
A Programmable Matching Engine for
Application Development in Linda

George Clifford Wells

July 2001

A dissertation submitted to the University of Bristol in accordance with the require-
ments of the degree of Doctor of Philosophy (PhD) in the Faculty of Engineering,
Department of Computer Science.

32 200 words

Abstract

This thesis describes the novel features of an extended Linda system, called
eLinda. The main contribution of eLinda is the introduction of a powerful
and flexible mechanism for expressing the queries used for data retrieval in
Linda systems. This provides simplicity for applications that would other-
wise need to handle complex retrieval operations explicitly, and enhances
efficiency, particularly where the data is distributed across a network.

Other extensions introduce support for distributed multimedia resources,
and provide additional support for efficient data distribution across a com-
munication network.

The enhanced functionality of the eLinda system is described in detail and
compared with existing Linda systems, both commercial products and re-
search projects. This is done primarily with an emphasis on the expressive-
ness and functionality of the new features, but also takes into consideration
performance and efficiency issues, including the scalability of eLinda appli-
cations.

The use of these novel features is demonstrated by their application to a
number of problems, including a video-on-demand system and a parser for
visual programming languages. The latter application particularly shows
the benefit of the new data retrieval mechanisms present in the eLinda
system.

i

Acknowledgements

An undertaking like this, which has spanned some seven years and two continents,
inevitably involves many people. While it would be impossible to mention them all
individually, it is a pleasant task to pay tribute to those who have had a particularly
large part to play.

First, and foremost, I would like to thank Alan Chalmers, firstly for agreeing to
supervise this project and then putting up with the challenges of supervision over a
great distance, under sometimes trying circumstances. Thanks to him the “story” has
finally been told!

To my faithful team of proof readers, Alan Chalmers, Peter Clayton, Theo Groen-
eveld, Andrew Turpin and Madeleine Wright, thank you all for doing an excellent job,
under a great deal of time pressure. I hope that I have not undermined your good work
too drastically!

The work commenced during a period of sabbatical leave, spent at the University of
Bristol. I wish to thank the staff and students of the Department of Computer Science,
who provided a stimulating environment for my year with them. I must particularly
mention Mike Rogers, for his help in making both the sabbatical year and the PhD
study possible.

My “family” in the Department of Computer Science at Rhodes University, who
are the best group of people I think I could ever hope to work with, have been an
incredible source of encouragement and support. While it is invidious to single out
any individuals, I feel I must particularly thank Peter Wentworth for being a constant
source of good ideas and inspiration. I would also like to thank Jody Balarin and
Billy Morgan for cheerfully helping with my requests for technical support and access
to equipment. Thanks to Shaun Bangay for the background information about ray-
tracing. Most of all I would like to thank Peter Clayton for his concern, assistance,
guidance and support—it is a privilege to work with you Pete.

Pareen Daya did a great job of implementing the full support for the multimedia
extensions in eLinda, under my supervision. He also produced the results for this
section at very short notice, for which I am very grateful.

During the years that this project has taken I have been very lucky to be surrounded
by a caring and supportive group of friends. While more grateful to all of them than
they will ever know, I must again make a few “special mentions”. To Kevin and
Adele: thank you for putting up with me during the final stretch, and keeping the
daily distractions and diversions at bay. Thank you to my friends in the River of Life
Christian Assembly, who so gladly supported me, prayed for me, and understood and
filled in for me when I wasn’t around.

ii

iii

And most of all, Theo, Brenda, Caleb and Tiger, without whom I don’t think this
project would ever have been completed, you cannot know just how grateful I am to
you. Thank you for providing an incredibly productive work environment in my “home
from home” in Pretoria; thank you for your encouragement and your prayers, and for
“cracking the whip” (in the nicest possible way!).

Last, but definitely not least, my thanks go to my family who for years have sup-
ported and encouraged me in everything that I have done. Thank you for giving me
the start in life, the opportunities and the confidence to achieve what I have done.

Funding

I am very grateful to the following sources of funding for this work:

• The Distributed Multimedia Centre of Excellence in the Departments of Com-
puter Science at Rhodes University and the University of Fort Hare, supported
by Telkom SA, Lucent Technologies, Dimension Data and the Technology and
Human Resources for Industry Programme (THRIP).

• The Joint Research Committee of Rhodes University, who provided funding sup-
port for conferences and travel.

• The National Research Foundation (NRF) of South Africa, who also provided
conference and travel funds.

Trademarks and Copyright Notices

Linda is a registered trademark of Scientific Computing Associates.
Java, JavaSpaces and Jini are registered trademarks of Sun Microsystems, Inc.
Scripture quotations taken from the Holy Bible, New International Version. Copyright
c©1973, 1978, 1984 by International Bible Society. Used by permission.

iv

To him who is able to keep me from falling and present me before his glorious
presence without fault and with great joy—to the only wise God my saviour
be glory, majesty, power and authority, now and for evermore! Amen.

Adapted from Jude 24–25

Author’s Declaration

I declare that the work in this dissertation was carried out in accordance with the
Regulations of the University of Bristol. The work is original except where indicated
by special reference in the text and no part of the dissertation has been submitted for
any other degree. Any views expressed in the dissertation are those of the author and
in no way represent those of the University of Bristol. The dissertation has not been
presented to any other university for examination either in the United Kingdom or
overseas.

SIGNED:

DATE: October 5, 2001

v

Contents

List of Figures ix

List of Tables x

List of Program Segments xi

1 Introduction 1
1.1 The eLinda System in Context . 1

1.1.1 The History of eLinda . 2
1.2 Structure of the Thesis . 3

2 Background 4
2.1 Parallel and Distributed Programming 4

2.1.1 Classifying Computer Architectures for Concurrency 5
2.1.2 Linda . 7
2.1.3 Other Concurrent Programming Models 16

2.2 Concurrent Programming in Java . 25
2.2.1 Concurrency in Java . 25
2.2.2 Networking, Message Passing and RPC Mechanisms 26
2.2.3 Linda Implementations in Java 31

2.3 Summary . 40

3 eLinda 42
3.1 Implementation Issues and Rationale 42

3.1.1 The System Architecture . 43
3.1.2 Multimedia Support . 49
3.1.3 Comparison with Other Linda Systems 51

3.2 The Extensions . 51
3.2.1 The Programmable Matching Engine 52
3.2.2 Multimedia Support . 53
3.2.3 Broadcast Communication . 54

3.3 Summary . 55

4 The Programmable Matching Engine 56
4.1 The Use of the Programmable Matching Engine 57

4.1.1 An Example of the Use of the Programmable Matching Engine . 57

vi

CONTENTS vii

4.1.2 The Interaction between Matchers and the Tuple Space 59
4.1.3 Simple Matchers . 60
4.1.4 Aggregate Matchers . 61
4.1.5 Limitations of the Programmable Matching Engine 62
4.1.6 Other Uses of the Programmable Matching Engine 63

4.2 Writing Distributed Matchers . 64
4.2.1 Requirements for Matchers . 64
4.2.2 Support Functions . 66
4.2.3 The Complexity of Writing New Matchers 67

4.3 The Implementation of the Programmable Matching Engine 68
4.4 The Programmable Matching Engine and Mobile Agents 68
4.5 Summary . 70

5 Applications of eLinda 71
5.1 A Video-on-Demand Application . 71

5.1.1 The Video Server Application 71
5.1.2 The Video Client Application 72

5.2 Ray-Tracing . 74
5.2.1 The Ray-Tracing Algorithm . 74
5.2.2 Implementation . 75

5.3 Visual Language Parsing . 76
5.3.1 Picture Layout Grammars . 77
5.3.2 The Implementation of Golin’s Parsing Algorithm 82
5.3.3 The Parallelisation of the Parsing Algorithm 84
5.3.4 Use of the Programmable Matching Engine 87
5.3.5 Refinements to the Parallel Algorithm 90
5.3.6 Comments and Conclusions . 92

5.4 Summary . 92

6 Evaluation of eLinda 93
6.1 Comparison of Features . 93

6.1.1 Comparison with JavaSpaces and TSpaces 93
6.1.2 Comparison with Research Systems 97

6.2 Benchmark and Application Results . 100
6.2.1 Communication Benchmark . 100
6.2.2 Ray-Tracing . 104
6.2.3 Visual Language Parsing . 105
6.2.4 Multimedia Performance . 109

6.3 Summary . 110

7 Conclusions and Future Research Directions 111
7.1 Analysis of Results . 111

7.1.1 Qualitative Results . 111
7.1.2 Quantitative Results . 112

7.2 Future Directions for Research . 113

CONTENTS viii

7.2.1 New Features . 113
7.2.2 Implementation Issues . 114
7.2.3 Applications . 114

7.3 Conclusion . 116

Bibliography 117

A Writing New Matchers 133
A.1 Support Functions . 133

A.1.1 Tuple Support Functions . 133
A.1.2 Communication and Tuple Space Access 136

A.2 An Example Matcher . 136

B Preprocessor Support 141
B.1 Requirements for an eLinda Preprocessor 141

B.1.1 Tuple Space Analysis . 143
B.2 Preprocessing: JavaSpaces and TSpaces 144

B.2.1 TSpaces . 144
B.2.2 JavaSpaces . 144
B.2.3 Application to eLinda . 145

List of Figures

2.1 Abstraction Levels for Parallel and Distributed Programming 5
2.2 Flynn’s Taxonomy of Computer Architectures 6
2.3 A Simple Communication Pattern . 9
2.4 The Use of the eval Operation . 10
2.5 Raina’s Taxonomy of Shared Memory Architectures 17
2.6 TSpaces Internal Structure . 36

3.1 The Structure of the eLinda System . 44
3.2 The Structure of the eLinda2 System 45
3.3 The Structure of the eLinda3 System 46
3.4 The Communication Structures in eLinda 48
3.5 The Configuration of the Multimedia Subsystem 50

4.1 Example of People and Heights . 57

5.1 Control Flow in the Video Server Application 72
5.2 Screenshot of the Video Client Application 73
5.3 The Scene used in the Ray-Tracing Application 75
5.4 An Example State Transition Diagram and Its Textual Representation 78
5.5 Example of a Parse Tree . 81
5.6 The Abstract Derivation Tree and Parsing Levels for the State Transition

Diagram Grammar . 86

6.1 Communication Benchmark: Results for Processes 103
6.2 Speedup for the Ray-Tracing Application 104
6.3 Results for the Ray-Tracing Application 106
6.4 Speedup for the Visual Language Parser 107

ix

List of Tables

2.1 Comparison of JavaSpaces and Yale Linda 33
2.2 Comparison of TSpaces and Yale Linda 35
2.3 Summary of Names for Linda Operations 37

3.1 Communication Options for eLinda . 47

4.1 Measurements of Code Length for Three Example Matchers 68

5.1 A Grammar for State Transition Diagrams 79

6.1 Comparison of JavaSpaces, TSpaces and eLinda 94
6.2 Options Tested with the Communication Benchmark 101
6.3 Results of the Communication Benchmark 102
6.4 Detailed Results for the Ray-Tracing Application 105
6.5 Results for Differing Image Segment Sizes for eLinda 106
6.6 Sample Results for the Build Phase with Eight Worker Processes 109
6.7 Multimedia Transmission Results . 110

A.1 Methods of the Tuple Class Used in Matching 134
A.2 Encoding of Tuple Field Types . 134
A.3 Matching Methods of the AntiTuple Class 135
A.4 Communication and Tuple Space Access Methods 136

x

List of Program Segments

2.1 A Simple CSP Example . 20
2.2 An Example of a Shared Data Structure in Java 27
4.1 Finding a Maximum Value Using Linda 58
4.2 The ProgrammableMatcher Interface 65
5.1 The Video Client Application . 73
5.2 Generic Worker Process used for Ray-Tracing 76
5.3 The Sequential Form of the First Phase of the Visual Parsing Algorithm 83

xi

Chapter 1

Introduction

This thesis describes an extended version of Linda called eLinda. Linda is a language

for coordination and communication in parallel and distributed programming that is

based on a shared memory paradigm with a small set of simple operations that can be

used by processes to access the shared data. This inherent simplicity offers a number of

advantages for parallel and distributed programming. However, there are a number of

problems associated with the Linda programming model. The novel features of eLinda

address some of these weaknesses, particularly in the area of retrieving shared data.

High-level support for distributed multimedia applications has also been integrated

into the eLinda system.

This chapter presents a general introduction to the subject of Linda systems and the

eLinda project, and provides an overview of the structure of the rest of the dissertation.

1.1 The eLinda System in Context

The Linda model for parallel and distributed programming was developed at Yale

University in the mid-1980’s[56]. In essence, it provides a shared memory model of

a parallel or distributed computing system that can be accessed by the participat-

ing processing nodes. The logically shared memory space may be implemented using

physically shared memory hardware, or, more usually, as some form of virtual shared

memory.

The shared memory approach of Linda provides a high-level abstraction that can

simplify the task of programming distributed or parallel systems, as the shared data

space effectively decouples the communication between processes. This is the case both

with respect to time (communication is asynchronous) and location (communicating

1

CHAPTER 1. INTRODUCTION 2

processes do not need to be aware of each other’s identity or location in a multi-

processor or networked system). The inherent simplicity of the programming model

and the decoupling of processes offer a number of benefits over systems based on

message-passing, remote procedure call, etc.

However, Linda has been criticised for poor performance. Furthermore, there are

many applications with data retrieval requirements that are difficult to express effi-

ciently in Linda. The extensions introduced in eLinda have been designed with a view

to making some of the underlying data retrieval and communication issues more ex-

plicit, thus providing the programmer with a greater level of control of the underlying

system. A key feature of this is the distribution of complex matching (or searching)

operations, which are central to the retrieval of data in the Linda programming model.

Additionally, as distributed multimedia applications are becoming increasingly impor-

tant, high-level support for multimedia data types and their efficient distribution across

a communication network has also been added to eLinda.

1.1.1 The History of eLinda

The eLinda project began in 1995, and its current form may be better understood if

the original motivations and subsequent changes in direction are made known from the

outset.

The original intention was to develop the eLinda system for use with multiprocessor

Transputer systems[158], making use of minimum path communication network config-

urations for efficient broadcast communication[34]. In preparation for this, a prototype

system was initially developed to test the new concepts. This was implemented for net-

works of UNIX workstations, using a message-passing library (PVM[144]) to handle

the communication issues[156]. The initial application area of interest was high perfor-

mance graphics rendering[157]. However, in 1996 SGS-Thompson, the manufacturers of

the Transputer, announced their intention of discontinuing production and development

of the Transputer family of processors. At about the same time the Java programming

language was beginning to increase in popularity, and provided some interesting fea-

tures, specifically program portability and simple, but powerful, networking support.

Accordingly the eLinda project was redirected to make use of Java as the development

language, and targeted at distributed, “network of workstation” (NOW) systems rather

than multiprocessor parallel processing systems. However, despite these changes, the

unique features of eLinda remained essentially unchanged.

CHAPTER 1. INTRODUCTION 3

1.2 Structure of the Thesis

The following chapters expand on the themes outlined above as follows:

Chapter 2 presents a discussion of techniques for distributed and parallel program-

ming, focussing on shared memory abstractions, and other mechanisms available

for distributed programming in Java. This includes a detailed description of the

original Linda programming model developed at Yale University, and two recent

implementations of Linda in Java by large organisations.

Chapter 3 introduces the eLinda system and its extensions to the original Yale Linda

model. Three implementations of eLinda have been developed to demonstrate

the new concepts, and are also described in this chapter.

Chapter 4 expands on Chapter 3, describing the central extension in eLinda, the

Programmable Matching Engine, in greater detail.

Chapter 5 describes a number of example applications for which eLinda has been

used. These include simple benchmark programs and larger applications, includ-

ing the parallel implementation of a parser for graphical programming languages.

Chapter 6 presents the results, both qualitative and quantitative, of implementing

and running the applications described in Chapter 5. Comparisons are made

with the commercial Linda implementations and with other research projects.

Chapter 7 presents an analysis of the results, and outlines possible directions for

future research in this area.

There are two appendices that provide additional details of some of the features of

eLinda, and other supporting material:

Appendix A provides an overview of the process for developing new matching algo-

rithms, using the Programmable Matching Engine.

Appendix B outlines the support that would be required for a preprocessor for eLin-

da.

Chapter 2

Background

This chapter is divided into two main sections. The first introduces the area of con-

currency, focussing on the Linda programming model as originally developed at Yale

University. The second section concentrates specifically on the mechanisms that are

available in Java for parallel and distributed programming, including a number of Linda

systems and related projects. In particular, detailed descriptions are given of two com-

mercial Linda implementations in Java: TSpaces from IBM, and JavaSpaces from Sun

Microsystems.

2.1 Parallel and Distributed Programming

Cleaveland et al provide a good definition of the related concepts of concurrency,

parallel and distributed systems as follows:

Concurrency is concerned with the fundamental aspects of systems of mul-

tiple, simultaneously active computing agents that interact with each other.

This notion is intended to cover a wide range of system architectures, from

tightly coupled, mostly synchronous parallel systems, to loosely coupled,

largely asynchronous distributed systems. [42]

As is implied by this definition, the field of concurrency can be viewed as a spectrum

ranging from parallel systems to distributed systems. Along this continuum there are

many different languages, models and systems available for programming concurrent

applications. A very useful organisation of these different approaches is their classi-

fication into a hierarchy of differing levels of abstraction, as shown in Figure 2.1[92].

4

CHAPTER 2. BACKGROUND 5

Tuple/Object Space Highest level of abstraction

Network Services, Object Request ↑
Brokers, Mobile Agents ↑
Remote Procedure Call/ ↑

Remote Method Invocation ↑
Client/Server, Peer to Peer ↑

Message Passing Lowest level of abstraction

Figure 2.1: Abstraction Levels for Parallel and Distributed Programming

Linda falls into the category of tuple or object space systems, at the highest level of

abstraction in this hierarchy.

A useful analogy can be made with the traditional description of levels of abstrac-

tion in programming language systems, from the low level view of assembly language

programming through to the higher levels of abstraction provided by fourth generation

programming languages. This view is expressed well by Shires et al, who describe a

particular message passing system as “the assembly-language of parallelism with its

required attention to detail”[137].

Before considering various languages and models that have been proposed for con-

current programming we will discuss briefly some of the major factors influencing the

hardware platforms for supporting concurrent applications.

2.1.1 Classifying Computer Architectures for Concurrency

The major classification in this area is due to Flynn[48], whose well-known taxonomy

of computer architectures is the starting point for any discussion of this topic. He

classified computer architectures into four categories, based on the way in which they

handle instructions and data, either as a single stream or as multiple streams. This

can be pictured as shown in Figure 2.2. Each of these categories will be considered

briefly.

SISD This is the classical von Neumann architecture of a sequential processor, exe-

cuting one instruction at a time, and processing a single datum at a time. As

such it is of little interest to us, and will not be considered further.

MISD This organisation consists of several instructions operating on a single datum.

Such an architecture has no obvious applications, although sometimes vector

CHAPTER 2. BACKGROUND 6

Single Instruction Stream
Single Data Stream

(SISD)

Multiple Instruction Stream
Single Data Stream

(MISD)
Single Instruction Stream

Multiple Data Stream
(SIMD)

Multiple Instruction Stream
Multiple Data Stream

(MIMD)

Figure 2.2: Flynn’s Taxonomy of Computer Architectures

processors are categorised as MISD architectures (this arises from viewing an

entire vector as a single datum).

SIMD This architecture applies a single instruction to multiple data elements. Such

architectures (array processors) have been developed, but are not common.

MIMD These are the most complex architectures in Flynn’s classification, where mul-

tiple operations are simultaneously applied to multiple data values. The machines

in this category can be further classified into four subdivisions[171]:

1. Multiprocessors, in which a number of processors are connected to a number

(possibly only one) of shared memory modules through an interconnection

network.

