3 blocks available to allocated. You
should relate the symbolic view of the heap contents (5.9a) to how the same region
of memory looks in SPIM (5.9b). Each of our allocation blocks is just a range of
memory locations, the first word of which contains a pointer to the next block.
You should be able to trace the chain of pointers by starting at 0x10040000, the
value stored in the first free block global variable (at $gp+4). Look for the first
value, 0x10040000, down the side where the addresses of memory locations are
listed. at the “[10040000]” row, the first listed stored is 10040020, the address of
the second block. Note that a null pointer is represented in memory as zero, so the
value at memory location 0x10040040 where the null pointer is stored disappears
into the range of addresses [10040030]..[1004005f] that all contain nothing
but zeroes.



Dynamic Data 147

10040000 010040020 10040040

first free

(a) symbolic view

User data segment [10000000]..[10040060]
[10000000]..[10007fff]  00000000
[10008000]    10040000  10040000  00000000  00000000    . . . . . . . . . . . . . . . . 
[10008010]..[1000ffff]  00000000
[10010000]    75706e69  3e3f2074  00000000  00000000    i n p u t   ? > . . . . . . . . 
[10010010]..[1003ffff]  00000000
[10040000]    10040020  00000000  00000000  00000000      . . . . . . . . . . . . . . . 
[10040010]..[1004001f]  00000000
[10040020]    10040040  00000000  00000000  00000000    @ . . . . . . . . . . . . . . . 
[10040030]..[1004005f]  00000000

heap start address first free block

$gp

(b) SPIM view

Figure 5.9: Initialized heap: nothing allocated

After all that you may be fearing that malloc and free will be complicated
but all this setup is to make them simple. First, malloc:

# leaf function -- only uses $a, $v and $t registers, no stack
# if memory requested > default block size return 0 otherwise
# address of allocated block, which is removed from the free list
# a real implementation would call SBRK if out of free memory
# and only return 0 if SBRK failed.
malloc: li $v0, 0

bgt $a0, MALLOCCHUNK, done # cowardly retreat if request too big
lw $v0, 4($gp) # first free block address
beq $v0, $zero, done # if free block addr = 0, return that
lw $t0, 0($v0) # get the next pointer of this block
sw $t0, 4($gp) # first free block = next

done: jr $ra

The implementation is pretty simple – grab the block at the head of the free list
and make the free list point to that block’s successor (that will automatically turn
it into a null pointer if this is the last item on the list). The only complication is
we must return 0 if the block requested is too big or there is no free memory.

Finally, here is the implementation of free, which is even simpler. In the
block header, we make the next pointer (the first word of the newly disposed
block) whatever value is currently set as the first free location, then set the first
free location to point to this newly disposed block. We don’t worry about null
pointers because the existing free list head will be a null pointer if the list is empty.



148 CHAPTER 5. DATA STRUCTURES

# leaf function -- only uses $a, $v and $t registers, no stack
# add freed block to front of free list
free: lw $t0, 4($gp) # first free address
# this->next = firstfree

sw $t0, 0($a0)
# firstfree = this

sw $a0, 4($gp)
jr $ra

Convince yourself that the code for malloc and free is correct. Work through
a small example and check that it does what you expect. Make sure the
code implements the picture shown in figure 5.7. As I said before, a real
implementation of these functions is much more complicated – among other
things, it needs to be able to handle many different-sized requests, and (ideally)
check that you didn’t call free on a value that isn’t a pointer allocated by malloc.
We will use this now to construct a simple linked list example – though if you were
paying close attention, you would have noticed that we already did that. Our free
list is exactly such a data structure. Still, it is more concrete if we have something
that looks a bit closer to a problem we may want to solve. For purposes of a toy
example to test everything, leave the number of available blocks at 3; remember
to adjust this to something more practical if you recycle the malloc code for a
bigger example.

Earlier I mentioned that you can think of arrays as being a pointer to their first
element. In C, arrays can be dynamically allocated, and a pointer variable can be
indexed in exactly the same way as an array variable. We will see more of this
when we look at C in more detail in the second part of the book. Meanwhile here
is a small taste of what you can do:

#include <stdio.h>
#include <stdlib.h>

int main () {
int i, N;
int *squares;
printf ("Enter array size: ");
scanf ("%d", &N);
if (N >= 1) {

squares = malloc (N*sizeof(int));
for (i = 0; i < N; i++)

squares[i] = i*i;
for (i = N-1; i >= 0; i--)



Structured types 149

printf("%d^2 = %d\n",i, squares[i]);
}

}

Other than allocating the array through a pointer, there should not be much here
that isn’t familiar. Here’s an example of usage:

Enter array size: 4
3^2 = 9
2^2 = 4
1^2 = 1
0^2 = 0

The take home message? An efficient implementation of malloc and
free presents a lot of interesting challenges. Your focus here should be
understanding dynamic data, which is why I have kept things as simple as
possible.

5.4 Structured types
Back to our linked list example. We want a type that can contain two values,
a pointer and an integer. In C, the notation for this kind of structured type is a
struct. At this stage, our main concern is seeing how these things look on the
machine, so I will explain the type concept in more detail later.

Here is an example of the use of a list like that of figure 5.6. This program
reads in numbers until the number read in is negative and adds them to the end of
a list, discarding the last (negative) value from the list. It then prints the list. The
biggest difference between this example and use of an array is I need not fix the
size of the list at the start (which you have to do for an array, even if you create
it with malloc). In a real program, I could stop on a more interesting condition,
like the keystroke representing “end of file”. Let’s start with defining a type and
some functions that use it.

#include <stdlib.h> // declares malloc

// name the type so there is less typing
typedef struct numberElement NumberElementT;

// elements of the list: number plus next item



150 CHAPTER 5. DATA STRUCTURES

struct numberElement {
int number;
NumberElementT * next;

};

NumberElementT * readnext () {
NumberElementT *newElement = malloc (sizeof (NumberElementT));
if (newElement) { // NULL same as false

scanf ("%d", &newElement->number);
newElement->next = NULL;

}
return newElement;

}

Again, I will not go through all the details of the C code, just a few essentials.
First, I add another header, stdlib.h, that declares malloc. I need to tell
the compiler ahead of defining the structured type to expect something like
that because the struct contains a pointer to itself, hence the line begin-
ning with “typedef”. Then I define the type whose full name is “struct
numberElement”, but you can call it NumberElementT because of the typedef
that appeared previously. The function readnext returns a NULL pointer (NULL
is a predefined constant in C) if malloc fails to allocate the required memory.
Notice how we have to be very explicit and tell malloc the exact number of bytes
to allocate. The builtin sizeof operation can tell us how big a variable or a type
name is, even though a type is something that only exists at compile to in C.

You refer to elements of a structured type variable using a notation like
“variable.element”. Here though I have pointers to variables of this type, so I
need a different notation in C to indicate that I am accessing a value in a structured
type via a pointer, for which the symbol is “->”. This symbol says follow a pointer
from the named pointer variable to the place in memory it represents, then find
the component on the right of the “->”. So, for example, “nextElement->next”
means, for variable nextElement of a pointer type (to a struct), find the place
in memory it refers to then get the value of next.

Another C detail: in C, anything that can be thought of as representing zero
can be used to represent a false value and anything that isn’t zero or something
similar means true, so I can test for a null pointer by using this fact. So something
like

if (newElement)

means the same thing as



Structured types 151

if (newElement != NULL)

This emphasises C’s machine-oriented roots. At machine level, the bit pattern
consisting of all zeroes represents the boolean or logical value false, and C uses
the same convention, extending it to mean that anything non-zero means true.

Here is an example of a function that accesses data of our structured type
allocated through a pointer:

void printall (NumberElementT *list) {
while (list) { // NULL same as false

printf ("%d\n", list->number);
list = list->next;

}
}

We can advance the list pointer like this because the parameter is a copy of the
original pointer, so it does not mess up the original data structure. Note there
return type of the function, void. This is a type that has no values, which means
we must call this function in a way that does not require a value (e.g., it can’t be
in the middle of a piece of arithmetic).

If we create one of these lists by calling readnext(), it will be allocated in
the heap as big as we need it (unless malloc runs out of memory), and we have
to explicitly dispose of it when done, to avoid a memory leak4. Here is a function
that disposes of an entire list:

// deallocate the list recursively: stop
// when at NULL end of list
void disposeall (NumberElementT *list) {

if (list) { // NULL same as false
disposeall(list->next);
free (list);

}
}

Why did I use recursion here? To dispose of the entire list, we need to find our
way to the end. We could to that iteratively by storing a pointer to the next item,
deleting the current item, and continuing until the next pointer was NULL. The
recursive approach is actually simpler – trying working through a loop to do this
and see for yourself.
4That is not a concern with a toy programme like the example here, since we exit the program
right after using the list.



152 CHAPTER 5. DATA STRUCTURES

Heads up: When disposing of a complex data structure, make sure you
free up memory in the correct order – starting with parts that contain no
pointers to other data, and working your way to the top level of the data
structure. That way, you never access data after it is deallocated.

To complete the example, here is the main program:

// read in items and add to list until one < 0,
// remove first item then print rest of list
int main () {

NumberElementT *first = readnext(),
*nextElement = NULL,
*previous = first;

while (previous) {
nextElement = readnext ();
// malloc failed if nextElement is NULL
if (nextElement && nextElement->number < 0) {

free (nextElement);
nextElement = NULL;

}
previous->next = nextElement;
previous = nextElement;

};
printall (first);
disposeall (first);

}

If you run this program with the following input:

42
34
-12

this is the output:

42
34

On now to how to implement all this in MIPS assembly language. We already
have our own versions of malloc and free. We can recycle those without change
(even keeping the available memory very small at 3 available chunks to check that
it all works as expected). There are two new concepts we need to get straight:
accessing via a pointer, and accessing individual elements of a structured type.
Let’s take these one at a time.



Structured types 153

The simplest thing is to start with the original C program, insert a comment
character “#” in front of every line, and convert to assembly language systematic-
ally as if you were a compiler. As we go through my code, you will see comments
you can relate back to the C code. You need to take a lot of care doing this – for
example, if you forget a return from a function, you code will just carry on into
the next instruction. For this reason, it’s a good strategy to code small segments
at a time and test as you go in single-step mode in SPIM.

Accessing via a pointer means loading a memory address into a register, then
using either a load or a store instruction, deepening whether we are fetching a
value into a register, or updating the location the pointer refers to.

Accessing an element within a structured type means using an offset from the
location where it starts. To make this concrete, let’s look at one instance of our
NumberElementT structured type, and how it is laid out in memory, using a really
simple example, a list with two elements. The first element points to the second,
and the second element’s next pointer is NULL, as illustrated in figure 5.10a. How
big is each element? The first item in the list, the number element, is of type int,
which is 4 bytes or a word. The second item, the next pointer, is the same size.
So to access the first element, the number, we can access it via the start address of
the entire data structure, whereas to access the next pointer, we need an offset of
4 from the start.

Heads up: Pointer-based data structures are a difficult concept so
take time to understand this example. It will help you a lot later with
understanding HLL data structures.

You can see the memory layout more explicitly in figure 5.10b. Relate the
SPIM data segment view to the more symbolic view of the data structure; you
should be able to find all the elements of the symbolic view in the SPIM view.

So, for example, if register $s0 contains the address of one of these data
structures – a variable unimaginatively called “data” – we can load the number
into register $t1 and the next pointer into register $t2 as follows:

lw $t1, 0($t0) # $t1 = data.number
lw $t2, 4($t0) # $t2 = data.next

To put this all together, let’s look at how our C code for this example looks in
SPIM assembly language. First, in the main program, we need initialise then
create some data. Although this is not part of the main program we need to
initialise our malloc data structures somewhere so I do this first:



154 CHAPTER 5. DATA STRUCTURES

9 (0x9) 42 
(0x2a)

(a) symbolic view

[10040000]    00000009  10040020  00000000  00000000    . . . .   . . . . . . . . . . .
[10040010]..[1004001f]  00000000
[10040020]    0000002a  00000000  00000000  00000000    * . . . . . . . . . . . . . . .

(b) SPIM data segment

Figure 5.10: Simple list example

jal mallocinit

The best way to do this to ensure that it isn’t forgotten is to set up a
Now we give our data structures initial values, starting with calling a simple

input function to create a list element:

# NumberElementT *first = readnext(),
# *nextElement = NULL,
# *previous = first;

jal readnext
move $s0, $v0
move $s1, $zero
move $s2, $s0

Once that’s done, we can go into a loop that continues until either we type in a
negative value, or malloc can’t allocate any more data, and build a list of our read
in values, discarding the last value if it was negative. The loops starts a familiar
way:

# while (previous) {
j Wnext02 # test before 1st iteration

Wbody02: # body of loop here

Then we call the input function again:

# nextElement = readnext ();
jal readnext
move $s1, $v0



Structured types 155

Let’s assume for now readnext() works, and we now have a pointer to our first
element of the list in register $s1 (copied from the return result register $v0). If
we ran out of available memory, malloc would have returned a null pointer, so
we need to check for that. Remember, we can treat a null pointer as a false value
and any other pointer value as true:

# // malloc failed if nextElement is NULL
# if (nextElement && nextElement->number < 0) {

Before we use our standard if template, we need to think through how to handle
a more complex condition. In C, “&&” is a logical and. C uses short circuit
evaluation, meaning it stops as soon as the answer is known, so we must make a
decision on branching as soon as we know the outcome. With a logical and, as
soon as we know one of the values is false, we know the whole expression is false
(see the truth table 2.2 on page 21). So we can split our condition in two, and
jump past the true branch immediately if we know the first part is false. This is
what we want, since a “false” value for a pointer is a null pointer, and going on to
the second part of the if condition with a null pointer will break (since we would
be asking for an offset with a non-existent data item).

Here is the rest of the if statement. Make sure you see how to derive this from
the standard template:

beq $s1, $zero, Idone03 # invert condition
lw $t0, numberOffset($s1)
bge $t0, $zero, Idone03 # invert condition

# true branch
# free (nextElement);

move $a0, $s1
jal free

# nextElement = NULL;
move $s1, $zero

# }
Idone03: nop # or next instruction

A few details. I need to fetch (load) from memory the particular component of my
structured type I need to deal with. Here, I want to check if the number stored is
negative, so I need the number component, not the next component. I defined a
macro somewhere further up with the name numberOffset representing how far



156 CHAPTER 5. DATA STRUCTURES

into the variable the number component is. Where do I put this? Working from
my comment-ed out C program, here is where I did it, up near the top of the code:

#// forward declaration so we can make pointers
#typedef struct numberElement NumberElementT;
#
#// elements of the list: number plus next item
#struct numberElement {
# int number;
# NumberElementT * next;
#};

##### size of our data type in bytes -- update if changes
NumberElementTSIZE = 8

##### layout of our data type -- update if changes
numberOffset = 0 # bytes from start
nextOffset = 4 # bytes from start

You can put macro definitions wherever you like in your assembly language file.
A good general practice is to put general ones at the top, and those specific to
a particular feature of the code at a place where they are easy to find. What’s
the value of defining macros rather than just putting the numbers for offsets in
directly? You are less likely to make a mistake this way, and mistakes you do
make are easier to find. The assembler replaces the macro name by the number
just as you typed it after the “=”.

That all out of the way, the if statement will deallocate the new item if it’s
negative and change its pointer value to a null pointer. Make sure you can see
work out how that is done.

Now back to the loop. We are out of the if with one of two conditions: either
the next element is a new data item representing the next item read, or a null
pointer (the read in value was negative, or malloc gave up). To understand this,
check back to figure 5.10. The previous pointer refers to a location in memory,
and we have that location stored in register $s1. To update that item’s next
pointer, we need to store into the memory location pointed at by $s1 with an
offset reflecting how far into it the next pointer is stored:

# previous->next = nextElement;



Structured types 157

sw $s1, nextOffset($s2)
# previous = nextElement;

move $s2, $s1
Wnext02: bne $s2,$zero, Wbody02 # not done? Go again
# };

We end up with the previous pointer updated to point to the latest data created,
and give up if it’s a null pointer. Satisfy yourself that the loop will end correctly
for both termination cases: malloc ran out of memory, or the last value read in
was negative.

Finally, with the loop completed, we need to print out the loop contents and
deallocate the data:

# printall (first);
move $a0, $s0
jal printall

# disposeall (first);
move $a0, $s0
jal disposeall

Here are a few more functions with a few details left out to reduce clutter:

##################################printall################################
# calls prlineInt so must save $ra and spill register
# with local copy of list
# registers:
# $a0: passed in, used to pass to prlineInt
# $t0: local copy of list
##################################printall################################
#void printall (NumberElementT *list) {
printall: sw $ra, 0($sp) # save the return address

sw $fp, -4($sp) # save the frame pointer
move $fp, $sp # frame pointer = old stack pointer
# need space for 1 local variable ($t0) of 4 bytes#######
addi $sp, $sp, -12 # move stack pointer past frame

# done: set up stack frame ################################
move $t0, $a0

# while (list) { // NULL same as false
j Wnext01 # test before 1st iteration

# printf ("%d\n", list->number);
Wbody01: lw $a0, numberOffset($t0) # number element

sw $t0, -8($fp) # spill $t0



158 CHAPTER 5. DATA STRUCTURES

jal prlineInt # does it actually use $t0?
lw $t0, -8($fp) # restore $t0

# list = list->next;
lw $t0, nextOffset($t0) # restore $t0

Wnext01: bne $t0,$zero, Wbody01 # not done? Go again
# }
# restore stack frame ################################

move $sp, $fp # restore stack pointer
lw $fp, -4($sp) # restore frame pointer
lw $ra, 0($sp) # restore return address
jr $ra # return to caller

#}

I put a fairly lengthy comment at the start of the printall function to make
clear how to call it. To implement prlineInt is straightforward, so I leave that
out. The main details you need to focus on are those relating to accessing the
structured data passed in to the function. The actual value passed in (the usual
way, using $a0) is a pointer to the data, i.e., its address in memory. When I want
to do something with the number stored in an item, I access it by

lw $a0, numberOffset($t0)

When I want the pointer to the next item on the list, I do it like this:

lw $t0, nextOffset($t0)

Find the places in the above code where I do this, and make sure it’s clear to you
what is going on. As before, relate this code back to figure 5.10 (page 154).

