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Abstract This paper explores potential for the RAMpage memory hierarchy to use a microkernel with a small memory

footprint, in a specialized cache-speed static RAM (tightly-coupled memory, TCM). Dreamy memory is DRAM kept in

low-power mode, unless referenced. Simulations show that a small microkernel suits RAMpage well, in that it achieves

signi�cantly better speed and energy gains than a standard hierarchy from adding TCM. RAMpage, in its best 128kB L2

case, gained 11% speed using TCM, and reduced energy 14%. Equivalent conventional hierarchy gains were under 1%. While

1MB L2 was signi�cantly faster against lower-energy cases for the smaller L2, the larger SRAM's energy does not justify

the speed gain. Using a 128kB L2 cache in a conventional architecture resulted in a best-case overall run time of 2.58s,

compared with the best dreamy mode run time (RAMpage without context switches on misses) of 3.34s, a speed penalty

of 29%. Energy in the fastest 128kB L2 case was 2.18J vs. 1.50J, a reduction of 31%. The same RAMpage con�guration

without dreamy mode took 2.83s as simulated, and used 2.39J, an acceptable trade-o� (penalty under 10%) for being able

to switch easily to a lower-energy mode.
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1 Introduction

The RAMpage memory hierarchy moves main mem-

ory up a level to replace the lowest-level cache with

an SRAM main memory, while DRAM becomes a pag-

ing device. Previous work has shown RAMpage to

be a potentially viable design in terms of hardware-

software trade-o�s[1] and that it scales better as the

CPU-DRAM speed gap grows, particularly when tak-

ing context switches on misses to DRAM[2].

Preliminary work on RAMpage for low-energy de-

sign has shown promise[3]. In this paper, the value of

RAMpage in low-energy design is further explored by a

more complete study of the idea of dreamy memory.

Dreamy memory is kept in a low-power mode unless

it is referenced. While waking the memory up incurs sig-

ni�cant overhead, RAMpage could hide this overhead as

has previously been demonstrated, as illustrated in ear-

lier RAMpage work, aimed at bridging the CPU-DRAM

speed gap.

In desktop and server designs, with processor power

consumption on the order of tens of watts or even over

100W, reducing memory power usage is not a major is-

sue. However, with a low-energy design, DRAM energy

usage becomes signi�cant. A 128Mbyte DRAM as sim-

ulated in this study uses about 0.5W, as compared with

a 500MHz processor of the ARM11 family[4], which uses

about 0.2W in the processor core (excluding caches). A

small mobile device, even with a relatively modest mem-

ory, therefore has to allocate a signi�cant fraction of its

energy budget to DRAM.

In this paper, the approach investigated is to use

the self-refresh mode commonly available in double-data

rate synchronous DRAM (DDR-SDRAM), which allows

DRAM contents to be maintained with 1% of normal

power[5], to implement dreamy memory. Simulations

are based on parameters suited to a mobile device. The

aim is to reduce DRAM energy usage as close as pos-

sible to that of self-refresh mode, with performance as

close as possible to that of full-power mode.

To extend previous work, a smaller second-level

cache or static RAM main memory (L2) is investigated,

as is the use of a small cache-speed SRAM memory, a

feature of some ARM designs (where it is called \tightly

coupled memory", or \TCM"). The notion is that RAM-

page, with its ability to control placement in memory

by software, should be able to make better use of a

specialised layer of the memory hierarchy than can a

conventional cache hierarchy. Further, it is hypothe-

sised that a microkernel with a small memory footprint

is a good �t to RAMpage, in that the main operat-

ing system code and data structures, along with SRAM

main memory page tables, could be �tted into a mem-

ory like ARM's TCM. A conventional architecture could

also place the kernel into TCM, but page tables for the

DRAM layer would be too large to �t this small SRAM.

The remainder of this paper is structured as follows.

Section 2 presents more detail of the RAMpage hierar-

chy and related research. Section 3 explains the experi-

mental approach, while Section 4 presents experimental

results. In conclusion, Section 5 summarizes the �ndings

and outlines future work.

2 Background

RAMpage was proposed[6] in response to the mem-
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ory wall[7;8], which arises mainly with high-end systems,

where processor improvements have not been matched

by DRAM speed improvements. At the low end, en-

ergy use is a much more signi�cant problem. RAM-

page's ability to hide latency of (relatively) slow DRAM

can potentially be used to hide the latency of waking a

DRAM up from a low-power mode.

In this paper, low energy, rather than low power is

the measure of interest, as we are concerned with to-

tal energy use over time, rather than an instantaneous

measure.

The remainder of this section briey surveys re-

cent developments in microkernels as they apply to low-

energy memory system design, other approaches to low-

energy memory design, and an outline of the RAMpage

approach to the problem.

2.1 Progress with Microkernels

The notion of a microkernel is conceptually appeal-

ing. The component of the operating system which

needs to be memory resident and must run without pro-

tection is minimised. As much of the operating system

as possible runs in user space, improving modularity and

simplifying debugging. Unfortunately, early attempts at

implementing microkernels in the 1990s, most notably,

Mach, led to a perception that a microkernel is inher-

ently ineÆcient, a perception which more recent designs

have attempted to dispel[9;10].