2. Multicomputers, in which a number of processing nodes (each containing

both processor and memory) are connected by a communication network.

3. Multi-multiprocessors, a combination of the two approaches above, where a

number of distinct processing elements are connected by a communication

network, and each processing element comprises a number of processors with

shared local memory.

4. Data flow machines, where the movement of data through the machine trig-

gers the execution of instructions.

Hybrid approaches, combining the features of two (or more) of the categories iden-

tified above are also possible (for example, a MIMD machine, where the processing

nodes are each based on the SIMD approach).

The rest of this thesis will concentrate on the use of MIMD architectures, and multi-

computers in particular. The hardware platform that was used for the implementation

and testing of the application of eLinda was a collection of single-processor worksta-

tions, connected by a local area network. More details about the exact specifications

of the hardware used are given in Chapter 6.

CHAPTER 2. BACKGROUND 7

2.1.2 Linda

Linda is a coordination language for parallel and distributed processing, providing

a communication mechanism based on a logically shared memory space called tuple

space. On a shared memory multiprocessor the tuple space may actually be physically

shared. The close match in this case between the hardware platform being used and the

logical programming model embodied in the Linda approach will generally make the

implementation of a Linda system (or any virtual shared memory system) extremely

simple. For this reason most of the research on the Linda approach to parallel and

distributed programming has been focussed on distributed memory systems where the

problems are more challenging and interesting[2, 26, 46, 56]. On distributed memory

systems (such as a network of workstations) the tuple space may either be centralised

on a single processing node or else distributed among the processing nodes in some

way.

An entry in the tuple space is stored as a tuple, made up of a collection of fields.

A simple example of a tuple with three fields is ("point", 12, 67), where 12 and

67 might be the x and y coordinates of the point represented by this tuple. The

combination of the number and type of the fields in a tuple (in this case: “string,

integer, integer”) is referred to as the type signature of the tuple. The tuples in the

tuple space are always accessed using associative addressing to specify the required

tuple that is to be retrieved.

As a coordination language, Linda is designed to be coupled with a sequential pro-

gramming language, called the host language (the host language used in this work is

Java). The rationale for separating the coordination language and the host language

is that existing sequential programming languages already provide all the features

required for computation, input/output, etc.—all that is then required to support

distributed programming is the addition of mechanisms for communication and co-

ordination. These may be provided by a coordination language, such as Linda, as

an orthogonal addition to the host language. An advantage of this approach is that

programmers who are migrating to distributed programming do not need to learn a

completely new language if they are already familiar with the host language. All that

is required is for them to gain familiarity with the additional features provided by the

coordination language. While this may appear straightforward, it is important to note

that the coordination language is usually tightly coupled with the host language, and

is not simply an additional programming library. This is most apparent in the way

CHAPTER 2. BACKGROUND 8

that a preprocessor is required to handle the inclusion of the coordination language

features in the host language programs.

The Linda Programming Model

From a programmer’s perspective, Linda effectively provides a small set of operations

that allow tuples to be placed into the tuple space and retrieved from it. These oper-

ations are:

out Places a tuple in the tuple space.

in Removes a tuple from the tuple space, returning it to the application.

If a suitable tuple is not found in the tuple space then this operation

blocks until such a tuple is placed into the tuple space by another

process.

rd Returns a copy of a tuple, leaving the original tuple in the tuple space,

and blocking if a suitable tuple cannot be found.

inp The predicate form of in. This operation does not block if a suitable

tuple cannot be found, but returns immediately with an indication of

failure.

rdp The predicate form of rd.

For the input operations (i.e. in, rd, and their predicate forms) the specification

of the tuple to be retrieved makes use of an associative matching technique. In this

case a subset of the fields in the tuple have their values specified, and these are used

to locate a matching tuple in the tuple space. For example, if a tuple representing a

point (such as that in the example above) were required then the following operation

might be used to retrieve it:

in("point", ?x, ?y)

The tuple specification used in an input operation (("point", ?x, ?y) in this

example), is referred to as an anti-tuple. The unspecified fields in the anti-tuple (the

x and y values in this example) are referred to as formals (or sometimes as wildcards).

The input operation uses the given anti-tuple to attempt to locate a suitable tuple

from among those currently found in the tuple space. Any tuple that has the same

type signature and has fields with values that exactly match the specified fields in the

anti-tuple (i.e. the string "point" in the first field for the example above) will be a

suitable match. If such a tuple is found in the tuple space, then any formal fields are

CHAPTER 2. BACKGROUND 9

Figure 2.3: A Simple Communication Pattern

assigned the values of the corresponding fields of the matching tuple. If more than

one matching tuple is found in the tuple space then a Linda system is free to return

any one of them—there is no requirement for first-in-first-out behaviour (or any other

specific semantics) in this case. This simple use of Linda for direct communication is

illustrated in Figure 2.3.

The original Linda model also specified a mechanism for dynamic process creation.

This was provided by means of a further operation: eval. The eval operation places a

tuple in the tuple space, in the same way that the out operation does. The difference

is that the tuple may include unevaluated function calls. For example:

eval("point", translateX(x), translateY(y))

In this case the functions translateX and translateY are not evaluated in the

same way as parameters. An active tuple such as this would be retrieved and the

functions executed by the Linda system on any available processing node. The results

of the function evaluations are then used to create a normal (or passive) tuple that is

placed into the tuple space. In this example, the eventual result would be a three-tuple

with the new, translated x and y coordinate values. This is illustrated in Figure 2.4.

In this way, the eval mechanism provides simple, powerful support for the creation

of new processes to compute results, which may then be retrieved from the tuple space.

However, the eval operation is not an essential part of the Linda programming model,

especially where the host language provides mechanisms for process creation. It has

also been shown that the eval operation may be implemented in terms of the other

Linda operations with some support from a preprocessor[74]. As a result it will not be

considered any further here.

CHAPTER 2. BACKGROUND 10

Note: While two application processes are shown here, there may only be one involved
if the original process retrieves the result of the tuple that it created with the eval

operator.

Figure 2.4: The Use of the eval Operation

CHAPTER 2. BACKGROUND 11

Full details of the Linda programming model, together with detailed case studies

of some of its applications, may be found in [30].

Decoupling of Processes

An important aspect of the Linda programming model is that the processes are highly

independent of each other. This has two main aspects: spatial decoupling and temporal

decoupling.

Spatial decoupling refers to the fact that processes communicating in a Linda system

need not be aware of the processor network topology or of each other’s location in this

network. The logically shared tuple space removes any requirement for addressing

tuples or processes.

Temporal decoupling arises from the fact that the transmission of tuples between

processes through the medium of the tuple space is asynchronous. A process may place

a tuple in the tuple space and then continue with other activities (or even terminate),

completely independently of the execution of the process that may retrieve the tuple

at some future time. If the tuple space is made persistent then the output and input

operations that comprise the communication between two processes may even span

time periods covering system restarts[4].

This high degree of decoupling is evidence of the high level of abstraction of Linda

in comparison with other mechanisms for parallel and distributed programming.

Tuple Space Implementation Strategies

Grune et al give a very good overview of possible implementation strategies for Linda

systems[62]. Particularly on distributed memory systems, there are many possible

strategies for implementing the shared tuple space (of course, such issues are usually

transparent to the programmers and users of the system)[2, 26, 56]. The most basic

classification is into centralised and distributed approaches. A centralised tuple space

implementation makes use of a single server node to store all of the tuples for the

entire system. This has the obvious advantage of simplicity, but the central server may

become a performance bottleneck.

Distributing the tuple space across more than one server may be done in many

ways. Two common approaches are hashing and partitioning. In a hashing system the

contents of a tuple are hashed, and this value is used to allocate the tuple to a specific

processor[12]. This approach either requires the use of a preprocessor to perform a

CHAPTER 2. BACKGROUND 12

usage analysis to determine which of the fields may be used as a key (or keys) for the

hashing function, or the tuple structure must be fixed (for example, the first field must

always be specified so that it may be used as the hash key).

In partitioned systems, tuples with a common structure are allocated to a specific

processor[62]. The structure is generally determined from the type signature of the

tuples, but may also include information supplied by the programmer, such as naming

groups of tuples.

Specific system architectures may also provide opportunities for unique methods

of distribution. For example, regular mesh networks may be constructed such that

Linda output operations distribute tuples along rows (referred to as the out-set) and

the input operations search for tuples along columns (referred to as the in-set)[46].

The most general approach is to have the tuple space fully distributed, such that

any tuple may reside on any processing node. This technique may offer advantages in

areas such as fault tolerance. It will generally require efficient broadcast communication

mechanisms, as searching for tuples will often require interrogating all the distributed

sections of the tuple space.

Problems with Linda

As discussed at the start of this chapter, the Linda approach to parallel and distributed

programming is at a high level of abstraction. This can be seen in the provision of a

small set of operations, the powerful associative retrieval mechanism, the logically

shared tuple space and the temporal and spatial decoupling of processes. In combi-

nation these features provide a very useful simplicity and flexibility for constructing

parallel and distributed applications.

However, Linda has been subject to criticism for inefficient and unpredictable

performance[173], as the high level of abstraction of the Linda programming model

hides the underlying complexity of the data sharing and communication required to

implement the tuple space operations. The analogy with traditional programming

language abstraction levels can be seen here again: the situation is similar to the per-

formance disparities between low level assembly languages and higher level, third or

fourth generation programming languages.

Furthermore, some applications may be very difficult to implement efficiently using

the standard Linda communication mechanisms. The extensions in eLinda have been

developed to overcome some of these problems, while retaining as much of the essential

CHAPTER 2. BACKGROUND 13

simplicity of the original Linda approach as possible. These problems and the solutions

provided by eLinda will be discussed in more detail in the next chapter.

Subsequent Research Directions at Yale

After the initial development of the model and research into efficient implementation

techniques, the Linda research group at Yale University moved on to focus more on

the applications of Linda, or on adaptations of the model for specific purposes.

One of the main projects that arose out of the work on Linda was Piranha[85, 117].

This used a variation of Linda to support adaptive parallelism. Adaptive parallelism

refers to systems where processors can dynamically join and leave the group of pro-

cessors executing a parallel program. This is intended to allow personal computers

or workstations to be used for parallel processing while idle. If a user commences (or

resumes) work on a computer then the Piranha system will cease its activity on that

processing node (or retreat in Piranha terminology). The Piranha project used a vari-

ation of the Linda programming model for communication and coordination. This was

adapted to support the features required for distributing tasks, allowing them to retreat

and then to resume on another processing node. The spatial decoupling of processes

that is provided by the Linda model is extremely useful in these circumstances.

Other Linda Systems

This section considers other Linda systems that have been developed, especially those

that have proposed extensions related to the new features of eLinda. It excludes the

many such systems that have been developed using Java as the host language, which

are discussed in Section 2.2.3.

Objective Linda Objective Linda is a model for object-oriented implementations

of Linda[86, 87]. All aspects of an application (i.e. data, active agents and the tuple

spaces) are modelled as objects. A language-independent notation (called the Object

Interchange Language, or OIL) is then used to describe the classes comprising an

application. The tuple spaces are called object spaces in Objective Linda. They form

a strongly encapsulated hierarchy of objects, containing passive objects (i.e. tuples),

active objects (i.e. agents) and other object spaces.

Agents in Objective Linda may move from one object space to another. This is

controlled by the object space itself, which makes available an object space logical (or

CHAPTER 2. BACKGROUND 14

simply logical—this can be thought of as a “key”) to permit agents to move into the

object space. This is supported by two new operations: join and enter, which are

analogous to rd and in respectively. These new operations also have predicate forms,

joinp and enterp.

Of particular relevance for comparison with eLinda is the fact that the matching

mechanism in Objective Linda differs from the usual Linda approach. The objects that

are to be used as tuples in Objective Linda are required to provide a match method.

This method is then called when performing an input operation. This means that the

programmer writing the classes to be used as tuples in an application can define the

precise meaning of a “match”. This is similar to the way in which Java programmers

can override the equals method for objects to define the precise meaning of equality

for their own classes. This feature of Objective Linda provides a restricted form of

extended matching similar to that in eLinda.

An interesting feature of Objective Linda is the support for the eval operation. This

is provided in a similar way to the implementation of matching described above in that

tuples that are to be used with eval are required to provide an evaluate method.

This method is used by the Objective Linda system to perform the evaluation of the

necessary result(s).

I-Tuples I-Tuples (Intelligent Tuples) is an extended Linda system developed in

C[49]. The I-Tuples proposal is a simple and elegant one. Many programs may need

to perform minor updates to shared data values, for example incrementing a counter.

A simple example of this for a conventional Linda system is as follows:

in(?someValue);

someValue++;

out(someValue);

If the required tuple is stored on another processing node (as is likely to be the case

in most implementations), then this involves a considerable amount of network traffic:

1. The anti-tuple is sent to the server.

2. The result of the in operation is returned.

3. After the addition, the new tuple is sent back to the server.

4. Depending on the implementation, there may be an acknowledgment returned

by the server for the out operation.

CHAPTER 2. BACKGROUND 15

This amounts to three or four network messages to perform a very simple task. In

any system this is likely to exhibit a highly unfavourable communication:computation

ratio.

The I-Tuples system allows the programmer to use a new operation (tmexec) to

get the server to perform the desired task (i.e. incrementing the value contained in a

tuple in the example above). In this way the number of network messages is reduced:

the command is sent to the server, which does the necessary update and then an

acknowledgement message is returned to the application. The command sent to the

server is programmed using the standard Linda operations (in, out, etc.).

The results reported for this system show a substantial decrease in execution times

when the new features of I-Tuples are used. However, the current implementation

suffers from some disadvantages. The most important of these is that it requires all

the processing nodes to have identical processor architectures1. It is also likely that

extensive use of this feature will overload the server.

ELLIS ELLIS (a EuLisp LInda System) is a Linda system developed in EuLisp,

using PVM as the communication medium[14]. It was intended as a platform for

experimenting with object-oriented concepts in Linda. Of particular interest is that

matching is performed by a method in the tuple space class (pool objects as they

are known in ELLIS). This allows the matching method to be overridden, but the

mechanism seems clumsy: new classes of tuple spaces must be created to support new

matching algorithms. Few details of this process are given in the description of ELLIS,

but the programming interfaces for new matchers appear to be complex and to involve

dealing with the pool of tuples at a very low level of abstraction (for example, the

writer of a new matching algorithm must concern himself with the details of tuple

distribution, etc.).

The York Coordination Group The coordination research group at the University

of York has been actively researching in the area of Linda systems for some time.

One of their major projects has been to extend the Linda operations with collect

and copy-collect[17, 127]. These bulk operations may be used to move or copy

multiple tuples from one tuple space to another. The work at York suggests that these

operations may be suitable replacements for the predicate operations in Linda. Other

1This is due to the fact that the code to be executed by the server is passed as a memory pointer,

requiring identical code memory images on all the processing nodes.

CHAPTER 2. BACKGROUND 16

aspects of their Linda research are the provision of security, garbage collection facilities,

distributed I/O support, and transaction processing[100, 101, 165].

Of particular interest is the extension of Linda to support constraint matching for

case base reasoning systems[22]. This project made use of an implementation of Linda,

based on the Chemical Abstract Machine, or CHAM. This is an unusual programming

model, in which systems are expressed as “solutions of molecules” (multisets, describ-

ing the state of the system), and subjected to “chemical reactions” (rewriting of the

multisets, subject to “reaction rules”). Programs in this model consist of sets of re-

action pairs, composed of a condition, specifying when the rule may be applied, and

an action, which is a function that produces new molecules from the reactants. This

model is ideally suited to parallel implementation, as independent reactions may take

place simultaneously.

The Chemical Abstract Machine has been used to implement a Linda system, called

Liam. This system allows the matching algorithm for tuples to be provided in CHAM

form. This has the drawback that programmers must become familiar with the syntax

used by the Chemical Abstract Machine. As an example, the following line of CHAM

code is taken from a simple matcher that specifies the retrieval of tuples containing

two fields with equal values. The total specification is nine lines of CHAM code, of

which this one is typical.

cm2eq) op′cm2eq(1, a : τ), (1, a : τ) ↔ op(1, a : τ/a : τ, cm2eq), (1, a : τ)

This is clearly not a simple notation for the average application programmer to

learn and use.

2.1.3 Other Concurrent Programming Models

The Linda model of parallel and distributed processing falls into the general category

of virtual shared memory systems. There are a number of other implementations of

virtual shared memory. Additionally there are a number of popular approaches to the

programming of concurrent systems based on forms of message passing. There are

also other parallel programming models, such as the Bulk Synchronous Parallel (BSP)

model. These various approaches are considered and contrasted with the Linda model

in the following sections.

CHAPTER 2. BACKGROUND 17

Shared Address Space
Shared Memory

(SASM)

Disjoint Address Space
Shared Memory

(DASM)
Shared Address Space
Distributed Memory

(SADM)

Disjoint Address Space
Distributed Memory

(DADM)

Figure 2.5: Raina’s Taxonomy of Shared Memory Architectures

Virtual Shared Memory Systems

Virtual shared memory is a rather loosely used term. In this section we will consider

the definition of the term, and also the possible implementations of this concept. The

first point to note is that we are not concerned here with architectures that provide

shared access to common memory modules (i.e. physically shared memory systems).

Rather the focus is on systems that are implemented with distributed memory modules,

but which provide the appearance of a common, shared memory in some way. This

may be done either in hardware or in software.

Raina provides a very useful overview and organisation of the field, with an emphasis

on hardware-supported virtual shared memory[114].

Classification of Virtual Shared Memory Approaches Raina’s classification

is similar to that used by Flynn for computer architectures: he identifies two impor-

tant characteristics and uses these to classify systems into four distinct quadrants.

The characteristics used to distinguish virtual shared memory systems are the address

space and the physical memory, both of which may either be shared or disjoint. This

classification scheme gives rise to the categories illustrated in Figure 2.5, and discussed

below.

SASM This category comprises conventional shared memory systems (i.e. multipro-

cessors, as defined in Section 2.1.1).

DADM These systems are conventional distributed memory architectures (i.e. multi-

computers).

DASM Machines supporting a disjoint address space, but having physically shared

memory would probably not be that useful, and so are not considered any further.

SADM These are the most interesting category in the classification, comprising ar-

chitectures where the address space is shared, but the memory is physically dis-

CHAPTER 2. BACKGROUND 18

tributed among the processing nodes. In other words these systems are multi-

computers, but give the appearance of being multiprocessors (in the terminology

of Section 2.1.1).

These systems may be further classified according to how the appearance of

shared memory is maintained.

SADM-NUMA These systems provide transparent access to those parts of the

shared address space held in remote phyical memories (giving rise to a Non-

Uniform Memory Access time—NUMA). The data is always stored in a fixed

location in this model.

SADM-OS In this case the operating system provides the abstraction of shared

memory. This is usually implemented by the distribution of pages of con-

ventional virtual memory across the processor network. Page faults then

require the processor to identify the location of the required memory page

and fetch it from the processing node that currently holds it.

SADM-CC These systems generally use hardware assistance to provide access

to small units of memory (the size of a cache line). Standard Cache Co-

herency (CC) protocols are used to ensure the consistency of data being

accessed by the processing nodes.

SADM-COMA This is similar to the SADM-CC approach, but there is no

concept of “main memory” in these systems. The local memory of each

processing node is viewed purely as a cache (hence, Cache Only Memory

Architecture—COMA). Data in remote caches can be moved to the local

cache for processing (distinguishing this from the NUMA approach where a

data element has a fixed memory location).

The term virtual shared memory is used generally of all of the SADM approaches

described above.