Finally, here is the code to implement the disposeall function:

#################################disposeall###############################
#// deallocate the list recursively: stop
#// when at NULL end of list
# recursion so we need a stack frame (and we call free as well) so spill register
# with local copy of list
# registers:
# $a0: passed in, used to pass to free
# $t0: local copy of list
#################################disposeall###############################
#void disposeall (NumberElementT *list) {
disposeall: sw $ra, 0($sp) # save the return address

sw $fp, -4($sp) # save the frame pointer
move $fp, $sp # frame pointer = old stack pointer



Objects 159

# need space for 1 local variable ($v0) of 4 bytes#######
addi $sp, $sp, -12 # move stack pointer past frame

# done: set up stack frame ################################
move $t0, $a0

# if (list) { // NULL same as false
beq $t0, $zero, Idone02 # invert condition

# disposeall(list->next);
sw $t0, -8($fp) # spill $t0
lw $a0, nextOffset($t0)
jal disposeall
lw $a0, -8($fp) # skip restore $t0 - would spill again

# free (list);
jal free

# true branch
# }
Idone02: # or next instruction
# restore stack frame ################################

move $sp, $fp # restore stack pointer
lw $fp, -4($sp) # restore frame pointer
lw $ra, 0($sp) # restore return address
jr $ra # return to caller

#}

Other than the use of recursion, it uses pretty similar concepts to printall.

The take home message? Working with pointers requires a clear
understanding of memory address and how you use an address to find
specific data. Offsets are a critical part of accessing elements with a
variable of structured data type.

5.5 Objects
Finally, I take a look quick at how you (or a compiler) can represent objects at
machine code level. There are many ways this can be done; what I illustrate here is
one of the simpler approaches that can be used to implement the more elementary
object-oriented features in a language close to C, like C++. Many object-oriented
languages store a lot more information than in this example to allow programmers
to recover other information about an object at run time. Let’s keep it simple so
we can focus on principles.

Here are some classes – not in any particular language. Ignore class Shape – it
just gives us a placeholder topmost class. We want to implement classes Circle



160 CHAPTER 5. DATA STRUCTURES

and Rectangle, and illustrate how we can find the correct version of their area()
function at run time without having to know what type (class) of object we are
dealing with.

abstract class Shape {
abstract int area (); // no code, never called
abstract char* get name (); // no code, never called

};
class Circle : Shape {

Circle (float newradius) {
radius = newradius;
name = "circle";

}
int area () {

return radius * radius * 3.141592653589793;
}
char * getname () {

return name;
}

private:
float radius;
char * name;

};
class Rectangle : Shape {

Rectangle (float newsideA, float newsideB) {
side1 = newsideA;
side2 = newsideB;
name = "rectangle";

}
int area () {

return side * side;
}
char * getname () {

return name;
}

private:
float side1, side2;
char * name;

};

In addition to our usual function machinery, each method needs to know what
object invoked it. To do this, we add in another parameter automatically that points
to the current object. In most object-oriented languages, this extra parameter is
taken care of for you, with varying degrees of accessibility to the programmer



Objects 161

(in C++, for example, it has a name, “this”). To find the correct version of a
method, we add in a table of pointers to methods. For each class, that table only
has to exist once, and each object of the class has a pointer to the table. Finding
the right method is a matter of following the pointer to the method table and then
going to the right offset in the table – much as we did with our implementation of
a dispatch table for a switch statement (page 140).

Heads up: If you understood the switch statement, good. If not, you are
going to get lost here. Either give up on understanding dynamic dispatch
or go back to page 137.

Let’s see how this works with a simple main program that initialises two
objects, a circle and a square, then prints out their areas. To add a little interest,
this time I use floating point. For passing floating point numbers as parameters, the
MIPS convention is to pair registers for passing doubles. For our single-precision
example, the standard is to use registers $f12 and $f14 (for doubles, $f12 pairs
with $f13 and $f14 with $f15). In general, when talking about MIPS floating
point registers, you can assume that a single-precision register is even numbered,
and a double-precision register with the same number also uses the following
odd-numbered register. Another convention: values are returned from functions
in registers $f0 and $f2. You can find floating-point register conventions in table
B.1. We will need to convert between floating point and integer: see page 33 for
some background.

Assume for classes, we have a cleverer concept than malloc called new
that we can use not only to allocate memory for an object, but also invoke its
constructor, a method with the same name as the class. Unlike other methods in
our example, a constructor is called directly rather than going via the method table
since it is called before the object is set up (and we know the class because we are
creating the object explicitly as a given class). Naturally, in MIPS assembler code,
we have no such features and have to build them up from lower-level constructs.

Our main program will include something like this (again, noting this is not
something that corresponds exactly to any existing language):

Shape * disc = new Circle (12.1),
* box = new Rectangle (42.0, 1.3);

printf ("area of %s = %d\n", disc->name(), disc->area());
printf ("area of %s = %d\n", box->name(), box->area());
free (disc);
free (box);



162 CHAPTER 5. DATA STRUCTURES

[10010000]    61657261  20666f20  203d2000  63000a00    a r e a   o f   .   =   . . . c
[10010010]    6c637269  65720065  6e617463  00656c67    i r c l e . r e c t a n g l e .
[10010020]    40490fdb  4141999a  42280000  3fa66666    . . I @ . . A A . . ( B f f . ?
[10010030]    3f000000  004000d4  00400100  0040012c    . . . ? . . @ . . . @ . , . @ .
[10010040]    00400154  00000000  00000000  00000000    T . @ . . . . . . . . . . . . .
[10010050]..[1003ffff]  00000000
[10040000]    10010034  4141999a  1001000f  00000000    4 . . . . . A A . . . . . . . .

[004000d4] c48c0004  lwc1 $f12, 4($4)         ; 137: l.s $f12, Circle_RadiusOffset($a0) 
[004000d8] 460c6302  mul.s $f12, $f12, $f12   ; 138: mul.s $f12,$f12,$f12 
[004000dc] 3c011001  lui $1, 4097 [consts]    ; 139: la $t0, consts # no FP immediates 
[004000e0] 34280020  ori $8, $1, 32 [consts]  
[004000e4] c5000000  lwc1 $f0, 0($8)          ; 140: l.s $f0, 0($t0) # const: pi value 
[004000e8] 46006302  mul.s $f12, $f12, $f0    ; 141: mul.s $f12, $f12, $f0 
[004000ec] c5000010  lwc1 $f0, 16($8)         ; 142: l.s $f0, 16($t0) # const: 0.5 to round up 
[004000f0] 46006300  add.s $f12, $f12, $f0    ; 143: add.s $f12, $f12, $f0 # round up 
[004000f4] 46006024  cvt.w.s $f0, $f12        ; 144: cvt.w.s $f0, $f12 # convert single to int (word) 
[004000f8] 44020000  mfc1 $2, $f0             ; 145: mfc1 $v0, $f0 # move from coprocessor 1 = FPU 
[004000fc] 03e00008  jr $31                   ; 146: jr $ra 

SPIM data segment extract

SPIM FP register $f12

FG12 = 12.100000FG12 = 4141999a
hex decimal

SPIM code for Circle::area

Circle
  *disc method table radius name

(a) SPIM view

class Circle : Shape {
   Circle (float newradius) {
     radius = newradius;
     name = "circle";
   }
   int area () {
     return radius * radius  * 3.141592653589793;
   }
   char * getname () {
     return name;
   }
 private:
   float radius;
   char * name;
};

Circle object

radius 12.1

name "circle"

Circle method table

area
getname

method table

(b) Symbolic view

Figure 5.11: Implementation of an object



Objects 163

This should be enough to see how everything works. I’ve added in a new C
formatting placeholder, “%s”, a placeholder for a string (a null-terminated array
of characters). This output allows us to test all our methods, including a simple
one with no parameters or floating-point numbers.

Before we dive into the details take a look at figure 5.11. Note how we can
use SPIM’s data segment view to see where everything is, if we can find where
we stored an object. How? After allocating memory for the object in the main
program, single-step to see how the object is constructed. Finding floating-point
values in memory can be challenging because there is no data segment option
that views them in a readable format, though you can (as illustrated) see what a
floating point register contains in decimal view.

Take a look at the top part of figure 5.11a illustrating the data segment with
an object of class Circle starting at location 0x10040000, outlined at the bottom
of the data segment extract. The first item in the object is a pointer to its method
table (with value 0x10010034). We can follow that pointer to the location it refers
to (highlighted a couple of rows above with an arrow to it) and find the value
stored in memory there is 0x004000d4. That value is an address in the code
segment. The actual location in the code segment depends on the order I wrote
my program; the extract in the bottom half of figure 5.11a is the code for the area
method of class Circle. Why is all this machinery necessary? So a program
can find the correct version of a method that relates to the class of the current
object. We will see shortly how we use all this. For now, let’s extract a few more
details from this example. The second item in the object represents the value
of radius, a floating-point number. Unfortunately SPIM does not have a data
segment view that displays a floating-point number in a readable format but once
the program is running and you’ve loaded a value into a floating-point register,
you can check if it is what it should be by putting the registers into decimal view
mode. You can cheat by changing the value in an unused floating point register to
check what a particular bit pattern represented in hex means interpreted as floating
point (remember the hint on page 33?). What I have stored in the second word
of my object is 0x4141999a, which at some point of a run landed up in floating
point register $f12, and I copied out for your benefit, revealing that this bit pattern
represents 12.1. The final item in the object is another pointer with the value
0x1001000f, which points to the first letter of the string "circle".

Check back to the class definitions on page 160 and the main program
extract on page 161 to see where all this comes from. Now relate the symbolic
representation of an object in figure 5.11b to the SPIM memory and code (or text



164 CHAPTER 5. DATA STRUCTURES

segment) contents. Make sure you understand how the two representations relate
to each other.

Now, on to implementing methods. A look at how the method table is
implemented is a good start, since we need that to call our methods, and we
need to initialise the method table when we create an object. Let’s use a standard
convention for naming methods: Classname_method. Then this is the label at
the entry point of the method, and we can reuse that label to name its address in
the data segment. Let’s make method table for class Circle:

.data
CircleMethods: .word Circle_area

.word Circle_name

That looks simple enough. Assuming we actually define these methods, when
we refer to the names Circle_area and Circle_name refer to the address you
need to jump to to invoke each one. The above two lines create two words
in the data segment at the location labeled CircleMethods and the next word
after that containing these addresses. So we will need to store the value that
CircleMethods represents in each object of class Circle so it can find its
methods. We need to do this because the methods could be overridden in a derived
class, so the methods that apply to each class need to be known to its objects.

Let’s construct an object to show how all this works. Here is a the constructor
for Circle, which is invoked whenever an object of this class is created:

# Circle (float newradius) {
# values passed in are
# $a0 : current object pointer
# $f12: new radius value

# radius = newradius;
Circle_Circle: la $t0, CircleMethods # set up method table

sw $t0, methodsOffset($a0)
s.s $f12, Circle_RadiusOffset($a0)

# name = "circle";
la $t0, CircleName
sw $t0, Circle_NameOffset($a0)
jr $ra

# }

Ignoring the comments for now (read them later), the first line of the constructor
loads the address of the methods table into $t0 and the next instruction stores this



Objects 165

address in the offset we have defined somewhere as a macro for how far into an
object we store the pointer to the method table. Why $a0? Because that is the first
parameter passed and in a method, the first parameter is always the current object.

What offset should we use to store the method table? Since the size of an
object can vary depending on the class definition, details inherited and so on, it’s
easiest to put the method table first. Once you are in a method belonging to a
specific class, that method should know what offset from the start of the object it
needs to find any data in the object. So here are some macros that defined offsets
for class Circle:

##### first, pointer to the method table for any overridden classes
methodsOffset = 0

##### offsets for data in classes
Circle_RadiusOffset = 4 # bytes from start
Circle_NameOffset = 8 # bytes from start

##### 4 bytes for method table pointer plus data
CircleCSIZE = 12

I also include here the size in bytes of the class. A compiler would store this
internally as it was working through the code; since we are not as good at trivia as
compilers, we can save ourselves a lot of effort by naming values like this.

On to the rest of the class. The area calculation is a little complicated because
of the use of flowing point. Because floating point values need so many bits, we
have to load constants from memory, so my data segment includes this:

consts: .float 3.141592653589793

And here is the code:

# int area () {
# return (int) (radius * radius * 3.141592653589793);
Circle_area: l.s $f12, Circle_RadiusOffset($a0)

mul.s $f12,$f12,$f12
la $t0, consts # no FP immediates
l.s $f0, 0($t0) # const: pi value
mul.s $f12, $f12, $f0
l.s $f0, 16($t0) # const: 0.5 to round up
add.s $f12, $f12, $f0 # round up
cvt.w.s $f0, $f12 # convert single to int (word)
mfc1 $v0, $f0 # move from coprocessor 1 = FPU
jr $ra

# }



166 CHAPTER 5. DATA STRUCTURES

# char * name () {
Circle_name:
# return name;

lw $v0, Circle_NameOffset($a0)
jr $ra

# }

If the floating point aspect looks a little familiar, that’s because we have a similar
example on page 73 – go back to that example and compare with this code. You
should be able to relate the explanation there to this new version. What I want to
focus on here is calling a method via the method table. Here is an example:

# printf ("area of %s = %d\n", disc->name (), disc->area());
move $a0, $s0 # set up call to Circle::name
lw $t0, methodsOffset($a0) # method table address
lw $t0, 4($t0) # get second method address
jalr $t0

# now use the result returned in $v0 to print the name
# then go on to do likewise for the area

Assume to start with that an object of class Circle exists, and a pointer to it is
stored in $s0. Why do we copy that to $a0? Because a pointer to the current
object is always passed as the first parameter. What follows next requires a bit of
thought so pay close attention. First, we fetch the value stored in the object that
points to the method table. Then, we load the second item in the method table
(offset of 4), which is also an address. Finally, we use that address in the register
version of the jump and link instruction. What we have done is followed three
layers of pointer:

1. object pointer – takes us to where the object is stored, including its method
table pointer

2. method table pointer – takes us to where the method table is stored

3. method entry point – the correct item in the method table contains the
address where we need to start executing the function

This is a good moment to go back to figure 5.11 (page 162) to make sure you
understand both the big picture and the detail.

Completing the rest of the program including allocating the objects with my
simplified malloc is a good exercise.



Putting it all Together 167

global to whole program

global to compiled file 1

constant pool

global to compiled file 2

dynamically allocated data

stack

free space

= not yet covered

Figure 5.12: Data segment used so far: heap added

The take home message? Objects are an extension of structured
types, adding an implicit parameter that points to the current object
and a method table. Only the method table is a significantly harder
concept than we’ve seen before. Real object-oriented languages add more
complications; we have here a starting point for understanding the basics.

5.6 Putting it all Together

Compare figures 5.12 and 4.2 (page 80). All that we have not covered of the data
segment is regions that come into play if you combine more than one separately
compiled file. When we switch to C programming, it will become clearer why
we need that concept. If we have pieces of code compiled separately that have
different global variable regions, we have to have a protocol for adjusting the
global pointer ($gp register that works consistently – including saving it across
calls).

A program that puts such separately compiled files together is called a linker.
In addition to our own code, we often need to combine library code with our
program e.g. to do standard things like input and output. Libraries can be



168 CHAPTER 5. DATA STRUCTURES

statically linked or dynamically linked. Statically-linked libraries become part
of the executable file, while dynamically linked libraries remain as separate files,
and are only linked as your program starts to run, with varying details on when
and how that happens. The main benefits of dynamic linking are:

• code file size – executable files can be a lot smaller if libraries are not linked
into them

• updates and bug fixes – provided changes to libraries do not change
interfaces to other code, they can be updated without changing executable
files

• shared runtime resources – an operating system can allow multiple pro-
grams to share the code of the same library (though the data used in an
invocation of the library for each program will be different)

Another complication with combining separately compiled code is that absolute
addresses may break if we have to shift code from the location where it was
originally designed to run. Addresses via registers that can be set up before hitting
your code (e.g., $gp and $sp) or relative addresses as in branch instructions are no
problem. For absolute addresses, as in jump instructions, it is necessary to have
a way to adjust them to relocate code. One tactic is to add additional information
to a code file that can be linked with others containing:

• external symbols – a list of names available to the rest of the program and
their relative location, including global variables and functions

• relocatable addresses – a list of locations that need to be adjusted when the
base address of the code changes

A code file that has to be linked before it can be run is an object file; a file that is
ready to run is an executable.

An object file may also contain information for a debugger, such as enough
information to reconstruct line numbers and relate machine instructions to the
HLL source code, names of variables and functions, their type, and where they
are located.

Exercises
1. For the MIPS assembler implementation of strlen on page 127:



Exercises 169

(a) Add in a main program that calls the function and check that it returns
the expected value when you pass in a string (to keep it simple, create
one with the .asciiz directive).

(b) Instead of keeping a separate loop counter, you could just increment
a copy of the base address, and calculate the number of bytes before
returning with a subtraction. Recode to do this and check against my
version for a string of 10 characters (not counting the null terminator):

i. Is the static instruction count significantly different?
ii. Is the dynamic instruction count significantly different?

