
Latency Improvement in Virtual Multicasting

Philip Machanick1 and Brynn Andrew2

1 School of ITEE, University of Queensland
Brisbane, Qld 4072, Australia

philip@itee.uq.edu.au
2 School of Computer Science, University of the Witwatersrand,

Johannesburg, Private Bag 3, 2050 Wits, South Africa
brynn@cs.wits.ac.za

Abstract. Virtual multicasting (VMC) combines some of the benefits
of caching (transparency, dynamic adaptation to workload) and multi-
casting (reducing duplicated tra�c). Virtual multicasting is intended to
save bandwidth in cases of high load, resulting from unpredictable but
high demands for similar tra�c. However, even in cases where relatively
low fractions of tra�c are similar (hence o↵ering few opportunities for
VMC), introducing VMC can have a disproportionate e↵ect on latency
reduction because of the generally beneficial e↵ect of reduction in tra�c,
including reduced contention. This paper presents results of a study of
latency reduction across a range of workloads, illustrating the potential
for VMC even in situations where the extent of overlapped tra�c is light.

1 Introduction

Information Mass Transit (IMT) is a general design philosophy aimed at ex-
ploiting commonality of data on a medium to reduce bandwidth demands and
improve latency [14]. The name derives from an analogy with mass transit, where
apparently-slower modes of transport like buses and large passenger aircraft are
faster for moving large numbers of people with common destinations than ap-
parently faster alternatives (cars, executive jets). Sharing a common form of
transport reduces congestion, and makes better use of common media.

Internet congestion is a growing problem: as capacity increases, so does de-
mand. Given that there could be significant common tra�c at peak times, it
seems reasonable to investigate sharing common data as far as possible. By anal-
ogy with the mass transit idea for moving people, if much tra�c at the same
time is similar, grouping this similar tra�c could have significant advantages.

Virtual Multicasting (VMC), a specific instance of IMT, finds common streams
which have started at similar times, and combines them. The general model can
vary in di↵erent implementations. For example, grouping FTP streams may not
introduce significant latency or real-time concerns, provided the streams are
large enough that saving transmission time dominates any cost of grouping sim-
ilar tra�c. Where streams can be combined, latency can be reduced, since the
server is in e↵ect moved closer. Reduction of congestion (queueing delays, lost or
corrupted packets, retransmits because of timeouts, etc.) can also reduce latency.

The final publication is available at Springer via https://doi.org/10.1007/978-3-540-39864-6_30

In this paper, the main focus of the investigation is the e↵ect of VMC on
Internet tra�c with no special opportunities for VMC. The intent is to show
that VMC can o↵er a significant advantage in reducing congestion, even when
the opportunities for reducing overlap are limited.

1.1 Information Mass Transit

A number of applications of the IMT idea have been proposed [14]. The general
model is one of sharing a stream; actual realization may vary considerably.

One example is the Scalable Architecture for Video on Demand (SAVoD),
which aims to implement a video on demand system which scales up to an
unlimited number of users [13]. SAVoD streams multiple instances of a movie
continuously, so that a virtual VCR can be implemented by finding a suitable
point in any given stream, to perform operations such as fast forward, rewind,
or start a new movie. The principle is to invest in a large amount of bandwidth,
with the goal of removing all requests to the server. Consequently, the biggest
latency problems in scaling up to unlimited users are removed.

VMC is the next attempt at realizing the broader IMT idea.

1.2 Virtual Multicasting

Virtual Multicasting (VMC) aims to exploit short-term similarities in Internet
tra�c, particularly higher up the bandwidth hierarchy. A high volume of similar
tra�c may periodically occur as new software is downloaded, a large number of
clients join the same audio or video stream, or visit a new web site.

Such tra�c cannot easily be cached for two reasons:

– the repeated tra�c may be transient, and the demand may no longer exist
by the time it is cached

– the users may be widely spaced around the Internet, and only the higher-
bandwidth links at the top of the hierarchy may see duplicated tra�c, i.e.,
endpoints are not the right place to cache this kind of tra�c

The transient nature of this kind of similar tra�c also makes multicasting an
inadequate approach to reducing wastage of bandwidth. Setting up a multicast
route requires prior knowledge that it is required, which may not be easy to
predict, since demand for similar content may be hard to predict in advance.

1.3 Remainder of Paper

The remainder of this paper is structured as follows.
Section 2 provides an overview of the VMC concept and related approaches,

as related to the general IMT model. The basis for experiments is described in
Section 3, followed by results in Section 4. Finally, conclusions, including possible
future work, are presented in Section 5.