The Linda approach might be viewed as a variation of the SADM-OS model de-

scribed by Raina, as the support for the virtual shared memory in both cases is provided

by software. The major difference is that the data in the case of an SADM-OS system

is handled in units of virtual memory pages, whereas in Linda tuples are used as the

unit of storage. Furthermore, the addressing of memory in an SADM-OS system uses

conventional memory addressing, rather than the associative addressing used by Linda.

CHAPTER 2. BACKGROUND 19

Message Passing

Message passing is one of the most common and popular methods for communication in

parallel and distributed systems. In terms of the analogy with traditional programming

languages, it can be considered the “assembly language” of parallel and distributed

programming[137]. Zenith also identifies problems with message passing related to the

low level of abstraction[172].

There are many different systems that implement some form of message passing,

and it is often used as the foundation for other, higher levels of abstraction. The major

distinction that can be drawn between message passing systems is whether the message

passing is synchronous or asynchronous. This section will use this classification as a

framework for the discussion of some of the more popular message passing systems

available and their main distinguishing features.

Synchronous Message Passing In this form of message passing, when two pro-

cesses wish to communicate, the first one that is ready to do so (whether it is reading

or writing) must wait for the second one to join in the communication operation before

it can proceed. In this way the communication operation is also a synchronisation

operation. One of the advantages of this approach is that there is no requirement for

buffering messages that have been sent but not yet received—the message is simply

transferred directly from the sending process to the receiving process at the moment

of communication.

One of the best known examples of the synchronous message passing approach is

Hoare’s CSP (Communicating Sequential Processes).

CSP CSP is a theoretical model of parallel programming that has a sound math-

ematical underpinning[70, 71]. This allows formal reasoning and proofs to be carried

out on systems designed using CSP. In particular a system designed using CSP can be

analysed to determine its liveness and safety properties. These are defined by Owicki

and Lamport[107] as follows:

safety “something bad will not happen”

liveness “something good will happen”

CSP describes a concurrent system in terms of processes. The only interaction

allowed between two processes, and between a process and its environment is when both

CHAPTER 2. BACKGROUND 20

α ACC = { deposit, withdraw }

ACC = (deposit → ACC

| withdraw → ACC)

Program Segment 2.1: A Simple CSP Example

participate in a common event. In CSP a process can be described by its interface, i.e.

the set of events in which it may participate. Communication is handled as a special

case of an event in CSP, and is synchronous. In the original model both processes were

explicitly named[70], giving rise to tight spatial coupling, but this restriction was later

removed with the introduction of channels [71]. Furthermore, while the synchronous

communication in CSP embodies tight temporal coupling, this can be alleviated very

easily by using buffering.

The CSP model is also compositional : if two processes are combined to form a

larger system, then the combination is also a process. A group of processes may be

described by a trace of the events in which they have participated.

A simple CSP example is shown in Program Segment 2.1. This describes a process

(called ACC) representing a bank account. The interface of the process (denoted α

ACC) is the set of events { deposit, withdraw }. The description that follows this

states that the ACC process may participate in either the deposit or withdraw events,

after which it returns to its previous state.

A “bank client” process might be modelled similarly, and would participate in the

same events. In that case the presence of the same event in the description of the two

processes implies that they are synchronised at that point.

While CSP is a theoretical model intended for the description of concurrent systems,

and reasoning about their behaviour, it was the basis of the development of the occam

programming language for Transputers.

Transputers and occam The occam programming language[75, 84, 96, 97] was

developed by Inmos as the programming language for the Transputer processor[152].

It is based closely on the principles of CSP. One of the main features of the occam

language is its strong support for parallel programming. Creating a process in occam

is as easy as executing sequential code (one simply uses PAR rather than SEQ to denote

a sequence of statements as processes to be executed in parallel). These processes may

CHAPTER 2. BACKGROUND 21

be time-sliced on a single Transputer, or may be executed on separate processors in a

multiprocessor system.

Processes in occam may only communicate through channels (no shared variables

are permitted, even on a single processor). Channels are supported by the Transputer

hardware in the form of four high-speed bidirectional serial links allowing multiple

Transputers to be connected together into a communication network. As in CSP,

channel communication in occam is strictly synchronous: the first process that is ready

to communicate must wait until the other is prepared to communicate.

The occam language also supports nondeterministic process selection, depending

on the status of a guard. A guard may be a channel that is ready for communication, a

timer, or one of these with an additional boolean condition that must also be satisfied.

Asynchronous Message Passing In asynchronous message passing the two partic-

ipating processes are not required to be synchronised on the communication operation.

The sending process may send a message, and then continue with its execution regard-

less of the state of the receiving process. In general, the receiving process will block on

the receive operation, if there is no message waiting for it.

There are many examples of this form of communication ranging from the mes-

sage passing interprocess communication primitives built into the UNIX operating

system[146] to popular libraries built on the Internet protocols, such as PVM (the

Parallel Virtual Machine)[54, 144] and MPI (the Message Passing Interface)[67].

PVM The Parallel Virtual Machine (or simply PVM) project began in 1989 at

Oak Ridge National Laboratory for internal use. In 1991 version 2 was released for

general use, and version 3 followed in 1993. PVM is freely available for use on many

hardware platforms: UNIX workstations and servers, specialised parallel processors

(such as those manufactured by Sequent, Cray and Convex) and PC’s (Macintosh and

Intel, with UNIX and Windows operating systems). One of the strengths of PVM is the

fact that it is designed to work with heterogenous networks of processors. It effectively

organises such a collection of machines into a virtual parallel computer (hence the

name, Parallel Virtual Machine). PVM is responsible for all communication, data

conversion and process scheduling in such a system. PVM interfaces are available for

FORTRAN, C, and C++, and work is being done to provide Java support[47].

PVM provides a library of operations for creating new processes and enabling com-

munication between them. Processes are identified by means of a system-defined “task

CHAPTER 2. BACKGROUND 22

identifier” (or TID). Processes may also be grouped together. Communication is asyn-

chronous2, and may make use of the following operations:

• send

• blocking receive (with optional timeout)

• nonblocking receive

• multicast send (to specified recipients)

• broadcast send (to a recipient group)

Messages may be received in a number of ways (for example, input may be restricted

to messages from a specific process). A process can also check whether a message is

available without receiving it. Message ordering is guaranteed by PVM.

PVM also supports a number of high-level operations, such as barrier synchronisa-

tion, and global maximum and sum operations.

MPI The Message Passing Interface (MPI) is an international project to provide

an agreed standard for writing message passing programs. The standard is maintained

by the MPI Forum, an open group with representatives from many companies and

organisations[105]. Language bindings are provided for FORTRAN, C, and C++, and

work is being done on versions for Java[25]. The MPI-1 standard was released in

February 1994, and the MPI-2 standard in April 1997.

MPI provides very flexible message passing facilities that are asynchronous by de-

fault, but also support synchronous modes. Processes are simply identified by non-

negative integer values. The sending process must explicitly identify the recipient.

However, a receiving process may choose either to specify a particular sender, or use a

“wildcard” to accept any incoming message. The message space can also be partitioned

using “tags” attached to messages (the recipient can receive messages with a specified

tag if this is so desired), or using “communicators” (groups of processes that can com-

municate with each other in various specified ways). Broadcast communication is also

possible, using the communicator concept.

2An option is provided to support non-buffered message transmission, in which case a send opera-

tion may block.

CHAPTER 2. BACKGROUND 23

MPI-2 added a number of more advanced features, including process creation and

management, “one-sided communications” (where one process specifies all of the com-

munication parameters—both for the sender and the recipient), extended collective op-

erations based on communicators (e.g. “all-to-all” communication), external interfaces

(for building new abstractions on top of MPI), and powerful parallel I/O mechanisms.

Geist et al provide a good summary and comparison of PVM and MPI in [55].

Essentially MPI provides a more flexible and richer set of communication mechanisms.

In general, these are more efficient than the equivalent features of PVM. The strength

of PVM lies in its support for heterogenous systems. PVM also provides better facilities

for resource and process management.

Other Models

This section discusses the BSP and RPC models of concurrency.

The Bulk Synchronous Parallel (BSP) Model The Bulk Synchronous Parallel

(BSP)[150] approach to parallel processing can be viewed as a variation on message

passing. Processes in a BSP program work independently on local data during the

course of a “superstep”. During this processing stage they may initiate requests for

data, or updates to data held on other processors. At the end of a superstep all the

processes synchronise their activities using a barrier synchronisation mechanism. At

this point the requests for data and updates to data stored on other processors are

handled. Once the data exchange is completed, the next superstep commences.

This model is similar to Linda in that there is a high degree of decoupling. In

this case it is the communication and synchronisation that are decoupled, preventing

deadlock and related problems. Furthermore, the barrier synchronisation point at

the end of each superstep provides a natural checkpoint which simplifies debugging

(a notoriously difficult problem in parallel and distributed programming). One of

the advantages cited for the BSP model is that it helps the programmer to avoid

the burdens of handling memory management, communication and synchronisation

issues[150]. Of course, this is also an advantage of the Linda model.

One of the notable features of the BSP model is that it is not tied to a specific

hardware or network architecture, but could be implemented on any system ranging

CHAPTER 2. BACKGROUND 24

from a shared memory multiprocessor to a network of workstations. Similarly, BSP

systems can be implemented on top of other communication and synchronisation meth-

ods such as message passing. As decoupled communication is one of the main features

of Linda, and barrier synchronisation is easily implemented using the Linda primitives,

it should, in principle, be a simple task to implement a BSP system using Linda as the

underlying mechanism.

Remote Procedure Call (RPC) Remote procedure call allows one process to ex-

ecute a procedure on a remote machine. This requires transmitting any parameters

required to the remote host, then waiting for the completion of the computation and

the return transmission of the results of the computation. This usually requires the

cooperation of a remote process that must be prepared to accept the remote procedure

call. Most languages that support this form of communication and coordination do so

in way that syntactically resembles the usual function or procedure calling mechanisms

for transfer of control within a process.

Remote procedure call can be seen as a form of message passing. In this view, a

message is sent, and the sender may only continue once a reply is returned from the

recipient. This view, while it may be helpful in some situations, tends to obscure the

value of RPC as a more abstract form of communication.

Ada One of the best known examples of RPC is the extended rendezvous mecha-

nism in the Ada programming language[15]. In Ada a task (i.e. a process) may declare

that it accepts remote entries. This allows another concurrent task to call the entry,

passing parameters to it (which in Ada may be in, out or in/out parameters). This

model is synchronous, so processes are temporally coupled. However, the naming of the

processes is asymmetrical (the calling process must identify the callee, but the callee

requires no knowledge of the caller), so the processes are only partly spatially coupled.

CORBA With the advent of object-oriented languages, the idea of remote pro-

cedure call has been generalised to remote method calling. The best known exam-

ple of this is probably CORBA (Common Object Request Broker Architecture)[106].

CORBA encompasses a number of standards produced by the Object Management

Group (OMG), with the aim of supporting interoperability between distributed enter-

prise applications. The claim is made that:

CHAPTER 2. BACKGROUND 25

Using the standard protocol IIOP, a CORBA-based program from any ven-

dor, on almost any computer, operating system, programming language,

and network, can interoperate with a CORBA-based program from the

same or another vendor, on almost any other computer, operating system,

programming language, and network. [106]

As with many such standards produced by large committees, the OMG has been re-

sponsible for the production of several new acronyms to describe aspects of the CORBA

system:

IIOP is the Internet Inter-ORB Protocol, a network protocol used by CORBA to

support the communication requirements over TCP/IP.

ORB: an Object Request Broker. This is the component of CORBA that acts as the

mediator (or broker) between a client application and the remote service which

it wishes to access. It effectively isolates the client program from the details

required to perform the communication.

IDL: the Interface Definition Language used to specify the interface for a service which

may be used by remote clients.

Naming and trading services are supported to allow remote services to be located

and contacted. All of this has been provided with a view to the importance of issues

such as load balancing, resource control, and fault tolerance. CORBA implementations

are available for many programming languages—C, C++, Java, COBOL, Smalltalk,

Ada, Lisp and Python, to name a few.

2.2 Concurrent Programming in Java

The Java language offers, as standard features, a number of mechanisms for concurrent

programming. In addition there are a number of libraries that provide alternative

mechanisms. Several of these are considered in this section.

2.2.1 Concurrency in Java

The Java language includes support for multi-threaded applications and for com-

munication and synchronisation between threads. This is based on the “monitor”

CHAPTER 2. BACKGROUND 26

concept[63]. This provides protection for any Java object that may be accessed by

multiple threads. In order to prevent simultaneous access to critical sections of code it

is possible to enclose them in “synchronised blocks”, using the synchronized keyword.

Alternatively, an entire method may be marked as synchronised, thus allowing only one

thread at a time to execute the code in the body of the method. In order to provide for

the efficient coordination of cooperating threads, this basic synchronisation mechanism

is extended to allow a thread to be suspended in a synchronised block or method by

using the wait method. A thread that has been suspended in this way can later be

resumed by another thread executing the notify method (or the notifyAll method)

in a synchronised block or method belonging to the same object. The semantics of

these operations are rather loosely defined, and implementations may thus be prone to

problems such as starvation[153].

As an example of the use of these features, consider the class shown in Program

Segment 2.2. This shows the use of the monitor facilities in Java to provide a shared

data structure (a queue of messages for transmission across a network connection),

which is accessed using a multiple writer/single reader mechanism. This is a slightly

simplified version of one of the classes in the eLinda system. The IOQueueEntry class

(not shown in the code) defines a simple data structure with two public fields:

next a reference to the next entry in the queue

msg a reference to the network message to be transferred

Full details of the concurrency mechanisms in Java, together with examples of their

use can be found in [91].

2.2.2 Networking, Message Passing and RPC Mechanisms

This section first considers the standard communication mechanisms that are provided

with the Java system by Sun Microsystems, then considers additional libraries that

have been developed by third parties.

Standard Communication Mechanisms

There are two levels of standard communication available in Java. At a lower level of

abstraction there is support for common network protocols and facilities for transmit-

ting data and objects across such networks. At higher levels of abstraction there are

CHAPTER 2. BACKGROUND 27

class IOQueue

{ // Head and tail of the queue of messages.

private IOQueueEntry head, tail;

// Add a message to the queue.

public synchronized void addMessage (Message m)

{ if (tail != null)

{ tail.next = new IOQueueEntry(m);

tail = tail.next;

}

else // First entry

{ tail = new IOQueueEntry(m);

head = tail;

}

notify();

} // addMessage

// Remove a message from the queue.

public synchronized Message getMessage ()

{ while (head == null) // No messages

try

{ wait();

}

catch (InterruptedException e)

{}

Message tmp = head.msg;

head = head.next;

if (head == null) // Last Entry

tail = null;

return tmp;

} // getMessage

} // class IOQueue

Program Segment 2.2: An Example of a Shared Data Structure in Java

CHAPTER 2. BACKGROUND 28

remote object access facilities that provide a form of object-oriented remote procedure

call.

Networking and Serialisation The most basic form of communication mechanism

provided by the Java language is the provision of classes for Internet Protocol (IP)

networking. These classes are part of the java.lang.net and java.lang.io packages.

They provide a Java programmer with the ability to create TCP/IP socket connections

and to transmit information freely between any two participating processing nodes.

The data transmission itself is handled by the same stream mechanisms that are used

for other forms of input and output in Java.

Additionally, there is the ability to make use of UDP datagrams for communication,

but this is not a reliable form of communication and is less commonly used. One

useful facility of the UDP mechanisms is the ability to send broadcast messages across

a network using the multicast feature. Java also provides classes supporting other,

higher level Internet protocols, such as HTTP (the Hypertext Transfer Protocol), but

these are typically not used for distributed processing applications due to their high

degree of specialisation for other purposes.

An important feature of the language is the ability to transmit objects across a

network connection, using the serialisation facilities. This provides for a very powerful

and flexible form of communication between Java processes. Serialisation allows the

sender to convert an object into a form that can be transmitted as a stream of bytes.

When the receiver reads the stream of bytes it can be deserialised to recreate the

original object.

There are some restrictions on serialisation, due mainly to the fact that serialising

an object involves the recursive serialisation of the entire graph of objects to which the

original object has references, either directly or indirectly. Certain classes of objects

cannot sensibly be serialised. Generally, these are objects that involve some form of

dynamic behaviour, such as a thread of execution, or an input/output stream. The

presence of such an object in the object reference graph will cause the entire serialisation

process to fail. This can be prevented by marking such references as transient, in

which case the serialisation mechanisms will not attempt to serialise the transient

object (with the obvious side-effect that no information is then communicated across

the network for that object).

CHAPTER 2. BACKGROUND 29

RMI and CORBA The Remote Method Invocation (RMI) mechanism provided in

Java[6] is built on the network communication and serialisation facilities. It provides a

form of remote procedure call, specifically implemented in an object-oriented manner.

RMI provides a library of classes and supporting software that permit a Java program

to transparently call methods of a remote object across a network. This is implemented

using the TCP/IP networking mechanisms and serialisation to handle parameter pass-

ing and the returning of results. However, all of the details of setting up the network

connections and handling the communication are abstracted away from the program-

mer by the RMI system. RMI also provides a directory facility (the registry), allowing

processes that wish to make use of a remote service to locate the service. This provides

an element of spatial decoupling of the processes.

An alternative form of remote procedure call is also supported by Java, through the

provision of CORBA facilities (see Section 2.1.3). Like RMI, CORBA allows a Java

program to invoke the methods of remote objects. However, the CORBA standard

was designed to provide language-independent method calling, and so in this case the

remote object need not be a Java object, but could be implemented in any language

that provided a CORBA interface (indeed, it may not even be a true object, but some

form of procedure implemented in a non-object-oriented language).

Additional Libraries and Other Approaches

The increasing popularity of the Java language has led to the development of many

libraries supporting various forms of communication and synchronisation mechanisms

for parallel and distributed programming. This section discusses a number of these

libraries and other approches to concurrent programming in Java.

CSP Libraries Two similar libraries of communication and concurrency mechanisms

have been developed, based on the CSP model discussed in Section 2.1.3. These are

Communicating Sequential Processes for Java (JCSP) developed at the University of

Kent at Canterbury[154], and Communicating Threads for Java (CTJ) developed at

the University of Twente[68].

JCSP was developed by members of the occam/CSP community arising from their

disquiet with the monitor concept in Java, which is demonstrably unsafe[153]. JCSP

provides Java programmers with the advantages of the CSP model of concurrency,

namely simplicity, scalablility and verifiability. It supports the CSP synchronous chan-

CHAPTER 2. BACKGROUND 30

nel communication mechanisms, and also provides for process creation and management

in the CSP style. An interesting aspect of this work is the use of CSP to model the

Java monitor mechanism, leading to a formal proof of the equivalence of the CSP and

JCSP channel mechanisms[155].

CTJ is intended to provide reliable and efficient mechanisms specifically for real-

time applications in Java. It is very similar to JCSP and also supports the CSP

synchronous channel communication, process creation and management mechanisms.

Other Message Passing Libraries PVM and MPI were introduced earlier in this

chapter (see Section 2.1.3) as two very widely used message passing libraries for net-

works of workstations. Both of these systems have been ported to Java.

The Java implementation of PVM (called JPVM) was developed as experimental

prototype[47]. It is not interoperable with other implementations of PVM. However, it

does offer a number of extra or improved features, such as thread-safety and efficient,

direct message transmission.

On the other hand, the Java implementation of MPI, mpiJava, is a Java library

providing access to the native MPI communication mechanisms[25]. This makes use of

the Java Native Interface (JNI) to bridge to the native code MPI library on platforms

that support both MPI and Java, such as Solaris, Linux and Windows NT.