In the meantime earlier, microkernel-based de-

signs have undergone opportunistic transformations like

merging protection domains[11], which make them look

more and more like strangely designed monolithic ker-

nels.

Possibly the most radical of the second-generation

designs is the MIT Exokernel, which completely moves

away from de�ning abstractions, but instead de�nes

primitives which provide secure access to hardware

and other low-level machine-speci�c operations like

interrupts[12].

The L4 kernel is a little less radical: it de�nes a min-

imal set of abstractions: address spaces, inter-process

communication (IPC) and threads. The kernel only

supplies 7 system calls, and has a memory footprint of

12kbytes[9]. In this work, 32kB is allowed for kernel

memory, to allow for expansions since the original L4

design. This is in contrast to Mach, which has a signif-

icantly larger memory footprint, and a large number of

system calls: probably a legacy of Mach's history as a

rewrite of the UNIX kernel. The overall e�ect is a fac-

tor of improvement of up to 20 over the speed of Mach's

IPC[9].

Second-generation microkernels like L4 are of inter-

est in the small device space because a small memory

footprint and modular design suit the requirements of

these devices. A kernel with a minimal memory require-

ment and with functionality provided by modules which

are outside the kernel provides a basis for designing a

exible operating system, in which functionality can be

added or left out as needed.

Operating systems currently used in this space

include Symbian and �CLinux (often written as

\uCLinux").

Symbian was originally designed as a general-

purpose multitasking operating system, if for small per-

sonal computers[13]. Symbian's kernel has a memory

footprint of the order of 200kbytes[14].

�CLinux is a cut-down version of Linux for mi-

crocontrollers. The main omission from the stan-

dard Linux kernel is of support for hardware memory

management[15]. Since most of the existing kernel func-

tionality is present, the �CLinux kernel is not as small

as Symbian: estimates depending on the version vary

from under 512kB to around 1MB.

In the context of energy-sensitive design, the poten-

tial for keeping the operating system in a small, fast

memory, while juggling the rest of memory between fast

(high-power) and slow (low-power) memory components

is appealing. Symbian's relatively small memory foot-

print has made it popular for cell phones, though Linux

also has a following.

Given that memories on small mobile devices are

generally smaller than on desktop and server comput-

ers, and energy-eÆciency further encourages the use of

small memories, there is a case for revitalising the mi-

crokernel idea.

2.2 Low-Energy Memory Design

There have been several approaches to reducing the

energy needs of memory.

IRAM (Intelligent RAM) was originally proposed to

address the memory wall problem, by implementing a

large DRAM on-chip with the processor, instead of the

traditional trend of increasing on-chip cache size. While

the on-chip DRAM is slower than an SRAM cache, it is

faster than an o�-chip DRAM[16]. More recently, IRAM

has been shown to o�er the potential for reduced en-

ergy usage, because of DRAM's lower energy require-

ment as compared to SRAM, and elimination of o�-chip

buses[17].

At the low end, work has been done on variations

on memory organization like multiple banks (less com-

monly used banks can be put in low-power modes),

�nding optimum combinations of number of banks

and bus width, and exploring compromises between

performance-optimal and energy-optimal organization

of caches and DRAM[18]. One speci�c proposal for a

low-energy design for system-on-chip (SoC) applications

is to organize static RAM into statically allocated banks,

based on predicted data referencing behaviour[19]. The

main problem with this approach is that it requires

static allocation, and does not allow for changes in the

relative sizes of the banks for di�erent workloads.

The closest ideas to that reported here are Power-

Aware DRAM (PADRAM)[20] and Power-Aware Virtual

Memory (PAVM)[21]: page placement is used in a mem-

ory in which di�erent chips may be in di�erent power

modes. Frequently accessed pages are in a DRAM which
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is not in a low-power mode (or often less than other

chips).

In a PADRAM study, it was shown that putting

all DRAM into the lowest-power mode resulted in ex-

ecution time of 2 to 60 times that of full-power mode,

whereas a dynamic policy resulted in a relatively small

speed loss, with signi�cant energy saving. While vari-

ous details of the PADRAM study di�ered from those

reported in this paper (faster processor, 256kB L2 cache,

Rambus memory with higher wakeup latency), the most

signi�cant di�erence is that no operating system ef-

fects were modelled: single process execution times

were reported, not a mix of workloads[20]. In addition,

only a hardware-managed 256kbyte L2 cache was mod-

elled, not a software-managed cache like the RAMpage

SRAM main memory. RAMpage, especially with con-

text switches on misses, relies on a multiprogramming

workload to hide DRAM latency and is therfore able to

get away with a simpler approach to managing DRAM.

PAVM has been investigated in more detail, but

using an actual implementation on Linux and an

otherwise-conventional memory hierarchy. Exploiting a

combination of the di�erent modes available in Rambus

and dynamic page placement strategies, with DRAM

energy savings of up to 59% with a heavy workload[21].

An initial study of dreamy memory[3] has shown

promising results. However, this work used a 1MB L2

layer, which is a bit large for low-energy and low-cost

designs, and did not take into account power use of the

processor and caches (a factor if run time is increased).

Since other low-energy techniques can apply to

dreamy DRAM, approaches in areas such as reducing

energy to drive a bus to DRAM[22] and reducing cache

energy[23] have not been considered in detail as potential

competing work.