2. For the MIPS assembler implementation of arraymax:

(a) change the main program (page 132) so that it allocates enough space
on the main program’s stack frame for the array, and copies the initial
values from the data segment to this array

(b) adjust the function call in the main program to use the variable you
created for the array.

3. Implement a minimal main program that reads in an integer value to test the
switch code of page 140, with these variations:

(a) Make the smallest case label -1 and check that the indexing still works.

(b) Put a loop around the code terminating on a value of -10 to check that
it works repeatedly.

4. In figure 5.5a, why does the same value appear in two locations in the
dispatch table?

5. Implement my minimal malloc and free on pages 145-147, and test them
in a simple main program. Single-step in SPIM to make sure you understand
how they work.

6. Rewrite the diposeall function on page 151 using a loop instead of
recursion. Don’t worry if some of your C is a bit inexact – the point is
to get a feel for whether the recursive function really is simpler.

7. You have read in a value representing an array size N ≥ 1 and this value is
in register $s0. You have also read in a value representing a position in the
array, 0 ≤ i < N into register $s1. For each of the following, write C code
(approximate syntax) and the MIPS assembly language to implement it:



170 CHAPTER 5. DATA STRUCTURES

(a) allocate space for N integers using malloc and save the pointer
returned by malloc in register $s2

(b) put the number 42 into the ith location (remember, i is stored in $s1)

(c) write a for loop that goes through each element of the array (assuming
it has been initialised) and prints every non-zero element followed by a
line break using the PRINT_INT and the PRINT_STRING system calls.

8. In figure 5.10b, why is there a region labelled with addresses 0x10040010
to 0x1004001f all containing only zeroes? Hint: think what my minimal
malloc does when you ask for an amount smaller than its default allocation
block of 32 bytes.

9. Fill in the missing details of the list test program of pages 149-159. Include
the given minimal malloc from pages 145-147.

10. You have a data structure that looks like this:

struct {
int age;
char * name;

};

If name is initialised to point to a null-terminated array of characters (string),
and a variable of the given structured type is stored in the memory location
given in register $t0, write MIPS code to find the length of the string name.

11. Complete the program of section 5.5, including the missing classes and
main program.

12. Implement an array of objects of the classes used in section 5.5. The array
should contain pointers to objects, and the pointers should be either Circle
or Rectangle classes. Use a simple test program with a for loop that prints
out the name and area of each object.

13. Does a debugger need a table relating every machine instruction to a source
code line? Explain.



6 Performance

COMPUTER PERFORMANCE DEPENDS LARGELY ON SOFTWARE. Nonethe-
less understanding the hardware is an important aspect of overall system
performance. In this chapter, I look at some of the lower-level issues in

system design, then step back from detail and look at how the system as a whole
fits together and how the various components contribute to performance – not only
speed, but other factors that users care about like cost and energy footprint.

The focus here is on hardware-related performance but that does not mean the
software layer is unimportant. Understanding the hardware layer may give you
a 10-15% improvement and occasionally much more. Understanding algorithm
analysis can make a difference between a practical solution and a program that
takes too long to run to be useful. In algorithm analysis, we are interested in what
governs the rate of growth of run time as problem size n grows. If a particular
program takes time proportional to 10n2 and another solution to the same problem
takes time proportional to 1000n log2 n, the first solution will look good for small

0.00E+00!

5.00E+06!

1.00E+07!

1.50E+07!

2.00E+07!

2.50E+07!

3.00E+07!

3.50E+07!

4.00E+07!

4.50E+07!

0" 500" 1000" 1500" 2000" 2500"

n

n2

n lo
g2n

tim
e

Figure 6.1: The benefits of a better algorithm

171



172 CHAPTER 6. PERFORMANCE

n but the second will look a lot better for larger values of n. Figure 6.1 illustrates
how the n logn algorithm wins for big enough n.

We divide algorithms into complexity classes, based on the biggest term in the
formula describing the growth in execution time as problem size, N, increases.
We mostly look at time complexity; if a problem requires extra memory that grows
as a function of N, we also consider space complexity.

It may be the case that a more complicated algorithm’s run time grows slower
as n increases, at the cost of not being as fast as a simple algorithm for small data.
The example of figure 6.1 illustrates that point, with the n log2 n example less
competitive for small n. This situation arises because a more complex algorithm
may have bigger overheads such as setting up complicated data structures or
recursion. Even with much bigger overheads, the more efficient algorithm comes
out ahead for large enough sizes of n.

Algorithm analysis then is an important tool in performance efficiency – so
though I don’t treat the subject here, you should not take the kind of efficiency I
address as the whole story. A good algorithms and data structures background is
an essential companion to this material.

To start with I look at the way basic instruction processing can be sped up with
a pipeline, and why a simple instruction set design like that of MIPS simplifies
pipeline implementation. I explain how speed can be gained more generally by
doing more in parallel, and different modes of parallelism hardware and software
can support. I also cover some limits on performance improvement from doing
more in parallel. I take a closer look at how the memory hierarchy affects
performance. Finally, I take a brief look at energy efficiency.

6.1 More at once

Pipelines

A car factory takes 20 hours to make one car. Assuming the factory works night
shifts with minimal downtime, the absolute best it can do in a (non-leap) year of
8760 hours is build 438 cars. So how do car factories churn out cars in hundreds
of thousands, even millions? The answer is by dividing the task into small parts,
and having cars at many stages of construction through the plant. If, for example,
you break the task of building the car into 1000 separate jobs, each taking the
same time, your factory can build over 400,000 cars per year. One car still takes
20 hours, but every 1

1000 of an hour (3.6s), another car pops off the production



More at once 173

time

instructions

clock

1
2
3
4
5
6

1 done

(a) 4 stages with timing

MemoryPC

A
dder

Register
File

Sign
Extend

IF / ID

ID
 / E

X

Imm

RS1

RS2
Zero?

ALU

M
U

X

E
X

 / M
E

M

Memory

M
U

X

M
E

M
 / W

B

M
U

X

M
U

X

Next SEQ PC Next SEQ PC

WB Data

Branch
taken

IR

Instruction Fetch

Next PC

Instruction Decode
Register Fetch

Execute
Address Calc. Memory Access Write Back

IF ID EX MEM WB

(b) more detail: 5 stages

Figure 6.2: The pipeline concept

line.
The same basic principle applies to speeding up processing computer instruc-

tions. Instead of the hardware processing each instruction to completion before
starting the next one, instruction processing is divided into stages, much like the
way a car factory divides the job down into small equal-sized parts. Processing
instructions in stages is called a pipeline. If you have an N-stage pipeline, the
biggest speedup you can achieve is N (divide execution time by N) though in
practice you lose time to passing information between stages and, as we will see
shortly, instructions that change the order of execution.

Speedup is a measure of an improvement and is defined as

speedup =
tbe f ore

ta f ter
(6.1)

where tbe f ore is the time taken before the improvement and ta f ter is the time taken



174 CHAPTER 6. PERFORMANCE

after the improvement. So a big number is good, and a speedup < 1 means your
“improvement” made things worse.

Assuming we have the ideal case (so we need only take into account the
dynamic instruction count), what is the speedup if an instruction takes 5 time
units, the overheads between stages take 0.2 time units, and we have 4 stages?
For this sort of calculation, we do not take into account the first few and last few
instructions when the pipeline is not full, since that is a tiny correction for any
nontrivial program run. Each stage, if we assume they divide evenly, takes 1.25
time units. We need to add the overhead between each stage, which happens 3
times for 4 stages, so one instruction takes 1.25×4+0.2×3 = 5.6 time units to
run to completion. Since there are 4 stages, the average time per instruction is
5.6÷4 = 1.4 time units. So the speedup is 5

1.4 ≈ 3.6.
Splitting an instruction into exactly equal stages is not always possible. The

final choice of stage length has to be long enough to fit the longest logic path of
any one stage, since all stages have to fit into the same amount of time to achieve
simultaneous execution of different instructions at different stages. For example,
if one of the stages needs 20% more time than the others after we do our best
effort at splitting evenly, we have to adjust our calculation by adding 20% to the
time for every stage. Keeping with the same example: 1.25×1.2 = 1.5 time units
per stage. That changes our calculation to 1.5× 4+ 0.2× 3 = 6.6 time units for
an instruction to clear the pipeline, with an average of 6.6/4 = 1.65 time units per
instruction for a speedup of 5

1.65 ≈ 3.0.
Timing of a pipeline is illustrated in figure 6.2a. In a simple design, at each

clock tick, an instruction advances to another stage and another instruction starts.
The illustrated pipeline has 4 stages. As marked in the illustration, instruction
5 starts just as instruction 1 completes (“1 done”). Earlier ARM designs had
3 stages, and more recent designs 13 stages. Intel’s Pentium 4 had a 31-stage
pipeline though more recent designs have fewer stages. Figure 6.2b illustrates a
bit more detail of what can happen at each stage of a 5-stage pipeline1, with an
architecture like MIPS.

It is instructive to relate the 5-stage pipeline diagram to the three MIPS integer
instruction formats:

1. The instruction fetch (IF) stage is the same for all instructions. The PC
register is incremented by 4 (the word length) and the next instruction
fetched. The diagram shows the increment happening after the address is

1Image souce http://en.wikipedia.org/wiki/MIPS_architecture

http://en.wikipedia.org/wiki/MIPS_architecture


More at once 175

used, but it can happen in either order, as long as the address in the PC is
correct at the time memory is addressed.

2. The next stage, instruction decode and register fetch (ID), is more interest-
ing because it shows a range of different operations. One option is setting
up access to two registers, the source operands for an R-format instruction.
Another is sign-extending an immediate operand. If you go back to page 49
(figure 3.1), you will see that there is no problem with this as the two source
registers (rs and rt) are encoded using different bits than the immediate
operand. Nonetheless, the immediate operand uses bits that could be used
for a shift or for function bits in some R instructions. A J-format instruction
needs to use the same bits in a very different way, to set up an absolute
address. All these competing uses of the same bits can be processed at
once, and the unwanted variants discarded once the decode is complete.

3. Next is the execute (EX) stage including calculating addresses for instruc-
tions using offsets and deciding if a branch is taken. Not all logic paths are
active at this stage since the instruction decode will inform the next stage
which variations actually apply.

4. The memory access (MEM) stage is only used in a load instruction, to access
memory contents.

5. The write back (WB) stage returns any result to the destination register
(including an ALU operation or the result of a load).

Entering the execute stage allocates resources that are hard to deallocate as well
as creating results that need to be stored, so that is the point where the CPU has
really committed to an instruction. That transition is called instruction issue.

Branch instructions present a special problem because the pipeline as illus-
trated only knows if a branch is taken by the end of the third stage. That means
two more instructions will be in the pipeline and the time put into them is wasted
if the branch condition is true. You can reduce that penalty by pushing the check
for the branch condition earlier, into the ID stage (by extra logic that fetches the
relevant register contents ahead of knowing it’s needed), as illustrated in figure
6.3. But you can’t actually make a decision until you have decoded the opcode,
so you cannot improve the situation beyond one potential wasted instruction.
Remember the MIPS branch delay slot (page 100)? This is one of the reasons
the MIPS designers implemented that. A reminder: the instruction immediately



176 CHAPTER 6. PERFORMANCE

time

instructions

br…
next1
next2
target

clock

1
2
3
4
5
6

} wasted

(a) outcome in EX

time

instructions

br…
next1
target

clock

1
2
3
4
5
6

} wasted

(b) outcome known in ID

Figure 6.3: Timing of determining branch outcome

after a branch is always executed. If you can’t find an instruction that you want
executed whatever the branch outcome, you put a nop in the delay slot. SPIM
does not (by default; you can turn this feature on) implement delayed branching,
so we don’t need to do this in our programs. Remember how MIPS has very few
real (not pseudo) branch instructions? A desire to decide the branch outcome
early by keeping branch conditions simple is behind that design choice. An
extra instruction is not a huge penalty compared with having to decide the branch
outcome later.

Another way of limiting speed lost to branching is to add hardware support
for predicting branches, including predicting whether the branch will be taken or
not, and predicting the branch target (the address it jumps to if taken). Branch
prediction becomes a more serious design concern with more aggressive pipelines
than the 5-stage pipeline illustrated here.

Aside from branching and delays in passing information between stages, this
5-stage pipeline also has the inefficiency of a stage (MEM) that is not used for
most instructions, so we should expect a speedup of significantly less than 5 over
a non-pipelined machine.

There are various other factors that can stall a pipeline, including waiting
for memory accesses (particularly the lower levels of the hierarchy), and an
instruction needing a result from a previous instruction that isn’t ready in time.

More aggressive pipelines include variations like much deeper pipelines (more
stages), the ability to issue more than one instruction and the ability to reorder
instructions. A deeper pipeline increases the theoretical speedup at the cost of
many more instructions wasted with a mis-predicted branch. Issuing more than
one instruction increases parallelism by allowing more than one instruction to start



More at once 177

(and hence complete) per clock cycle. The gain here is limited by dependences
between instructions. If an instruction needs a result from a previous instruction,
it cannot be executed simultaneously – or even until the other instruction result is
available. Dynamic instruction reordering by the hardware partially addresses this
problem. Amazingly, most of these ideas go back to the 1960s, when Seymour
Cray, at the time working for a small computer company called Control Data, was
able to design a computer that was faster than the best the industry giants like IBM
could build [Thornton 1980, 2000]. Cray’s CDC 6600 design was eventually to
inspire the RISC movement when it became possible to implement his ideas on a
single chip.

Pipelining in all its forms attempts to exploit instruction-level parallelism
(ILP), opportunities to make instructions in a single stream go through the system
faster by finding instructions that can execute simultaneously.

Heads up: Understanding instruction-level parallelism in all its
complexity requires an advanced architecture course. Among other
things, executing instructions out of order presents interesting challenges.

More in Parallel

There are other ways of achieving parallel execution. Multicore designs replicate
the entire CPU. You can either use this feature by having separate programs run-
ning on each core, or by splitting a program into parts that can run independently,
at least for a while. Splitting a program up like this can be done in two different
ways:

• multiple processes – a process is the name we give to a program while it
is running. If you split a program into multiple processes, each one runs
independently in its own memory space, though the can share data in various
ways

• multiple threads – more like functions that can run in parallel. Threads share
the memory space of the program that launched them and can communicate
through global variables

Some CPUs have hardware support for threads, in the form of simultaneous
multithreading (SMT), known as hyperthreading on Intel designs. The idea starts
from the observation that a pipeline is not kept continuously busy. Aside from
delays for branches, there are much bigger delays arising from some causes like



178 CHAPTER 6. PERFORMANCE

0"

1"

2"

3"

4"

5"

6"

7"

8"

9"

10"

0" 5" 10" 15" 20"

N

sp
ee
du
p

S=0.125

S=0.0625

S=0.
0312

5

Figure 6.4: Amdahl’s Law: lower sequential fraction S→ more speedup

waiting for a slower part of memory. A machine with SMT support has a spare
set of registers for each extra hardware thread and whenever the CPU would
otherwise be idle, it switches to a new thread.

Graphics processing units (GPUs) have their own idiosyncratic models of
parallelism based on requirements of high-speed graphics, such as applying a
single operation to a large amount of data simultaneously. Some people use GPUs
for high-speed computation but they are hard to program for several reasons. GPU
use in this form is called General-purpose computing on graphics processing
units (GPGPU). A GPU’s model of parallelism is very different from standard
algorithmic thinking, they need their data in a special memory and they usually
need extensions to programming languages or specialist libraries to program.
GPGPU programmers sometimes learn the hard way of a variant of the speedup
formula (equation 6.1) that emphasises the sequential fraction, S, only after
putting a lot of effort into an impressive speedup of a portion of their code. This
variant is called Amdahl’s Law. Here is one formulation, given N× total available
parallelism:

speedup =
N

(S×N)+(1−S)
(6.2)

The fraction S represents the fraction of the code that cannot be parallelised. If
S = 0, you have ideal speedup of N. If S = 1, you have no speedup.

Figure 6.4 illustrates how a lower sequential fraction permits more speedup. A
GPU can have a theoretical speed gain for some calculations of 100× or more. But
you need to apply Amdahl’s Law to know what fraction of this gain will actually



More at once 179

translate to speedup. Let’s look at an example. You have a problem that takes
120s to run (2 minutes), and a portion of the code taking 100s to run can be sped
up by a factor of 200. The sequential faction S is 20

120 = 1
6 . What is the achieved

speedup? Apply Amdahl’s Law:

speedup =
200

(1
6 ×200)+(1− 1

6)

=
200

(200
6 )+(5

6)

=
200
205

6

=
1200
205

≈ 6

If you do not do not understand Amdahl’s Law, you are liable to be disappointed
if you get into parallel programming, especially with devices like GPUs that have
high-speed modes that only apply in limited situations. In this example, even
though we can speed up most of the code – 5

6 of it – we only see a tiny fraction of
the speedup the GPU achieves.

Amdahl’s Law does not always apply. If the “sequential fraction” is in fact
a relatively fixed overhead that does not scale as problem size increases, a larger
version of the problem may be open to more parallelism. Also, there are situations
where finishing a task by a deadline is important, as with real-time systems, and
meeting the deadline is more important than overall speedup. Finally, there are
scenarios like graphics editors where the speed of a very specific computation is
important. If the program cannot complete a special effect with a delay tolerable
to the user, the feature may not be worth implementing.

In the past there were many weird and wonderful models of parallelism
support in hardware. Today, the mainstream is multicore designs and, for the
more adventurous, trying to make a GPU do something it wasn’t designed for.

Heads up: Amdahl’s Law is one of the most important things to
understand when you try to improve speed. Get it wrong, and you will
achieve a very impressive speedup of part of a system or part of your
code that will have little impact on overall speed.