2 Background and Related Solutions

Virtual Multicasting attempts to reduce or control Internet congestion. It does
this by moving away from the traditional model of content delivery (unicast) to
one that makes more e↵ective use of the available bandwidth. Instead of having
data distributed from a single point, VMC aims to distribute the dissemination
of data, reducing the congestion of servers and interconnected networks, freeing
bandwidth and as a result, reducing latency from a user’s point of view.

VMC is intended to be implemented as an extension of IP routing, in which
common TCP streams are identified, and combined. As opposed to standard
multicasting [6], there is no explicit setup, and if a client joins a stream late, it
will receive earlier tra�c out of sequence, sent as a separate stream.

VMC works by maintaining a record of data travelling on the router. If a new
client requests data that the VMC router is transmitting already, the request is
not passed to the server. Instead, the router creates a response for the previously-
transmitted portion of the data, and copies the current stream to the new client.
If the router has previously seen multiple requests for the same content, a new
client is simply added to an existing VMC session, and the router can send
the missed content to the client from its bu↵er. The first time a duplication
is detected, the router starts bu↵ering content, and has to request the missing
initial part of the stream from the original server.

The router ends up with two or more clients receiving the same data from a
single source, once the VMC setup is complete.

Once the download is complete for the first client, the clients which joined
the VMC session later issue a request for data they missed.

For playing a movie, VMC has potential to reduce latency for viewers by
bringing content closer to all but the first recipient. More significantly, reducing
congestion will likely reduce latency for all network users, not just participants
in the VMC session, given the bandwidth required for a movie. Unlike typical
file downloads, a movie can run for more than an hour (2 to 3 hours, if it is a
full feature), and relieving load even by finding a single extra viewer could have
a significant e↵ect on the network. A movie, however, presents a problem: if the
client has missed some initial content, significant bu↵ering would be required at
the client side to receive the VMC stream as well as the missing initial content.

Real-time tra�c (e.g., Internet radio or TV) should be easier for VMC than
other examples, because patching in previous missed content is unnecessary.

VMC can be contrasted not only with multicasting, but also with proxy
caches, which save recent content to avoid repeated delivery. VMC di↵ers from
caching in that it occurs in the highest-tra�c segments and routers, rather than
at the endpoints. Further, VMC happens on the fly, whereas caching stores
a stream for future use. VMC therefore exploits very short-term locality, and
locality across a di↵erent part of the Internet.

Ideally, VMC should be completely transparent. However, in our initial work,
we are prepared to make simple modifications to standard protocols to demon-
strate feasibility.

The remainder of this section provides a brief overview of conventional mul-
ticasting, proxy caches and an experimental VMC implementation.

2.1 Multicasting

IP multicasting is the transmission of a packet to a subset of hosts in a net-
work [7]. It provides packet delivery to these hosts at a lower network and host
cost than broadcasting to all hosts or unicasting to each host in the group.

Hosts to whom a multicast is destined share a Class D group address (a class
reserved for multicast groups [6]). Routers need to know which hosts are in a
group: this can be determined by a router polling hosts, or by hosts informing
routers [19]. Multicasting has a high setup overhead: a router needs to construct
a spanning tree, pruned to exclude hosts not in a multicast group [4].

Another problem is that many routers on the Internet are not configured to
allow the transmission of multicast packets. These routers have to be bypassed
by IP tunneling [20], a non-trivial task – as a result multicasting is not widely
supported by Internet Service Providers (ISPs).

Multicasting su↵ers several problems in scaling up, such as the acknowledge-
ment implosion problem, resulting from the fact that many more acknowledge-
ments will be routed back to the sender than the original number of multicast
packets [15]. There have been various attempts at addressing the scalability
problems of multicasting, including Protocol Independent Multicasting (PIM)
[5]. However, PIM introduces yet another standard, which increases the di�-
culty of providing multicasting capabilities across the Internet.

While there has been some work on using multicasting to support video on
demand, the proposed solutions are complex, and still need work [12].

Finally, the “best-e↵ort” attempt at data delivery that multicast operates
with, is not good enough for many applications which need data to be reliably
transferred. Reliable multicast protocols have been developed, but they are inef-
ficient in the delivery of data and have a propensity to cause packet storms [11].

