
DISK DELAY LINES
Philip Machanick

Department of Computer Science, University of the Witwatersrand
2050 Wits, South Africa

philip@cs.wits.ac.za

Abstract

Latency goals often relate to response times seen by users, which are slow by computer

standards, but scaling up to large numbers of users presents a problem. Examples include

transaction-based systems and web sites. While a transaction-based system presents

performance challenges other than disk latency, it is interesting to develop a model of disk

architecture in which disk latency no longer presents a challenge, which allows system

designers to focus on other areas in which performance goals may be hard to meet. The

Disk Delay Line concept relies on the fact that a disk can stream data quickly. A single-

Disk Delay Line is a disk which constantly streams its entire contents, and a request for

data or for a write waits until the required portion of the data stream appears. A given

latency goal can be achieved by replicating disks, with copies of streams evenly spaced

apart in time, and a given number of transactions per second can be supported by sufficient

memory to buffer requests.

1. Introduction

User-level goals for response times are slow by computer standards. However, scaling up presents a

problem, because latencies over large numbers of competing requests are added. Transaction-based systems

and web sites, for example, run into this problem: latencies for users in seconds may be acceptable (if

sub-second response time is ideal).

This paper considers a novel approach to disk usage, which exploits the disk’s strong point, streaming,

while avoiding adding latencies across individual transactions.

The general idea is that a disk should be streamed constantly, and requests be buffered and serviced as soon

as the data they requested becomes available. Writes can also be handled, but require a little more

complexity. The idea is expensive to implement for very low latencies, but scales well to very high

transaction rates.

The model is called a Disk Delay Line (DDL); the explanation for this name is saved up as a surprise in

the Conclusion.

The remainder of this paper is organized as follows. Section 2 presents an example to illustrate how a

DDL can be designed. Section 3 briefly summarizes problems not addressed in the design, and Section 4

describes competing technologies. The final section concludes with a recommendation for disk designers,

and explains the origin of the DDL name.

2. Disk Delay Line Design

Here let us work through specific numbers; generalization is not hard. The requirements are 100,000

transactions per second, maximum response time 1s. Further, assume that the disk may occupy at most

0.5s of the response time. Assume that for 1Gbyte of data a disk with latency 7ms and transfer rate

40Mbyte/s is available, and a typical transaction reads 128 bytes (writes are a dealt with later), an amount

small enough to suggest worrying about latency rather than fast streaming. The basic requirement is

clearly out of reach. Although a response time of 0.5s (disk time only) is much larger than 7ms, the

requirement of 100,000 transactions per second requires that each transaction take at most 10µs, almost

1000 times faster than the disk's access time. But what of the disk's 40Mbyte/s transfer rate? That allows

128 bytes to transfer in 3µs. The problem is that we cannot stream the data continuously since we require

random accesses … but let's carry on with this line of thought.

What happens if we stream the disk continuously? Assuming this can be done with no pauses, the time

to sweep the entire data set is 25.6s, still not so promising, since we want an operation to take at most

0.5s—this is 50 times too slow. Next step: replicate the data on 50 disks, synchronized so the data is

timed to be equal distances apart as the disks stream, which should be possible, given that synchronizing

disks is a solved problem for RAID. Now, any one item to be read is at most 0.5s away at any given

time. The next trick is to queue requests in a tagged buffer, which can detect when a given request matches

the address of data being streamed off the disk (similar to cache tags). If the buffer can hold 50,000

requests, then up to 100,000 can be dispatched per second, assuming the worst case, that every request

waits the maximum delay.

Writes are more difficult. They could be buffered, and to avoid losing bandwidth or latency, drives should

have separate write heads. Obviously any reads that refer to buffered writes should pick up the buffered

copy. Assuming that the write problem can be handled, if a compute server can keep up with the required

rate of transaction handling and the network interface is up to it (someone else's problem, only the disk

subsystem is considered here), this design meets the stated requirements.

3. Other Challenges

While it appears to be reasonably simple to build a disk system as described in the previous section,

building an overall system that could keep up with a transaction rate like 100,000 TPS would be a major

challenge. Certainly, no system shipping today claims any number close to this: the best figure reported

by May 1998 for TPC-C, an online transaction-processing benchmark, was 102541 transactions per

minute, or 1709 TPS, on an Alpha with 96 processors, costing over $14-million [TPC 1998].

Part of the problem at least that designers run into in high-end TPS systems is working around the fact

that disk latency is poor: a lot of effort has to be put into partitioning databases, balancing load between

parts of multiprocessor and distributed systems, and working around the resulting irregular memory

reference patterns that are a poor fit to a conventional memory hierarchy.

Perhaps a DDL-based system would avoid some of these problems; a more detailed design of an overall

system is required to assess whether a DDL architecture solves other TPS design problems.

4. Competition

The competition is RAID [Chen et al. 1994], RAIS (redundant array of inexpensive servers), RAM-based

databases and large-scale or mainframe-style disk systems. RAID cannot deliver the required latency. RAIS

is used for large web sites; in principle, a RAIS system (or other distributed design) could better this

design, but presents hard design problems like maintaining data consistency (in the presence of writes) and

partitioning workload. A RAM-based solution gives better latency more easily and could beat the peak

bandwidth of this solution, but doesn’t match its potential fault tolerance or its nonvolatility across

power failures. A high-end or mainframe-style disk subsystem is expensive and even so would have

difficulty in achieving the design goals of the example presented here (under the assumptions here, 50

disks with 7ms access time couldn’t support more than about 3,500 transactions per second if accessed the

standard way).

5. Conclusion

The case made here is for disk designers for large-scale transaction-based systems to abandon the futile

pursuit of lower latency and focus on maximizing bandwidth (e.g. by higher numbers of heads, and a

faster interconnect to each disk). Large-scale web sites, with many fewer writes than reads, could benefit

from this disk architecture. Transaction-based systems which typically reference small amounts of data per

transaction, such as online transaction processing (OLTP) systems could also benefit.

Is the idea so new? Not really, a computer memory that continuously streams sequentially is one of the

oldest ideas: some early computers used an acoustic mercury delay line which had very similar properties

[Bowden 1953].

Acknowledgments

This work was done while on sabbatical hosted by Trevor Mudge at Department of Electrical Engineering

and Computer Science, University of Michigan. Financial support was provided by the University of the

Witwatersrand and the South African Foundation for Research Development.

References

[Bowden 1953] B. Bowden (ed.). Faster than thought, Pitman, London, 1953.

[Chen et al. 1994] P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz and D. A. Patterson. RAID: High-

Performance, Reliable Secondary Storage, ACM Computing Surveys, vol. 26 no. 2 June 1994, pp

145-185.

[TPC 1998] Top Ten TPC-C Results by Performance, Transaction Processing Performance Council

<http://www.tpc.org/new_result/ttperf.idc>, May 1998 (last update at time of writing).