Hyperion The developers of Hyperion have taken a very interesting approach to sup-

porting distributed applications in Java[5]. They have developed a Java environment

that treats an entire collection of processors as a single JVM. This involves distribut-

ing the threads in the Java program across the processing nodes for execution, and

also providing an emulation of the Java memory model. Hyperion is implemented

on a run-time system called PM2, which supports distributed threads and provides a

tailorable “distributed-shared memory”. The system also makes use of a native code

compiler. This converts Java bytecodes to C code, which is then compiled to machine

language (however, currently only a subset of the Java 1.1 libraries is supported). The

bytecode-to-C converter also applies some optimisations to the code as it performs the

translation. Their preliminary results show promise for the potential of this approach.

CHAPTER 2. BACKGROUND 31

2.2.3 Linda Implementations in Java

Recently, two implementations of Linda in Java have been developed by major com-

puter companies. The first of these is JavaSpaces[51], developed by Sun Microsystems

as part of the Jini project. The second is TSpaces[76], developed by IBM’s alphaWorks

research division. Each of these systems is introduced in the following sections, and

then covered in more detail in later chapters where they are compared with eLinda.

In addition to these commercial products there are other research projects that

have developed Java implementations of Linda. These are also summarised below.

JavaSpaces

JavaSpaces[51] is a complex product and relies heavily on a number of other tech-

nologies from Sun. It forms part of the Jini system for networking heterogeneous

systems[141] and so makes extensive use of the Jini API. Network support is provided

by the Java RMI (Remote Method Invocation) protocol[6]. Furthermore, distribution

of classes to clients is handled by the standard Internet hypertext protocol (HTTP).

This means that before a JavaSpaces application can be started the following set of

services must be running:

• a web (HTTP) server (a minimal one is provided with the Jini/JavaSpaces re-

lease)

• an RMI activation server (part of the standard RMI software bundled with Java)

• a Jini lookup service (alternatively the RMI registry service can be used, but

this is discouraged as support for this option may be discontinued by Sun in the

future)

• a Jini transaction manager

• a JavaSpaces server

Most of these services (and any application programs) also require extensive setting

of command line parameters, further adding to the overall complexity of using Java-

Spaces. Applications are also required to run a security manager, whether security

checking is required or not. A typical command line required to run a JavaSpaces

application is as follows:

CHAPTER 2. BACKGROUND 32

java -Djava.security.policy=D:\JavaProgs\policy.all

-Doutrigger.spacename=JavaSpaces

-Dcom.sun.jini.lookup.groups=public

-Djava.rmi.server.codebase=http://host/space-examples-dl.jar

-cp D:\JavaProgs\space-examples.jar;D:\JavaProgs\classes

sun.applet.AppletViewer worker.html

JavaSpaces supports the following operations (the names differ from the original

names used by Yale, but essentially the same set of functions is provided): write (out-

put), read (non-destructive input) and take (destructive input), and also predicate

input forms: readIfExists and takeIfExists. Tuples can be created by the pro-

grammer from any classes that implement the Jini Entry interface. Only the public

fields of these classes that refer to objects are considered for matching purposes (i.e.

private fields are ignored, as are fields of the primitive data types).

Tuples are transmitted across the network using serialisation. However, JavaSpaces

uses a non-standard method of serialisation in that only public fields of classes are

serialised. Furthermore, multiple references to the same object cause multiple copies

to be serialised3. Matching of tuples with anti-tuples (called templates in JavaSpaces)

is done using byte-level comparisons of the data, not the conventional equals method.

Matching can make use of object-oriented polymorphism for matching sub-types of a

class.

The Linda programming model is extended in JavaSpaces to provide support for

commercial applications in two ways:

Transactions A number of tuple space operations can be grouped into a

single transaction. A transaction can be “rolled back” if any one step

cannot be completed successfully.

Leases Tuples can be given an expiry time after which they will automat-

ically be removed from the tuple space.

While both of these extensions are relevant to commercial software, they do not

address any of the performance issues or other problems inherent in the original Linda

model.

A centralised tuple storage approach is used and this may become a performance

bottleneck in large systems. JavaSpaces does not provide a preprocessor. The tuple

3The standard serialisation mechanisms detect this situation and serialise the object only once.

CHAPTER 2. BACKGROUND 33

Feature JavaSpaces Yale Linda

“Rich typing” (tuples as classes) Yes No

Objects (with methods) Yes No

Matching subtypes Yes No

Fields must be objects Yes No

More than one tuple space Yes No

Leases Yes No

Transactions Yes No

Has eval No Yes

Table 2.1: Comparison of JavaSpaces and Yale Linda

space operations are simply implemented as methods using the standard parameter-

passing mechanisms and object-oriented features of Java (i.e. inheritance, polymor-

phism and interfaces).

Table 2.1 summarises the differences between the original Yale Linda model and

JavaSpaces. As can be seen from this table, JavaSpaces provides almost all the func-

tionality of the original Linda model, with the exception of the eval operation, and, as

has already been noted, this is not an essential part of Linda. Furthermore, JavaSpaces

provides considerably extended functionality, especially in areas such as transaction

support and leases, which are important for commercial applications. The other dif-

ferences arise mainly from the object-oriented nature of JavaSpaces, which was not an

important consideration when the original Yale model was proposed.

TSpaces

In IBM’s words TSpaces is intended as “the common platform on which we build links

to all system and application services”[79]. Within this grand vision they identify “Tier

0 devices” (i.e. systems smaller than traditional desktop or laptop machines, such as

PDA’s, embedded processors, etc.) as a particular area of interest[170].

The implementation of TSpaces is simple and elegant, particularly in comparison

with JavaSpaces—all that is required is that a single server process be running on the

network. The server makes use of a textual configuration file, and provides a useful web

interface for monitoring and configuration purposes. Applications wishing to make use

of the TSpaces service need only know the network hostname of the computer running

the server. The following example shows the command line equivalent to the previous

CHAPTER 2. BACKGROUND 34

JavaSpaces example on page 314:

java -Djava.security.policy=D:\JavaProgs\policy.all

-cp D:\JavaProgs\tspaces_client.jar;D:\JavaProgs\classes

sun.applet.AppletViewer worker.html

TSpaces supports a large number of operations. The basic Linda operations are

provided (again different names are used): write (output), read (non-destructive,

predicate input), take (destructive, predicate input), and non-predicate input forms

(waitToRead and waitToTake). Note the rather confusing way in which the basic

forms of the input operations are predicates and the alternatives are blocking. There

is a delete operation that will simply delete a matching tuple from the tuple space

without returning it to the application. There are also operations for the input and

output of multiple tuples: scan, countN, consumingScan, deleteAll, multiWrite

and multiUpdate. There are a number of operations that specify tuples by means

of a “tuple ID” rather than the usual associative matching mechanisms: update,

readTupleById and deleteTupleById. There is also the rhonda operator, which per-

forms an atomic synchronisation and data exchange operation between two processes.

Lastly there is an “event registration” mechanism. This allows a process to request

notification when a certain tuple is written to the tuple space or deleted from it.

TSpaces transports tuples across the network using the standard Java object seri-

alisation mechanisms and TCP/IP sockets. Tuples are simply objects that consist of a

number of Field objects (or FieldPS objects which preserialise to a byte array to allow

the server to work with unknown classes). Wildcard or formal values for anti-tuples are

specified by Field objects containing a class type (e.g. String.class), rather than a

data value. TSpaces thus restricts tuples to containing objects, not primitive values,

for matching purposes. Matching is performed using the standard equals method,

and, in some cases, the compareTo method, specified by the Comparable interface.

Matching can be done using so-called “indexed tuples”. In this case the fields may be

named, ranges of values may be included in the matching process, and AND and OR

operations may be specified. These features may all be used in combination. It is also

possible to perform matching on XML5 data contained in tuples.

4The setting of the security policy file here is only required due to the use of the Java AppletViewer.

Unlike JavaSpaces, this is not a general requirement.
5Extensible Markup Language, a specification for structured documents produced by the World

Wide Web Consortium[167].

CHAPTER 2. BACKGROUND 35

Feature TSpaces Yale Linda

Subclassable tuples Yes No

Matching subtypes Yes No

Fields must be objects Yes No

More than one tuple space Yes No

Transaction support Yes No

Event notification Yes No6

Extensible matching Yes No

Tuple expiration Yes No

Has eval No Yes

Table 2.2: Comparison of TSpaces and Yale Linda

Tuples may have an expiration time set, providing similar functionality to the lease

mechanism in JavaSpaces, and there is support for transactions. Furthermore, access

control is provided for tuple spaces. This is based on user names, passwords and

groups, and provides a level of control similar to that of the UNIX file access control

mechanisms. TSpaces also provides persistence for the tuple spaces.

Like JavaSpaces, TSpaces does not provide a preprocessor. The current implemen-

tation of TSpaces also makes use of a centralised server model, which may become a

performance bottleneck.

Table 2.2 summarises the differences between the original Yale Linda model and

TSpaces. In general it can be seen that TSpaces provides considerably more func-

tionality than the original Yale Linda proposal, again with the exception of the eval

operation.

Adding New Commands New commands can be added to the TSpaces system

relatively easily. This ability, together with the rich set of operations supported and

complex matching criteria described above, provides a facility similar to the extended

features of eLinda. These features will be compared and discussed in more detail in

Chapter 6. This section presents a brief overview of the mechanisms for adding new

commands to TSpaces.

The implementation of TSpaces makes use of a number of layers of software (a

simplified view of this is shown in Figure 2.6[78]). At the lowest level the tuples

6While the original Linda model does not provide any form of event notification, it is not difficult

to emulate for writes, using threads and the standard rd operation.

CHAPTER 2. BACKGROUND 36

Figure 2.6: TSpaces Internal Structure

themselves are stored in a form of database. This may be an actual database product

(such as IBM’s DB2), or simply some form of data structure in the computer’s main

memory. Above this is the tuple management layer, which handles the retrieval of

tuples from the tuple space database. Above this layer (and accessed through a well-

defined API) is the operator management level. This is comprised of a number of

“factory” objects arranged in a list. The factories are responsible for creating “tuple

handlers” for each command that is passed to the tuple space. If a factory does not

recognise a particular command then it is passed down to the next factory in the list.

Users with appropriate permission levels can add new factories and handlers to the

system dynamically, providing a great deal of flexibility. However, this is a complex

process from a programmer’s perspective, as has also been noted by Foster et al [49].

Some of the complexity could perhaps be handled by providing classes with methods to

CHAPTER 2. BACKGROUND 37

Operation Yale Linda JavaSpaces TSpaces

Output out write write

Input in take waitToTake

Input (copying) rd read waitToRead

Predicate input inp takeIfExists take

Predicate input rdp readIfExists read

(copying)

Table 2.3: Summary of Names for Linda Operations

automate the installation and initialisation of the new tuple handlers, but this would

have to be done by the writers of the new factories and command handlers.

Comparison of JavaSpaces and TSpaces

Both Sun and IBM have based their systems closely on the original Linda system from

Yale and so there are obvious common characteristics. Unfortunately, there seems to

be little agreement on naming conventions for the basic Linda operations, as can be

seen from the summary in Table 2.3.

Since the intended market for both JavaSpaces and TSpaces is the same, they share

some common characteristics, such as support for transactions and leases/expiration.

However, while Sun has otherwise followed the original Yale Linda programming model

very closely, IBM has chosen to extend the model considerably.

Other Research Projects

This section provides a brief overview of a number of research projects that have

developed implementations of Linda in Java.

XMLSpaces XMLSpaces is designed to support the use of XML data in tuples[149].

It is based on TSpaces, and considerably extends the XML support already provided

by TSpaces. The Field class used by TSpaces for the fields in tuples is subclassed

to create a class called XMLDocField. This new class overrides the matching method

used by TSpaces to provide matching on the basis of the XML content of the field.

The matching is performed by a method of the anti-tuple that can be provided by the

application programmer. This results in a great deal of flexibility for XML matching

operations. A number of matching operations are currently supported, including the

CHAPTER 2. BACKGROUND 38

use of XML query languages. Of the many query languages available for XML[169],

the two currently supported by XMLSpaces are XQL[121] and XPath[168].

XMLSpaces further extends TSpaces by supporting a distributed tuple space model,

rather than the centralised model used by TSpaces. The distributed tuple space

support is provided in a flexible and tailorable way, allowing different methods for

the distribution of tuples to be used, and selected dynamically when an application

starts. Currently only centralised and partial replication7 strategies are supported. A

subset of the basic TSpaces operations is augmented with distributed versions that

take into acccount the distribution of the tuple space (e.g. distributedWrite and

distributedWaitToTake).

CO3PS CO3PS stands for “Computation, Coordination and Composition with Petri

net Specifications”[72, 73]. This builds on the usual coordination model of a concurrent

system, where the responsibilities for computation are handled by the host language,

and for coordination by the coordination language, as exemplified by Linda. Petri

nets are used in CO3PS for the specification of the computational aspect of a system.

CO3PS is implemented in Java, and makes use of agents[43, 65].

The coordination model used in CO3PS is based closely on that of Objective

Linda[86, 87], discussed in Section 2.1.2. As such it shares the approach of Objec-

tive Linda in allowing the method for the matching of tuples to be overridden. The

main application of this in CO3PS is to support the introduction of non-functional

requirements. The developers of CO3PS distinguish two phases of application design:

1. The logical phase, which concentrates on the programming logic—the functional

requirements of the system.

2. The non-functional phase, in which issues such as efficiency, load-balancing, se-

curity, etc. are taken into account.

This approach might be summarised as: “first get it working, then get it working

well”. In order to support this technique, they make use of a reflective architecture, i.e.

an architecture that permits the designer to reflect on the behaviour of the system, and

to adapt it, without affecting the interaction with clients. The developers of CO3PS go

7Where subsets of servers hold consistent copies of subsets of the tuple space—similar to the

strategy described in [46].

CHAPTER 2. BACKGROUND 39

to great lengths to explain that this should be done without impacting on the semantics

of the coordination operations.

A further unique feature of CO3PS is the introduction of composition as a third

aspect of the behaviour of a concurrent system, orthogonal to computation and coordi-

nation. Composition refers to the view of an application as a configuration composed of

a collection of agents. These agents may recompose themselves into new configurations

as needed during the execution of the application. The following set of operations is

provided to support this dynamic reconfiguration:

• Creating agents.

• Terminating agents.

• Creating object spaces (i.e. tuple spaces).

• Deleting object spaces.

• Allowing agents to expose object spaces, making them available to other agents.

• Allowing agents to attach to and detach from object spaces.

Java-Linda Java-Linda is a student project at Yale University intended as the first

step in developing a Java version of Piranha[138]. As such it provides a subset of

the features of the original Linda system (for example, there is only partial support

for the eval operation, no preprocessor, etc.). TCP/IP is used for communication in

Java-Linda, with a simple, centralised server.

As there are no extensions to the original Linda model present in Java-Linda, it

is of little interest, except for the novel way in which it implements the associative

matching mechanism. Any object can be used as a tuple in Java- Linda. This would

seem to pose some difficulties for the Java-Linda system that needs to perform matching

operations on these objects. The solution to this problem that has been adopted is

that the Java-Linda system interrogates the structure of the objects in order to extract

the fields and perform matching. This has been done using the serialised version of

the objects, which includes a considerable amount of information about the structure

of the serialised object. This metadata is parsed to extract the information about

the structure of the object and this is then used to guide the matching process. The

matching itself is done on the bytes in the serialised form of the object. This process

is described as “tedious and time-consuming”[138], but is convenient and elegant for

CHAPTER 2. BACKGROUND 40

application programmers. This should be contrasted with JavaSpaces, which appears

to do very simple byte-level matching on objects.

An alternative approach that would provide a similar level of convenience for pro-

grammers would be to use the Reflection API8 facilities provided in Java. This is a

set of classes and methods that can be used to determine the structure and contents of

a object. The use of the reflection mechanism would in some respects be a far better

approach, as it is not reliant on the structure of the serialised form of an object, which

may be liable to change in the future (indeed, the serialisation mechanisms have been

the subject of ongoing development by Sun[142]). Accordingly, the use of the Reflection

API is likely to be more resilient in the future. However, the reflection mechanisms

may be less efficient than the approach adopted by Java-Linda, which may also explain

why it was not used by Sun for JavaSpaces.

Mobile Coordination The work on mobile coordination performed at the Univer-

sity of Cambridge is very similar in many respects to I-Tuples, which was discussed

previously, in Section 2.1.2. However, the motivation behind the unique features of

this project are very different[124]. Like I-Tuples the idea of mobile coordination is to

move the processing of tuple space operations from the application processing node to

the server. However, in mobile coordination this was done with a view to enhancing

fault tolerance, rather than increasing performance. In fact, the mobile coordination

mechanism is presented as an alternative to the transaction mechanisms found in the

current commercial implementations of Linda. Despite this, the performance results

reported for the Java implementation of mobile coordination show that in many cases

it can lead to increased performance.

2.3 Summary

This chapter has discussed concurrent programming, focussing specifically on the Linda

approach, and on the concurrency mechanisms available in Java. Of particular interest

have been the various attempts to extend the matching facilities of Linda. This subject

is addressed directly by eLinda, which includes a very powerful and flexible approach

to solving the problems in this area. This is covered in Section 3.2.1, and in greater

detail in Chapter 4.

8Application Programming Interface.

CHAPTER 2. BACKGROUND 41

The following chapter introduces the eLinda system, describing the extensions to

the original Linda model.

Chapter 3

eLinda

This chapter introduces the eLinda system and its novel features. In essence, eLinda

provides an application programmer with a greater degree of control over the matching

and communication mechanisms than the original Yale Linda model. This enhances the

functionality of the original Linda model, and makes the performance issues more ex-

plicit, with a view to aiding predictability and improving performance. Support is also

provided in eLinda for multimedia applications, simplifying application development

in this important area.

This chapter begins with a discussion of the implementations of the eLinda system

that were developed for testing these concepts. The extensions themselves are then

described in the second part of the chapter.

3.1 Implementation Issues and Rationale

Three different implementations of the eLinda system were developed to allow for the

exploration of various communication and system configuration issues. The first ver-

sion (referred to either as eLinda, or as eLinda1 where necessary to prevent ambiguity)

makes use of a fully distributed tuple space model, where any tuple may reside on any

processing node. This implementation was the main focus of much of the research,

as the difficulties presented by a fully distributed approach ensured that all possibil-

ities were considered in the development of the extensions. Unless otherwise noted,

references in this document to eLinda are to this version.

The second implementation of eLinda, called eLinda2, uses a centralised tuple

space model (as is used in TSpaces and JavaSpaces, and many of the current research

projects). This allowed for a comparison to be made between the fully distributed ap-

42

CHAPTER 3. ELINDA 43

proach and a centralised approach. This version does not exploit all of the distinctive

features of eLinda.

Finally, the third implementation (eLinda3) uses a centralised tuple space model,

but with local caching of certain tuples at the processing nodes. The reason for this and

the nature of the caching will become more clear in Section 3.2.3. This version can be

considered as a variation of eLinda2, rather than a completely different implementation.

All three of these implementations also make use of internal partitioning of the tuple

space. This means that tuples with a distinct structure (i.e. where the type signature

can be used to categorise tuples into disjoint sets) are stored separately to improve

the efficiency of searching the tuple space. In all three versions the programmer is also

provided with mechanisms to use multiple, named tuple spaces. These are again stored

separately by the system.

3.1.1 The System Architecture

The overall structure of the base eLinda system is shown diagrammatically in Fig-

ure 3.1. This diagram illustrates a relatively small configuration with only three dis-

tributed application components (labelled “App” in the diagram).

The diagram illustrates the system in terms of Java Virtual Machines (JVM’s).