2.2 Proxy Caching

A proxy cache (often simply called a “cache”) is a service between web servers
and clients. Generally, a proxy cache is close to users, and aims to exploit simi-
larities in local demand. It watches requests for web objects (e.g., HTML pages,
images and files) and saves a copy of objects locally. Subsequent requests for the
same object can then be served from the cache.

A cache is implemented transparently, in that once it is set up, a client need
not specifically request content from a cache. The cache intercepts tra�c and
serves requests it can meet, and passes others on. A browser may be configured
to point to a specific cache, but caching can be completely transparent (a client
is not configured specifically to use the cache). Caches can reduce latency as seen
by clients and reduce the bandwidth used by the clients. Caches can be seen as
a congestion avoidance mechanism, since they reduce Intenet tra�c by storing
data locally.

Some incoming data cannot be cached. This is due to factors such as dynamic
content and rapidly changing web pages. Studies have shown that the amount
of Web tra�c that cannot be cached is as high as 20% [18]. Furthermore, even
with an infinite cache size, the upper bound for the hit rate is 30-50% [1, 18].

It is not always useful to have a cache hit, because the cache server may be
overloaded and unable to serve the object e�ciently [17]. Furthermore, the time
taken to check the validity of the object might be longer than retrieving the
object itself. Caches may also be slower on misses than an uncached connection,
since the time taken searching a hierarchy for the object may be longer than
retrieving the data from the origin server [18]. Every slowdown in the cache
adds to the latency experienced by the user.

Finally, caches are often large, and based on expensive hardware and software
which have to be configured and constantly maintained. If there is a problem
with the cache server, an entire network may be deprived of Internet connectivity,
which may be unacceptable for many applications (e.g. Internet banking).

2.3 Comparison to VMC

The common basis of multicasting and caching is that they are bandwidth saving
and congestion reduction mechanisms. VMC uses the single data stream idea of
multicasting and the transparent nature of caching to produce a mechanism
with the benefits of both, while attempting to limit the costs and problems of
multicasting and caching.

Unlike caching, VMC occurs near the top of the hierarchy, so the cost would
only be incurred at high-throughput routers, whereas caching occurs at end-
points, and is therefore a highly replicated cost. Caching at endpoints could
still catch tra�c widely spaced in time, which VMC would miss. Multicasting
requires prior knowledge that a stream will be shared, and has a high setup
cost. VMC, by focusing on tra�c through the highest-tra�c routers, reduces
the setup cost. Further, the VMC approach of transparently initiating sharing
when a need is detected means that it is not necessary to predict the need for
sharing in advance. However, where it is known in advance that a multicast ses-
sion is required, it would still be a viable option where it was supported, since
routing could be carried out without the requirement of VMC-aware routers.

Finally, VMC routing is intended to occur only through selected routers near
the top of the hierarchy, which means that it is not necessary that a large part
of the Internet be aware of VMC routing.

3 Experimental Framework

The main goal of this research is to provide a feasibility study of VMC. It is
thus necessary to focus on potential obstacles to VMC’s implementation rather
than on a complete solution.

While FTP should benefit from VMC, the FTP protocol does not lend itself
to simple modification to evaluate our ideas. HTTP has the option of requesting

a range – a feature used by caches [2]. While FTP does have a “restart” option,
it is not supported in most file transfer modes [16], which would make sending
a missed range of a file more complex than with HTTP. HTTP encapsulates all
the file transfer mechanisms of FTP and is widely used as a substitute for FTP.
Furthermore, the protocol itself is cleaner and better defined – particularly for
our purposes. Our approach therefore was to base our investigation on changes
to HTTP to support VMC.

This section presents a brief summary of preliminary results which further
justified the research, then outlines an experimental version of VMC. The ap-
proach used in experiment described in this paper is described, and, finally, our
expectations for results are summarized.

3.1 Preliminary Results

A preliminary study of FTP logs from a commercial Internet service provider
showed that there was significant overlap of FTP tra�c from their site. The
overlap of tra�c could be eliminated by VMC, since streams would be sharing
this data. We did very rudimentary calculations (not taking congestion and
latency issues into account), over 11 consecutive days of logged tra�c, of the
potential bandwidth savings.

The total number of bytes transferred normally over the log days examined
was 5.67⇥1010. The number of bytes eliminating all overlaps was 2.99⇥1010, 52%
less than the normal mode of transfer. The biggest saving through eliminating
overlaps was 71% and the smallest was 19%. This initial study [3] showed that
VMC had considerable promise, and was worth further investigation. Clearly,
a more realistic experiment was the next step. However, these logs represented
a relatively high degree of overlap, so we chose to find other logs where the
overlap was much lower, to illustrate the potential for gains across a range of
tra�c conditions.