180 CHAPTER 6. PERFORMANCE

6.2 Memory Hierarchy and Performance

Back on page 13, we talked about caches. How big are speed differences between
levels of the hierarchy? The top-level or L1 cache keeps up with the CPU.
In a simple 5-stage pipeline as depicted in figure 6.2b, accessing the L1 cache
takes one clock cycle at most, otherwise the pipeline would keep stalling for
cache accesses. Delays in accessing the L2 cache can vary from around 5 lost
clock cycles to 10 or more. The L3 cache takes even more time to access,
and accessing DRAM can cost hundreds of lost instructions, especially in an
aggressively pipelined machine with a high clock speed and the ability to have
multiple instructions simultaneously executing.

How then can we achieve reasonable performance? Why not run the CPU at
a lower clock speed if DRAM is so slow? We get reasonably close to the ideal
case of a memory as fast as the most expensive and as big as the least expensive
through the principle of locality. Programs do not access a wide range of memory
locations in a short time. Code tends to spend a lot of time in loops, and data
accesses tend to be to a small part of a data structure, before moving on to another
phase of computation. Locality divides into two kinds:

• temporal locality – if a location is accessed, it is likely to be accessed again
soon after

• spatial locality – if a location is accessed, others near it in memory are likely
to be accessed soon after

These two concepts (illustrated in figure 6.5) allow a relatively small portion of the
memory to be fast, without slowing the whole system down too much. Temporal
locality means once we have a portion of memory in the top-level fastest part of
the hierarchy, we don’t incur the cost of fetching it again when we use it again,
usually soon after. Spatial locality implies that when we bring an item into faster
memory, we should bring in surrounding bytes because there is a high chance they
will be needed soon.

The way spatial locality is supported in caches is by organising a cache into
blocks, sometimes called lines, that are several words wide. A common size for a
cache block is 64 bytes, though there is some variation. Memory accesses that are
relatively close together get the best use of a cache; accesses randomly scattered
over memory could cause a significant loss of speed.



Memory Hierarchy and Performance 181

temporal locality
same location again

spatial locality
nearby locations accessed

31 2 3 2 4 1

132

poor locality
relatively random accesses

Figure 6.5: Locality variations

Heads up: If you do not understand locality you can write code with
terrible performance. Any program that makes frequent trips to slower
parts of the memory hierarchy gets nowhere near the ideal of close to the
speed of the fastest level.

The final layer of the memory hierarchy is the paging device, in the past
usually a disk, though increasingly often solid-state drives (SSDs) are replacing
disks especially in portable devices. An SSD is usually made of flash, a kind
of RAM that does not lose its contents when power goes off, unlike DRAM,
which needs continual refreshing to stop its capacitors from losing their charge.
Although an SSD is faster than a disk, it only reduces the speed gap from millions
to thousands. So, in general, minimising use of the paging device is a good idea.
To give you ballpark figures, to do a transaction that in DRAM would take about
20ns (2× 10−8s), a flash-based SSD would take 25µs (2.5× 10−5s) and a disk
about 10ms (1×10−2s) – with a lot of variation depending on how much you
are willing to spend. Compare this against a CPU with multiple cores and a
clock speed of 2.5GHz. That equates to a clock tick every 0.4ns. If you have
an aggressive pipeline and you on average execute 2 instructions per clock tick,
that means an average of one instruction per 0.2ns (2×10−10s) for each core. So
the speed gap between one core and the disk is a factor of about 5-million. If
multiple cores need the disk simultaneously, tens of million of instructions worth
of time could be lost.

How does knowing this help with programming for performance?
If you have a design choice in your program of how you organise data

accesses, doing as much as possible in one region of a large data structure before
moving on can make a big difference to performance. If you have very big data
structures that don’t fit in main memory, it is worth restructuring your problem so



182 CHAPTER 6. PERFORMANCE

you can work on a piece of it at a time.
Let’s quantify some of these effects. When a memory access is found in a

particularly layer of the hierarchy, it is called a hit; if its not, it is called a miss.
To keep it simple, let’s work with 2 layers of cache and ignore other causes of
slowdown like branch instructions. Here is a simple formula for the case where
we can estimate the total time as a multiple of clock cycles on the assumption that
the only cause of slowdown is cache misses. For each layer, there is a fraction of
hits (which are misses from the layer above that don’t go down to the next level),
and a time in clock cycles that includes handling the miss as well as completing
the instruction:

taverage = fhits× tL1 + fL2hits× tL2 + fDRAM× tDRAM (6.3)

Heads up: A real machine gets a lot more complicated than this because
it may allow other instructions to continue while waiting for a miss to a
lower level. This basic formula gives you a ballpark figure that is a useful
indication of how often you need hits in faster memory to get close to the
speed of that memory as opposed to the slower lower levels.

Let’s put in numbers to make this concrete. I take the fractions in all cases
as a fraction of all instructions, not taking into account whether the instruction
is accessing data or not. Assume we need one clock cycle (the average with
pipelining with no stalls from branches etc.) to complete an instruction in the
absence of misses from the L1 cache. If we have a miss from L1 but a hit in L2,
the instruction takes 10 cycles. If we miss from L2 and go to DRAM, it takes 200
cycles. We run a program and 1% of the instructions miss from L1 to L2, 0.1%
miss from L2 resulting in a DRAM access. What is the average time to execute
an instruction? We can work it out by multiplying the fraction of instructions for
each case by the time each case takes:

taverage = fhits×1+ fL2hits×10+ fDRAM×200

= 0.989×1+0.01×10+0.001×200

= 0.989+0.1+0.2

= 1.289

So it takes nearly 30% longer to execute a program under these conditions than
without misses.



Input and Output 183

There is a lot more to memory hierarchy than this, including the way the
operating system manages paging and hardware support for that. The operating
system also takes care of the long delays for disk access by finding other
work to fill the gap. A comprehensive understanding of memory hierarchy
and performance requires a study of both computer architecture and operating
systems. What I present here is only a start.

The take home message? The average memory speed formula is quite
obvious if you think about it. Try to recreate it with the book closed to
check if you understood.

6.3 Input and Output
Input and output (IO) is a large complex subject. It is important to performance
because it is the slowest part of the system (unless you count the human as part of
the system – but that’s about as fair as entering a battle of wits with an unarmed
opponent). Aside from disks and SSDs, which are relatively fast peripherals, there
are much slower devices like printers, keyboards and networks. Much of the
problem of bridging these large speed gaps is handled by the operating system.
At the hardware level, what is most interesting is how they interface.

Here are a few variations on how IO devices communicate with the CPU.

• direct memory access (DMA) – devices map to a range of addresses and
you write to them or read from them using that region of memory. Devices
using DMA access memory independently of the CPU and signal to the
CPU when they are done, relieving the CPU of managing memory accesses

• memory-mapped IO – the CPU controls devices specifically by accessing
memory; unlike with DMA, the CPU is actively involved at all stages

• interrupt-driven IO – IO devices signal to the CPU that something has
happened, and an interrupt forces the CPU to handle the IO event

• polling – code has to check the status of IO devices periodically

All of these approaches have advantages and disadvantages. DMA allows a fast
device to dump a lot of information to RAM without CPU intervention, though
it may require special hardware support to do this. Memory-mapped IO requires



184 CHAPTER 6. PERFORMANCE

more CPU intervention, but also allows the CPU more control, which may be
important if the operating system needs to manage contention for a resource. An
example of memory-mapped IO is the ability to map a disk file onto a range of
memory addresses. You can then access the file as if it was a data structure in
RAM, until you tell the operating system to flush it to disk. Interrupts allow the
CPU to ignore IO devices completely until they demand attention at the cost of
complexity in handling IO, since an interrupt can happen at any time, and can
cause an arbitrary instruction to be stopped. Polling is a software approach that
requires periodic checking if a device needs attention and is only suitable for
devices that do not require a rapid response, otherwise the system would have to
spend too much time checking if the device needed attention (or make the device
wait longer than desirable).

Interrupts are the hardest to implement at the level of the CPU, since an
instruction that is interrupted has to be restarted, and aggressive pipelines further
complicate this since many instructions may be at various stages of completion
when an interrupt arrives. An interrupt generally stops the current instruction at
a well-defined point, then transfers control to the operating system at an entry
point defined for the interrupt type. An interrupt handler is often launched via a
jump table stored in a region called the interrupt vector, and must ideally execute
quickly then return control to the stalled program or operating system, depending
on the type of interrupt, and restore any registers it altered. Interrupt handlers
must execute fast to avoid problems arising from multiple interrupts of the same
type piling up. A jump table is very similar to a dispatch table (see page 138),
except it stores actual jump instructions, rather than addresses to use in a jump
instruction. Some machines are set up with gaps between jump table entries. This
allows greater flexibility: if the interrupt can be handled in a small number of
instructions, it can be handled directly in the jump table.

Since a deeper understanding of the issues requires going into operating
systems, I will not go much further into performance issues relating to IO. The
important thing to understand is the huge differences in scale of times operations
take, making IO important to overall system performance – remember Amdahl’s
Law – that IO be handled effectively. If it is not, speeding up the CPU or memory
may not have the effect you expect.



Energy and mobility 185

The take home message? The OS plays a major role in hiding the latency
of slower parts of the system, but you do need to understand just how
much speed varies between the CPU and IO devices so you do not create
software with poor performance.

6.4 Energy and mobility

A growing fraction of conventional computers are mobile – notebooks, ultrabooks,
tablets running a desktop OS, for example. In addition to this, there is a growing
market for smart phones and tablets designed from scratch as tablets, smart MP3
players and gadgets offering single services like GPS. What all of these have in
common is that minimal energy use is a first-class performance goal, rather than a
secondary factor. In a desktop computer, using less energy aids in cutting the cost
of the power supply, reducing heat to dissipate and making compact enclosures
possible. Nonetheless, there is still a market for hot fast machines for those for
whom speed is more important than style.

In larger-scale systems, energy use is also a concern. Warehouse-scale
computing is implemented by companies like Google, Amazon, Apple, Microsoft
and others who offer or internally use large-scale services spread out over many
computers. Hundreds of conventional computers are usually mounted in racks in
a warehouse-sized building [Barroso and Hölzle 2009], and removing heat from
the building is a significant cost, as is maintaining reliable power.

For all of these reasons, emphasis on raw speed in recent years has to some
extent been tempered by design for low energy footprint. Some of the factors in
design for low energy include:

• less emphasis on higher clock speed

• more cores rather than more aggressive ILP

There are other factors as well driving these trends, for example, limits to how
much ILP exists in common programs. More cores that can theoretically deliver
the same peak throughput as an aggressive pipeline provide a more flexible
platform for energy management. A battery-powered device in power-save mode
can shut down cores not absolutely needed; the same is true of a warehouse of
computers. Higher clock speed to some extent has become a less significant goal
because DRAM speeds have not kept up.



186 CHAPTER 6. PERFORMANCE

Intel’s designs, with their relatively complex instructions, are harder to design
for low energy use. As with everything else, Intel addresses this problem with
sophisticated engineering – but highly mobile and very low-cost devices on the
whole do better with RISC architectures. ARM was an early player in this market
and hence is in wide use in mobile devices – phones from entry-level to high
end, as well as the majority of tablet devices (both Apple and Samsung use ARM
designs). MIPS processors are more widely used in embedded applications such
as network switches, but also have some following in the phone market.

One of the reasons that SSDs are starting to gain traction, despite being almost
10 times the price of equivalent disk space, is their low energy footprint. To some
extent, their lower capacity is offset by the development of cloud-based storage
services, where you keep your information synchronised between your various
devices and a server. The total data you have need not all be on one device.

The one terrain where the hot and fast battle is still being fought is with GPUs,
where gaming drives pressures to make GPUs faster. Even in that area, mobile and
lower-cost desktop systems have lower-energy options available. At some point,
GPUs will hit the performance level where improvements are not perceptible to
humans and, at that stage, energy concerns will become an increasing driver.

The take home message? Energy is a first-class design concern, not
a secondary issue. For mobile devices, it makes the difference between
acceptable performance for a given battery life and a device that is no
useful. For larger-scaled devices, energy use and heat dissipation are
major issues.

6.5 Wrap-up

Performance is a huge area, a small fraction of which I touch on here. There are
many other dimensions to performance: anything where you can weigh up cost
versus outcomes. The desired outcome can be time to complete a task, reliability,
energy use, even fashion (ask yourself what kind of smart engineering makes it
possible for Apple to make such skinny sleek boxes).

Raw speed was the major concern in the early years of computing, because
there wasn’t a lot of it. Today, with commodity computers running several cores
at clock speeds of several GHz, an increasing fraction of tasks we are interested



Exercises 187

in do not actually need a faster computer2. Consequently, performance concerns
are swinging increasingly away from pure speed concerns. Even so, there remain
many areas where speed is an issue. Highly scalable computing of the kind offered
by warehouse-scale service providers (the name is a bit misleading: many of these
operations span multiple warehouses) still has speed as a major concern – not only
for processing but also for networking, an area too large and complex to cover
here.

Understanding the hardware underneath is a useful step in understanding how
to program for performance – but does not absolve you of the need to understand
the software side of performance as well, hence the brief foray into algorithms at
the start of the chapter. If you can learn about operating systems and networks as
well, you will have a good start in understanding performance.

Exercises
1. Assume it takes 0.1 time units to pass information from one pipeline stage

to another, and that the pipeline never stalls. Also assume an instruction
with no pipelining takes 10 time units, and can be evenly divided between
stages for each part of this question.

(a) For a 5-stage pipeline, what is the ideal speedup taking into account
delays between each stage?

(b) For a 10-stage pipeline, what is the ideal speedup taking into account
delays between each stage?

(c) Would you make the pipeline much deeper? Explain.

2. Redo the previous question now assuming that one of the pipeline stages
takes twice as long as the ideal case before adding overheads.

3. A new GPU has a computation mode that speeds up 1000× compared with
the same operations on a conventional CPU. Use Amdahl’s Law (equation
6.2) where calculations are required:

(a) You can speed up 10% of the code. What is the total speedup?

(b) You can in another case speed up 20% of the code. What is the total
speedup now?

2It remains to be seen how big and fast a computer is needed to run a word processor.



188 CHAPTER 6. PERFORMANCE

(c) You try the experiment on an older model that only speeds up 100×
compared with a conventional CPU. What is the total speedup in this
case?

(d) Comment in general on how Amdahl’s Law is useful in avoiding
disappointments.

4. You are working on a graphics editor and are implementing a deblurring
function that has to finish within 0.5s otherwise users will find it annoying
and not use it. Switching some of the calculations to a GPU will reduce the
run time from 1s to 0.4s. The GPU has a theoretical maximum speedup of
100×.

(a) What is the observed speedup?

(b) How could you work out the sequential fraction given the observed
speedup (hint: a little algebra. . . )?

(c) Does Amdahl’s Law apply to deciding whether to go with this
improvement? Explain.

5. Use the memory hierarchy average time formula in equation 6.3. Assume
the CPU on average completes 2 instructions per clock cycle, misses to L2
0.2% of the time, and misses to DRAM 0.05% of the time. Time to access
L1 is 0.5 cycles (averaged over 2 instructions simultaneously executing);
L2: 10 cycles, DRAM: 200.

(a) What is the average time in clock cycles per instruction?

(b) How much slower is this than the ideal case with no memory stalls?

(c) What does this example tell you about the sensitivity of aggressive
pipelines to memory hierarchy performance?

6. You need to implement interrupt handling in a new operating system. All
you know to start with is that each interrupt results in a jump to a different
machine word address in sequential order, i.e., interrupt 0 causes control
to go to address A, interrupt 1 jumps to address A+ 4 and so on. These
sequential locations are the interrupt vector.

(a) What instruction would you place at each location in the interrupt
vector?



Exercises 189

(b) What information do you need to go back to the instruction that should
restart after the interrupt?

(c) Which registers are you free to use without restoring them in your
interrupt handler? Why?

7. You are designing a new smart phone and have complete freedom on the
hardware and software platform.

(a) Would you choose an Intel processor or a RISC design? Why?

(b) Would you use an aggressive GPU such as on a gaming machine?
Why?

(c) Would you use a disk or an SSD for local storage? Why?

(d) Now, reconsider your answers if you are shifted to a new project to
design a warehouse-scale system.

8. You are called on to design the specification for a desktop computer to be
used in remote villages without reliable electricity. You can use a battery
to power the computing as a backup, but the cost of the battery is a major
concern.

(a) What factors would you consider in the design?

(b) Would you just use a standard desktop design? Justify your answer.



References

Amdahl, G., Blaauw, G., and Brooks Jr, F. (2000). Architecture of the IBM
System/360. In Readings in computer architecture, pages 17–31. Morgan
Kaufmann Publishers Inc.

Barroso, L. A. and Hölzle, U. (2009). The datacenter as a computer: An
introduction to the design of warehouse-scale machines. Synthesis lectures on
computer architecture, 4(1):1–108.

Caragea, G. C., Keceli, F., Tzannes, A., and Vishkin, U. (2010). General-purpose
vs. GPU: Comparison of many-cores on irregular workloads. In Proc. USENIX
Workshop on Hot Topics in Parallelsim. https://www.usenix.org/legacy/
event/hotpar10/final_posters/Caragea.pdf.

Cooper, M. (2012). Advanced bash-scripting guide. http://www.tldp.org/
LDP/abs/html/.

Hennessy, J. and Patterson, D. (2012). Computer Architecture: A Quantitative
Approach. Morgan Kauffmann, San Francisco, CA, 5th edition.

Hitchner, L. E., Gersting, J., Henderson, P. B., Machanick, P., and Patt, Y. N.
(2001). Programming early considered harmful. In Proceedings of the
Thirty-second SIGCSE Technical Symposium on Computer Science Education,
SIGCSE ’01, pages 402–403, New York, NY, USA. ACM.