2.3 RAMpage Approach

RAMpage makes as few changes from a traditional

hierarchy as possible (see Fig.1). The lowest-level cache

becomes the main memory (i.e., a paged virtually-

addressed memory), with disk used as a secondary pag-

ing device. The RAMpage main memory page table is

inverted, to minimize its size. Further, an inverted page

table has another bene�t: no TLB miss can result in a

DRAM reference, unless the reference causing the TLB

lookup is not in any of the SRAM layers[1].

RAMpage has in the past been shown to scale well

in the face of the grown CPU-DRAM speed gap, partic-

ularly when context switches are taken on misses. The

e�ect of taking context switches on misses is that, if

other work is available for the CPU, waiting for DRAM

can e�ectively be eliminated[2]. Performance character-

istics of RAMpage have previously been reported[1;2;24].

For purposes of this paper, the key advantage of RAM-

page is the ability to mask latency of DRAM references,

with the aim of keeping DRAM in a low-power mode

unless it is being referenced, without signi�cant loss of

speed.

Fig.1. Conventional architecture (left) compared with RAMpage.

(Major components are the same but organization di�ers. RAM-

page uses the TLB to map the SRAM main memory instead

of DRAM, and some OS code and data structures (shaded) are

locked into the RAMpage SRAM main memory.)

Compared with most other approaches to low-energy

memory systems, the RAMpage approach is very simple.

No special hardware is needed, other than the RAMpage

design itself. DRAM is put into a low-power mode, and

woken up when it is referenced. As compared with the

PADRAM approach, the architecture requires no com-

plex dynamic placement strategy. Provided a process is

ready to run on a miss to DRAM, the extra wake-up

latency can be masked. PAVM is closer in philosophy,

but RAMpage carries the idea further in managing the

lowest-level cache in software, which has potential for

other wins, as described in previous RAMpage work[1;2].

The dynamic placement strategies of PADRAM and

PAVM could be added to RAMpage, combining their

bene�ts with a software-controlled SRAM main mem-

ory.

3 Experimental Approach

This section outlines the approach to the reported

experiments. Results are designed to be comparable to

previously reported results as far as possible. The sim-

ulation strategy is explained, followed by some detail of

simulation parameters; in conclusion, expected �ndings

are discussed.

3.1 Simulation Strategy

The approach followed here is similar to that used in

previously reported work. However, the processor speed

characteristics are based on the ARM11 series running

at 500MHz. This processor consumes 0.2W at this speed

(without caches)[4]; this power consumption makes the

power needs of DRAM signi�cant.
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Simulations are trace-driven, and do not model the

pipeline. It is assumed that pipeline timing is less sig-

ni�cant than variations in DRAM referencing. Given

that the ARM11 family only issues one instruction per

clock and has accurate branch prediction, this approach

to simulation is unlikely to introduce signi�cant inac-

curacies. For simplicity, the simulations do not use all

features of the ARM11 series. The ARM11's two-level

TLB is not simulated. Instead, a relatively small 1-level

TLB is simulated. The RAMpage hierarchy is more dis-

advantaged by this approximation than a conventional

hierarchy, since it relies on the TLB for mapping pages

in the SRAM main memory, rather than in DRAM[25].

A standard 2-level hierarchy is compared to a simi-

lar version of a RAMpage hierarchy, with and without

context switches on misses. RAMpage without context

switches on misses is intended to convey the e�ects of

adding associativity (with an operating system-style re-

placement strategy). Adding context switches on misses

shows the value of having alternative work on a miss to

DRAM. In all cases, the e�ect of running with DRAM

permanently on is compared with the e�ect of running

with DRAM in self-refresh mode, except when it is ref-

erenced.

In earlier studies, a 4MB L2 was simulated. L1 size

in early experiments was 16kB each of L1i and L1d. In

later work, larger L1 sizes were explored, to determine

the e�ect of cache size variations[25]. In the most re-

cent work prior to this[3], given that energy and cost

are more signi�cant than for previous studies, L2 was

reduced from 4 Mbytes to 1Mbytes (the simulated 1MB

SRAM consumes 0.8W[26]; 4MB would use 3.2W, sig-

ni�cant compared with a 0.2W processor core). In this

study, the 1MB case is compared with a 128kB L2 layer,

which uses 0.1W.

These reductions disadvantage RAMpage more than

the standard hierarchy: part of the SRAM main mem-

ory is reserved for operating system data and code. In

the standard hierarchy, on the other hand, operating

system references occupy L2 the same way as any other

reference (and so may be removed by conict or capacity

misses).

The ARM11 series includes the option of 64kbytes

of SRAM (tightly coupled memory, TCM) which could

be used for the operating system in RAMpage; the page

table would also �t for SRAM page sizes of 256bytes or

more. TCM operates at cache speed, and this option

was explored in this study, with the expectation that

RAMpage simulations would see signi�cant speed gains

from the use of TCM.

ARM's TCM is split between instruction and

data[27], so a real implementation would need to take

this into account. The e�ect of a split TCM is approxi-

mated in this study by reserving 32kB for the operating

system (more than a microkernel like L4 needs), and the

remaining 32kB for the RAMpage SRAM page tables.