Accordingly, our more realistic experiment used logs from another source,
with much less overlap.

3.2 Experimental VMC Implementation

Establishing the feasibility of the VMC approach takes a number of forms. First,
the actual mechanics of VMC have to be developed and demonstrated. Second,
it will be no good if the method exists in a vacuum, so good interaction with the
current Internet protocols must be demonstrated. Finally, VMC is likely to add
latency. This additional latency must be measured and weighed against latency
gains, to decide the e↵ectiveness of the method.

In order to evaluate these feasibility issues, an experimental VMC system
has been built. The strategy was to start with a simple implementation, to
minimise complexity of understanding the results. Accordingly, a simple network
topology was implemented, to abstract the main features of the design. This
simplified network implemented a VMC router on a computer with a single web
server playing the role of multiple servers. While a real VMC route would be

Local Network

VMC Router Web Server
(The Internet)

Simulated Trunk Link

Fig. 1. Experimental Setup

several layers away from the servers and client machines, intermediate links were
removed to simplify measurement.

The Virtual Multicasting router software was implemented as a simple test
bed, designed to experiment with variations on simulated workloads, based on
data from cache logs. In the absence of VMC routing, standard IP routing takes
place, as a base line from which to compare overheads and advantages of VMC.
Fig. 1 illustates the experimental setup.

The setup is intended to abstract the key requirements of a VMC route:
servers providing potentially similar information, and clients with potentially
overlapping requirements.

To simulate tra�c from a large network, tra�c logs from the University of
the Witwatersrand cache were used to generate tra�c from a single server, with
a link approximating the speed of the university’s link to the outside world. This
tra�c had much less overlap than that of our preliminary study.

The VMC router uses the same strategy as a proxy cache for identifying like
tra�c: it looks for TCP packets with a destination port of 80, and requests are
indexed using the MD-5 hash of the universal resource indicator (URI) in the
request. A VMC application on the router PC is handed any packets with a
destination port of 80, using the IP REDIRECT capabilities of netfilter [10].

Tra�c is bu↵ered in the router, and if the same request is detected (by
hashing on the URI), it is directed to the bu↵ered content. The VMC router in
e↵ect proxies connections, but disguises the fact that it does so from clients by
rewriting addresses.

Clients have to be modified so that if they receive partial content, they are
aware of this and are able to request the missing data. The router has to send a
Partial Content response to a client specifying the range of the supplied bytes.
Thereafter, the client has to issue a request for the missing range of bytes.

All of these details are contained in the specification of HTTP 1.1 [9]. The
only change in usage is that range responses are usually only generated on re-
quest. The simplest way of introducing this change would be to add it in to
proxy caches, so they would cooperate with VMC routers, but a better long-
term change would be to modify the HTTP protocol, so clients could use VMC
routers directly. The standard as currently worded does not prohibit clients from
dealing with ranges. However, most do not, because a range-response is not a
usual outcome of issuing a non-range request, so the proposed change would
be to amend the HTTP standard to ensure that clients are implemented to
understand a range-response from a non-range request.

However, in this research, we have confined ourselves to evaluating the VMC
idea, rather than considering how to change standards to accommodate it.

3.3 Experimental Approach

The experiment reported on here compared a calculated latency gain, based
purely on time saved resulting from overlaps in files in a simulated workload,
with actual latency gain as measured on a simulated VMC environment. The
intent was to evaluate the predictive value of a simplistic measurement, as well
as to show the value of even relatively small bandwidth savings in terms of
latency improvement. The simulated environment did not take into account la-
tency gains from reducing tra�c on multi-hop routes to a client, and therefore
underestimates latency gain in a real environment.

The University of the Witwatersrand uses a Squid proxy server to service
about 10,000 users. Web requests are logged, and information logged includes
that which we needed: time of request, size of the request and time taken to
service the request. The size and diversity of the academic community is su�cient
to give an approximation to a more general scenario. The phenomenon of self-
similarity [8] suggests that our tra�c logs are likely to be representative of a
wider sample of the real Internet – though the logs we used in our preliminary
work suggest that there is a wide variety of tra�c patterns.