These may be running on separate network hosts or may be allocated to common hosts

in any desired configuration, allowing for simple load-balancing between hosts. The

communication between virtual machines makes use of the TCP/IP network protocol,

implemented by the Java Socket class.

Within a single virtual machine the communication between separate threads of

execution is implemented using shared data structures. In this case, the standard

Java monitor synchronisation mechanisms are used to protect access to these data

structures.

As indicated in the diagram, the applications may be multithreaded (one virtual

machine is excuting two application threads), and in general there may be many more

application threads and processes than shown in this diagram. The Tuple Space Man-

agers (TSM’s) are implemented by a Java class, which is responsible for controlling ac-

cess to the tuple space. The “Comm” components shown in the diagram are lightweight

threads that are responsible for handling the communication and buffering require-

ments.

The “Directory” process is used to direct network messages between the cooperat-

CHAPTER 3. ELINDA 44

Figure 3.1: The Structure of the eLinda System

ing processes. This centralises some of the communication and network configuration

issues—each Tuple Space Manager needs to connect to just one Directory handler (in

general there will be more than one). The management of the Directory handlers is

undertaken by a global master process (not shown in the diagram). This allocates new

Directory handlers as they are required by the system and manages load balancing

between them. The communication configuration is discussed in greater detail below.

The centralised approach in eLinda2 allows for a design that is considerably more

simple, as shown in Figure 3.2. As already mentioned, the structure of eLinda3 can be

considered as a simple variation on this and is illustrated in Figure 3.3.

Communication

The decision to use the TCP/IP protocol for communication between the Java Virtual

Machines was taken for efficiency reasons. Several other higher level communication

mechanisms exist, notably RMI (Remote Method Invocation) and CORBA, both of

which support remote objects and method calls. While the use of these higher level

protocols would simplify the design and implementation of eLinda, they both rely on

TCP/IP for their underlying communication needs, and introduce their own additional

processing overheads.

In designing the communication mechanisms for eLinda there were a number of

factors to be taken into account. Firstly, the number of TCP/IP connections that are

CHAPTER 3. ELINDA 45

Figure 3.2: The Structure of the eLinda2 System

open at any time should be minimised to prevent excessive use of system resources. At

the same time, the desire to provide optimal performance leads towards increasing the

number of interconnections to minimise the number of “network hops” that a message

must take, and hence minimise the communication time. Accordingly a number of

different communication configurations were considered. A theoretical analysis of the

options that were contemplated is shown in Table 3.1, which describes each option

and shows the number of network connections required, and the number of hops or

steps that must be taken by a message sent from one processing node to another. The

relative advantages and disadvantages of the different schemes are also shown.

CHAPTER 3. ELINDA 46

Figure 3.3: The Structure of the eLinda3 System

CHAPTER 3. ELINDA 47

N
u
m

b
e
r

o
f

N
u
m

b
e
r

o
f

T
y
p
e

D
e
sc

ri
p
ti

o
n

n
e
tw

o
rk

h
o
p
s

A
d
v
a
n
ta

g
e
s

D
is

a
d
v
a
n
ta

g
e
s

co
n
n
e
ct

io
n
s

F
u
ll

In
te

rc
on

n
ec

t
A

ll
T

S
M

’s
co

n
n
ec

te
d

to
ea

ch
ot

h
er

n 2
(n
−

1)
1

S
h
or

t
p
at

h
s

H
ig

h
n
u
m

b
er

of
co

n
n
ec

ti
on

s
C

en
tr

al
D

ir
ec

to
ry

A
ll

T
S
M

’s
co

n
n
ec

te
d

to
on

e
D

ir
ec

to
ry

n
2

S
h
or

t
p
at

h
s,

si
m

p
le

C
en

tr
al

b
ot

tl
en

ec
k

D
ir

ec
to

ri
es

co
n
n
ec

te
d

in
a

ri
n
g

A
cl

os
ed

ri
n
g

of
m

D
ir

ec
to

ri
es

(n
+

m
)

2
..

.m
+

1
F
ai

rl
y

si
m

p
le

L
on

g
p
at

h
s

w
h
en

m
is

la
rg

e
H

ie
ra

rc
h
y

of
D

ir
ec

to
ri

es
O

n
e

“S
u
p
er

D
ir

ec
to

ry
”

co
n
n
ec

te
d

to
m

D
ir

ec
to

ri
es

(n
+

m
)

2
or

4
F
ai

rl
y

si
m

p
le

P
ar

ti
al

ce
n
tr

al
b
ot

tl
en

ec
k

an
d

lo
n
ge

r
p
at

h
s

F
u
ll
y

C
on

n
ec

te
d

D
ir

ec
to

ri
es

A
ll

D
ir

ec
to

ri
es

co
n
n
ec

te
d

to
ea

ch
ot

h
er

n
+

m 2
(m

−
1)

2
or

3
S
h
or

t
p
at

h
s

F
ai

rl
y

h
ig

h
n
u
m

b
er

of
co

n
n
ec

ti
on

s
W

h
er

e:
n

=
n
u
m

b
er

of
p
ro

ce
ss

in
g

n
o
d
es

m
=

n
u
m

b
er

of
D

ir
ec

to
ri

es

T
ab

le
3.

1:
C

om
m

u
n
ic

at
io

n
O

p
ti

on
s

fo
r

eL
in

d
a

CHAPTER 3. ELINDA 48

Figure 3.4: The Communication Structures in eLinda

Communication in the Base Version of eLinda The approach that was adopted

for eLinda1 is the last one in Table 3.1, that is, using fully connected directories. This

means that each processing node is connected to one directory handler, while all the

directory handlers are directly connected to each other. This is illustrated in Figure 3.4

for four directory handlers. This communication configuration gives a good balance

between minimising the number of network connections used, while at the same time

minimising the number of steps that a message must take. The number of network

connections is given by: n+ m
2
(m−1), where n is the number of processing nodes, and

m is the number of directories. The number of hops a message must take is either 2

(for messages between nodes connected to the same directory) or 3 (for messages be-

tween nodes connected to different directories). The crucial parameter in determining

how efficiently this configuration works is the ratio of processing nodes to directories.

Clearly, in order to minimise the number of network connections, the number of direc-

tory processes should be kept low. This will also reduce the average number of hops per

message, as it increases the number of processing nodes per directory, and hence the

probability that communicating processing nodes are connected to a common directory.

Communication in the Other Versions of eLinda Both eLinda2 and eLinda3

make use of a centralised tuple space server. Communication between client application

processes and this server is handled by means of TCP/IP connections, giving rise to a

CHAPTER 3. ELINDA 49

simple star network topology.

UDP multicast communication is used in eLinda3 to broadcast tuples directly to

all participating nodes efficiently. The broadcasting of tuples is handled by the central

tuple space server, as is control of the deletion of broadcast tuples. The UDP protocol

is connectionless and does not provide guaranteed delivery of messages. However, it

does provide the “multicast” feature for efficient broadcasting of information to many

network nodes at once. In eLinda3 the possibility of broadcast communication failure

is not important as the data is still stored centrally and thus any node that does not

receive a broadcast message will find the correct response when it queries the centralised

tuple space. All that is lost in this case is the potential performance benefit of using a

locally cached tuple.

3.1.2 Multimedia Support

The multimedia support in eLinda is provided by a client-server subsystem, indepen-

dently of the tuple space communication mechanisms. When a multimedia resource is

created by an eLinda process a multimedia server thread is started locally on the pro-

cessing node (if it is not already running). The multimedia resource object can then be

added to the eLinda tuple space and may be picked up by any other process that is part

of the eLinda system—this is then the client from the perspective of the multimedia

subsystem. When the client requests that the multimedia resource be presented to the

user, the eLinda system transparently connects to the multimedia server running on the

original processing node and starts to transfer the actual multimedia data across the

network. This data is then passed into the usual Java Media Framework presentation

facilities. This is possible largely due to the open, extensible architecture of the Java

Media Framework, which allows new forms of data sources to be incorporated into the

Java Media Framework very easily. The process of handling a multimedia data stream

can be illustrated as shown in Figure 3.5.

On the multimedia server side, when a multimedia resource is requested by a client

process, a check is made to see if the resource is a local disk file or is some other form of

Java Media Framework datasource. In the former case it is opened as a normal random

access file for efficiency, otherwise the Java Media Framework data access mechanisms

are used by the multimedia server to read the data for transmission to the client. In

either case, the multimedia server and the eLinda multimedia client software attempt

to presend data and buffer it on the client machine to minimise the problems associated

CHAPTER 3. ELINDA 50

Note: The Tuple Space is shown here as an abstract entity, representing any of the three

implementations.

Figure 3.5: The Configuration of the Multimedia Subsystem

CHAPTER 3. ELINDA 51

with network latency and bandwidth limitations.

The network communication for the multimedia client-server system is performed

either using the TCP/IP connection-based network mechanisms, or using the support

for RTP (Real-time Transport Protocol)[133, 134] provided by the Java Media Frame-

work.

3.1.3 Comparison with Other Linda Systems

The major distinguishing factor between the implementations of eLinda, TSpaces and

JavaSpaces is that eLinda1 makes use of a fully distributed tuple space, whereas the

other two systems use a centralised approach (of course, eLinda2 and eLinda3 also make

use of a centralised approach). While distributing the storage of the tuples introduces

a certain amount of overhead, it also provides for a degree of fault-tolerance, and may

contribute to efficiency, especially when dealing with very large networks of processing

elements with high communication latencies. In such situations a centralised storage

model may become a bottleneck for the system.

There is not a lot of further detail available about the implementation of JavaSpaces.

However the internal architecture of TSpaces is discussed at some length in the TSpaces

Programmer’s Guide[77], particularly the way in which new command handlers are

managed (this was described in Section 2.2.3). A detailed comparison of this feature

with the extended matching facilities in eLinda is given in Chapter 6.

3.2 The Extensions

This section discusses the three extensions made to the original Yale Linda model

in eLinda. These are the Programmable Matching Engine (PME), the support for

distributed multimedia applications, and the provision of explicit broadcast commu-

nication. As the Programmable Matching Engine is the main feature of eLinda it is

discussed in greater detail in Chapter 4—only a brief overview is given here.

Usually a program source preprocessor is used with Linda systems to translate the

Linda operations into the actual forms used by the host language. A preprocessor

is not provided for eLinda, and so all interaction with the system takes place using

the standard Java method calling and parameter passing mechanisms. However, the

examples given in this chapter all make use of a simplified syntax (referred to as the

ideal syntax), such as might be supported by a preprocessor. The features required of

CHAPTER 3. ELINDA 52

a preprocessor are discussed in Appendix B.

3.2.1 The Programmable Matching Engine

A programmable matching mechanism (referred to as the Programmable Matching Eng-

ine, or simply the PME) is provided for use with the Linda input operations, allowing

the use of more flexible criteria for the associative addressing of tuples. For example,

in dealing with numeric data one might require a tuple that has a value which is “close

to” some specified value (possibly using fuzzy set membership functions). As another

example, in a graphical context, where the tuples represent the objects in an image,

one might require a tuple corresponding to an object located within a specified area

of the image. These operations cannot be performed directly in conventional Linda

systems as they use only exact equality of field values for matching.

It may be possible to express such queries using the standard Linda associative

matching methods, but such solutions will generally be very inefficient. For example,

the application might have to retrieve all tuples of the required type, select one of

interest and then return the rest to tuple space. This form of solution has a number

of serious problems. Firstly, there is the communication overhead for retrieving and

returning all the unwanted tuples. This is associated with the second disadvantage:

the potential loss of parallelism as other processes are prevented from retrieving these

tuples while they are held by the querying process. In order to manage the access to

all of the tuples, it may even be necessary to provide barrier synchronisation points,

further impacting the degree of parallelism that may be obtained from the system.

Depending on the design of the Linda system there may be further problems. For

example, if the tuple space is not centralised, searching for a tuple will require accessing

the sections held on a number of processors, further increasing the communication cost.

These situations are handled in eLinda by allowing a programmer to specify a non-

standard matching algorithm to be used together with the anti-tuple for any of the

Linda input operations (i.e. in, rd, and their predicate forms). In the Java implemen-

tation this is simply done by providing an object that conforms to a specific interface

for matchers. This matching algorithm is then able to search through the tuples in

tuple space in order to locate a suitable result tuple to return to the requesting process.

The syntax used to specify the matcher that is to be used is op.matcher, where op

is one of the eLinda input operations and matcher specifies the customised matching

CHAPTER 3. ELINDA 53

routine to be used1. In addition, the extended syntax ?= is used to identify which

field (or fields) is to be used by the Programmable Matching Engine matching routine.

For example, the eLinda statement in.maximum("point", ?=x, ?y) specifies an in

operation using a matcher that will search for the tuple with the maximum value of the

x coordinate. Omitting the matcher specification causes the system to use the usual

Linda technique of matching for strict equality.

Further details of the Programmable Matching Engine and its implementation in

eLinda can be found in Chapter 4.

3.2.2 Multimedia Support

There is an increasing demand for distributed multimedia applications, and so support

for multimedia data types was included in eLinda[159]. This was done by building on

the facilities provided by the Java Media Framework (JMF)[140].

Tuples in eLinda may contain any of the primitive data types supported by Java

(i.e. int, char, double, float, byte, short, long and boolean) as well as standard

Java String objects. Furthermore, almost any other Java object2 may be added to

a tuple, although this limits the type checking that can be performed by the eLinda

system. In this way the eLinda system attempts to provide the maximum possible

functionality for general purpose applications.

A further, new type, MultiMediaResource, has been added to the set of data

types supported by eLinda. This class acts as a wrapper to the underlying Java

Media Framework multimedia resource. In particular, the implementation of the

MultiMediaResource class provides the support (transparent to the application pro-

grammer) for any necessary buffering of data, fetching or streaming of multimedia data

across the network, etc. (as described in Section 3.1.2).

As a simple example, in order to search for and present a multimedia resource the

following code might be written using the eLinda multimedia extensions:

MultiMediaResource m;

if (inp("Movies", "Chicken Run", ?m))

m.play();

else

System.out.println("\"Chicken Run\" is unavailable");

1Again, note that this is the ideal syntax, not the actual Java code.
2The only restriction is that the object must be serialisable.

CHAPTER 3. ELINDA 54

Support is currently provided for both stored multimedia resources and “live” (or

streaming) resources. The design of this part of the system relies heavily on the multi-

media facilities implemented in the Java Media Framework. This is a Java library that

defines support for various differing types of audiovisual media, including stored and

streamed media (for example, live video-conference feeds).

3.2.3 Broadcast Communication

The original Linda model provides a single form of output operation: out. In e-

Linda, two types of output operation are provided to reflect explicitly a choice of

optimised communication strategies. These are a “point-to-point” mechanism (using

non-replicated data) and a “broadcast” mechanism (using replicated data). This con-

trasts with the existing Linda mechanism where data is written to tuple space using

out, but is then read using one of the two basic input methods: in or rd (or their

equivalent predicate forms). In effect, the use of in implies a form of exclusive point-

to-point communication, in that one process places a tuple into tuple space, which

is then removed by another. Similarly, the use of rd suggests a form of shared, or

broadcast (read-only), communication, as several processes may obtain copies of the

tuple in this case.

To allow the programmer to take advantage of this behaviour, a new output opera-

tion, called wr, has been added in eLinda. In a distributed tuple space implementation

the wr operation will broadcast the tuple throughout the processor network, whereas

out will place only a single tuple in the tuple space. These mechanisms provide the

programmer with the necessary facilities to express shared, read-only access to data

(wr-rd), or exclusive, delete/modify access (out-in).

It should be noted that this usage is not enforced by the system. For example, it

may occasionally be necessary to update data that is otherwise shared in a read-only

fashion. In such a case a tuple would be broadcast using wr, accessed using rd, and

then removed for updating using in. This would result in a performance penalty as all

the duplicated broadcast tuples would have to be deleted. Similarly, rd may be used

to retrieve a tuple placed in tuple space using out, but a search of all the processors

with stored tuples may be required to locate it. The overall effect of this behaviour is

that the semantics of the wr operation are the same as those of the out operation—the

only differences are in terms of performance and network load.

The wr operation works exactly the same as out in the case of eLinda2. In eLin-

CHAPTER 3. ELINDA 55

da3, the tuples that are written to tuple space using wr are those that are broadcast

to all processing nodes and cached locally. This allows processing nodes to access such

tuples without the need for any network communication. If such a tuple is removed

from the tuple space (using in or inp) then the central server in eLinda3 adjudicates

the deletion.

3.3 Summary

This chapter has described the implementations of the eLinda system, and introduced

the novel features which it supports. The next chapter expands on the brief overview

of the Programmable Matching Engine that was given in Section 3.2.1.

Chapter 4

The Programmable Matching

Engine

As the provision of flexible, distributed matching operations is the main feature of

eLinda, this chapter provides a detailed description of the Programmable Matching

Engine (PME), together with strategies for its implementation and use. The different

types of matchers that might be used in practice are discussed, as are limitations on

the use of the Programmable Matching Engine. Finally, the Programmable Matching

Engine is compared with mobile agent technologies.

While the eLinda system provides the support for using programmable matching

algorithms and currently includes a number of examples of such matchers, it is unre-

alistic to expect that all possible matchers could be provided with such a system. It is

envisaged that any practical or commercial implementation of the Programmable Mat-

ching Engine concept would include a library of commonly required matchers, written

in such a way as to provide a useful set of generic matching facilities. More specialised

matchers would have to be written as part of the development of the application for

which they were required. Such matchers could then be added to the library of existing

matchers for future use. It is also possible that writing specialised matchers could be-

come a service provided by an entity separate from the application development team.

The subject of writing matchers is discussed in more detail in Section 4.2.

56

CHAPTER 4. THE PROGRAMMABLE MATCHING ENGINE 57

Figure 4.1: Example of People and Heights

4.1 The Use of the Programmable Matching En-

gine

The Programmable Matching Engine was briefly introduced in Chapter 3. Before

discussing it in more detail we will consider a simple example of its use: the provision

of a matcher to locate the tuple with the maximum value of a particular field. This

is only one of the simplest of the many possible applications of the Programmable

Matching Engine, and serves as a useful introductory example.

4.1.1 An Example of the Use of the Programmable Matching

Engine

To illustrate the problems associated with the standard approach to matching in Linda

systems, we will assume that we have a set of tuples with a type signature of (string,

double), corresponding to people’s names and heights, as illustrated in Figure 4.1. We

will assume that a particular application needs to determine the name of the tallest

person.

Before considering the way in which this problem is solved with the use of the Prog-

rammable Matching Engine we will consider how it could be done in a conventional

Linda system. In such a system the matching of tuples is restricted to exact equality for

specified values. If we knew the exact value of the maximum height we could retrieve

the corresponding name as follows:

in(?name, 1.88)

CHAPTER 4. THE PROGRAMMABLE MATCHING ENGINE 58

double maxHeight = 0.0

String maxName = null

Vector list = new Vector()

while (inp(?name, ?height)) // Retrieve all tuples

if (height > maxHeight) // Biggest so far

if (maxName != null)

add maxName, maxHeight to list

maxName = name

maxHeight = height

else // Shorter than current max

add name, height to list

while (! list.isEmpty())

remove name, height from list

out(name, height)

Program Segment 4.1: Finding a Maximum Value Using Linda

However, in many practical situations it is extremely unlikely that the exact value

of the required field will be known. If this is the case then the problem is clearly more

difficult to solve. A possible solution is shown in Program Segment 4.1. This works by

removing all of the tuples from the tuple space, locating the maximum value and then

returning all the remaining tuples back to the tuple space, as outlined in the previous

chapter.