3.2 Simulation Parameters

The processor modelled in energy-oriented RAMpage

studies is slower than in recent speed-oriented RAMpage

work, if comparable to one of the speeds in older work[1],

to take into account the slower speeds of low-energy de-

signs.

The DDR-SDRAM modelled[5] has an average cur-

rent draw of 200mA, and self-refresh mode which uses

2mA, both at 2.6V. In self-refresh mode, the external

clock is turned o�, and contents of DRAM is main-

tained without external intervention. Actual DRAM

power usage varies according to the reference pattern,

but for this work, an average value is used, and the same

value is used for entry to and exit from self-refresh mode.

In performance-oriented work, detail of the DRAM was

not considered important, as �xing DRAM speed while

speeding up the CPU represented the increasing CPU-

DRAM speed gap. In energy-related RAMpage studies,

DRAM detail is more important because power usage is

timing-dependent.

Unlike the previous study which only measured

DRAM energy, an approximate model of CPU and cache

power is used. For simplicity, SRAM power is used as an

approximation to on-chip cache and TCM power (scaled

to the size of each component). A detailed model of

cache power would be necessary for accuracy, taking into

account power-saving features of a speci�c processor.

In summary, power parameters are:

� CPU core { 0.2W;

� TCM { 0.05W;

� L1 cache { 0.025W;

� L2 (or SRAM main memory) { 128kB 0.1W; 1MB

0.8W;

� DRAM { 0.52W full power and waking up;

0.0052W in self-refresh mode.
The following parameters are similar to previous sim-

ulations except as noted, and are common across RAM-

page and the conventional hierarchy:

� L1 cache { 16kbytes each of data and instruction

cache, physically tagged and indexed, direct-mapped,

32-byte blocks, 1-cycle read hit time, 12-cycle penalty

for misses to L2 (or RAMpage SRAM main memory);

� TLB { 64 entries, fully associative, random replace-

ment, 1-cycle hit time, misses handled in software;

� DRAM { DDR400 SDRAM: 40ns before �rst ref-

erence starts, 64-bit 5ns bus (data moves every 2.5ns:

transfer rate approximately 0.3ns per byte; DRAM time

to exit self-refresh is 1�s, and time to enter self-refresh

mode is 20ns);

� paging of DRAM { inverted page table: same orga-

nization as RAMpage main memory for simplicity, the

workload is preloaded, so there are no page faults to

disk; for energy calculations, a 128MB DRAM is as-

sumed;

� TLB and L1 data (L1d) hits are fully pipelined:

they do not add to execution time; only instruction fetch

hits add to simulated run time; time for replacements or

maintaining inclusion are costed as L1d or TLB \hits".
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A context switch (modelled by interleaving a trace of

text-book code) is generally taken every 500,000 refer-

ences, though RAMpage with context switches on misses

also switches processes on a miss to DRAM. TLB misses

are handled by inserting a trace of page table lookup

code, with variations on time for a lookup based on prob-

able variations in probes into an inverted page table[1].

3.2.1 Speci�c to Conventional Hierarchy

The L2 cache is 2-way associative with two variants:

128kbytes and 1Mbytes. The bus connecting L2 to the

CPU is 128bits wide and runs at one third of the CPU

clock rate (6ns versus the CPU's 2ns). The miss penalty

from L1 to L2 overall is 12 CPU cycles. Inclusion be-

tween L1 and L2 is maintained[28], so L1 is always a sub-

set of L2, except that some blocks in L1 may be dirty

with respect to L2 (writebacks occur on replacement).

The TLB caches translations from virtual pages to

DRAM physical frames.

3.2.2 Speci�c to RAMpage Hierarchy

The TLB maps the SRAM main memory. Full as-

sociativity is implemented by a software miss handler.

The operating system is allocated 32kB of SRAM main

memory plus whatever is needed for page tables (e.g.,

in a 128kB memory with a 4kB page size, the available

user memory is 23 pages, or 92kB, which drops to 90kB

for 128B pages).

These requirements are conservative, assuming

8bytes per page table entry (the actual size depends on

factors like how hash collisions are handled). A small

microkernel such as L4 could use less than 32kB. For

this reason, a few cases of the 1MB L2 have been mod-

elled in which the page tables would not �t a 64kB TCM

(128B pages). This variant could be accommodated by

a tighter implementation of page tables but since the

results for this case turn out not to be competitive, this

issue is not signi�cant to the results.

If the page table were more eÆciently implemented

than as simulated in this paper, RAMpage without

TCM would gain most, since the page tables take up

SRAM main memory in that case. Results reported

here therefore may slightly overstate the value of TCM.

The SRAM main memory uses an inverted page ta-

ble. TLB misses do not reference DRAM, if the original

reference can be found in an SRAM level.

3.2.3 Inputs and Variations

Traces used are from the Tracebase trace archive at

New Mexico State University�. Although these traces

are from the obsolete SPEC92 benchmarks, they are suf-

�cient to warm up the size of cache used here, because

1.1-billion references are used, with traces interleaved to

create the e�ect of a multiprogramming workload.