Our approach was to clean the log files, so extraneous information was re-
moved, as were requests which did not result in data being returned, or which
were not well-formed. We then used the logs to generate random bytes up to
the length of each request. Had we been exploring issues where the content was
significant (e.g., compression), we would not have been able to use random data,
but that was not an issue for our experiments.

The data used is selected from real data from 3 days of logs, as well as
two artificial pathological cases, representing unrealistically high overlap, and
no overlap. The pathological cases are intended to illustrate the extremes: a
best-case and a worst-case scenario for VMC. The worst-case scenario provides
a measure of the overheads introduced by VMC, since no savings are made (i.e.,
the only di↵erence is the overhead of trying to find VMC opportunities).

The high-load cases are taken from 4 hours of logs, at busy times of the day,
while the low-load cases are taken from 8 hours of logs during quiet times (late
at night and early in the morning). The pathological case of no overlap was
created by taking a log from a low-tra�c period, and eliminating the overlaps.
The artificial case of very high overlap with high load was created by interleaving
extra requests for a 1Mbyte file as every fifth download.

The calculated latency gain was based on a simple subtraction of the time
saved if overlaps identified in the files transferred were removed. The experi-
mental scenarios and calculated latency savings are presented in Table 1. The
low-tra�c scenarios were generally taken from logs early in the morning on a
Monday or late at night on a Friday, when usage was low. The high-tra�c sce-
narios were taken from logs during the day time on a week day, when usage
was relatively high. The degree of overlap is relative: as can be seen from the

scenario Workload Calculated Latency

load overlap files/hour Saving (%)

low low 3410.75 0.93
high high 105322.00 8.12
high low 898891.75 1.95
low high 16583.75 2.18

pathological cases

high v. high 82221.5 23.05
low none 3410.75 0.00

Table 1. Experimental scenarios (calculated latency gains based on examining logs).

bandwidth saved in the Results section (Table 2), the degree of overlap is not
very high except in the contrived case of very high overlap.

The experimentally-determined latency gain was measured as the di↵erence
between elapsed time for transmission of the entire workload with and without
VMC. This experimentally-determined latency gain is a more realistic measure
than the calculated latency gain, since it takes into account the overall e↵ect of
VMC on the network, including the extra latency of VMC and improvements
resulting from the reduction in network tra�c (including reduced congestion).

In our experiments, we eliminated the possibility of high load adding to
latency because of limitations of our network cards, by dividing simulation runs
(which varied from approximately 25,000 to 420,000 files) into runs of 5,000 files
at a time. In a real scenario, this issue would not be a problem because we were
simulating activity of an entire campus on a small number of machines.

3.4 Expected Results

Given that the calculated latency savings are only based on reducing the trans-
mission time for the saved bytes, we expected that the measured latency savings
would be significantly higher. Any reduction in network tra�c will generally im-
prove latency, through reducing collisions (in a network which permits collisions
such as ethernet) and generally reducing contention for shared resources.

We expected that the achieved latency gain would therefore be significantly
higher than that which was calculated.

Further, we expected latency gains, given the nature of the tra�c, to be
significantly higher than bandwidth gains. Much tra�c resulting from web page
access is relatively small files (e.g., an icon, or the text of a web page), which
makes the probability of overlaps being significant in size and occurring close
enough in time to be useful for VMC to be low. On the other hand, any such
overlaps which are found have the potential to reduce congestion. Even in a
lightly loaded network, overlaps can potentially lead to short-term hot spots,
which VMC has the potential to alleviate.

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5000 1000015000 20000 25000 30000 3500040000 45000 50000

M
eg

ab
yt

es
 S

av
ed

Files Downloaded

(a) Cumulative bandwidth savings

0

100

200

300

400

500

600

700

800

900

1000

0 5000 1000015000 20000 25000 30000 3500040000 45000 50000

La
te

nc
y

(s
ec

on
ds

)

Files Downloaded

VMC
Normal

(b) Cumulative latency

Fig. 2. Low overlap, low load.

4 Results

In this section, we present results of experimental bandwidth and latency gains,
which are compared with the calculated latency gains. The aim is to highlight
the di↵erence between latency and bandwidth gains. VMC is designed to reduce
congestion on the Internet, with latency reduction – the measure of most interest
to the user – the goal. Accordingly, the focus in presenting the results is on
presenting latency reduction as the measure of interest. Bandwidth reduction is
also shown as a basis for understanding why latency has improved.

In general, bandwidth savings are modest and on their own do not make a
convincing case for VMC. Latency gains, on the other hand, are significant, and
do make a case for further investigation of the idea.