In eLinda, using a programmable matcher, this problem can simply be solved as

follows:

in.maximum(?name, ?=height)

From the application programmer’s perspective, the use of the programmable mat-

cher has simplified the program considerably. The logic of the application is also far

more clearly discernible in the eLinda form. Even more importantly, as the next section

explains, the network load is considerably reduced through the use of the Programm-

able Matching Engine.

Obviously this example assumes that the eLinda system already has a suitable

“maximum matcher” available. As discussed in the introduction to this chapter, it

is likely that any production system employing the Programmable Matching Engine

concept would be supplied with a library of matchers for common problems such as

finding maxima and minima, performing case-insensitive string matches, etc.

CHAPTER 4. THE PROGRAMMABLE MATCHING ENGINE 59

4.1.2 The Interaction between Matchers and the Tuple Space

The specific problem considered above (i.e. finding the tuple with a maximum value)

is handled efficiently in eLinda1 by distributing the matching engine so that network

traffic is minimised. For example, in searching for the maximum value, each section

of the tuple space is searched locally for the largest tuple and only that tuple is then

returned to the originating process. The originating process then selects the largest of

all the replies received, effectively selecting the global maximum from among the local

maxima found by each of the processing nodes. In this way the total network traffic is

minimised in comparison to the solution required for a conventional Linda system.

In the other two eLinda implementations, which use a centralised tuple space, the

programmable matching approach also dramatically reduces the volume of network

traffic. In these cases, the matcher is sent to the server node that holds the centralised

tuple space and the search is performed locally there, with only the result tuple being

transmitted back to the processing node that originated the query.

More generally, in a distributed implementation (such as eLinda1), when a Prog-

rammable Matching Engine matcher is invoked, it will usually need to broadcast the

request to the other participating processing nodes in the network and then commence

a search of the locally held tuples. The remote matchers will simply search their own

local sections of the tuple space and then return the results to the matcher on the

originating node where the overall result can be determined. During this process other

operations on the tuple space may be taking place that may affect the result.

Due to the temporal decoupling of distributed processes interacting through tuple

space, the Programmable Matching Engine approach may result in outcomes that are

apparently inconsistent. Locally, each matcher has exclusive access to the local tuple

space until the matching process is completed. This means that there is a locally

well-defined “snapshot” view of the tuple space taken at the moment when the local

matcher commences execution. However the global view of the tuple space is not so well

defined, as the network transmission time for the distribution of the request means that

the various local tuple spaces are searched without any form of global locking. This

leads to what is, at best, a “fuzzy snapshot” view of the global tuple space. This

behaviour is intentional and underscores the temporal decoupling of the underlying

Linda paradigm. It is also important to note that it is no different from the situations

that might arise for the possible solutions using conventional Linda systems (such as

that given in Program Segment 4.1).

CHAPTER 4. THE PROGRAMMABLE MATCHING ENGINE 60

In circumstances where this behaviour is unacceptable, the application can provide

any required synchronisation of the participating processes to ensure that the tuple

space is in a consistent and unchanging state for the duration of a query. Semaphore

or barrier synchronisation algorithms are easily implemented in Linda and can be used

for this purpose[51]. Of course, this assumes that the application has control over all

processes acting on the tuple space. If there are other processes that do not form part

of a common application accessing the tuple space, then the job may be much harder.

However this is not the case in general, especially as eLinda provides for explicitly

named, separate tuple spaces, and further distinctions between sections of tuple spaces

are enforced using the type signatures of tuples.

It should be noted that there are circumstances in which the use of programmable

matchers may result in synchronisation problems, such as deadlock. This is due to the

fact that the local tuple spaces are locked while programmable matchers are active in

them. Writers of new matchers and application programmers using them should be

aware of this possiblity and take steps to control the synchronisation if necessary.

4.1.3 Simple Matchers

The example presented in Section 4.1.1 of a matcher to locate a tuple with the maximum

numeric value in some field is one of the simplest. Other related matchers might provide

the ability to locate the minimum value of some field, or that with the value closest to

some desired value. In each of these cases the procedure required is much the same as

was outlined previously. The originating matcher would first distribute the query to

all other participating processing nodes and then commence a search of the local tuple

space. On completion of the local search the originating matcher would wait to receive

results from the remote matchers and then select a tuple from all the candidates as the

overall result. If the operation is a destructive one then the originating matcher is also

responsible for returning the unwanted remote tuples to the tuple space as they will

have been removed from the other sections of the tuple space by the remote matchers.

Some queries may be even more simple than those discussed above. For example,

an application may require a tuple with a field that is in some way “close to” to a

specified value (i.e. within a specified range). If such a request can be satisfied by any

tuple that has a field sufficiently close to the required value (i.e. not necessarily the

closest value) then it may not be necessary to distribute the query if the local section of

the tuple space contains a suitable result. In this case the matcher could be developed

CHAPTER 4. THE PROGRAMMABLE MATCHING ENGINE 61

such that it first searches the local tuple space, and then distributes the query only

if no result is found locally. Furthermore, the first successful reply from any remote

matcher can be accepted as the result without waiting for any further responses from

other remote matchers. The Programmable Matching Engine easily supports this form

of matching in addition to that described previously.

4.1.4 Aggregate Matchers

In addition to simple matchers where the result is a single tuple selected from the

set of available tuples, the Programmable Matching Engine also allows for matchers

that provide an application with the ability to retrieve result tuples that provide an

aggregated or summarised view of a set of tuples. Simple examples of this kind of

operation would be matchers that provided the total of all the values of some field of

a number of tuples, or the average value, or a simple count of the number of tuples

meeting some criteria. In each of these cases the result is not a tuple that was originally

present in the tuple space, and is referred to as a pseudo-tuple to distinguish it as such.

This can be taken even further, as a programmable matcher can return a pseudo-

tuple that includes an entire collection of tuples. The application may need to take

care in such cases as the type signature of the result may not be the same as that of

the anti-tuple. Commonly, the resulting pseudo-tuple in this situation simply contains

a single object: a Java Vector, array, or other suitable compound data structure.

Aggregate matchers can be used with either destructive or non-destructive input

operations (i.e. in or rd respectively). The only difference is whether the production

of the resulting pseudo-tuple has the side-effect of removing the actual tuples that are

being aggregated from the tuple space. The predicate forms of the input operations

(i.e. inp and rdp) can also be used with these matchers. In such cases, the failure of the

predicate would indicate that there were no suitable tuples available for aggregation.

The development of such matchers would be similar to that of simple matchers that

require a global view of the tuple space (such as the matcher described above to find

the maximum value of some field). In a distributed tuple space environment (such as

eLinda1) they would need to broadcast the query to all participating processing nodes,

search the locally held tuples, and then integrate the local and remote results to form

the overall result.

CHAPTER 4. THE PROGRAMMABLE MATCHING ENGINE 62

4.1.5 Limitations of the Programmable Matching Engine

There are some limitations to the kinds of matching operations that are supported by

the Programmable Matching Engine. Notably, some matchers may require a complete

global view of the tuple space. An example of such a matcher would be one that was

required to return the tuple with the median value of some field. This example will be

used to explore a number of aspects of this problem.

Firstly, we need to consider how a conventional Linda application would solve this

problem, without the use of the Programmable Matching Engine. As in the earlier

example, this would require the application to retrieve all the tuples meeting the

specification, using inp. Once this was done the application could sort the tuples and

locate the one with the median value. All the other tuples would then need to be

returned to the tuple space (including the result tuple if the overall effect is to be

non-destructive, i.e. a rd or rdp operation).

When using the Programmable Matching Engine a very similar approach could be

adopted. In this case, the originating matcher could distribute the request, retrieve the

local tuples and then collect the remote tuples returned by the remote matchers (i.e.

all of the tuples found by the remote matchers). It could then sort the tuples, extract

the median and return the unwanted tuples to the tuple space. The only advantage in

this case, but a potentially significant one, is that the application itself is simplified by

moving the complexity into the matcher.

However, another approach can be adopted that may be beneficial where the tuples

under consideration are large in size. In this case, the originating Programmable Mat-

ching Engine matcher could distribute the request and then extract the local tuples.

The remote matchers could also retrieve their locally held tuples. However, rather than

returning the complete tuples to the originating matcher, the remote matchers could

extract only the field required for the determination of the median value. A list of these

values could be returned to the originating matcher for use in determining the median

value. Once this was established, then the necessary result tuple could be fetched from

the processing node that held it. All other tuples would then be returned to tuple

space by the local matchers. In this way the network traffic between the processing

nodes is minimised: only the essential “summary” information is transmitted to the

originating matcher and then only the one required result tuple. If the tuples are large

in relation to the size of the field being used to determine the median value then this

saving in network bandwidth could be considerable.

CHAPTER 4. THE PROGRAMMABLE MATCHING ENGINE 63

To summarise, while there are situations where the use of the Programmable Match-

ing Engine might not be ideal, they are handled no less efficiently than if the application

handled them directly. Furthermore, there may still be opportunities to minimise

the network bandwidth required, which would not be possible in conventional Linda

systems. In any case, the use of the Programmable Matching Engine will simplify the

development of the application, where a pre-written matcher is available.

4.1.6 Other Uses of the Programmable Matching Engine

The examples given in this section have focussed mainly on numeric examples. These

have been used for the discussion as they are simple, easily explained and easily un-

derstood. However, it would be incorrect to believe that the Programmable Matching

Engine was only useful for numeric problems—it is just as applicable to textual or other

problems. Some examples that capture the flavour of the previous ones, but emphasise

the generic nature of the Programmable Matching Engine are:

• A string matcher could match string fields using some alphabetic measure of

“closeness”, or even approximate homophonic matching.

• A spatial matcher could compare two fields, taken to be x and y coordinates

to locate a tuple corresponding to a point in some two-dimensional space (or,

equivalently, in three or more dimensions).

• A matcher could be written to locate tuples with fields corresponding to a date

or time in some range of temporal values.

• A matcher could make use of “fuzzy logic” to locate a tuple with some associated

degree of certainty of its suitability.

• A matcher could be written to select a tuple at random from some subset of the

available tuples1.

• A matcher could be written to extract XML data from a tuple and perform

complex matching operations based on this (providing an equivalent to the XML

support in TSpaces and XMLSpaces).

1While it is not required of a Linda system, the eLinda system stores tuples using a FIFO queuing

technique for fairness.

CHAPTER 4. THE PROGRAMMABLE MATCHING ENGINE 64

4.2 Writing Distributed Matchers

Several aspects of the writing of Programmable Matching Engine matchers have already

been discussed above, such as the outlines of the algorithms to be followed by various

types of matchers in sections 4.1.3 and 4.1.4. This section explains in some detail

what is required of a matcher, and what support is provided by the eLinda system. A

complete treatment of this subject is given in Appendix A. The purpose of the following

overview is to highlight the simplicity of the task of developing new matchers. If a

programming technique like use of the Programmable Matching Engine is to become

widely employed, it should be as simple as possible for application programmers to use.

4.2.1 Requirements for Matchers

The eLinda system requires that a programmable matcher provides certain methods. A

particularly useful feature of Java for the specification of these methods is the interface

mechanism provided by the language. This allows the eLinda system to specify the

methods that must be provided by the matcher in order to implement the matching

process, without dictating the implementation details. The interface for the programm-

able matching engine is shown in Program Segment 4.2.

In essence this means that the writer of a new matcher must provide the two

methods specified in the ProgrammableMatcher interface (i.e. matchList and match)

in some class. This class may or may not be an integral part of a particular application.

An object of this class can then be passed to the eLinda system and be used by it to

perform the necessary customised matching operation.

The two methods are used by the eLinda system in the following ways: the match-

List method is always called first, as soon as the input operation using the matcher is

executed. It is given an iterator, which allows it to work through all of the potentially

matching tuples currently in the tuple space. If no suitable tuple is found the method

can return null, and the eLinda system will automatically handle any blocking that is

required (i.e. for non-predicate forms of input). If the input operation is blocked, then

the other method required by the interface (i.e. match) is used to check each new tuple

that is subsequently added to the tuple space, to see if it is a possible match.

CHAPTER 4. THE PROGRAMMABLE MATCHING ENGINE 65

public interface ProgrammableMatcher

{ /** This method compares one anti-tuple with a list of

* tuples.

* This is needed for all operations, but particularly

* for non-blocking operations (i.e. rdp and inp).

*/

public Tuple matchList (AntiTuple a, TupleIterator t)

throws MatcherException;

/** This method compares one anti-tuple with one tuple.

* This is needed only for blocking operations (i.e. in

* and rd) where tuples may come in one at a time (of

* course, it can be used by the matchList function).

* If a matcher is never to be used in a blocking

* operation this can simply return false.

*/

public boolean match (AntiTuple a, Tuple t)

throws MatcherException;

} // interface ProgrammableMatcher

Program Segment 4.2: The ProgrammableMatcher Interface

CHAPTER 4. THE PROGRAMMABLE MATCHING ENGINE 66

4.2.2 Support Functions

Writing a matcher is not a trivial operation, and a number of functions are provided

by the eLinda system to support the development of new matchers. These may be

divided into two categories: the methods provided by the tuple and anti-tuple ob-

jects themselves, and the methods provided by the tuple space manager (TSM) for

communication between processing nodes and manipulation of the tuple space.

In addition, there is an exception class, MatcherException, which may be used by

a matcher to indicate failure of the matching process (for example, if an attempt is

made to perform some arithmetic matching operation on non-numeric fields). As can

be seen in the ProgrammableMatcher interface in Program Segment 4.2, both of the

methods required by the interface may throw this type of exception.

Tuple and Anti-Tuple Operations

There are two methods of the Tuple class that are of interest when writing new match-

ers. The first of these allows a matcher to tell if the tuple “belongs” to the local

processing node. This may be necessary if a matcher needs to exclude non-local tuples

(for example, to prevent double counting of broadcast tuples). The second method

returns the type signature of the tuple. This can then be used to determine the type

of each field, which may be useful to a matcher (for example, to detect attempts to

perform arithmetic matching operations on non-numeric fields).

In the eLinda system the AntiTuple class is a subclass of the Tuple class, and so

inherits both of the above methods, while adding a number of others. These additional

methods allow a matcher to determine the exact nature of the matching operation in

various ways. Firstly, the matcher can distinguish between the four different input

operations (i.e. in, rd, and the corresponding predicate forms). It can also determine

which fields are wildcards, and which are the specified “matching fields” (i.e. those

marked with ?= in the ideal syntax). There are also a number of methods that allow

a programmable matcher to apply the standard matching algorithm in various ways

(e.g. using only certain fields of the tuple, specified by a bit mask).

Communication and Tuple Space Access Operations

Various methods are provided to allow matchers to interact directly with the eLinda

system (e.g. retrieving tuples from tuple space, replacing unwanted tuples, deleting

local and remote tuples, broadcasting requests to other processors and subsequently

CHAPTER 4. THE PROGRAMMABLE MATCHING ENGINE 67

retrieving the results of such requests, etc.). Of course, this interaction allows the

programmer to access the tuples in tuple space at a lower level of abstraction than

usual, and care needs to be taken to preserve the semantics of the Linda tuple retrieval

operations.

The methods available to a matcher for communication and tuple space access are

all static methods of the TSManager class. They provide the following set of services:

Scatter/gather operations These allow a matcher to broadcast an anti-tuple across

the network to remote matchers, and then retrieve the results from the remote

matchers. The eLinda system handles all the communication, ensuring that all

the results are received, etc.

Broadcasting delete messages This specifies that a tuple or anti-tuple should be

deleted from all the distributed sections of the tuple space in which it appears.

Replacing tuples These methods allow matchers to return unneeded tuples to the

tuple space. Two variations are provided allowing a single tuple or an entire

array of tuples to be returned.

4.2.3 The Complexity of Writing New Matchers

There is no obvious, simple method for determining the level of difficulty of writing a

new matcher. The previous sections have outlined some of the steps involved and the

support features of the eLinda system to give an indication of the simplicity of this

task.

This section presents counts of the numbers of lines of Java programming code for

three programmable matchers. As a metric, lines of code are notoriously unreliable.

Factors such as the ability of the programmer writing the code, layout and formatting,

density of commenting, etc. are liable to vary widely. Accordingly, the measurements

below are not presented as proof of the simplicity of writing new matchers, but simply

as an approximate indication of the ease of this task.

It should be noted that the code measured here is extensively commented. This was

done so that these matchers could serve as examples for the writers of future matchers.

The general programming style adopted was a single Java statement per line, with

generous use of blank lines to indicate the program structure.

Given these reservations about the use of this metric, the results are shown in

Table 4.1. The TotalMatcher is an aggregating matcher that returns a total of numeric

CHAPTER 4. THE PROGRAMMABLE MATCHING ENGINE 68

Matcher Lines of Code

TotalMatcher 175

ClosestMatcher 190

MinimumMatcher 193

Table 4.1: Measurements of Code Length for Three Example Matchers

tuple fields. The ClosestMatcher finds a tuple with the nearest numeric value for a

particular field (or fields) to a specified value (this is the example shown in full in

Appendix A). The MinimumMatcher finds the tuple with the minimum value of some

field (numeric or string).

Further examples of programmable matchers and indications of their complexity

are discussed in Chapter 5.

4.3 The Implementation of the Programmable Mat-

ching Engine

The support for the Programmable Matching Engine in the eLinda system is easily

integrated into the implementation of the standard Linda operations. The various

input methods (i.e. in, rdp, etc.) of the TupleSpace class check at the outset of

the operation whether a Programmable Matching Engine matcher has been specified

with the anti-tuple. If a Programmable Matching Engine matcher is specified then the

matchList method is called with the anti-tuple and the list of tuples as parameters. If

this returns a result tuple then that is returned to the application.

If the input operation is blocking (i.e. in or rd) and no result tuple is found by the

matchList method then the anti-tuple is broadcast through the network. In this case,

as tuples are added to the tuple space, they will be checked against the anti-tuple by

calling the match method of the associated matcher.

4.4 The Programmable Matching Engine and Mo-

bile Agents

The concept of mobile agents has recently been popularised as a mechanism for han-

dling distributed data processing problems[43, 65, 80, 104]. The programmable match-

CHAPTER 4. THE PROGRAMMABLE MATCHING ENGINE 69

ing engine concept has some features in common with such mobile agents. Effectively,

a customised matcher written for the eLinda Programmable Matching Engine is a form

of mobile entity that is distributed on a network to find a matching tuple (or tuples).

This provides the same performance advantage as for mobile agents, namely that the

need to move large amounts of data across the network is minimised by doing the

processing where the data is to be found rather than centrally. In the mobile agent

scenario this is done by sending an agent out on the network to locate and/or process

the data. In the Programmable Matching Engine the matching and retrieval operations

of Linda are distributed to all the elements of the distributed tuple space.

The main features of mobile agents can be summarised as follows (this list of features

is taken from Conde[43]):

Mobile Mobile agents are capable of moving from one processing node to another,

and as such, the code, data, execution state, and travel itinerary that comprise

the agent move together.

Autonomous Mobile agents can act independently of each other, and do not require

any centralised control structures.

Disconnected Operation Mobile agents can still function in the face of network

failures. In this case, an agent that needs to move will suspend its execution

until the network service is restored and then continue.

Asynchronous Mobile agents effectively form independent execution threads in the

system.

Local Interaction Mobile agents can interact with local data (possibly other mobile

agents, or “stationary” objects, or simply static data).

Parallel Execution Many mobile agents may be active in the system at any time

(including multiple agents active on a single processing node).

If this list is compared with the features of eLinda, and especially the Programm-

able Matching Engine, the differences and similarities become apparent. Firstly, while

a mobile agent generally has a single instance active at any one time, and this instance

moves around the network of processing nodes, in eLinda a distributed matcher may be

simultaneously active on all of the processing nodes. Furthermore, Programmable Mat-

ching Engine matchers are generally not completely autonomous, but centralised, with

CHAPTER 4. THE PROGRAMMABLE MATCHING ENGINE 70

the originating matcher controlling the operation (broadcasting the request, collating

the results, etc.). Programmable Matching Engine matchers will also be affected by

network failures.