To measure variations on energy use, the size of the

SRAM main memory page (or L2 block size in the con-

ventional model) was varied from 128bytes to 4kbytes,

and the simulation was instrumented to track energy

use. The size of the L2 layer was varied as well: 128kB

and 1MB, and measurements were taken with and with-

out a 64kB TCM.

In dreamy mode, it was assumed that if a DRAM

access started before the previous one had completed,

DRAM would still be awake. Otherwise, once a DRAM

reference completed, it was put into self-refresh mode.

For comparison, simulations were run with DRAM per-

manently in full power mode. The simulator allows for

a lag after references before entering self-refresh mode,

but this option is still to be explored.

Total energy was calculated by multiplying time in

each mode by the power of that mode.

3.3 Expected Findings

With a signi�cantly smaller SRAM main memory

than in earlier experiments, it was expected that RAM-

page, which pins parts of the operating system in the

SRAM main memory, would be less competitive on

speed than in earlier experiments even in dreamy mode,

where the increased e�ective DRAM latency would

make this experiment closer to earlier ones with faster

processors.

With the previously measured 1MB L2, RAMpage

was able to show a better overall combination of speed

and energy, and dreamy mode worked best with con-

text switches on misses[3]. With a smaller L2, di�erent

trade-o�s are likely.

For example, context switches on misses are less at-

tractive an option as L2 becomes smaller, because pollu-

tion of working sets is a more serious problem. However,

the smaller L2 is likely to make TCM more useful, es-

pecially with RAMpage, which is able to use it more

e�ectively, to remove references from the main mem-

ory hierarchy. With a 1MB L2, and additional 64kB

adds about 6% to SRAM under the RAMpage operat-

ing system's control, whereas with the smaller L2, the

increase is 50%. With the bigger L2, therefore, perfor-

mance gains are likely to be slight from adding TCM,

and have to be o�set against the higher energy cost of

adding this additional SRAM.

4 Results

This section presents results of simulations, with

some discussion of their signi�cance. The main focus

here is on comparing the e�ects of varying the memory

hierarchy on energy and power use. In all graphs, num-

bers are normalised to best = 1; actual simulated values

are presented in tables.

Fig.2 shows a comparison of the 128kB L2 variations

measured. There are very big di�erences, to the extent

�See ftp://tracebase.nmsu.edu/pub/traces/uni/r2000/utilities/ and ftp://tracebase.nmsu.edu/pub/traces/uni/r2000/

SPEC92/.
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that it is useful to cut o� the scale of the graphs at 10.

Contrast this with the 1MB cases in Fig.3, where it is

reasonable to view all variations on one scale.

Fig.2. Simulated run time and energy comparison (128kB L2; nor-

malised to best = 1). (a) Normalised speed comparison. (b) Nor-

malised energy comparison. (In all �gures, \rp" means RAMpage,

\dr" means dreamy mode and \cx" means with context switches

on misses. The case without TCM or dreamy mode is labeled

\default". Values are cut o� at 10� best to make di�erences in

more competitive cases clearer.)

For the 1MB case, by contrast with the smaller L2,

across all variations, TCM has little bene�t for speed

and in most cases, little (but usually negative) e�ect on

energy use. The performance gain is mostly under 1%

for cases of interest { the faster runs { and the extra

power needed is not compensated for by a suÆciently

shorter run time.

The remainder of this section presents more detail

of results. Speed variations are followed by energy vari-

ations. Finally, design trade-o�s are considered.

4.1 Speed Variations

Speed variations are shown in Table 1. The best

dreamy and non-dreamy times are highlighted, for both

the 128kB and 1MB L2 cases.

TCM is not a win in general for the 1MB case, as is

expected. The speed gains are mostly relatively small

(of the order of 1{3%), which is not suÆcient to compen-

sate for the extra power needed for the extra cache-speed

SRAM (see Subsection 4.3 below). On the other hand,

the 128kB L2 does gain from TCM. As the RAMpage

results show, the ability to use this extra SRAM e�ec-

tively can make a signi�cant di�erence with a smaller

L2 by reducing references to DRAM.

Fig.3. Simulated run time and energy comparison (1MB L2; nor-

malised to best = 1). (a) Normalised speed comparison. (b)

Normalised energy comparison. (Variations are less extreme than

for the 128kB con�guration.)

Fig.4 contrasts speedups resulting from the use of

TCM for the 128kB and 1MB L2 (or SRAM main mem-

ory) cases. It is noteworthy that the biggest speedups

are generally for RAMpage with context switches on

misses, reecting the fact that a higher rate of context

switching makes it more useful to remove system code

and data structures from the caches.

Given that speed gains from TCM in the 1MB case

are so low and energy use is generally higher, from here

on, 1MB L2 discussion and analysis is purely for the non-

TCM version of the 1MB hierarchy, though full data is

presented for completeness.

For the 128kB case, the best dreamy run time is

for RAMpage without context switches on misses (1kB

SRAM page size). Context switches on misses are not

competitive with this con�guration, with best-case run

times 20% to 138% slower than those of the best alter-

native for each case.

Although context switches on misses are not gener-

ally competitive for the 128kB cases, it is worth not-

ing that these con�gurations see relatively large gains

in simulated run time from adding TCM (11% for non-

dreamy; 27% for dreamy). By comparison, the fastest

128kB case (standard hierarchy) gains less than 1% in
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Table 1. Speed Variations (s) (Each row shows standard hierarchy (std), RAMpage without (rp) and with context

switches on misses (cx). The best time in each column is highlighted .)