The remainder of this section is presented in the following order. First, plots
of bandwidth gains and latency variation with and without VMC are shown,
followed by a table summarizing results. Finally, the results are discussed.

4.1 Bandwidth and Latency Savings

To illustrate how latency gains can be amplified by hot spots, the latency gains
are shown as cumulative plots of latency, compared with plots of bandwidth
gains. Total bandwidth is not plotted, because the di↵erences between with and
without VMC do not show on any of the graphs, except on the pathological case
of very high overlap on a high load.

Fig. 2 illustrates the case of low overlap with low load. As can be expected,
total latency saved is relatively small (fig. 2(b)). Bandwidth saved is only 0.02%
of the total. However, the overall saving of latency is 6.88%, which compares
well with the calculated saving of 0.93% (7.4 times higher). A large fraction of
the overlap occurred towards the end of the workload (probably because this
workload was measured up to 8am), as can be seen in fig. 2(a).

Fig. 3 illustrates the opposite case: a relatively high load with a relatively
high degree of overlap. There are several significant steps in the graph showing
saving in bandwidth (fig. 3(a)). These steps correspond roughly to increases

0

2

4

6

8

10

12

14

16

18

0 100000 200000 300000 400000

M
eg

ab
yt

es
 S

av
ed

Files Downloaded

(a) Cumulative bandwidth savings

0

10000

20000

30000

40000

0 100000 200000 300000 400000

La
te

nc
y

(s
ec

on
ds

)

Files Downloaded

VMC
Normal

(b) Cumulative latency

Fig. 3. High overlap, high load.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 50000 100000 150000 200000 250000 300000 350000 400000

M
eg

ab
yt

es
 S

av
ed

Files Downloaded

Cumulative Bandwidth Saving

(a) Cumulative bandwidth savings

0

5000

10000

15000

20000

25000

0 50000 100000 150000 200000 250000 300000 350000 400000

La
te

nc
y

(s
ec

on
ds

)

Files Downloaded

VMC
Normal

(b) Cumulative latency

Fig. 4. Low overlap, high load.

0

0.5

1

1.5

2

2.5

3

0 20000 40000 60000 80000 100000 120000 140000

M
eg

ab
yt

es
 S

av
ed

Files Downloaded

Cumulative Bandwidth Saving

(a) Cumulative bandwidth savings

0

2000

4000

6000

8000

10000

12000

14000

0 20000 40000 60000 80000 100000 120000 140000

La
te

nc
y

(s
ec

on
ds

)

Files Downloaded

VMC
Normal

(b) Cumulative latency

Fig. 5. High overlap, low load.

in the bandwidth graphed for the “normal” (non-VMC) case – particularly at
about the point where 250000 files have been downloaded. Another observation
which is clearer in this case than the low load, low overlap case is that the VMC
cumulative latency graph is smoother than the “normal” graph, illustrating the
fact that VMC has reduced hot spots.

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000 250000 300000 350000

M
eg

ab
yt

es
 S

av
ed

Files Downloaded

Cumulative Bandwidth Saving

(a) Cumulative bandwidth savings

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

0 50000 100000 150000 200000 250000 300000 350000

La
te

nc
y

(s
ec

on
ds

)

Files Downloaded

VMC
Normal

(b) Cumulative latency

Fig. 6. Artificially high overlap, high load.

scenario Mbyte transferred saving %

load overlap Normal VMC bandwidth latency

low low 338.13 338.07 0.02 6.88
high high 4263.82 4246.86 0.40 63.42
high low 3528.81 3526.93 0.05 55.36
low high 1928.13 1925.36 0.14 52.2

pathological cases

high v. high 68556.81 4564.23 93.34 71.21
low none 381.33 381.33 0 -0.74

Table 2. Measured bandwidth and latency gains.

The case of high load with low overlap (fig. 4) is interesting because it illus-
trates again how VMC is able to smooth out hot spots, even when they may
be relatively uncommon. The overall e↵ect is that, despite only saving 0.05%
of the bandwidth, latency is improved by 55.36% overall (as compared with the
calculated saving of 1.95%).

The final case of a workload based on a real usage pattern is that of high
overlap with a low load, as shown in fig. 5. In this case, again, the value of
eliminating hot spots is illustrated. While the total bandwidth saving of 0.14% is
very modest, latency overall is reduced by 52.2%. This latency saving is compared
with the calculated latency saving of 2.18%. What should be noted specifically
here is that the overlaps, while few, are bursty in nature, with each overlap
resulting in a big step in the bandwidth savings graph (5(a)).