Turning to the similarities, the execution of Programmable Matching Engine match-

ers is based on the temporal decoupling of Linda, and so is asynchronous. Programm-

able Matching Engine matchers also provide local data interaction (indeed this is one

of the motivating factors for their inclusion in eLinda), and parallel execution.

Consequently, a programmable matcher might be viewed as a highly specialised

form of mobile agent, sharing a number of the advantages of mobile agent technologies,

but executing in a more constrained and specific environment.

4.5 Summary

This chapter has presented the Programmable Matching Engine in detail. To demon-

strate the simplicity of the concept while highlighting its power and flexibility, a number

of examples of the possible uses of the Programmable Matching Engine have been pre-

sented. The interactions between a matcher and the eLinda system have also been

discussed in order to show the relatively small and simple interface that a programmer

has to master in order to write a new matcher. Lastly, programmable matchers have

been compared with mobile agents, demonstrating some common ground with that

concept.

The next chapter shows how the extensions in eLinda can be applied.

Chapter 5

Applications of eLinda

This chapter presents a number of example applications that have been developed

using eLinda. These applications highlight the power of the eLinda system, and the

simplicity that it brings to the development of parallel and distributed applications.

As a particular example of the application of eLinda, a parsing algorithm for visual

programming languages was parallelised and implemented in eLinda.

In addition to the larger applications presented in this chapter, a number of smaller

benchmark and demonstration programs have been developed in eLinda, such as a

Mandelbrot fractal generator, simple communication benchmarks, etc.

5.1 A Video-on-Demand Application

In order to illustrate the power of the multimedia support provided by eLinda a demon-

stration video-on-demand system was developed. This consists of a server application

that is used by the supplier of video resources, and a client application that is used by a

customer wishing to view this material. As the main focus was on the support for dis-

tributed multimedia resources, a number of practical issues such as security, payment

verification, etc. were omitted from this application.

5.1.1 The Video Server Application

This program reads in the details of the available videos from a file and then places

these details into a tuple space called “videos”. The tuples contain the name of the

video supplier, the title of the video, a unique key, and the cost of viewing the video.

The server then waits for a tuple to be placed into a tuple space called “requests”

71

CHAPTER 5. APPLICATIONS OF ELINDA 72

Figure 5.1: Control Flow in the Video Server Application

with a matching supplier name. These request tuples specify the title and key of the

video required and also contain payment details. The payment details are verified (the

current version simply accepts any payment information as valid), and if the verification

succeeds, a tuple is placed into a third tuple space, called “supplied”. This tuple

contains the key value and a MultiMediaResource object that the client can retrieve

in order to view the video. This process is shown diagrammatically in Figure 5.1.

Of particular interest is the fact that the server application does not need to handle

the multimedia data source at all. The program simply creates a new eLinda Multi-

MediaResource object, specifying the filename for the video resource. The eLinda

system then handles the connection to the client program, the transmission of the data

to the client, etc. automatically.

5.1.2 The Video Client Application

This program is a GUI, event-driven Java application that allows a user to select a

video and then view it. The user is first required to enter the title of a video resource.

The “videos” tuple space is then searched for a tuple with a matching title. This

makes use of a Programmable Matching Engine matcher that retrieves the tuple with

the minimum value in the cost field (i.e. the MinimumMatcher discussed in the previous

chapter). Alternative matchers could also be provided for this purpose that might take

CHAPTER 5. APPLICATIONS OF ELINDA 73

Get videoName
if videos.rdp.minimum(?supplier, videoName, ?key, ?=cost) then

Display video information
if video is requested then

requests.out(supplier, videoName, key, paymentDetails)
supplied.in(supplier, videoName, key, ?video)
video.play()

else
Display “Video is not available”

Note: The variable video is an eLinda MultiMediaResource

object; videos, requests and supplied are tuple spaces.

Program Segment 5.1: The Video Client Application

Figure 5.2: Screenshot of the Video Client Application

into account other issues, such as the quality of the video and the network bandwidth

requirements. If a matching tuple is found, the details are presented to the user and

they are asked if they wish to view the video. If they choose to do so a request tuple

containing the payment information is placed in the “requests” tuple space. After this

the tuple containing the actual video resource is retrieved from the “supplied” tuple

space, and then the video is presented to the user.

The outline of the client program is shown in Program Segment 5.1. It should be

noted that, for clarity, this has been rewritten using a procedural programming style,

rather than the actual event-driven style used by the application. A screen shot of the

simple user interface provided is shown in Figure 5.2.

While this is a simple illustration of the principles involved in such an application,

and particularly of the use of the multimedia features present in eLinda, it does provide

a convincing demonstration of these facilities. In particular, it shows how the unique

features of eLinda greatly simplify the development of such applications.

CHAPTER 5. APPLICATIONS OF ELINDA 74

5.2 Ray-Tracing

One of the demonstration programs provided with JavaSpaces is a simple ray-tracing

application, written using a replicated-worker pattern[51]. This application was ex-

tended to produce timing results, and then ported to eLinda and to TSpaces. It was

used to obtain some preliminary performance results, particularly for the purpose of

comparing these three Linda systems.

5.2.1 The Ray-Tracing Algorithm

Ray-tracing is a well established technique for rendering realistic images[59, 89, 162]. It

works by following a ray from the viewpoint, through a pixel on the view-plane to the

scene being rendered. This is called the primary ray (or eye ray). The first object that

is encountered is then visible at that pixel. The illumination of the pixel is determined

by following rays from the point of contact with the object back to all of the light

sources illuminating the scene.

It is also important to detect the presence of objects obscuring the light sources,

in order to generate realistic shadows. This is done by casting shadow rays from the

original point of intersection to the light sources and testing to see if any object in the

image is intersected by the shadow rays.

If surface of an object is shiny, or transparent, then further rays (called secondary

rays) need to be cast from the initial point of contact to cater for reflected or refracted

light. This is a recursive process, as the secondary rays need to be traced back in

exactly the same way as the primary ray from the viewpoint. In practice the depth of

the recursion can be limited by calculating the attentuation of the reflected or refracted

light and only performing the operation if the contribution to the lighting of the pixel

is above some threshold value.

Lastly, the colour and texture of the surface itself must be taken into account. This

is usually done by applying a shading technique, such as Phong shading[113], at the

intersection point.

This process is repeated for rays through all of the pixels in the view-plane. These

pixels are then be mapped onto a graphics display.

As can be seen from this brief description, there is a considerable amount of compu-

tation that is required for each pixel in the viewing area. Fortunately the calculations

for individual pixels are independent of the others and so it becomes an easy problem to

CHAPTER 5. APPLICATIONS OF ELINDA 75

Figure 5.3: The Scene used in the Ray-Tracing Application

parallelise by dividing the viewing area into segments for separate processes to render.

5.2.2 Implementation

The application was ported directly from JavaSpaces to eLinda and TSpaces. While

the overall performance of this application is not as good as other ray-tracing systems,

it serves as a useful platform for assessing the relative performance of these three Linda

implementations. It should also be noted that this application gave no scope for the

use of the extended functionality of either eLinda or TSpaces. Additionally, no attempt

was made to optimise the original program as supplied with JavaSpaces—it was simply

used as a means of measuring the relative efficiency of the three Linda systems.

The image that was rendered was a simple scene with four spheres of varying

transparency, a textured background plane and a single light source. The size of the

image was 640× 480 pixels. Figure 5.3 shows the rendered image.

This application was parallelised using a replicated-worker pattern[51]. The outline

of the worker process is shown in Program Segment 5.2. This simply inputs a tuple

specifying the task to be performed: a long value that is used to identify a particular

CHAPTER 5. APPLICATIONS OF ELINDA 76

RenderTask task = null;

long key = 0L;

Tuple taskTuple = taskSpace.in(?key, ?task); // Get a task to do

int[] result = task.execute(); // Execute the task

if (result != null) // Write the result back

resultSpace.out(key, task.startX, task.startY, result);

Program Segment 5.2: Generic Worker Process used for Ray-Tracing

image (thus allowing many scenes to be rendered simultaneously), and an object con-

taining the task. The task object contains the full details of the image to be rendered.

The worker process then uses the execute method of the task object to do the work.

The result of this method (an array of pixel values) is then placed in the tuple space,

together with the unique identifier for this image and parameters that identify the

segment of the image which was rendered. This sequence of steps is repeated endlessly

by each worker.

The master process divides the image area up into segments of a given size (selected

by the user of the program) and places the corresponding task tuples into the tuple

space. It then collects the result tuples as they become available from the workers, and

displays the given pixels on the screen.

It should be noted that the simple allocation of work among the worker processes,

on the basis of dividing the image up into equal-size segments is not ideal. Certain

areas of the image are more complex than others and thus require more processing time

per pixel. If a complex segment is picked up late by a particular worker, it can happen

that all the other workers have completed their tasks well before it completes, leading

to a lengthy delay to finalise the rendering of the full image. To minimise this effect,

it would be useful to implement some form of load balancing that used information

about the relative complexity of the different segments of the image, and subdivided

segments with a high degree of complexity.

Comparative results for the performance of this application using eLinda, TSpaces

and JavaSpaces are presented in Section 6.2.2.

5.3 Visual Language Parsing

As a particular example, which highlights the flexibility and power of the Programmable

Matching Engine, we will consider the problem of parsing visual languages in more

CHAPTER 5. APPLICATIONS OF ELINDA 77

detail. Visual languages are used in many areas to depict situations or activities in a

pictorial or diagrammatic form, which is often easier for human beings to comprehend

than equivalent textual forms. Examples of such languages abound, not least in the field

of Computer Science, where notations such as flowcharts, state transition diagrams,

entity-relationship diagrams, etc. are widely used.

If such graphical models are to be used and processed by computer systems there

is a requirement for parsing them in order to analyse their structure. This process is

directly analogous to the parsing of textual computer programming languages. What

sets the parsing of visual languages apart is the increased complexity of the relationships

between the components. In a textual language there is a simple, positional sequence

relating the components of the language (i.e. the keywords and other tokens). In

the case of a visual language there is far more scope for different relationships to

exist between tokens in two dimensions (or, more generally, in three or even more

dimensions). For example, tokens may be related by inclusion, by contact, by position

(e.g. one above another), and so on.

There are many different methods that may be used for specifying and for parsing

visual languages. A classification of visual languages that highlights some of these

differences can be found in [94]. The method that we will consider here is the use of

picture layout grammars (a variation on attributed multiset grammars), as developed

by Golin[60, 120]. Picture layout grammars provide a particularly flexible and powerful

means of expressing the syntax of visual languages.

The example of a visual language that will be used in this discussion is the common

notation for state transition diagrams (STD’s). A simple example of a state transition

diagram is shown in Figure 5.4, together with its textual representation.

5.3.1 Picture Layout Grammars

In this formalism, a visual program is represented as an attributed multiset: an un-

ordered collection of attributed visual symbols. The class of a symbol corresponds to

its type (e.g. label, circle, etc.), while the attributes of a symbol specify its features

(e.g. text value, position, etc.). Visual languages are then sets of attributed multisets.

The attributed multiset representation of a picture is a flat structure. If we view the

picture as an element of a visual language, then it has a complex structure, described

by the relationships between the symbols. This structure is defined by the grammar

productions of the language. A simple example of such a production is:

CHAPTER 5. APPLICATIONS OF ELINDA 78

ÁÀ

Â¿
A

ÁÀ

Â¿
C

ÁÀ

Â¿

½¼

¾»
D

ÁÀ

Â¿
B-1

60
@

@
@I

0

6
X

@
@

@R

1
-X0

?

C 3.5,19 1.5 C0C0C0

T ’A’ 3.5,19 000000 Arial

A 5,19 9,19 000000

T ’1’ 5,19 000000 Arial

C 10.5,19 1.5 FFFFFF

T ’B’ 10.5,19 000000 Arial

T ’0’ 3.5,17.5 000000 Arial

A 3.5,17.5 5.5,15 000000

T ’0’ 9,19 000000 Arial

A 9,19 5.5,15 000000

A 5.5,12 11,13.5 000000

T ’X’ 5.5,12 000000 Arial

T ’C’ 5.5,13.5 000000 Arial

C 5.5,13.5 1.5 FFFFFF

C 12.5,13.5 1.5 FFFFFF

C 12.5,13.5 1.4 FFFFFF

T ’D’ 12.5,13.5 000000 Arial

A 7,13.5 10.5,17.5 0000000

T ’1’ 7,13.5 000000 Arial

T ’X’ 12,19 000000 Arial

A 12,19 12.5,15 000000

T ’0’ 4,13.5 000000 Arial

A 4,13.5 5.5,12 000000

Figure 5.4: An Example State Transition Diagram and Its Textual Representation

CHAPTER 5. APPLICATIONS OF ELINDA 79

Production Rule
1: STD → StateList

2: StateList → State

3: StateList → (State, StateList)

4: State → contains(circle, text)

5: State → leaves(State, Transition)

6: Transition → labels(Arc, text)

7: Arc → enters(arrow, circle)

8: DoubleCircle → contains(circle, circle)

9: FinalState → contains(DoubleCircle, text)

10: State → FinalState

11: GreyCircle → isgrey(circle)

12: StartState → contains(GreyCircle, text)

13: State → StartState

Table 5.1: A Grammar for State Transition Diagrams

State → contains(circle, text)

This rule specifies that a state in a state transition diagram is made up of a circle

and a textual label. The operator (contains in the example above) specifies explicitly

the kind of relationship between the constituent elements.

In certain situations it is necessary for a production to include a symbol that does

not constitute a part of the left hand symbol, but which must be present as the context

in which the grammar rule can be applied. This is usually indicated by underlining

such a context symbol to distinguish it from a normal symbol. A complete grammar

for state transition diagrams is shown in Table 5.1, where the production for Arc (7)

shows the use of a context symbol. In this case, the circle symbol is not a part of an

arc, but must be present as the context in which the production for Arc can be used.

Formally, an attributed multiset grammar can be defined as a six-tuple (N , Σ, s, I,

D, P) where:

N is a finite set of non-terminal symbols

Σ is a finite set of terminal symbols

s ∈ N is the start symbol

I is the attribute names

D is the attribute domains

P is a set of productions

A production is a triple (R, SF , C) where:

R is a rewrite rule of the form A → M1/λ, where:

CHAPTER 5. APPLICATIONS OF ELINDA 80

A ∈ N is the left hand side (LHS)

M1/λ is the right hand side (RHS)

M1 ⊂ (N ∪ Σ) is a multiset of ordinary symbols

λ ⊂ Σ is a multiset of context symbols

SF is a semantic function

C is the constraints on the application of R

Note that the simplified notation used for the productions in Table 5.1 includes the

rewrite rules and the constraints, but omits the semantic functions.

We then introduce the concept that a picture M is analysable:

M is analysable if M has a derivation tree T where:

The leaf nodes of T spell out M

The root node of T is labelled by the start symbol, s

Each interior node n is labelled by a production p = (R, SF , C), where:

labels(RHS(R)) = labels(children n)

C(children n) = true

attributes n = SF (children n)

Essentially, this means that a picture can be represented by a tree structure, where

the leaf nodes represent the terminal symbols. The interior nodes represent the non-

terminal symbols. For each interior node, the child nodes fulfil the constraints of the

production used to generate the associated non-terminal symbol, and the attributes

of the non-terminal symbol are generated from the attributes of the child nodes by

applying the semantic function to the attributes of the children. Part of the parse tree

for the state transition diagram of Figure 5.4 is shown in Figure 5.5.

Finally, the language recognised by a grammar G can be formally defined as follows:

S(G) = {M | M ∈ Σ∗ ∧M is analysable over G}

Picture layout grammars are attributed multiset grammars, as defined above, but

with the following restrictions:

• The attributes may take only a finite number of different values.

• No two terminal symbols may have the same class and attribute values.

CHAPTER 5. APPLICATIONS OF ELINDA 81

Figure 5.5: Example of a Parse Tree

CHAPTER 5. APPLICATIONS OF ELINDA 82

• The right hand side of a production may consist of a maximum of two symbols

(only a single ordinary symbol, or two ordinary symbols, or one ordinary symbol

and one context symbol)1.

While picture layout grammars are a powerful formalism for defining visual lan-

guages, they are difficult to parse efficiently. Golin reports a theoretical worst-case

complexity result of O(n9), although in practice the worst-case behaviour seldom arises.

The main cause of this complexity is that the first stage of the parsing algorithm pro-

duces multiple possible results: the Factored Multiple Derivation structure (or FMD).

This is essentially a derivation tree as defined above, but has cross-links representing

the use of context symbols, giving a directed acyclic graph (DAG). This data structure

must then be checked in the second stage of the parsing process to remove invalid results

and inconsistencies that may arise from ambiguities in the grammar. Lastly, the data

structure is traversed again to pick a unique valid result. As a result of this complexity,

parsers for picture layout grammars can benefit from a parallel implementation.

5.3.2 The Implementation of Golin’s Parsing Algorithm

Prior to commencing any practical work on the parallelisation of the parsing algorithm

for visual languages, some supporting software was developed. This took the form of a

design for a generalised approach to the specification of grammars for visual languages.

A number of Java classes were developed to automate the reading in of a grammar

specification and its representation in terms of various data structures such as lists of

symbols (terminals and nonterminals), a list of production rules, the specification and

implementation of the constraint functions and the semantic functions, etc. Classes

were also written to represent various data values required during the parsing process,

such as production rules and symbol attributes. These supporting classes were utilised

in all of the versions of the parsing algorithm that were developed (a sequential version,

and two slightly different parallel implementations using eLinda).

Before studying the parallelisation of the parsing algorithm, it is useful to consider

the first phase of the original, sequential algorithm (i.e. building the Factored Multiple

Derivation structure). This has the form shown in Program Segment 5.3. It will be

referred to as the “build” phase in the following discussion of the parallelisation of the

parsing algorithm.

1This restriction is easily met by simply replacing each n-ary production by a sequence of binary

productions.

CHAPTER 5. APPLICATIONS OF ELINDA 83

1 Build(M , P):
2 for each b ∈ M do
3 add a terminal node for b to todo and FMD
4 while todo 6= ∅ do
5 next := some element of todo
6 X := symbol(next)
7 for each p ∈ P such that X ∈ RHS (p) do
8 if p = A → {X} then
9 if constraints satisfied then

10 Add(p, {next})
11 else
12 for each occurrence of X in RHS (p) do
13 let Y be the other symbol in RHS (p)
14 for each old ∈ done such that symbol(old) = Y do
15 if constraints satisfied then
16 Add(p, {next , old})
17 move next from todo to done
18 return FMD

19 Add(p, subnodes):
20 new := create a node for p
21 childlist(new) := subnodes
22 attr(new) := SF (subnodes)
23 for each node n ∈ (todo ∪ done) do
24 if symbol(n) = LHS (p) ∧ attr(n) = attr(new) then
25 childlist(n) := childlist(n) ∪ subnodes
26 discard new
27 return
28 add new to FMD
29 add new to todo

Program Segment 5.3: The Sequential Form of the First Phase of the Visual Parsing

Algorithm

CHAPTER 5. APPLICATIONS OF ELINDA 84

This is then followed by the second phase: checking the FMD structure, removing

any invalid features from the initial parsing phase, and finally locating a valid parse

tree within the FMD.

5.3.3 The Parallelisation of the Parsing Algorithm

The eLinda system is ideally suited to a problem like the parsing of picture layout

grammars. In this implementation the symbols are simply represented by tuples. The

fields of each of these tuples contain the class and the attributes of the corresponding

symbol.