128kB L2/SRAM main memory 1MB L2/SRAM main memory

Version L2 block/ Non-dreamy Dreamy Non-dreamy Dreamy

page size Non-TCM TCM Non-TCM TCM Non-TCM TCM Non-TCM TCM

st 128 2.59 2.58 5.00 4.97 2.40 2.39 3.56 3.56

rp 4.21 4.08 5.91 5.64 3.82 3.74 5.01 4.86

cx 5.77 5.48 9.73 7.82 4.92 4.74 4.30 4.23

st 256 2.61 2.61 4.40 4.38 2.36 2.36 3.03 3.03

rp 3.36 3.24 4.42 4.16 3.04 3.00 3.72 3.65

cx 4.29 4.02 8.93 6.65 3.64 3.54 3.28 3.22

st 512 2.84 2.83 4.55 4.52 2.36 2.36 2.77 2.77

rp 3.00 2.87 3.75 3.50 2.66 2.63 3.07 3.02

cx 3.58 3.33 11.80 7.29 2.98 2.91 2.78 2.75

st 1,024 3.64 c3.62 5.80 5.75 2.39 2.38 2.66 2.66

rp 3.08 2.83 3.77 3.34 2.51 2.50 2.76 2.75

cx 3.48 3.09 9.44 7.27 2.64 2.62 2.61 2.58

st 2,048 7.59 7.55 12.26 12.17 2.48 2.47 2.71 2.70

rp 3.83 3.22 4.72 3.78 2.46 2.45 2.61 2.60

cx 7.46 5.34 9.53 6.52 2.51 2.48 2.52 2.51

st 4,096 23.60 23.44 33.24 33.01 2.88 2.86 3.17 3.15

rp 7.73 4.90 9.53 5.74 2.49 2.48 2.58 2.58

cx 20.85 10.20 24.42 13.3 2.57 2.53 2.58 2.53

Fig.4. Speedups for TCM over like cases without. (a) 128kB L2.

(b) 1MB L2.

speed from adding TCM (dreamy and non-dreamy).

RAMpage without context switches on misses sees gains

of 6% for the non-dreamy and 11% for the dreamy case.

These numbers support the view that a 128kB L2 is

too small to support context switches on misses: adding

TCM has a disproportionate e�ect in this case (though

not enough to catch up with the other variants).

On the other hand, for the 1MB cases, the best

dreamy run time is for RAMpage with context switches

on misses, with a 2kB SRAM page size. Execution time

here is 6% slower than that for the best non-dreamy

case (conventional hierarchy, 512B L2 block size). More

speed variation is accounted for by variations in the

SRAM page or L2 block size than by using or not using

dreamy mode. The slowest dreamy simulated execution

time is 5.01s; the slowest non-dreamy time is 4.92s, a

di�erence of under 2%.

4.2 Energy Variations

Table 2 shows the simulated DRAM energy usage for

each variation.

For the 1MB L2 measurements, the lowest-energy

non-dreamy case is the standard hierarchy with a 512B

L2 block size, which also has the quickest execution

time. For dreamy runs, likewise, the lowest-energy case

is the same as the fastest case, RAMpage with context

switches on misses for a 2kB SRAM page size. Con-

text switches on misses are a marginal bene�t: the en-

ergy gain over the best RAMpage case without context

switches on misses (4kB L2 page size) is only 2% (similar

to the speed gain).

For 128kB L2 measurements, the picture is rather

di�erent. Context switches on misses are never an ad-

vantage, reecting the signi�cant slowdown as reported

above in Subsection 4.1.

A 1MB L2 is therefore a reasonable minimum for

RAMpage with context switches on misses to be e�ec-

tive { probably because a smaller L2 loses too much from

an increase in context switches. More context switches

increase the chances of an L2 page being evicted by a

competing reference from another process.

4.3 Overall Trade-O�s

Switching from the non-dreamy 1MB standard hier-

archy to the non-dreamy 128kB standard hierarchy with
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Table 2. Energy Variations (J) (Each row shows standard hierarchy (std), RAMpage without (rp) and with context

switches on misses (cx). The lowest energy in each column is highlighted .)