Finally, the artificially-constructed case of very high overlap (fig. 6) shows
how VMC could reduce latency in an extreme case (e.g., a new major software
release, a popular movie available for download), In this situation, over 90%
of the bandwidth is saved, and the latency improvement is 71.21%, as opposed
to the calculated 23.05%. The artificial case of no overlap is not graphed; the
result is obvious: graphs for the VMC and “standard” cases are almost identical,
except for a small extra overhead on latency for VMC, totalling 0.74%.

Table 2 summarizes the results.

4.2 Summary of Findings

Latency gains, as calculated, varied from 0.93% to 6.69% (excluding pathological
cases). These gains translated to measured gains varying from 6.88% to 63.42%.
Since these are cumulative measures, they do not convey the improvement which
would be seen by a user, where a hot spot in network activity would cause
annoying delays. Smoothing out the cumulative latency graphs, as VMC has
done in all cases, should translate to a more predictable user experience.

Modest bandwidth savings have given disproportionate latency savings. La-
tency gains have varied from nearly 7 times to almost 30 times the calculated
gain. Such variation should not be too surprising: the calculated gain did not take
into account the e↵ect of tra�c reduction on other network tra�c. In particular,
removal of hot spots has a disproportionate e↵ect on reducing latency.

The overall e↵ect, as seen by a user, could include lower annoyance with un-
predictable behaviour, e.g., reduction of jitter and other artifacts of congestion.
If the latency savings were to translate into a real-world scenario, VMC would
be worth implementing.

5 Conclusions

VMC is a promising idea, and a potentially implementable instance of the
broader information mass transit (IMT) idea. The version we have investigated
here could be realised with simple changes to web applications. Clients (browsers)
need to be aware that they should respond to a portion of a data-object (given
in the HTTP response codes) by requesting the rest of the object. Alternatively,
proxy caches could be used to hide this extra step from the clients, but the costs
and benefits of the alternatives are still to be investigated.

The remainder of this section summarizes our results, and proposes further
work. Finally, we conclude by considering the potential of both VMC and IMT.

5.1 Summary of Results

Our results show that even with relatively modest bandwidth reduction, VMC
can achieve significant latency gains. While the most significant gains are under
high load with a high degree of overlap, a large improvement in latency was also
seen where there was a high degree of overlap with a light load, or a low degree
of overlap with a high load. Particularly in the cases of high overlap, the gains
smooth out the cumulative latency graph; this e↵ect is clearest in the case of
high overlap and low load. The likely e↵ect as seen by users would be a reduction
of artifacts of congestion, such as short-term spikes in latency.

The pathological cases illustrate that the e↵ect on a network with no overlap
is insignificant (overhead of less than 1%), while a very high overlap on a highly
loaded network, as would be expected, shows VMC to best advantage.

5.2 Future Work

Further work on IMT includes investigation of implementation issues for SAVoD,
and investigation of further application of the principles in other areas.

We further propose to investigate areas where VMC can be implemented
transparently, and modifications to standard protocols where it cannot be im-
plemented transparently. Specifically, it would be useful to investigate simple
alterations to proxy caches to hide VMC from clients, as well as extensions to
HTTP which would define behaviour for VMC-aware clients.

More detailed modeling of network tra�c would also be useful, to make
clearer what the sources of the latency gains are. Insights from such measurement
could lead to improvements in VMC, or in other approaches to latency reduction
or congestion control.

5.3 Potential of IMT and VMC

VMC has promise. Our initial implementation made it possible to measure the
trade-o↵ between benefits and extra costs of VMC. In all cases measured, except
the contrived case with no overlap, benefits were significantly better than the
cost. With no overlaps, VMC added under 1% to latency, significantly less than
the worst gain of 6.88%. More significantly, we found that small reductions in
bandwidth could result in significantly bigger gains in latency – much greater
than would be predicted by simply calculating the change in transmission time
for the reduction in tra�c. This finding emphasizes the potential for VMC to
reduce hot spots resulting from congestion.

In general, IMT is worth exploring. As Internet bandwidth scales up, tradi-
tional models of communication very quickly result in loss of the benefit of new
bandwidth. Applications like video on demand are notoriously di�cult to scale
up, and most proposals have called for very complex hardware and software.
Real-time applications, such as web-based TV or radio, are strong candidates
for VMC, since they eliminate the need for patching in missed content.