IEEE (2008). IEEE standard for floating-point arithmetic. IEEE Std 754-2008.

Kernighan, B. W. and Ritchie, D. M. (1988). The C programming language.
Prentice Hall, Englewood Cliffs, NJ.

Olukotun, K., Nayfeh, B. A., Hammond, L., Wilson, K., and Chang, K.
(1996). The case for a single-chip multiprocessor. In Proc. 7th Int. Conf.

190

https://www.usenix.org/legacy/event/hotpar10/final_posters/Caragea.pdf
https://www.usenix.org/legacy/event/hotpar10/final_posters/Caragea.pdf
http://www.tldp.org/LDP/abs/html/
http://www.tldp.org/LDP/abs/html/


REFERENCES 191

on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-7), pages 2–11, Cambridge, MA.

Parlante, N. (2003). Essential C. Technical report, Stanford University. http:
//cslibrary.stanford.edu/101/EssentialC.pdf.

Patt, Y. and Patel, S. (2013). Introduction to Computing Systems: From bits &
gates to C & beyond. McGraw-Hill, New York, NY, 3rd edition.

Patterson, D. A. and Ditzel, D. R. (1980). The case for the reduced instruction set
computer. Computer Architecture News, 8(6):25–33.

Patterson, D. A. and Hennessy, J. L. (2014). Computer organization and design:
the hardware/software interface. Morgan Kauffmann, San Francisco, CA, 5th
edition.

Ritchie, D. M. (1993). The development of the C language. ACM SIGPLAN
Notices, 28(3):201–208.

Ritchie, D. M., Johnson, S., Lesk, M., and Kernighan, B. (1978).
The C programming language. Bell Sys. Tech. J, 57:1991–2019.
http://www3.alcatel-lucent.com/bstj/vol57-1978/articles/
bstj57-6-1991.pdf.

Steenkiste, P. (1989). The impact of code density on instruction cache
performance. ACM SIGARCH Computer Architecture News, 17(3):252–259.

Thornton, J. E. (1980). The CDC 6600 project. Annals of the History of
Computing, 2(4):338 –348.

Thornton, J. E. (2000). Parallel operation in the Control Data 6600. In Hill, M. D.,
Jouppi, N. P., and Sohni, G. S., editors, Readings in computer architecture,
pages 32–39. Academic Press, San Diego, CA.

Wulf, W. and McKee, S. (1995). Hitting the memory wall: Implications of the
obvious. Computer Architecture News, 23(1):20–24.

http://cslibrary.stanford.edu/101/EssentialC.pdf
http://cslibrary.stanford.edu/101/EssentialC.pdf
http://www3.alcatel-lucent.com/bstj/vol57-1978/articles/bstj57-6-1991.pdf
http://www3.alcatel-lucent.com/bstj/vol57-1978/articles/bstj57-6-1991.pdf


A ASCII Character Set

Here are some of the more useful printable ASCII characters in table A.1. In addition, some of
the more useful non-printing ASCII characters are in table A.2, with a common purpose for each
listed.

Table A.1: ASCII printable character encoding. The first entry is a space.

char decimal binary hex
32 100000 0x20

! 33 100001 0x21
" 34 100010 0x22
# 35 100011 0x23
$ 36 100100 0x24
% 37 100101 0x25
& 38 100110 0x26
’ 39 100111 0x27
( 40 101000 0x28
) 41 101001 0x29
* 42 101010 0x2A
+ 43 101011 0x2B
, 44 101100 0x2C
- 45 101101 0x2D
. 46 101110 0x2E
/ 47 101111 0x2F
0 48 110000 0x30
1 49 110001 0x31
2 50 110010 0x32
3 51 110011 0x33
4 52 110100 0x34
5 53 110101 0x35
6 54 110110 0x36
7 55 110111 0x37
8 56 111000 0x38
9 57 111001 0x39
: 58 111010 0x3A

Continued on next page

192



ASCII Character Set 193

Table A.1– continued from previous page
char decimal binary hex
; 59 111011 0x3B
< 60 111100 0x3C
= 61 111101 0x3D
> 62 111110 0x3E
? 63 111111 0x3F
@ 64 1000000 0x40
A 65 1000001 0x41
B 66 1000010 0x42
C 67 1000011 0x43
D 68 1000100 0x44
E 69 1000101 0x45
F 70 1000110 0x46
G 71 1000111 0x47
H 72 1001000 0x48
I 73 1001001 0x49
J 74 1001010 0x4A
K 75 1001011 0x4B
L 76 1001100 0x4C
M 77 1001101 0x4D
N 78 1001110 0x4E
O 79 1001111 0x4F
P 80 1010000 0x50
Q 81 1010001 0x51
R 82 1010010 0x52
S 83 1010011 0x53
T 84 1010100 0x54
U 85 1010101 0x55
V 86 1010110 0x56
W 87 1010111 0x57
X 88 1011000 0x58
Y 89 1011001 0x59
Z 90 1011010 0x5A
[ 91 1011011 0x5B

92 1011100 0x5C
] 93 1011101 0x5D
^ 94 1011110 0x5E
_ 95 1011111 0x5F
‘ 96 1100000 0x60
a 97 1100001 0x61
b 98 1100010 0x62
c 99 1100011 0x63
d 100 1100100 0x64

Continued on next page



194 APPENDIX A. ASCII CHARACTER SET

Table A.1– continued from previous page
char decimal binary hex
e 101 1100101 0x65
f 102 1100110 0x66
g 103 1100111 0x67
h 104 1101000 0x68
i 105 1101001 0x69
j 106 1101010 0x6A
k 107 1101011 0x6B
l 108 1101100 0x6C
m 109 1101101 0x6D
n 110 1101110 0x6E
o 111 1101111 0x6F
p 112 1110000 0x70
q 113 1110001 0x71
r 114 1110010 0x72
s 115 1110011 0x73
t 116 1110100 0x74
u 117 1110101 0x75
v 118 1110110 0x76
w 119 1110111 0x77
x 120 1111000 0x78
y 121 1111001 0x79
z 122 1111010 0x7A
{ 123 1111011 0x7B
| 124 1111100 0x7C
} 125 1111101 0x7D
~ 126 1111110 0x7E

Table A.2: ASCII non-printing character encoding. “CTRL” means key to hit with
CONTROL or CTRL key to get this character.

char decimal binary hex CTRL purpose
NUL 000 0000000 0x00 @ C string terminator
ETX 003 0000011 0x03 C End of Text (in UNIX: cancel active process)
EOT 004 0000100 0x04 D end of transmission (also called end of file, EOF)
Bell 007 0000111 0x07 G beep
BS 008 0001000 0x08 H backspace (BACKSPACE key)
HT 009 0001001 0x09 I horizontal tab (TAB key)
LF 010 0001010 0x0A J line feed
CR 013 0001101 0x0D M carriage return (ENTER key)
ESC 027 0011011 0x1B [ escape (ESC key)
DEL 127 1111111 07tF [ delete (DEL key)



B MIPS Register Conventions

For integer registers in table B.1, those that have a hardwired hardware purpose are labeled
“(HW)”; all the rest are strictly-speaking general-purpose registers. Floating-point registers all
have no hardwired purpose. Conventions adopted by the MIPS designers aid compiler writers in
register choices, particularly when generating code that interacts with other unknown code.

It is up to a caller to save anything with “N” in the “saved?” column before a function call; a
callee must save and restore any with a “Y” in this column. System calls save any registers they
clobber except a register used to return a value.

Table B.1: Register conventions including floating point

symbolic name register number usage saved?
integer

$zero 0 zero constant (HW) N/A
$at 1 assembler temporary N/A
$v0–$v1 2–3 function, expression result N
$a0–$a3 4–7 function parameters N
$t0–$t7 8–15 temporary N
$s0–$s7 16–23 saved temporary Y
$t8–$t9 24–25 temporary N
$k0–$k1 26–27 reserved for OS kernel N/A
$gp 28 global pointer Y
$sp 29 stack pointer Y
$fp 30 frame pointer Y
$ra 31 return address (HW) N

floating point
$f0,$f2 0, 2 function, expression result N
$f4–$f10 4–10 temporary N
$f12,$f14 12, 14 function parameters N
$f16–$f18 16–18 temporary N
$f20–$f30 20–30 saved temporary Y

Floating-point doubles use even-numbered registers paired with the next odd-numbered register
(e.g., $f12-$f13 could be used to pass a double parameter). In general, only even-numbered
registers are used if possible to avoid confusion.

195



196 APPENDIX B. MIPS REGISTER CONVENTIONS

In addition to these registers, there are other special-purpose registers including HI and LO,
used in integer multiplies and divides. HI contains the overflow of a multiply, and LO the answer.
For a divide, HI contains the answer and LO the remainder.



C SPIM System Calls

SPIM system calls are a bare minimum to interact with the outside world. Some are at a higher
level than true system calls, e.g., IO calls would be wrappers around lower-level OS operations in
a real machine. To set up a system call, put its code into register $v0, Set up parameters if required
then do a syscall instruction.

Table C.1: SPIM system calls

Call name No. Passed in Returned
PRINT_INT 1 $a0
PRINT_FLOAT 2 $f12
PRINT_DOUBLE 3 $f12
PRINT_STRING 4 string address in $a0
READ_INT 5 return in $v0
READ_FLOAT 6 return in $f0
READ_DOUBLE 7 return in $f0
READ_STRING 8 address $a0,

max length $a1
SBRK 9 bytes to allocate $a0 start address new region $v0

new region $v0
EXIT 10 –
PRINT_CHAR 11 low byte of $a0
READ_CHAR 12 low byte in $v0
OPEN_FILE 13 file name address $a0, file descriptor $v0

flags $a1, mode $a2 < 0→ error
READ 14 file descriptor, $a0,

buffer address $a1, number of bytes
buffer length $a2 read $v0

WRITE 15 file descriptor $a0,
buffer address $a1, number of bytes
no. bytes to write $a2 written $v0

CLOSE 16 file descriptor $a0
EXIT2 17 exit code $a0

197



198 APPENDIX C. SPIM SYSTEM CALLS

The SBRK system call increases the size of the data segment, and is the basis for higher-level
dynamic memory allocators.

In a real machine, you would have to spill registers before a system call but SPIM system calls
only modify $v0. In normal user-level code you would not know about this kind of detail since
system calls are usually hidden in a library call that looks like a normal function.



D SPIM Call Stack

SPIM uses a different call convention than that I use in this book. You can find details of this
in the SPIM documentation (Appendix E). The major difference we have had to deal with is that
SPIM places the stack pointer ($sp) at the topmost item on the stack, whereas I place it at the first
location after the top of the stack. The SPIM approach is consistent with MIPS compilers; mine
is designed to make it easier for human programmers to create and tear down stack frames. Why
do I differ in my approach? The purpose of this book is to introduce low-level programming as a
basis for understanding what HLL programs actually do, rather than to provide a manual for MIPS
compiler writers.

There is no one right way to do this: one of the benefits of a RISC architecture is that this sort
of decision is (mostly – the return address register is one exception) is not built into the hardware
so compiler writers are not locked into decisions they don’t agree with.

The SPIM approach has the benefit that the stack pointer always points to valid data, whereas
my approach usually has the stack pointer pointing past the last valid item on the stack. Since I
only use the stack pointer to address memory when I am setting up a new stack frame, at that point
it does point to legitimate data items, so there is no risk of using the stack pointer to access invalid
data (in a correct program).

From a philosophical point of view, I do not like having the stack pointer point to the top of
the stack because that is not something with a clearly-defined meaning. If the top of the stack is a
data item of less than a word in length, should the stack pointer point at the nearest word boundary
to avoid unaligned accesses when you push something else onto the stack? If so, you have to start
delving into issues like big and little endianness to determine whether the stack pointer actually
points at legitimate data or padding. All these issues can be resolved but my approach is tidier.
The stack pointer points at the next word that can be used to add to the stack. If the actual top of
the stack is a byte or two away, there is no cause for confusion or misinterpretation.

Another difference in the SPIM approach is that the stack frame defaults to 24 bytes (6 words)
– enough for many simple functions, and hence reduces the need to think through differences. This
is larger than the small examples in the book need so using this convention makes it easy to use
an offset from the stack pointer to find variables and spilled registers. My approach on the other
hand uses an offset from the frame pointer to find items on the stack, which is simple because
the offsets do not depend on how big the stack frame is. With the SPIM approach, if you need to
enlarge the stack frame for any reason (more local variables, spilling more registers – and in some
programming languages, these things can change depending on the logic path through the code),
you have to change the offsets since the stack pointer is now a different distance from the start of
the stack frame.

199



200 APPENDIX D. SPIM CALL STACK

On the plus side for the SPIM approach, doing away with the frame pointer frees up another
register for general use. Since the actual register ($30) is used as a saved temporary in the SPIM
scheme ($s8), it also has to be saved across calls, so my approach will not break any SPIM code
that invokes my code. As you can see from my examples, the glue code for crossing from a SPIM
stack to my stack is simply a matter of subtracting 4 from $sp at entry to the main program and
adding 4 before returning.

For purposes of this book, which aims at teaching programming from the bottom up rather
than providing a manual for compiler writers, it doesn’t matter a whole lot if I use an unusual
approach. Doing it my way makes the examples simpler, a useful gain when learning assembly
language involves getting a lot of detail straight. A compiler writer can live with a slightly harder
set of rules because you only need to get them right once (though there is still merit in simplicity).

What of real compilers? Do they all use the same conventions? Actually, no. The MIPS C
compiler does not use the frame pointer (consistently with the SPIM approach) whereas the GNU
C compiler for MIPS does [Patterson and Hennessy 2014]. Provided other details of calling are
consistent, this sort of difference does not matter. A long as the frame pointer is a register that is
preserved across calls, it doesn’t matter if parts of the code compiled with a different compiler use
it differently, or not at all.

Read the SPIM documentation, and understand how the SPIM approach (which is closer to
the strategy of a real compiler) differs from mine.

The take home message? There is seldom only one way of doing something.
Understanding design choices is more important than being a slave to convention.



E SPIM Background

Notes on the following paper
This SPIM paper was formerly supplied with SPIM source code documentation. Use it as a
reference for instruction formats and compare it with the body of the book to see differences
in design choices. It does not document the latest QtSPIM interface. Note that stack diagrams
show the stack upside down relative to mine: I draw the stack in order of memory addresses, with
high addresses lower than low addresses, which places the top of the stack at the top of the picture.
I have removed sections that document obsolete user interfaces to save space, and made a few
minor edits for clarity. There is a more up to date version of this documentation that forms part of
the latest edition of Patterson and Hennessy [2014].

Study the SPIM stack and calling conventions and compare with mine. While the SPIM
approach is consistent with standard MIPS compilers, mine also works, though it requires a bit of
patching to work around the difference should you ever need to mix code between the two styles. In
practice, everyone writing practical code would use the standard to avoid this sort of inconvenience
– but the aim of this material is learning how things work, and understanding alternative design
choices is part of that.

The SPIM download site http://spimsimulator.sourceforge.net/ contains the up-to-
date documentation and the latest version for your platform of choice.

201

http://spimsimulator.sourceforge.net/


202 APPENDIX E. SPIM BACKGROUND

SPIM S20: A MIPS R2000 Simulator1

“ 1
25

th the performance at none of the cost”

James R. Larus
Computer Sciences Department
University of Wisconsin–Madison
1210 West Dayton Street
Madison, WI 53706, USA
608-262-9519
Copyright ©1990–2010 by James R. Larus (This document may be copied without royalties, so long as this copyright notice remains on it.)

E.1 SPIM

SPIM is a simulator that runs programs for the MIPS R2000/R3000 RISC computers.2

SPIM can read and immediately execute files containing assembly language. SPIM is a
self-contained system for running these programs and contains a debugger and interface
to a few operating system services.

The architecture of the MIPS computers is simple and regular, which makes it easy
to learn and understand. The processor contains 32 general-purpose 32-bit registers and
a well-designed instruction set that make it a propitious target for generating code in a
compiler.

However, the obvious question is: why use a simulator when many people have
workstations that contain a hardware, and hence significantly faster, implementation of
this computer? One reason is that these workstations are not generally available. Another
reason is that these machine will not persist for many years because of the rapid progress
leading to new and faster computers. Unfortunately, the trend is to make computers
faster by executing several instructions concurrently, which makes their architecture more
difficult to understand and program. The MIPS architecture may be the epitome of a
simple, clean RISC machine.

In addition, simulators can provide a better environment for low-level programming
than an actual machine because they can detect more errors and provide more features

1 I grateful to the many students at UW who used SPIM in their courses and happily found bugs in
a professor’s code. In particular, the students in CS536, Spring 1990, painfully found the last few
bugs in an “already-debugged” simulator. I am grateful for their patience and persistence. Alan
Yuen-wui Siow wrote the X-window interface.

2For a description of the real machines, see Gerry Kane and Joe Heinrich, MIPS RISC Architecture,
Prentice Hall, 1992.



SPIM 203

than an actual computer. For example, SPIM has an X-window interface that is better
than most debuggers for the actual machines.

Finally, simulators are an useful tool for studying computers and the programs that
run on them. Because they are implemented in software, not silicon, they can be easily
modified to add new instructions, build new systems such as multiprocessors, or simply
to collect data.

E.1.1 Simulation of a Virtual Machine

The MIPS architecture, like that of most RISC computers, is difficult to program directly
because of its delayed branches, delayed loads, and restricted address modes. This
difficulty is tolerable since these computers were designed to be programmed in high-
level languages and so present an interface designed for compilers, not programmers. A
good part of the complexity results from delayed instructions. A delayed branch takes two
cycles to execute. In the second cycle, the instruction immediately following the branch
executes. This instruction can perform useful work that normally would have been done
before the branch or it can be a nop (no operation). Similarly, delayed loads take two
cycles so the instruction immediately following a load cannot use the value loaded from
memory.