128kB L2/SRAM main memory 1MB L2/SRAM main memory

Version L2 block/ Non-dreamy Dreamy Non-dreamy Dreamy

page size Non-TCM TCM Non-TCM TCM Non-TCM TCM Non-TCM TCM

std 128 2.19 2.18 3.06 3.03 3.70 3.81 4.35 4.52

rp 3.55 3.44 2.95 2.78 5.90 5.96 5.86 5.90

cx 4.91 4.66 5.32 4.13 7.63 7.59 4.87 4.99

std 256 2.21 2.20 2.54 2.52 3.65 3.76 3.54 3.68

rp 2.84 2.73 2.11 1.95 4.70 4.78 4.26 4.34

cx 3.65 3.42 5.00 3.54 5.64 5.67 3.64 3.73

std 512 2.40 2.40 2.62 2.60 3.65 3.76 3.13 3.26

rp 2.53 2.43 1.74 1.58 4.12 4.20 3.44 3.53

cx 3.06 2.84 7.19 4.14 4.62 4.67 3.04 3.15

std 1,024 3.07 3.06 3.55 3.52 3.69 3.8 2.96 3.08

rp 2.60 2.39 1.79 1.50 3.87 3.98 3.05 3.17

cx 2.98 2.65 5.93 4.36 4.11 4.20 2.85 2.94

std 2,048 6.42 6.38 8.41 8.34 3.84 3.95 3.02 3.14

rp 3.24 2.72 2.44 1.82 3.80 3.91 2.85 2.97

cx 6.58 4.71 6.47 4.16 3.90 3.98 2.74 2.85

std 4,096 19.94 19.81 23.98 23.81 4.45 4.56 3.68 3.80

rp 6.53 4.14 5.68 3.15 3.84 3.96 2.80 2.92

cx 19.62 9.63 20.52 10.88 4.01 4.07 2.85 2.90

TCM results in a speed drop of 9%. The best dreamy-

mode execution time for the 1MB case (RAMpage with

context switches on misses, 2kB SRAM page size) re-

sults in a similar (7%) speed drop.

The fastest 1MB case uses 3.65J, whereas the fastest

non-dreamy standard hierarchy with TCM uses 2.18J,

an improvement of 40%. By contrast, the best dreamy-

mode 1MB case uses 2.74J, an improvement of 25% on

the fastest 1MB case.

In terms of a simple speed-energy trade-o�, going to

a 128kB L2 with a standard hierarchy is a good choice.

Adding TCM results in a small improvement in both

speed and energy | in both cases, under 1%.

However, if dreamy mode is introduced to the 128kB

con�guration, a more signi�cant energy gain is possi-

ble. The best case without TCM (RAMpage, no con-

text switches on misses, 512B SRAM page) uses 1.74J,

a saving of 52% of the fastest 1MB case, for a speed

penalty of 59% (an increase from 2.36s to 3.75s). The

ability of RAMpage to make more e�ective use of the

whole memory hierarchy shows when TCM is added to

dreamy mode on the smaller L2. Energy use drops to

1.5J, and simulated time drops to 3.34s | still an in-

crease of 41.5% on the best 1MB L2 case, but a more

acceptable trade-o� for an energy saving of 59%.

Given that the 128kB cases can achieve reasonably

competitive times but signi�cantly better energy use,

they are a better overall choice than the 1MB variants.

The remainder of this discussion therefore focuses on

the 128kB variants, with TCM.

In non-dreamy mode, RAMpage achieves its best

result without context switches on misses with a 1kB

SRAM page size. Simulated run time is 2.83s, 20%

slower than the fastest 1MB case, or about 10% slower

than the fastest standard 128kB variant. This RAM-

page variant uses 2.39J, a saving of 35% over the fastest

1MB case, but less than 10% more than the most energy-

eÆcient non-dreamy 128kB case (standard hierarchy,

512B L2 block size).

If dreamy mode is not an option, the best case is the

conventional hierarchy with TCM. However, if dreamy

mode is an option, a good overall compromise would be

a design using RAMpage in which dreamy mode could

be turned o� for maximum performance, and turned on

for minimum energy use. Ideally, it should be possible

to vary the SRAM page size, since the best full-power

case is with a 512B page, whereas the best dreamy case

is with a 1kB page. However, the speed cost of using a

1kB page in full-power mode is less than 1%, so a good

overall design compromise would be:

� organisation: RAMpage, TCM, no context

switches on misses;

� L2 size: 128kB (1kB SRAM pages);

� power mode: dreamy, option of full power for high-

est speed.

Overall, RAMpage is not a clear win in as many

cases as in earlier work where the focus was on a large

CPU-DRAM speed gap.

It is instructive to compare these results with

PADRAM, which used more energy in its equivalent of

a simply dreamy mode than without[20], probably be-

cause of its relatively small (256kB) L2 cache. For the

128kB case of the standard hierarchy, similar results are

seen here. For the best dreamy-mode 128kB case with-

out TCM (the most directly comparable case with the

PADRAM study), the lowest-energy run used 2.54J, as

compared with 2.19J for the best (non-TCM standard

hierarchy) case. Adding TCM does not signi�cantly al-

ter this �nding. The respective simulated run times are

2.59s and 4.40s, consistent with the PADRAM �nding

that their equivalent runs took about twice as long with

a simple model of DRAM sleep.

In the PADRAM study, best energy savings with

reasonable speed costs were achieved with a much more

complex model than in this study, using a range of low-

power options not available in all commodity DRAMs,
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and dynamic placement in banks in di�erent modes.

RAMpage, with its lower miss rate to DRAM, is able

to make e�ective use of both dreamy mode and TCM,

resulting in signi�cant energy savings without the com-

plexity of multiple low-power modes, or dynamic place-

ment strategies.

5 Conclusion

This paper has presented a study of use of the RAM-

page memory hierarchy to reduce DRAM energy usage.

The approach used was to simulate a dreamy memory,

in which DRAM is turned o� except when referenced.

As compared with previous work, a smaller L2 (or static

RAM main memory) has been explored, with the addi-

tion of a cache-speed physically-addressed SRAM (TCM

in terminology of ARM processors).