We believe that a new approach is called for, and IMT (including its partic-
ular manifestations, SAVoD and VMC) attempts to address this need.

References

1. Marc Abrams, Charles R. Standridge, Ghaleb Abdulla, Stephen Williams, and
Edward A. Fox. Caching Proxies: Limitations and Potentials [online]. December
1995. Available from http://ei.cs.vt.edu/~succeed/WWW4/WWW4.html.

2. B Andrew and P. Machanick. The virtual multicasting approach to bandwidth
conservation. In Proc. SATNAC 2000, Somerset West, South Africa, September
2000. published on CD.

3. B Andrew and P. Machanick. Virtual multicasting as an example of information
mass transit. South African Computer Journal, (26):252–255, November 2000.

4. S. Deering, D. Farinacci, V. Jacobson, C.-G. Liu, and L. Wei. An Architecture for
Wide-Area Multicast Routing. In Proc. ACM SIGCOMM Conf. on Communica-
tions, Architecture and Protocols, pages 126–135, 1994.

5. S. Deering, D.L. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu, and L. Wei. The
PIM architecture for wide-area multicast routing. IEEE/ACM Transactions on
Networking, 4(2):153–162, April 1996.

6. S. E. Deering. Host Extensions for IP Multicasting. RFC 1054 [online]. May 1988.
Available from ftp://ftp.rfc-editor.org/in-notes/rfc1054.txt.

7. S. E. Deering and D. R. Cheriton. Multicast Routing in Datagram Internet-
works and Extended LANs. ACM Transactions on Computer Systems, 8(2):85–110,
February 1990.

8. A. Feldmann, A.C. Gilbert, P. Huang, and W. Willinger. Dynamics of ip tra�c: a
study of the role of variability and the impact of control. In Proc. Conf. on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communication,
pages 301–313, Cambridge, Massachusetts, United States, 1999. ACM Press.

9. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP 1.1. RFC 2616 [online]. June 1999.
Available from ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt.

10. Jozsef Kadlecsik, Harald Welte, James Morris, Marc Boucher, and Rusty Rus-
sell. The netfilter/iptables project [online]. 2003. Available from http://www.

netfilter.org/. last accessed February 2003.
11. Brian Neil Levine. A Comparison of Known Classes of Reliable Multicast Protocols.

Master’s thesis, University of California, Santa Cruz, 1996.
12. Huadong Ma and Kang G. Shin. Multicast video-on-demand services. ACM SIG-

COMM Computer Communication Review, 32(1):31–43, January 2002.
13. P. Machanick. Design of a scalable video on demand architecture. In Proc. SAIC-

SIT ’98, pages 211–217, Gordon’s Bay, South Africa, November 1998.
14. P Machanick. Streaming vs. latency in information mass-transit. Computer Ar-

chitecture News, 26(5):4–6, December 1998.
15. Sridhar Pingali, Don Towsley, and James F. Kurose. A comparison of sender-

initiated and receiver-initiated reliable multicast protocols. In Proc. 1994 ACM
SIGMETRICS Conf. on Measurement and Modeling of Computer Systems, pages
221–230, Nashville, Tennessee, United States, 1994. ACM Press.

16. J. Postel and J. Reynolds. File transfer protocol (FTP). RFC 959 [online]. October
1985. Available from ftp://ftp.rfc-editor.org/in-notes/rfc959.txt.

17. Harrick M. Vin Renu Tewari, Michael Dahlin and Jonathon S. Kay. Beyond Hier-
archies: Design Considerations for Distributed Caching on the Internet. Technical
Report TR98-04, The University of Texas at Austin, 1998.

18. A. Rousskov and V. Solokiev. On Performance of Caching Proxies [online]. Au-
gust 1998. Available from http://www.cs.ndsu.nodak.edu/~rousskov/research/

cache/squid/profiling/papers.
19. Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, fourth edition, 2003.
20. B. Zhang, S. Jamin, and L. Zhang. Host multicast: A framework for delivering

multicast to end users. In Proc. 21st Annual Joint Conf. of IEEE Computer and
Communications Societies, volume 3, pages 1366–1375, New York, June 2002.

Acknowledgments

We would like to thank The Internet Solution for providing logs on which our
preliminary work was based. Logs for the results reported here were provided by
Computer and Network Services, University of the Witwatersrand. This work
has been supported by the National Research Foundation in South Africa.