MIPS wisely choose to hide this complexity by implementing a virtual machine
with their assembler. This virtual computer appears to have non-delayed branches and
loads and a richer instruction set than the actual hardware. The assembler reorganizes
(rearranges) instructions to fill the delay slots. It also simulates the additional, pseudoin-
structions by generating short sequences of actual instructions.

By default, SPIM simulates the richer, virtual machine. It can also simulate the actual
hardware. We will describe the virtual machine and only mention in passing features that
do not belong to the actual hardware. In doing so, we are following the convention of
MIPS assembly language programmers (and compilers), who routinely take advantage of
the extended machine. Instructions marked with a dagger (†) are pseudoinstructions.

E.1.2 SPIM Interface

See online documentation and help features for the QtSPIM interface. Details are also
documented in the main text.

E.1.3 Surprising Features

Although SPIM faithfully simulates the MIPS computer, it is a simulator and certain
things are not identical to the actual computer. The most obvious differences are that



204 APPENDIX E. SPIM BACKGROUND

instruction timing and the memory systems are not identical. SPIM does not simulate
caches or memory latency, nor does it accurate reflect the delays for floating point
operations or multiplies and divides.

Another surprise (which occurs on the real machine as well) is that a pseudoin-
struction expands into several machine instructions. When single-stepping or examining
memory, the instructions that you see are slightly different from the source program. The
correspondence between the two sets of instructions is fairly simple since SPIM does not
reorganize the instructions to fill delay slots.

E.1.4 Assembler Syntax
Comments in assembler files begin with a sharp-sign (#). Everything from the sharp-sign
to the end of the line is ignored.

Identifiers are a sequence of alphanumeric characters, underbars (_), and dots (.) that
do not begin with a number. Opcodes for instructions are reserved words that are not
valid identifiers. Labels are declared by putting them at the beginning of a line followed
by a colon, for example:

.data
item: .word 1

.text

.globl main # Must be global
main: lw $t0, item

Strings are enclosed in double-quotes ("). Special characters in strings follow the C
convention:

newline \n
tab \t
quote \"

SPIM supports a subset of the assembler directives provided by the MIPS assembler:

.align n
Align the next datum on a 2n byte boundary. For example, .align 2 aligns the
next value on a word boundary. .align 0 turns off automatic alignment of .half,
.word, .float, and .double directives until the next .data or .kdata directive.

.ascii str
Store the string in memory, but do not null-terminate it.

.asciiz str
Store the string in memory and null-terminate it.



SPIM 205

.byte b1, ..., bn
Store the n values in successive bytes of memory.

.comm sym size
Allocate size bytes of data segment for symbol sym.

.data <addr>
The following data items should be stored in the data segment. If the optional
argument addr is present, the items are stored beginning at address addr.

.double d1, ..., dn
Store the n floating point double precision numbers in successive memory loca-
tions.

.extern sym size
Declare that the datum stored at sym is size bytes large and is a global symbol.
This directive enables the assembler to store the datum in a portion of the data
segment that is efficiently accessed via register $gp.

.float f1, ..., fn
Store the n floating point single precision numbers in successive memory locations.

.globl sym
Declare that symbol sym is global and can be referenced from other files.

.half h1, ..., hn
Store the n 16-bit quantities in successive memory halfwords.

.kdata <addr>
The following data items should be stored in the kernel data segment. If the
optional argument addr is present, the items are stored beginning at address addr.

.ktext <addr>
The next items are put in the kernel text segment. In SPIM, these items may only
be instructions or words (see the .word directive below). If the optional argument
addr is present, the items are stored beginning at address addr.

.label sym
Declare that symbol sym is a label.

.lcomm sym size
Allocate size bytes for symbol sym in the portion of the data segment that can be
accessed via register $gp.



206 APPENDIX E. SPIM BACKGROUND

.space n
Allocate n bytes of space in the current segment (which must be the data segment
in SPIM).

.set noat
Permit the program to refer to the $at register explicitly, and forbid SPIM from
generating pseudoinstructions that modify $at.

.set at
Forbid the program from referring to the $at register explicitly, and permit SPIM
to generate pseudoinstructions that modify $at (the default).

.text <addr>
The next items are put in the user text segment. In SPIM, these items may only
be instructions or words (see the .word directive below). If the optional argument
addr is present, the items are stored beginning at address addr.

.word w1, ..., wn
Store the n 32-bit quantities in successive memory words.

SPIM does not distinguish various parts of the data segment (.data, .rdata, and
.sdata).

E.1.5 System Calls
SPIM provides a small set of operating-system-like services through the system call
(syscall) instruction. To request a service, a program loads the system call code (see
Table E.1) into register $v0 and the arguments into registers $a0. . .$a3 (or $f12 for
floating point values). System calls that return values put their result in register $v0
(or $f0 for floating point results). For example, to print “the answer = 5”, use the
commands:

.data
str: .asciiz "the answer = "

.text
li $v0, 4 # system call code for print_str
la $a0, str # address of string to print
syscall # print the string

li $v0, 1 # system call code for print_int
li $a0, 5 # integer to print
syscall # print it



SPIM 207

Service System Call Code Arguments Result
print_int 1 $a0 = integer
print_float 2 $f12 = float
print_double 3 $f12 = double
print_string 4 $a0 = string
read_int 5 integer (in $v0)
read_float 6 float (in $f0)
read_double 7 double (in $f0)
read_string 8 $a0 = buffer, $a1 = length
sbrk 9 $a0 = amount address (in $v0)
exit 10
print_character 11 $a0 = character
read_character 12 character (in $v0)
open 13 $a0 = filename, file descriptor (in $v0)

$a1 = flags, $a2 = mode
read 14 $a0 = file descriptor, bytes read (in $v0)

$a1 = buffer, $a2 = count
write 15 $a0 = file descriptor, bytes written (in $v0)

$a1 = buffer, $a2 = count
close 16 $a0 = file descriptor 0 (in $v0)
exit2 17 $a0 = value

Table E.1: System services.

print_int is passed an integer and prints it on the console. print_float prints
a single floating point number. print_double prints a double precision number.
print_string is passed a pointer to a null-terminated string, which it writes to the
console. print_character prints a single ASCII character.

read_int, read_float, and read_double read an entire line of input up to and
including the newline. Characters following the number are ignored. read_string has
the same semantics as the Unix library routine fgets. It reads up to n− 1 characters
into a buffer and terminates the string with a null byte. If there are fewer characters
on the current line, it reads through the newline and again null-terminates the string.
read_character reads a single ASCII character. Warning: programs that use these
syscalls to read from the terminal should not use memory-mapped IO (see Section E.5).

sbrk returns a pointer to a block of memory containing n additional bytes. This
pointer is word aligned. exit stops a program from running. exit2 stops the program
from running and takes an argument, which is the value that spim uses in its call on exit.

open, read, write and close behave the same as the Unix system calls of the same
name. They all return −1 on failure.



208 APPENDIX E. SPIM BACKGROUND

Registers

$0

$31

.

.

.

Arithmetic
Unit

FPU (Coprocessor 1)

BadVAddr

Status

Cause

EPC

Coprocessor 0 (Traps and Memory)

Registers

$0

$31

.

.

.

Arithmetic
Unit

CPU

Multiply
Divide

Lo Hi

Memory

Figure E.1: MIPS R2000 CPU and FPU

E.2 Description of the MIPS R2000
A MIPS processor consists of an integer processing unit (the CPU) and a collection of
coprocessors that perform ancillary tasks or operate on other types of data such as floating
point numbers (see Figure E.1). SPIM simulates two coprocessors. Coprocessor 0 handles
traps, exceptions, and the virtual memory system. SPIM simulates most of the first two
and entirely omits details of the memory system. Coprocessor 1 is the floating point unit.
SPIM simulates most aspects of this unit.

E.2.1 CPU Registers
The MIPS (and SPIM) central processing unit contains 32 general purpose 32-bit registers
that are numbered 0–31. Register n is designated by $n. Register $0 always contains the
hardwired value 0. MIPS has established a set of conventions as to how registers should be
used. These suggestions are guidelines, which are not enforced by the hardware. However
a program that violates them will not work properly with other software. Table E.2 lists
the registers and describes their intended use.

Registers $at (1), $k0 (26), and $k1 (27) are reserved for use by the assembler and
operating system.



Description of the MIPS R2000 209

Register Name Number Usage

zero 0 Constant 0
at 1 Reserved for assembler
v0 2 Expression evaluation and
v1 3 results of a function
a0 4 Argument 1
a1 5 Argument 2
a2 6 Argument 3
a3 7 Argument 4
t0 8 Temporary (not preserved across call)
t1 9 Temporary (not preserved across call)
t2 10 Temporary (not preserved across call)
t3 11 Temporary (not preserved across call)
t4 12 Temporary (not preserved across call)
t5 13 Temporary (not preserved across call)
t6 14 Temporary (not preserved across call)
t7 15 Temporary (not preserved across call)
s0 16 Saved temporary (preserved across call)
s1 17 Saved temporary (preserved across call)
s2 18 Saved temporary (preserved across call)
s3 19 Saved temporary (preserved across call)
s4 20 Saved temporary (preserved across call)
s5 21 Saved temporary (preserved across call)
s6 22 Saved temporary (preserved across call)
s7 23 Saved temporary (preserved across call)
t8 24 Temporary (not preserved across call)
t9 25 Temporary (not preserved across call)
k0 26 Reserved for OS kernel
k1 27 Reserved for OS kernel
gp 28 Pointer to global area
sp 29 Stack pointer
fp or s8 30 Frame pointer
ra 31 Return address (used by function call)

Table E.2: MIPS registers and the convention governing their use.

Registers $a0–$a3 (4–7) are used to pass the first four arguments to routines
(remaining arguments are passed on the stack). Registers $v0 and $v1 (2, 3) are used to
return values from functions. Registers $t0–$t9 (8–15, 24, 25) are caller-saved registers
used for temporary quantities that do not need to be preserved across calls. Registers $s0–
$s7 (16–23) are callee-saved registers that hold long-lived values that should be preserved
across calls.

Register $sp (29) is the stack pointer, which points to the last location in use on the
stack.3 Register $fp (30) is the frame pointer.4 Register $ra (31) is written with the return
address for a call by the jal instruction.

Register $gp (28) is a global pointer that points into the middle of a 64K block of
memory in the heap that holds constants and global variables. The objects in this heap
can be quickly accessed with a single load or store instruction.

In addition, coprocessor 0 contains registers that are useful to handle exceptions.

3In earlier version of SPIM, $sp was documented as pointing at the first free word on the stack
(not the last word of the stack frame). Recent MIPS documents have made it clear that this was
an error. Both conventions work equally well, but we choose to follow the real system.

4The MIPS compiler does not use a frame pointer, so this register is used as callee-saved register
$s8.



210 APPENDIX E. SPIM BACKGROUND

15 012345

Interrupt
Mask

Old Previous Current

K
er

nel
/

U
se

r
In

te
rr
upt

Enab
le

K
er

nel
/

U
se

r
In

te
rr
upt

Enab
le

K
er

nel
/

U
se

r
In

te
rr
upt

Enab
le

8

Figure E.2: The Status register.

2515

Pending
Interrupts

Exception
Code

8

Figure E.3: The Cause register.

SPIM does not implement all of these registers, since they are not of much use in a
simulator or are part of the memory system, which is not implemented. However, it does
provide the following:

Register Name Number Usage
BadVAddr 8 Memory address at which address exception occurred
Status 12 Interrupt mask and enable bits
Cause 13 Exception type and pending interrupt bits
EPC 14 Address of instruction that caused exception

These registers are part of coprocessor 0’s register set and are accessed by the lwc0, mfc0,
mtc0, and swc0 instructions.

Figure E.2 describes the bits in the Status register that are implemented by SPIM.
The interrupt mask contains a bit for each of the eight interrupt levels. If a bit is one,
interrupts at that level are allowed. If the bit is zero, interrupts at that level are disabled.
The low six bits of the Status register implement a three-level stack for the kernel/user
and interrupt enable bits. The kernel/user bit is 0 if the program was running in
the kernel when the interrupt occurred and 1 if it was in user mode. If the interrupt
enable bit is 1, interrupts are allowed. If it is 0, they are disabled. At an interrupt, these
six bits are shifted left by two bits, so the current bits become the previous bits and the
previous bits become the old bits. The current bits are both set to 0 (i.e., kernel mode with
interrupts disabled).

Figure E.3 describes the bits in the Cause register. The eight pending interrupt
bits correspond to the eight interrupt levels. A bit becomes 1 when an interrupt at its level
has occurred but has not been serviced. The exception code bits contain a code from
the following table describing the cause of an exception.



Description of the MIPS R2000 211

Number Name Description
0 INT External interrupt
4 ADDRL Address error exception (load or instruction fetch)
5 ADDRS Address error exception (store)
6 IBUS Bus error on instruction fetch
7 DBUS Bus error on data load or store
8 SYSCALL Syscall exception
9 BKPT Breakpoint exception
10 RI Reserved instruction exception
12 OVF Arithmetic overflow exception

E.2.2 Byte Order
Processors can number the bytes within a word to make the byte with the lowest number
either the leftmost or rightmost one. The convention used by a machine is its byte order.
MIPS processors can operate with either big-endian byte order:

Byte #
0 1 2 3

or little-endian byte order:

Byte #
3 2 1 0

SPIM operates with both byte orders. SPIM’s byte order is determined by the byte order
of the underlying hardware running the simulator. On a DECstation 3100, SPIM is little-
endian, while on a HP Bobcat, Sun 4 or PC/RT, SPIM is big-endian.

E.2.3 Addressing Modes
MIPS is a load/store architecture, which means that only load and store instructions access
memory. Computation instructions operate only on values in registers. The bare machine
provides only one memory addressing mode: c(rx), which uses the sum of the immediate
(integer) c and the contents of register rx as the address. The virtual machine provides
the following addressing modes for load and store instructions:

Format Address Computation
(register) contents of register
imm immediate
imm (register) immediate + contents of register
symbol address of symbol
symbol ± imm address of symbol + or − immediate
symbol (register) address of symbol + contents of register
symbol ± imm (register) (address of symbol + or − immediate) + contents of register



212 APPENDIX E. SPIM BACKGROUND

Most load and store instructions operate only on aligned data. A quantity is aligned if
its memory address is a multiple of its size in bytes. Therefore, a halfword object must
be stored at even addresses and a full word object must be stored at addresses that are
a multiple of 4. However, MIPS provides some instructions for manipulating unaligned
data.

E.2.4 Arithmetic and Logical Instructions

In all instructions below, Src2 can either be a register or an immediate value (a 16
bit integer). The immediate forms of the instructions are only included for reference.
The assembler will translate the more general form of an instruction (e.g., add) into the
immediate form (e.g., addi) if the second argument is constant.

In some cases, the same instruction mnemonic may used for both a real and
a pseudoinstruction. For example, div and mul are both real instructions if all
three operands are registers. If the third operand is an immediate, they become
pseudoinstructions.

abs Rdest, Rsrc Absolute Value †

Put the absolute value of the integer from register Rsrc in register Rdest.

add Rdest, Rsrc1, Src2 Addition (with overflow)

addi Rdest, Rsrc1, Imm Addition Immediate (with overflow)

addu Rdest, Rsrc1, Src2 Addition (without overflow)

addiu Rdest, Rsrc1, Imm Addition Immediate (without overflow)

Put the sum of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

and Rdest, Rsrc1, Src2 AND

andi Rdest, Rsrc1, Imm AND Immediate

Put the logical AND of the integers from register Rsrc1 and Src2 (or Imm) into register
Rdest.

div Rsrc1, Rsrc2 Divide (signed)

divu Rsrc1, Rsrc2 Divide (unsigned)

Divide the contents of the two registers. divu treats is operands as unsigned values.
Leave the quotient in register lo and the remainder in register hi. Note that if an operand
is negative, the remainder is unspecified by the MIPS architecture and depends on the
conventions of the machine on which SPIM is run.

div Rdest, Rsrc1, Src2 Divide (signed, with overflow) †

divu Rdest, Rsrc1, Src2 Divide (unsigned, without overflow) †

Put the quotient of the integers from register Rsrc1 and Src2 into register Rdest. divu
treats is operands as unsigned values.



Description of the MIPS R2000 213

mul Rdest, Rsrc1, Src2 Multiply (without overflow) †

mulo Rdest, Rsrc1, Src2 Multiply (with overflow) †

mulou Rdest, Rsrc1, Src2 Unsigned Multiply (with overflow) †

Put the product of the integers from register Rsrc1 and Src2 into register Rdest.

mult Rsrc1, Rsrc2 Multiply

multu Rsrc1, Rsrc2 Unsigned Multiply

Multiply the contents of the two registers. Leave the low-order word of the product in
register lo and the high-word in register hi.

neg Rdest, Rsrc Negate Value (with overflow) †

negu Rdest, Rsrc Negate Value (without overflow) †

Put the negative of the integer from register Rsrc into register Rdest.

nor Rdest, Rsrc1, Src2 NOR

Put the logical NOR of the integers from register Rsrc1 and Src2 into register Rdest.

not Rdest, Rsrc NOT †

Put the bitwise logical negation of the integer from register Rsrc into register Rdest.

or Rdest, Rsrc1, Src2 OR

ori Rdest, Rsrc1, Imm OR Immediate

Put the logical OR of the integers from register Rsrc1 and Src2 (or Imm) into register
Rdest.

rem Rdest, Rsrc1, Src2 Remainder †

remu Rdest, Rsrc1, Src2 Unsigned Remainder †

Put the remainder from dividing the integer in register Rsrc1 by the integer in Src2 into
register Rdest. Note that if an operand is negative, the remainder is unspecified by the
MIPS architecture and depends on the conventions of the machine on which SPIM is run.

rol Rdest, Rsrc1, Src2 Rotate Left †

ror Rdest, Rsrc1, Src2 Rotate Right †

Rotate the contents of register Rsrc1 left (right) by the distance indicated by Src2 and
put the result in register Rdest.

sll Rdest, Rsrc1, Src2 Shift Left Logical

sllv Rdest, Rsrc1, Rsrc2 Shift Left Logical Variable

sra Rdest, Rsrc1, Src2 Shift Right Arithmetic

srav Rdest, Rsrc1, Rsrc2 Shift Right Arithmetic Variable

srl Rdest, Rsrc1, Src2 Shift Right Logical

srlv Rdest, Rsrc1, Rsrc2 Shift Right Logical Variable

Shift the contents of register Rsrc1 left (right) by the distance indicated by Src2 (Rsrc2)
and put the result in register Rdest.