The remainder of this section summarizes results,

outlines future work and presents overall conclusions.

5.1 Summary of Results

RAMpage, with the option of context switches on

misses, presents some useful trade-o�s in choosing an

energy-speed design trade-o�. Assuming a relatively

low-energy processor design (as well as low-energy com-

ponents for the remainder of the system), dreamy energy

savings could be signi�cant. The fastest 1MB L2 con-

�guration uses 2.4 times the energy of the most energy-

eÆcient (128kB L2) one, for a performance gain of only

29%.

While a signi�cant fraction of the energy gain arises

from switching from a 1MB L2 to a 128kB L2, signi�-

cant gains are still made at �xed L2 size. The fastest

128kB L2 case uses 45% more energy, for a speed gain

of 23%.

For a lesser performance cost over the fastest version,

the RAMpage model can be run in full-power mode,

switching to dreamy mode when power use is more im-

portant than speed. Compared to this case, the fastest

version uses 17.4% less energy, and is 16.5% faster. The

trade-o� in choosing this version is a loss of speed in

full-power mode, versus lower energy in dreamy mode

(and less of a performance penalty for dreamy mode).

The best overall compromise is achieved by RAM-

page without context switches on misses, though by

a less signi�cant margin than in earlier studies, which

showed RAMpage with context switches on misses to be

the variant most tolerant of high DRAM latencies[2]. A

relatively small SRAM layer makes RAMpage less com-

petitive than in these earlier studies. However, RAM-

page is able to make more eÆcient use of a fast but small

physically-addressed memory such as TCM, by virtue of

the greater control a software memory manager can ex-

ercise over placement in memory.

5.2 Future Work

This study has extended previous work by including a

model for power use by the processor subsystem. How-

ever, power could be more accurately modelled. The

approximations used here are suÆcient for identifying

major di�erences but a more detailed model would be

useful to verify more subtle e�ects.

Results should be extended to a more detailed anal-

ysis of overall system energy, including low-energy vari-

ations on caches, and low-energy versions of faster pro-

cessors. The simulated SRAM has a relatively low la-

tency for waking up from low-power mode (50% of the

latency of an L2 hit). Since 1MB SRAM (0.8W) uses

more power than DRAM in full-power mode (0.52W) {

as simulated here { this would be a useful variation to

explore. The 1MB variants would be a lot more compet-

itive on energy use if the large SRAM could be in low-

power mode most of the time. Coupled with TCM, the

operating system could function a signi�cant fraction of

the time without L2. It is possible that the speed loss

from a dreamy L2 would be minor. Further investigation

of this variation is worthwhile for performance-sensitive

applications.

TCM could be modelled more accurately, including

simulating a split memory, as in the ARM11 design.

Results here are consistent with earlier studies like

PADRAM, which have shown that an approach sim-

ilar to dreamy mode is not e�ective with a standard

cache hierarchy. RAMpage achieves energy gains using

a simple dreamy mode, but could be extended to explore

alternatives such as dynamic page placement in banks

in di�erent states, and using alternative power saving

modes with di�erent power-speed trade-o�s. However,

PAVM[21] and PADRAM[20] require signi�cantly more

complex hardware and software than is proposed in this

paper, and the suitability of these approaches needs to

be re-evaluated for small-scale devices.

A RAMpage implementation on the L4 Pistachio

kernel10] is planned. This kernel is small enough to

permit implementation of its minimum memory-resident

data and code in the 64kB static RAM memory (TCM)

in the ARM11 family, as simulated in this paper. L4

has been ported to the M5 architecture simulator[29] by

the NICTA group at University of New South Wales,

creating the possibility of RAMpage on a full-system

simulator, a goal of earlier work.

The existing simulator will be used to experiment

with further variations on energy-eÆcient memories.

For example, instead of an SRAM main memory, main

memory could be implemented in a small permanently

powered up DRAM, with the remaining DRAM operat-

ing as a dreamy paging device.

5.3 Overall Conclusion

In this latest study, investigating the dreamy memory

model with a smaller L2 and a fast physically-addressed

cache-speed SRAM has further demonstrated the poten-

tial for RAMpage in low-energy designs. While RAM-

page did not run in the shortest time in full-power mode

(expected with a relatively slow processor), it did have
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both the fastest- and lowest-energy measurements in

dreamy mode.

The design trade-o�s discussed here represent a fur-

ther data point in the design space: overall low-energy

system design requires design of the whole system to

minimise energy use. Just as Amdahl's Law shows that

focus on one area of speed improvement has diminish-

ing returns, we need to be careful not to interpret en-

ergy savings in isolation. Nonetheless RAMpage shows

promise in the area of low-energy design, and this study

will be followed up with others.

Low-energy design is especially interesting for small-

scale devices, so it is of most interest to investigate rel-

atively simple approaches which can work with a small

memory, and relatively slow processor. However, the

resulting design principles can potentially be interesting

to large-scale systems.

While small microkernels are not mainstream in

large-scale computers, the value of being able to place

the entire kernel in a small fast SRAM is illustrated

with the RAMpage results, especially with the smaller

L2. Insights resulting from eÆcient implementation of

small microkernels in this context may result in a resur-

gence of interest in this kind of operating system design

in a wider �eld.
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