214 APPENDIX E. SPIM BACKGROUND

sub Rdest, Rsrc1, Src2 Subtract (with overflow)

subu Rdest, Rsrc1, Src2 Subtract (without overflow)

Put the difference of the integers from register Rsrc1 and Src2 into register Rdest.

xor Rdest, Rsrc1, Src2 XOR

xori Rdest, Rsrc1, Imm XOR Immediate

Put the logical XOR of the integers from register Rsrc1 and Src2 (or Imm) into register
Rdest.

E.2.5 Constant-Manipulating Instructions

li Rdest, imm Load Immediate †

Move the immediate imm into register Rdest.

lui Rdest, imm Load Upper Immediate

Load the lower halfword of the immediate imm into the upper halfword of register Rdest.
The lower bits of the register are set to 0.

E.2.6 Comparison Instructions
In all instructions below, Src2 can either be a register or an immediate value (a 16 bit
integer).

seq Rdest, Rsrc1, Src2 Set Equal †

Set register Rdest to 1 if register Rsrc1 equals Src2 and to be 0 otherwise.

sge Rdest, Rsrc1, Src2 Set Greater Than Equal †

sgeu Rdest, Rsrc1, Src2 Set Greater Than Equal Unsigned †

Set register Rdest to 1 if register Rsrc1 is greater than or equal to Src2 and to 0 otherwise.

sgt Rdest, Rsrc1, Src2 Set Greater Than †

sgtu Rdest, Rsrc1, Src2 Set Greater Than Unsigned †

Set register Rdest to 1 if register Rsrc1 is greater than Src2 and to 0 otherwise.

sle Rdest, Rsrc1, Src2 Set Less Than Equal †

sleu Rdest, Rsrc1, Src2 Set Less Than Equal Unsigned †

Set register Rdest to 1 if register Rsrc1 is less than or equal to Src2 and to 0 otherwise.

slt Rdest, Rsrc1, Src2 Set Less Than

slti Rdest, Rsrc1, Imm Set Less Than Immediate

sltu Rdest, Rsrc1, Src2 Set Less Than Unsigned

sltiu Rdest, Rsrc1, Imm Set Less Than Unsigned Immediate

Set register Rdest to 1 if register Rsrc1 is less than Src2 (or Imm) and to 0 otherwise.



Description of the MIPS R2000 215

sne Rdest, Rsrc1, Src2 Set Not Equal †

Set register Rdest to 1 if register Rsrc1 is not equal to Src2 and to 0 otherwise.

E.2.7 Branch and Jump Instructions
In all instructions below, Src2 can either be a register or an immediate value (integer).
Branch instructions use a signed 16-bit offset field; hence they can jump 215 − 1
instructions (not bytes) forward or 215 instructions backwards. The jump instruction
contains a 26 bit address field.

b label Branch instruction †

Unconditionally branch to the instruction at the label.

bczt label Branch Coprocessor z True

bczf label Branch Coprocessor z False

Conditionally branch to the instruction at the label if coprocessor z’s condition flag is true
(false).

beq Rsrc1, Src2, label Branch on Equal

Conditionally branch to the instruction at the label if the contents of register Rsrc1 equals
Src2.

beqz Rsrc, label Branch on Equal Zero †

Conditionally branch to the instruction at the label if the contents of Rsrc equals 0.

bge Rsrc1, Src2, label Branch on Greater Than Equal †

bgeu Rsrc1, Src2, label Branch on GTE Unsigned †

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are
greater than or equal to Src2.

bgez Rsrc, label Branch on Greater Than Equal Zero

Conditionally branch to the instruction at the label if the contents of Rsrc are greater than
or equal to 0.

bgezal Rsrc, label Branch on Greater Than Equal Zero And Link

Conditionally branch to the instruction at the label if the contents of Rsrc are greater than
or equal to 0. Save the address of the next instruction in register 31.

bgt Rsrc1, Src2, label Branch on Greater Than †

bgtu Rsrc1, Src2, label Branch on Greater Than Unsigned †

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are
greater than Src2.

bgtz Rsrc, label Branch on Greater Than Zero

Conditionally branch to the instruction at the label if the contents of Rsrc are greater than
0.



216 APPENDIX E. SPIM BACKGROUND

ble Rsrc1, Src2, label Branch on Less Than Equal †

bleu Rsrc1, Src2, label Branch on LTE Unsigned †

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are
less than or equal to Src2.

blez Rsrc, label Branch on Less Than Equal Zero

Conditionally branch to the instruction at the label if the contents of Rsrc are less than or
equal to 0.

bgezal Rsrc, label Branch on Greater Than Equal Zero And Link

bltzal Rsrc, label Branch on Less Than And Link

Conditionally branch to the instruction at the label if the contents of Rsrc are greater or
equal to 0 or less than 0, respectively. Save the address of the next instruction in register
31.

blt Rsrc1, Src2, label Branch on Less Than †

bltu Rsrc1, Src2, label Branch on Less Than Unsigned †

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are
less than Src2.

bltz Rsrc, label Branch on Less Than Zero

Conditionally branch to the instruction at the label if the contents of Rsrc are less than 0.

bne Rsrc1, Src2, label Branch on Not Equal

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are
not equal to Src2.

bnez Rsrc, label Branch on Not Equal Zero †

Conditionally branch to the instruction at the label if the contents of Rsrc are not equal to
0.

j label Jump

Unconditionally jump to the instruction at the label.

jal label Jump and Link

jalr Rsrc Jump and Link Register

Unconditionally jump to the instruction at the label or whose address is in register Rsrc.
Save the address of the next instruction in register 31.

jr Rsrc Jump Register

Unconditionally jump to the instruction whose address is in register Rsrc; the SPIM
assembler is kind and translates a j instruction as a jr instruction if the operand is a
register.



Description of the MIPS R2000 217

E.2.8 Load Instructions

la Rdest, address Load Address †

Load computed address, not the contents of the location, into register Rdest.

lb Rdest, address Load Byte

lbu Rdest, address Load Unsigned Byte

Load the byte at address into register Rdest. The byte is sign-extended by the lb, but not
the lbu, instruction.

ld Rdest, address Load Double-Word †

Load the 64-bit quantity at address into registers Rdest and Rdest + 1.

lh Rdest, address Load Halfword

lhu Rdest, address Load Unsigned Halfword

Load the 16-bit quantity (halfword) at address into register Rdest. The halfword is sign-
extended by the lh, but not the lhu, instruction

lw Rdest, address Load Word

Load the 32-bit quantity (word) at address into register Rdest.

lwcz Rdest, address Load Word Coprocessor

Load the word at address into register Rdest of coprocessor z (0–3).

lwl Rdest, address Load Word Left

lwr Rdest, address Load Word Right

Load the left (right) bytes from the word at the possibly-unaligned address into register
Rdest.

ulh Rdest, address Unaligned Load Halfword †

ulhu Rdest, address Unaligned Load Halfword Unsigned †

Load the 16-bit quantity (halfword) at the possibly-unaligned address into register Rdest.
The halfword is sign-extended by the ulh, but not the ulhu, instruction

ulw Rdest, address Unaligned Load Word †

Load the 32-bit quantity (word) at the possibly-unaligned address into register Rdest.

E.2.9 Store Instructions

sb Rsrc, address Store Byte

Store the low byte from register Rsrc at address.

sd Rsrc, address Store Double-Word †

Store the 64-bit quantity in registers Rsrc and Rsrc + 1 at address.



218 APPENDIX E. SPIM BACKGROUND

sh Rsrc, address Store Halfword

Store the low halfword from register Rsrc at address.

sw Rsrc, address Store Word

Store the word from register Rsrc at address.

swcz Rsrc, address Store Word Coprocessor

Store the word from register Rsrc of coprocessor z at address.

swl Rsrc, address Store Word Left

swr Rsrc, address Store Word Right

Store the left (right) bytes from register Rsrc at the possibly-unaligned address.

ush Rsrc, address Unaligned Store Halfword †

Store the low halfword from register Rsrc at the possibly-unaligned address.

usw Rsrc, address Unaligned Store Word †

Store the word from register Rsrc at the possibly-unaligned address.

E.2.10 Data Movement Instructions

move Rdest, Rsrc Move †

Move the contents of Rsrc to Rdest.

The multiply and divide unit produces its result in two additional registers, HI and LO.
These instructions move values to and from these registers. The multiply, divide, and
remainder instructions described above are pseudoinstructions that make it appear as if
this unit operates on the general registers and detect error conditions such as divide by
zero or overflow.

mfhi Rdest Move From hi

mflo Rdest Move From lo

Move the contents of the hi (lo) register to register Rdest.

mthi Rdest Move To hi

mtlo Rdest Move To lo

Move the contents register Rdest to the hi (lo) register.

Coprocessors have their own register sets. These instructions move values between these
registers and the CPU’s registers.

mfcz Rdest, CPsrc Move From Coprocessor z

Move the contents of coprocessor z’s register CPsrc to CPU register Rdest.



Description of the MIPS R2000 219

mfc1.d Rdest, FRsrc1 Move Double From Coprocessor 1 †

Move the contents of floating point registers FRsrc1 and FRsrc1 + 1 to CPU registers
Rdest and Rdest + 1.

mtcz Rsrc, CPdest Move To Coprocessor z

Move the contents of CPU register Rsrc to coprocessor z’s register CPdest.

E.2.11 Floating Point Instructions
The MIPS has a floating point coprocessor (numbered 1) that operates on single precision
(32-bit) and double precision (64-bit) floating point numbers. This coprocessor has its
own registers, which are numbered $f0–$f31. Because these registers are only 32-
bits wide, two of them are required to hold doubles. To simplify matters, floating
point operations only use even-numbered registers—including instructions that operate
on single floats.

Values are moved in or out of these registers a word (32-bits) at a time by lwc1,
swc1, mtc1, and mfc1 instructions described above or by the l.s, l.d, s.s, and s.d
pseudoinstructions described below. The flag set by floating point comparison operations
is read by the CPU with its bc1t and bc1f instructions.

In all instructions below, FRdest, FRsrc1, FRsrc2, and FRsrc are floating point
registers (e.g., $f2).

abs.d FRdest, FRsrc Floating Point Absolute Value Double

abs.s FRdest, FRsrc Floating Point Absolute Value Single

Compute the absolute value of the floating float double (single) in register FRsrc and put
it in register FRdest.

add.d FRdest, FRsrc1, FRsrc2 Floating Point Addition Double

add.s FRdest, FRsrc1, FRsrc2 Floating Point Addition Single

Compute the sum of the floating float doubles (singles) in registers FRsrc1 and FRsrc2
and put it in register FRdest.

c.eq.d FRsrc1, FRsrc2 Compare Equal Double

c.eq.s FRsrc1, FRsrc2 Compare Equal Single

Compare the floating point double in register FRsrc1 against the one in FRsrc2 and set
the floating point condition flag true if they are equal.

c.le.d FRsrc1, FRsrc2 Compare Less Than Equal Double

c.le.s FRsrc1, FRsrc2 Compare Less Than Equal Single

Compare the floating point double in register FRsrc1 against the one in FRsrc2 and set
the floating point condition flag true if the first is less than or equal to the second.

c.lt.d FRsrc1, FRsrc2 Compare Less Than Double

c.lt.s FRsrc1, FRsrc2 Compare Less Than Single



220 APPENDIX E. SPIM BACKGROUND

Compare the floating point double in register FRsrc1 against the one in FRsrc2 and set
the condition flag true if the first is less than the second.

cvt.d.s FRdest, FRsrc Convert Single to Double

cvt.d.w FRdest, FRsrc Convert Integer to Double

Convert the single precision floating point number or integer in register FRsrc to a double
precision number and put it in register FRdest.

cvt.s.d FRdest, FRsrc Convert Double to Single

cvt.s.w FRdest, FRsrc Convert Integer to Single

Convert the double precision floating point number or integer in register FRsrc to a single
precision number and put it in register FRdest.

cvt.w.d FRdest, FRsrc Convert Double to Integer

cvt.w.s FRdest, FRsrc Convert Single to Integer

Convert the double or single precision floating point number in register FRsrc to an
integer and put it in register FRdest.

div.d FRdest, FRsrc1, FRsrc2 Floating Point Divide Double

div.s FRdest, FRsrc1, FRsrc2 Floating Point Divide Single

Compute the quotient of the floating float doubles (singles) in registers FRsrc1 and
FRsrc2 and put it in register FRdest.

l.d FRdest, address Load Floating Point Double †

l.s FRdest, address Load Floating Point Single †

Load the floating float double (single) at address into register FRdest.

mov.d FRdest, FRsrc Move Floating Point Double

mov.s FRdest, FRsrc Move Floating Point Single

Move the floating float double (single) from register FRsrc to register FRdest.

mul.d FRdest, FRsrc1, FRsrc2 Floating Point Multiply Double

mul.s FRdest, FRsrc1, FRsrc2 Floating Point Multiply Single

Compute the product of the floating float doubles (singles) in registers FRsrc1 and
FRsrc2 and put it in register FRdest.

neg.d FRdest, FRsrc Negate Double

neg.s FRdest, FRsrc Negate Single

Negate the floating point double (single) in register FRsrc and put it in register FRdest.

s.d FRdest, address Store Floating Point Double †

s.s FRdest, address Store Floating Point Single †

Store the floating float double (single) in register FRdest at address.

sub.d FRdest, FRsrc1, FRsrc2 Floating Point Subtract Double

sub.s FRdest, FRsrc1, FRsrc2 Floating Point Subtract Single



Memory Usage 221

Reserved

Text Segment

Data Segment

Stack Segment

0x400000

0x7fffffff

0x10000000

Figure E.4: Layout of memory.

Compute the difference of the floating float doubles (singles) in registers FRsrc1 and
FRsrc2 and put it in register FRdest.

E.2.12 Exception and Trap Instructions

rfe Restore From Exception

Restore the Status register.

syscall System Call

Register $v0 contains the number of the system call (see Table E.1) provided by SPIM.

break n Break

Cause exception n. Exception 1 is reserved for the debugger.

nop No operation

Do nothing.



222 APPENDIX E. SPIM BACKGROUND

      .
      .
      .
local variables
      .
      .
      .

      .
      .
      .
dynamic area
      .
      .
      .

memory
addresses

$fp

$sp

argument 5

argument 6

...

arguments 1−4      
      .
      .
saved registers
      .
      .
      .

Figure E.5: Layout of a stack frame. The frame pointer points just below the
last argument passed on the stack. The stack pointer points to the last word in
the frame.

E.3 Memory Usage
The organization of memory in MIPS systems is conventional. A program’s address space
is composed of three parts (see Figure E.4).

At the bottom of the user address space (0x400000) is the text segment, which holds
the instructions for a program.

Above the text segment is the data segment (starting at 0x10000000), which is divided
into two parts. The static data portion contains objects whose size and address are known
to the compiler and linker. Immediately above these objects is dynamic data. As a
program allocates space dynamically (i.e., by malloc), the sbrk system call moves the
top of the data segment up.

The program stack resides at the top of the address space (0x7fffffff). It grows down,
towards the data segment.

E.4 Calling Convention
The calling convention described in this section is the one used by gcc, not the native
MIPS compiler, which uses a more complex convention that is slightly faster.

Figure E.5 shows a diagram of a stack frame. A frame consists of the memory between



Input and Output 223

the frame pointer ($fp), which points to the word immediately after the last argument
passed on the stack, and the stack pointer ($sp), which points to the last word in the
frame. As typical of Unix systems, the stack grows down from higher memory addresses,
so the frame pointer is above stack pointer.

The following steps are necessary to effect a call:

1. Pass the arguments. By convention, the first four arguments are passed in registers
$a0–$a3 (though simpler compilers may choose to ignore this convention and pass
all arguments via the stack). The remaining arguments are pushed on the stack.

2. Save the caller-saved registers. This includes registers $t0–$t9, if they contain
live values at the call site.

3. Execute a jal instruction.

Within the called routine, the following steps are necessary:

1. Establish the stack frame by subtracting the frame size from the stack pointer.

2. Save the callee-saved registers in the frame. Register $fp is always saved. Register
$ra needs to be saved if the routine itself makes calls. Any of the registers $s0–$s7
that are used by the callee need to be saved.

3. Establish the frame pointer by adding the stack frame size - 4 to the address in $sp.

Finally, to return from a call, a function places the returned value into $v0 and
executes the following steps:

1. Restore any callee-saved registers that were saved upon entry (including the frame
pointer $fp).

2. Pop the stack frame by adding the frame size to $sp.

3. Return by jumping to the address in register $ra.

E.5 Input and Output
In addition to simulating the basic operation of the CPU and operating system, SPIM
also simulates a memory-mapped terminal connected to the machine. When a program
is “running”, SPIM connects its own terminal that appears as a separate console window.
The program can read characters that you type while the processor is running. Similarly, if
SPIM executes instructions to write characters to the terminal, the characters will appear
on SPIM’s console window. To use memory-mapped IO, the Enable Memory-Mapped IO
setting must be enabled in QtSPIM’s options.



224 APPENDIX E. SPIM BACKGROUND

1 1

Interrupt
Enable

Ready

Receiver Control
(0xffff0000)

1 1

Interrupt
Enable

Ready

Transmitter Control
(0xffff0008)

Receiver Data
(0xffff0004)

8

Received Byte

Transmitter Data
(0xffff000c)

8

Transmitted Byte

Unused

Unused

Unused

Unused

Figure E.6: The terminal is controlled by four device registers, each of which
appears as a special memory location at the given address. Only a few bits of
the registers are actually used: the others always read as zeroes and are ignored
on writes.

The terminal device consists of two independent units: a receiver and a transmitter.
The receiver unit reads characters from the keyboard as they are typed. The transmitter
unit writes characters to the terminal’s display. The two units are completely independent.
This means, for example, that characters typed at the keyboard are not automatically
“echoed” on the display. Instead, the processor must get an input character from the
receiver and re-transmit it to echo it.

The processor accesses the terminal using four memory-mapped device registers, as
shown in Figure E.6. “Memory-mapped” means that each register appears as a special
memory location. The Receiver Control Register is at location 0xffff0000; only two of
its bits are actually used. Bit 0 is called “ready”: if it is one it means that a character
has arrived from the keyboard but has not yet been read from the receiver data register.
The ready bit is read-only: attempts to write it are ignored. The ready bit changes
automatically from zero to one when a character is typed at the keyboard, and it changes
automatically from one to zero when the character is read from the receiver data register.

Bit one of the Receiver Control Register is “interrupt enable”. This bit may be both
read and written by the processor. The interrupt enable is initially zero. If it is set to one
by the processor, an interrupt is requested by the terminal on level zero (bit 8 of Status and
Cause registers) whenever the ready bit is one. For the interrupt actually to be received by



Input and Output 225

the processor, interrupts must be enabled in the status register of the system coprocessor
(see Section E.2).

Other bits of the Receiver Control Register are unused: they always read as zeroes
and are ignored in writes.

The second terminal device register is the Receiver Data Register (at address
0xffff0004). The low-order eight bits of this register contain the last character typed
on the keyboard, and all the other bits contain zeroes. This register is read-only and only
changes value when a new character is typed on the keyboard. Reading the Receiver Data
Register causes the ready bit in the Receiver Control Register to be reset to zero.

The third terminal device register is the Transmitter Control Register (at address
0xffff0008). Only the low-order two bits of this register are used, and they behave much
like the corresponding bits of the Receiver Control Register. Bit 0 is called “ready” and
is read-only. If it is one it means the transmitter is ready to accept a new character for
output. If it is zero it means the transmitter is still busy outputting the previous character
given to it. Bit one is “interrupt enable”; it is readable and writable. If it is set to one, then
an interrupt will be requested on level one (bit 9 of Status and Cause registers) whenever
the ready bit is one.

The final device register is the Transmitter Data Register (at address 0xffff000c).
When it is written, the low-order eight bits are taken as an ASCII character to output to the
display. When the Transmitter Data Register is written, the ready bit in the Transmitter
Control Register will be reset to zero. The bit will stay zero until enough time has
elapsed to transmit the character to the terminal; then the ready bit will be set back to
one again. The Transmitter Data Register should only be written when the ready bit of
the Transmitter Control Register is one; if the transmitter isn’t ready then writes to the
Transmitter Data Register are ignored (the write appears to succeed but the character will
not be output).

In real computers it takes time to send characters over the serial lines that connect
terminals to computers. These time lags are simulated by SPIM. For example, after the
transmitter starts transmitting a character, the transmitter’s ready bit will become zero for
a while. SPIM measures this time in instructions executed, not in real clock time. This
means that the transmitter will not become ready again until the processor has executed
a certain number of instructions. If you stop the machine and look at the ready bit using
SPIM, it will not change. However, if you let the machine run then the bit will eventually
change back to one.



Index

<, 225–227, see also shell: redirect
>, see also shell: redirect
|, see shell: pipe
*/, see C: comments
/*, see C: comments
//, see C: comments

absolute address, see address
adder, see full adder, half adder
address

absolute, 169
relative, 169

aligned data, see MIPS
Amdahl’s Law, see exercise, speedup formula
and, 25, see also logic symbol, truth table
arithmetic shift, see shift
array, 130–136, see also C, exercise: C array

size
indexing, 135–136, 138
offset, 138
pointer, 129, 205, 241–245

ASCIIZ, see string
assignment, see also C

base conversion, 26–28, 33, see also exercise
fraction, 33
integer, 26, 27

bash, see shell: script
bias, see negatives: floating point
binary tree, see tree
bitsort, see sorting, exercise
boolean, 20, 21, see also logic
branch delay slot, 101, 177
break, 139, see also template

C
array, 205

create, 243
size, 242

assignment, 205–207
cast, 239
comments, 263
function, see also exit, free, malloc

formats, 236
fprintf, 237, 238
fscanf, 237
isdigit, 263
isspace, 263
printf, 235
scanf, 232

header
ctype.h, 263
stdbnool.h, 266
stdio.h, 195
stdlib.h, 249, 266
string.h, 268

header
stdbool.h, 223
stdlib.h, 242

string, 205
C files

executable, 195
header, 194, 210

preprocessor guards, 251–252
system, 195
user, 195

library, 194
object, 194

226



INDEX 227

source, 194
cache, see memory hierarchy
call stack, see stack: function call, stack frame
call tree, see exercise,function call
cast, see C
cat, see shell
code segment, see segment: text
complexity class, 173
compound statement, see statement
conditional, see expression
continue, 140, see also template
ctype.h, see C: header

data segment, see segment
data structure, see offset: data structure
De Morgan’s Laws, 23, see also truth table

exercise321
debugger, 169
declaration, 196, see also definition, exercise
definition, 196, see also declaration, exercise
delayed branch, 101, 177
directory listing, see shell, exercise
dispatch table, 139, 162, see also exercise, jump

table
switch, 140

double, 32, see also registers: conventions
dynamic instruction count, see instruction count,

exercise
dynamic linking, see linker, dynamic
dynamic memory allocation, 144–145, see also

malloc, free, exercise

end of file, see EOF
energy efficiency, 186
EOF, 238
excess, see negatives: floating point
exclusive or, see xor
executable, see C files
exercise

Amdahl’s Law, 188, 189
base conversion, 47
bitsort, 284
C array size, 247
C paramater passing, 245–247
call tree, 122

De Morgan’s Laws, 47
declaration, 212
definition, 212
directory listing, 228
dispatch table, 170
dynamic instruction count, 18, 170
dynamic memory allocation, 170–171
expression, 213
fibonacci, 122
floating point, 47, 78
full adder, 47
globals, 121
GPGPU, 188
GPU, 189
interrupt vector, 189
jal, 120
logic circuit, 47
Makefile, 283
man, 229
mergesort, 282
objects, 171
operator, 213
overflow detection, 48, 76
permissions, 228
pipelines, 188
precedence, 213
pseudoinstruction, 76
qsort, 284
recursion, 122
register conventions, 48
shell, 228–230
sort, 229
stack frame, 122
static instruction count, 170
strlen, 169
switch, 78
system path, 228, 229
tree, 282, 283
truth table, 47
which, 229

exit
C, 266
MIPS, 83, 101

expression, 194, 202, see also exercise



228 INDEX

conditional, 202
operator, 203
precedence, 203

fibonacci, see recursion: MIPS, exercise
file IO, see fprintf, fscanf
file read, see read file
floating point, 29, 166, see also double, negat-

ives, registers: conventions, exercise
example, 74
IEEE standard, 31

example, 32
sizes, 32

formats, see C: function
$fp, see function call: frame pointer, registers:

conventions
fprintf, see C: function
frame pointer, see function call
free, 144–150, 242–245, 249, see also dy-

namic memory allocation
FreeBSD, 215
fscanf, see C: function
full adder, 36, 38, see also exercise, logic

circuit, truth table
function call, 80–83, see also stack frame

call tree, 82–116
frame pointer, 102–105, 108, 109, 112,

119
interior, 82
jal, 84, 86–88, 99–102, 104
jalr, 84
leaf, 83
parameters, 79, 82, 88, 89, 91, 102, 104–

107, 110–112, 114, 118, 119
return, 84, 85, 105
main, 101, 107

return address, 84, 86–88, 91, 99–105,
107, 118, 119

root, 82
stack pointer, 100, 102–105, 108–110, 112

function pointer, 249–250
type, 276

gates, see and, or, not, universal gate, xor

general-purpose computing on graphics pro-
cessing units (GPGPU), 13, 179, 180

global pointer, 146
global pointer ($gp), 93, 98, 168
globals, 93, 146, 197, see also offset: globals,

global pointer
$gp, see global pointer
GPGPU, see exercise, general-purpose comput-

ing on graphics processing units
GPU, see exercise, graphics processing unit
graphics processing unit (GPU), 13, 35, 179,

180, 187, 190

half adder, 35, see also logic circuit, truth table
header, see C files
heap, 145, 241, 243, see also dynamic memory

allocation
HI register, see MIPS

if, see template
ifndef preprocessor guards, see C files: header
#include, 195
inheritance, see methods
inorder traversal, see tree
input and output, 184
instruction count, see also exercise

dynamic, 8, 175
static, 8

instruction formats, 50
immediate, 51
J, 51
R, 50

interior function, see function call
interrupt vector, 185, see also exercise, jump

table
IO, see input and output
isdigit, see C: function
isspace, see C: function

jal, see exercise, function call
jalr, see function call
jump table, 139, see also dispatch table
jump target address, 84

leaf function, see function call
less, see shell



INDEX 229

library, see C files
linked list, 143, 149, 150
linker, 81, 93, 102, 168, 211

dynamic, 169
static, 169

Linux, 215
LO register, see MIPS
load address, see pseudoinstruction
load immediate, see pseudoinstruction
local variables, 95, 97, 101, 102, 104–113, 197
locality

spatial, 181
temporal, 181

logic
circuit

full adder, 37
half adder, 36
not, 21

identities, 23
notation, 22
symbol

and, 25
nand, 25
or, 25
xor, 25

logic circuit, see also exercise
logical shift, see shift
loops, see also template
ls, see shell

Mac OS X, 215
macro, see preprocessor
main

C, 193, 196, 208
command line, 267
parameters, 209, 267–269

MIPS, 40, 42, 44, 83, 86, 208
main return, see function call: return
make, 270–275
Makefile, see make, exercise
makefile, see make
malloc, 144–150, 242–245, 249, see also dy-

namic memory allocation
man, see shell, exercise
manual page, see man

memory hierarchy
cache, 181–182
paging device, 182

memory timing, see time formula
mergesort, see sorting, exercise
methods, 161–165

inheritance, 162
method table, 166
parameters, 167

MIPS
address

absolute, 54
offsets, 59
relative, 54

aligned data, 63
branch offset, 45
HI register, 65
LO register, 65
load address, 55
multiply, 64
registers, 53

stack pointer, 59
unsigned operations, 61, 62, 64

multicore, 178
multiply, see MIPS, MIPS: HI, LO

nand, 25, see also logic symbol, truth table,
universal gate

negatives
floating point, 31

bias, 31
excess, 31

one’s complement, 29
signed magnitude, 29, 31
two’s complement, 28

overflow detection, 30
nor, see universal gate
number representation, see floating point, neg-

atives

object file, see C files
objects, 160–168, see also exercise
offset, 84, see also stack: function call, array

data structure, 108, 154
globals, 93, 97



230 INDEX

stack, 80, 81, 103, 108–110, 119
one’s complement, see negatives
operator, see expression, exercise
or, 25, see also logic symbol, truth table
output, see input and output
overflow detection, see negatives: two’s com-

plement, exercise

paging device, see memory hierarchy
parameters, see exercise: C parameter passing,

function call, main, methods, prepro-
cessor, stack frame

path, 216, see shell, exercise: system path
permissions, see shell, exercise
pipe, see shell
pipelines, 173–178, see also exercise

stall, 177
pointer, 129, 154, see also function pointer,

array
precedence, see expression, exercise
preprocessor, 195–196, 252

macro, 195, 251
parameters, 279, 281
SWAP, 279–280

preprocessor guards, see C files: header
printf, 193, see C: function
pseudoinstruction, 9, 45, 46, see also exercise

load address, 56
load immediate, 42

pwd, see shell, working directory

qsort, see sorting: quicksort, exercise
quicksort, see qsort, sorting

$ra, see function call: return address, registers:
conventions

random, 281
read file, 261–267
recursion, see also exercise

MIPS
fibonacci, 114–120

red-black tree, see tree
redirect, see shell
registers, 39

conventions, see also exercise

double, 53, 75, 290
floating point, 290
integer, 45, 290

spill, 94, 96, 97, 101–108, 112, 114, 118,
119, see also function call

relative address, see address
return, see function call
return address, see function call
return from main, see function call: return
root function, see function call

scanf, see C: function
script, see shell
segment, 39

data, 39
text, 39

semantics, 199
shell, see also exercise

directory listing, 216–218
less, 227
ls, 216–218, 225
man, 228
path, 224
permissions, 217–218
pipe, 225, 236
pwd, 216, 218
redirect, 225, 236
script, 215

bash, 216–221, 223–228
sort, 225
cat, 226
tail, 226
which, 224

shift
arithmetic, 65, 67, 281
logical, 51, 65, 281

sign extending, 29, 61, 65, 281
signed magnitude, see negatives: floating point
Solaris, 215
sort, see shell, exercise
sorting

bitsort, 277–279
time complexity, 277

mergesort, 257–261, 275
quicksort, 258



INDEX 231

qsort, 275–277
time complexity, 257

source file, see C files
$sp, see function call: stack pointer, registers:

conventions
space complexity, 173
spatial locality, see locality
speedup formula, 174, see also exercise

Amdahl’s Law, 179, 180, 185
spill, see function call, registers
SPIM

basics, 40
floating point, 34
integer registers, 52
launch, 40, 41
main, 40, 42
Reinitialize and load file, 44

stack, 80
downwards, 99, 108, 109
function call, 80, 81

offsets, 80, 81, see also offset: stack
stack frame, 102–111, 118, 120, see also func-

tion call, local variables
caller, 104
parameters, 79, 82, 88, 89, 91, 102, 104–

107, 110–112, 114, 118, 119
stack pointer, see function
statement, 194

compound, 197
syntax diagram, 201

static globals, 251
static instruction count, see instruction count,

exercise
static linking, see linker, static
stdbool.h, see C: header
stderr, see UNIX: files
stdin, see UNIX: files
stdio.h, see C: header
stdlib.h, see C: header
stdout, see UNIX: files
string, 130, see also C, exercise, strlen

ASCIIZ, 86, 268
string.h, see C: header
strlen, 268, see also exercise

struct, 143, 248–249, see also structured types
structured types, 143, 150–160, 248–250, see

also struct
SWAP macro, see preprocessor
switch, 138–143, see also dispatch table, tem-

plate, exercise
syntax, 199
system header, see C files
system path, see shell: path, exercise

tail, see shell
template, ii, 49

break, 140
continue, 140
general

function call, 112
if, 96
loops, 96

simple
function call, 106
if, 71
loops, 69

switch, 140
temporal locality, see locality
text segment, see segment
time complexity, 173, see also tree, sorting
time formula

memory, 183
tree, see also exercise

binary, 253–257
inorder traversal, 256
red-black, 256
time complexity, 256

truth table
and, 22
De Morgan’s Laws, 24
full adder, 37
half adder, 35
nand, 21
or, 22
xor, 24

two’s complement, see negatives
type conversion, see C: cast

universal gate, 21, 25



232 INDEX

UNIX, 192, 211, 215
files
stderr, 225, 236, 237
stdin, 224, 236, 239
stdout, 225, 236, 237

warehouse-scale computing, 188
which, see shell, exercise
working directory, 216

xor, 25, see also logic symbol, truth table

Note: some cross-references don’t point to
anything because the C part is omitted.
Note: some cross-references don’t point to
anything because the C part is omitted.


	Preface
	List of Figures
	List of Tables
	Definitions
	Introduction
	Some Basics
	Machine Language versus High-Level Language
	Code Translation
	Machine Instruction Sets
	The Machine
	Practicalities
	Further Reading
	Exercises

	Numbers and the Machine
	Logic
	Numbers
	Numbers and Logic
	The Machine
	Exercises

	Assembly by Example
	Instructions and their Formats
	Memory access
	ALU operations
	Control
	Floating Point
	Exercises

	Memory and Functions
	Calling functions
	Global Variables
	Local Variables and the Call Stack
	Bigger Parameters
	Recursion
	Exercises

	Data Structures
	Machine-Level Data
	Arrays
	Dynamic Data
	Structured types
	Objects
	Putting it all Together
	Exercises

	Performance
	More at once
	Memory Hierarchy and Performance
	Input and Output
	Energy and mobility
	Wrap-up
	Exercises

	References
	ASCII Character Set
	MIPS Register Conventions
	SPIM System Calls
	SPIM Call Stack
	SPIM Background
	SPIM
	Simulation of a Virtual Machine
	SPIM Interface
	Surprising Features
	Assembler Syntax
	System Calls

	Description of the MIPS R2000
	CPU Registers
	Byte Order
	Addressing Modes
	Arithmetic and Logical Instructions
	Constant-Manipulating Instructions
	Comparison Instructions
	Branch and Jump Instructions
	Load Instructions
	Store Instructions
	Data Movement Instructions
	Floating Point Instructions
	Exception and Trap Instructions

	Memory Usage
	Calling Convention
	Input and Output

	Index