The parsing algorithm was parallelised using the replicated-worker pattern[51]. The

master process first performs the initialisation of the tuple spaces used by this appli-

cation. There are five tuple spaces, used for the following purposes:

1. There is a control tuple space, used for communication with the workers, and

monitoring the progress of the parsing algorithm.

2. The grammar rules are stored in a tuple space for convenient distribution to the

workers.

3. The todo set of symbols that still need to be considered by the algorithm is

represented by a tuple space. This takes advantage of the fact that an attributed

multiset maps very naturally onto the concept of a tuple space (in fact, a tuple

space can also be thought of as an attributed multiset).

4. The done set of symbols that have been processed by the parsing algorithm is

represented by a tuple space in the same way as the todo set.

5. The tree relationships for the FMD structure are stored in a separate tuple space.

This decreases the need for manipulating the tuples in the todo and done spaces.

The initialisation performed by the master process consists of reading the grammar

rules and loading them into the rule tuple space. The terminal symbols are written

to the todo tuple space, replacing the first for loop in the algorithm (lines 2 and 3 of

Program Segment 5.3).

The worker processes then perform the central loop of the build algorithm (lines

4–17 of Program Segment 5.3) in parallel. However, some modifications to the basic

algorithm are required. The first, relatively minor, modification is to perform the step

CHAPTER 5. APPLICATIONS OF ELINDA 85

of placing the next element in the done tuple space as soon as it has been removed

from the todo space (essentially moving line 17 of the algorithm to immediately after

line 5 in Program Segment 5.3). This is done to prevent one process from holding the

symbol for a potentially lengthy period of time, during which it might be required by

another process.

A more substantial modification was required to keep the workers loosely in step

with each other. Without this modification, it was observed that a worker would

sometimes find that it was unable to perform any reductions as the symbols that it

required were still being produced by other workers. As it is, if one worker does start

to “get ahead” of the others then it may still find that it has no further work to do

and terminate early, leaving the remaining workers to complete the parsing process.

However, the loose synchronisation that was introduced is generally very successful, as

can be seen from the results presented in the next chapter. The loose synchronisation

used here was handled by means of introducing a number of parsing levels. These levels

are determined by performing an analysis of the grammar. Firstly, the grammar rules

are used to derive a tree corresponding to an abstract string derivation. For example,

for the grammar for State Transition Diagrams, the abstract derivation tree is as shown

in Figure 5.6. A parsing level is associated with each node of this tree, corresponding

to the maximum depth of the subtrees below that node. These levels are shown in the

dashed boxes in Figure 5.6 (where they are also summarised below the tree diagram).

The parsing process then considers all the symbols at a given level before proceeding

to consider the symbols at the next level. In this way the symbols are generated in

the order in which they will be required, and workers are prevented from considering

higher level symbols until all the lower level symbols are exhausted. At the lowest level

this has the effect that all the terminal symbols must be used before the nonterminals

generated from them are considered.

Once the first, building phase is completed the master process checks to ensure that

the start symbol has been recognised. If this is the case, then the childlists of the start

symbol are distributed to the worker processes for checking in parallel. In essence,

the checking algorithm followed by the workers is as follows (we will consider the full

parallelised version, illustrating the use of eLinda, in the next section):

1 Check(FMD , todo):
2 while todo 6= ∅ do
3 childlist := some element of todo
4 walk the FMD calculating the coverage of each node and its depth

CHAPTER 5. APPLICATIONS OF ELINDA 86

STD 6

?
StateList 5³³³³³³)

PPPPPPq
StateList State2 4»»»»»»»»9 ?

XXXXXXXXz
State 3 Transition 2 FinalState 2
´

´
+́

Q
Q

Qs
¡

¡ª
@

@R
´

´
+́

@
@R

StartState
2

circle + text
0

Arc
1

text
0

DoubleCircle
1

text
2´

´
+́

@
@R ? ?

GreyCircle
1

text 0 circle + arrow
0

circle + circle 0

?
circle 0

Level 0: {arrow, text, circle}
Level 1: {GreyCircle, DoubleCircle, Arc}
Level 2: {FinalState, Transition, StartState}
Level 3: {State}
Level 4: {State2}
Level 5: {StateList}
Level 6: {STD}

Figure 5.6: The Abstract Derivation Tree and Parsing Levels for the State Transition

Diagram Grammar

CHAPTER 5. APPLICATIONS OF ELINDA 87

5 if the childlist covers M then
6 remove recursive loops
7 prune childlists with identical coverage, favouring childlists

with greater depth
8 walk the FMD a final time, picking a path that gives M

This process makes use of the done and FMD tuple spaces. For efficiency the

workers cache this information in internal data structures (many of the childlists are

composed of overlapping sets of symbols), accessing tuple space only once for each

tuple during the checking stage.

5.3.4 Use of the Programmable Matching Engine

The parallelisation of Golin’s parsing algorithm gives considerable scope for the use of

the Programmable Matching Engine’s facilities. At a number of points there is a need to

use complex criteria to specify the tuples that are to be retrieved from tuple space. Four

customised matchers were written for the visual language parser. Of these matchers,

two are general-purpose, and may be useful in other applications. As discussed in the

previous chapter, the number of lines of code, while not an accurate metric, does give

an approximate indication of the complexity of a matcher. Accordingly, the number

of lines of Java code are given below for each of the matchers written for the visual

parsing algorithm, together with a brief description of the purpose of the matcher.

RHSMatcher (130 lines of code) This matcher is the most complex of those used

in the visual language parsing application. It is used to search the tuple space

containing the rules, looking for a rule that could be applied to reduce a given

symbol X. This requires searching through the rules looking for the symbol X in

the right hand side of a rule. If the rule is of the form A → X then the matcher

additionally checks the constraints (this is straightforward in this case, as there

is only the one symbol to consider). This matcher effectively replaces lines 7–10

of the parsing algorithm in Program Segment 5.3 (p. 83).

ConstraintMatcher (114 lines of code) This matcher is used when applying rules of

the form A → X Y or A → Y X to locate suitable Y symbols to reduce

with the current symbol X. In order to do this it has to check the constraints

of the attributes of the available Y symbols (usually in conjunction with the

attributes of the symbol X). It effectively implements lines 14 and 15 of the

CHAPTER 5. APPLICATIONS OF ELINDA 88

parsing algorithm in Program Segment 5.3. It returns multiple matching tuples,

using a Java Vector.

SetMatcher (111 lines of code) This matcher is used by the workers to retrieve a

symbol (next) from the todo tuple space for consideration (line 5 in Program

Segment 5.3). Due to the introduction of the parsing levels as explained in Sec-

tion 5.3.3, this symbol needs to be chosen from the set of symbols to be considered

at the current parsing level. For example, at level 1 of the parsing process the

set of symbols from which next can be drawn is {GreyCircle, DoubleCircle, Arc}
(see Figure 5.6).

This matcher could be used by any application that had a similar requirement to

match tuples where a field has one of a set of defined values. The sets are handled

using the java.util.Set interface within the matcher, allowing considerable

flexibility. In the visual language parser the java.util.HashSet class is used,

and the contents of the sets are simply Integer objects representing the symbol

types.

AllMatcher (67 lines of code) This matcher can be used to retrieve all the tuples

matching a given anti-tuple (in the same way as the scan operation provided

by TSpaces). It is employed during the checking phase of the visual parsing

application to retrieve all entries in the FMD tuple space for a given symbol (i.e.

all of the childlists).

Again this matcher could be used by any application that needed to retrieve the

set of all tuples meeting some criterion. It returns the multiple tuples in a Java

Vector.

The parallelised algorithm for the master process is then as follows:

1 Master(M , P):
2 for each b ∈ M do
3 todo.out(b)
4 for each p ∈ P do
5 rule.wr(p)
6 signal the workers to start

7 wait for the workers to complete the build algorithm
8 if FMD.rdp(startSym) then
9 childlists := FMD.rdp.all(startSym)

CHAPTER 5. APPLICATIONS OF ELINDA 89

10 for each childlist c in childlists do
11 todo.out(c)
12 signal the workers to start

13 wait for the workers to complete the checking algorithm
14 if control.rdp(startSym) then
15 print the solution parse tree

The waiting and signalling operations referred to above are simply implemented in

terms of tuple space operations, using the control tuple space. These are essentially

barrier synchronisation points, which are very simple to implement in Linda. Addi-

tionally there are a few other, minor steps that have been left out for clarity, such as

communicating the start symbol to the workers.

The algorithm followed by each worker is as follows:

1 Worker:
2 wait for signal to start
3 Build
4 signal master
5 wait for signal to start
6 Check

7 Build:
8 while level < maxLevels do
9 set := new SetMatcher(symSet [level])

10 next := todo.inp.set(?)
11 while next 6= null do
12 done.out(next)
13 p := rule.rdp.rhs(next)
14 while p 6= null do
15 if p = A → {X} then
16 Add(p, {next})
17 else
18 for each occurrence of next in RHS (p) do
19 let Y be the other symbol in RHS (p)
20 oldSet := done.rdp.constraint(Y, next , p)
21 for each Y in oldSet do
22 Add(p, {next , Y })
23 p := rule.rdp.rhs(next)
24 next := todo.inp.set(?)

25 Add(p, subnodes):
26 newAttr := SF (subnodes)
27 n := todo.rdp(LHS (p), newAttr)

CHAPTER 5. APPLICATIONS OF ELINDA 90

28 if n = null then
29 n := done.rdp(LHS (p), newAttr)
30 if n = null then
31 new := create a node for p
32 add new to todo
33 childlist(new) := subnodes
34 add childlist(new) to FMD
35 else
36 add subnodes to childlist(n) in FMD
37 else
38 add subnodes to childlist(n) in FMD

39 Check:
40 startTuple := todo.inp(startSym, ?childlist)
41 while startTuple 6= null do
42 starting with childlist, walk the FMD calculating the coverage

of each node and its depth
43 if childlist covers M then
44 remove recursive loops
45 prune childlists with identical coverage, favouring childlists

with greater depth
46 walk the FMD a final time, picking a path p that gives M
47 control.out(startSym, p)
48 return
49 startTuple := todo.inp(startSym, ?childlist)

5.3.5 Refinements to the Parallel Algorithm

During testing and development the possibility of incorporating some enhancements

and optimisations to the algorithm described above became apparent. The primary

one among these was to store the grammar rules in the workers, rather than in the rule

tuple space. This allows potential rules for application to be located without having

to search the tuple space. This affects lines 7–10 of the original algorithm (Program

Segment 5.3, p. 83), and removes the need for the RHSMatcher, which implemented

this part of the algorithm. The rules are still distributed to the workers using the tuple

space, but are simply loaded by the workers into an internal data structure during

initialisation (using the AllMatcher). This resulted in the worker processes somewhat

more closely resembling the original sequential algorithm.

A further enhancement that was implemented was to simplify the FMD structure

during the build phase to decrease the amount of work required during the checking

phase. This took the form of checking in the Add function to ensure that childlists do

CHAPTER 5. APPLICATIONS OF ELINDA 91

not refer directly to the parent node (this is one of the aspects covered by the removal

of recursive loops in the Check function). In the example grammar for state transition

diagrams this arises from the rule StateList → State2 StateList, which may lead

to a StateList being included in its own childlist (this also occurs in the serial version

of the algorithm). The Check function still needs to check for possible recursion in

the tree structure, as this may span a number of levels of the tree in general, but the

incidence of recursive loops is decreased (as is the complexity of the FMD stucture).

There are other possible ways of organising this parallel application. One would be

to provide a matcher for use with retrieving potentially applicable rules (similar to the

RHSMatcher described above) that returned the set of all matching rules without eval-

uating any constraints (i.e. a solution intermediate between the use of the RHSMatcher

and the first optimisation discussed above).

It should also be noted that the parsing process proceeds in a strict “lock-step”

fashion: the master process signals the workers to start, they all perform the first phase,

then synchronise again before all commencing the second phase. Further parallelism

could be obtained by removing the synchronisation point in the middle of the parsing

procedure. In other words, the checking could be started as soon as the goal symbol

tokens start to become available. Two strategies are possible in this case.

1. Create two pools of distinct workers: one pool dedicated to the building phase

of the algorithm and the other to the checking phase. As soon as results become

available from the first pool, the second pool of workers can commence work on

the second phase.

2. Retain a single pool of workers capable of performing both tasks (building and

checking). However, in this case, as soon as a worker finds that it no longer

has work to do for the first phase, it can immediately start work on checking

any available results, without synchronising with the master and other worker

processes.

Overlapping the two phases in either of these ways would decrease the total pro-

cessing time, and increase the parallelism of the parsing application. These points are

considered further in the discussion of the results in the next chapter.

CHAPTER 5. APPLICATIONS OF ELINDA 92

5.3.6 Comments and Conclusions

Parallelising Golin’s visual parsing algorithm presented some interesting opportunities

to utilise the unique features of the eLinda system. The nature of the algorithm makes

it simple to parallelise. In particular, the fact that the first phase constructs the FMD

structure with a degree of redundancy and delays checking to a second distinct step,

allows the worker processes to perform this phase without requiring any communication

or synchronisation (except for the loose synchronisation described in Section 5.3.3, and

even this requires no explicit communication between the workers).

It appears that there may be slightly more redundancy in the FMD structures

created by the parallel parser than in the serial version. This would lead to slightly

increased workload in the second, checking phase.

A major advantage of the use of eLinda in this area is that attributed multisets

map very naturally to tuple spaces. Additionally the use of the Programmable Match-

ing Engine simplifies the parallel version considerably, by encapsulating a number of

lines of code from the original algorithms in matchers. More importantly, this problem

would be very difficult to parallelise using the standard Linda programming model,

due to the need to retrieve tuples subject to arbitrary constraints.

5.4 Summary

The applications presented in this chapter have highlighted the power and flexibility of

eLinda, particularly the Programmable Matching Engine and the multimedia facilities.

These features are very useful in simplifying the algorithms, allowing the application

programmer to focus on the overall structure of the application.

The results obtained from testing these applications are presented in the following

chapter.

Chapter 6

Evaluation of eLinda

This chapter presents a qualitative comparison of eLinda with other Linda systems,

showing how the features of eLinda, especially the Programmable Matching Engine,

are easier to use, and, in general, more powerful than the similar features of the other

systems. It also provides quantitative results for the testing that was done using eLinda

and the Linda systems developed by Sun Microsystems and IBM.

6.1 Comparison of Features

This section compares the features provided by eLinda with those in other Linda sys-

tems. Firstly the two commercial implementations of Linda in Java are considered,

and then various other Linda research projects and proposals with similar features.

6.1.1 Comparison with JavaSpaces and TSpaces

Table 6.1 summarises the main functional differences between eLinda, JavaSpaces and

TSpaces. Of particular interest are the extensible matching features of eLinda and

TSpaces, which will be covered in more detail below.

Both TSpaces and JavaSpaces are intended for use in commercial applications,

and so support transaction processing and lease/expiration mechanisms, which may be

needed in such environments.

The event notification mechanism in TSpaces is an interesting feature whereby a

process can ask to be informed when a tuple (specified by an anti-tuple) is placed

into tuple space or deleted. While this feature is not provided in either eLinda or

JavaSpaces, it would not be difficult to emulate for output operations using a separate

93

CHAPTER 6. EVALUATION OF ELINDA 94

Feature JavaSpaces TSpaces eLinda

Matching subtypes Yes No No

Fields must be objects Yes Yes No

More than one tuple space Yes Yes Yes

Leases/Expiration Yes Yes No

Transactions Yes Yes No

Event notification:

for writes No (but rd) Yes No (but rd)

for deletes No Yes No

Extensible matching No Yes Yes

Multimedia support No No Yes

Provides eval No No No

Table 6.1: Comparison of JavaSpaces, TSpaces and eLinda

thread that waited for the event using the standard rd operation. Event notification

for deletions would be more difficult and less efficient to implement, requiring a polling

loop that used rdp to detect the eventual absence of the deleted tuple.

The Extended Features in TSpaces

As has already been noted, TSpaces contains a number of extensions to the original

Linda programming model. These include several new operations, and a mechanism

for adding new commands to the system, which will be considered in this section and

compared with eLinda.

New Operations One of the notable features of TSpaces is its ability to use XML

documents as fields of tuples, and then to retrieve tuples based on simple XML queries.

In the version of TSpaces that was studied (i.e. version 2.1.1) the XML support was

a new feature, and, as a result, incomplete. Some of the limitations present are as

follows:

• The entire XML document must be passed to TSpaces as a single string (it is

then parsed internally and stored as an XML document tree).

• Queries can be performed using only a subset of the XQL query language[121].

• Tuples can contain a maximum of one XML field.

CHAPTER 6. EVALUATION OF ELINDA 95

At present, eLinda provides no support for XML. However, the Programmable Mat-

ching Engine would be an ideal platform for constructing such support if it is required

for an eLinda application. This would allow a great deal of flexibility, such as the

ability to support pre-formatted XML documents (i.e. already parsed, and represented

as a document tree) for increased efficiency. Given the increasing importance and

wide-spread use of XML in the computer industry, writing a programmable matcher

to support XML queries in eLinda would be a useful exercise.

The second group of new commands in TSpaces are the “scan” commands:

scan This operation returns a tuple containing the set of tuples that match

a given anti-tuple (“template” in TSpaces terminology).

consumingScan This works in the same way as scan but removes the tuples

from the tuple space (analogous to the difference between rd and in).

countN This returns a count of the number of tuples that match a given

anti-tuple.

While eLinda does not provide any of these operations directly, they are once again

straightforward to emulate using the features of the Programmable Matching Engine.

In fact, the “AllMatcher” developed for the visual parsing application (see p. 88) is

exactly what is required for the scan and consumingScan operations, when used with

rd and in, respectively.

TSpaces also includes a multiWrite operation, which takes a tuple containing a

number of other tuples as fields, and places them in the tuple space. This may provide

some slight performance benefit, as only one network communication is required to

send all of the tuples to the processing node on which the tuple space server resides.

While eLinda provides no such feature it could again be emulated using the Programm-

able Matching Engine facilities. This solution would have the aesthetic disadvantage

that eLinda would require the use of an “input” operation in this case, while actually

performing an “output” (the Programmable Matching Engine facilities are intended

for use in matching operations, i.e. for retrieving tuples from tuple space).

TSpaces also supports the deletion of tuples (selected by matching with an anti-

tuple) without retrieving them. This will reduce network traffic as the tuple is simply

removed from the server without being transmitted back to the originating processing

node. Again, this could easily be emulated in eLinda, but there would need to be at

least an acknowledgment transmitted back across the network (it is not clear whether

there is such an acknowledgement in TSpaces).

CHAPTER 6. EVALUATION OF ELINDA 96

Lastly, TSpaces provides an update operation whereby a tuple can be replaced.

This makes use of the “tuple ID” (a unique identifier allocated to all tuples by the

TSpaces system) to locate the tuple. Once more, this could be easily be done using the

Programmable Matching Engine (of course, the lack of a tuple identifier would have to

be dealt with in some way such as designating a particular field of the tuple as the “key

field”). Note that there would again be the aesthetically unpleasing aspect of using an

input operation to perform an operation that is, perhaps, more closely related to the

output operations.

Extensible Facilities As has already been noted, TSpaces makes provision for new

commands to be added to the system. This feature can be used to extend the matching

facilities provided as standard, but is implemented in a very different way to the Prog-

rammable Matching Engine in eLinda.

From a design perspective, the two systems approach the problem with a completely

different philosophy. The TSpaces approach is to modify the server by embedding a

new “factory” and a new command handler into the server to support new commands.

The eLinda approach is to allow the programmer to provide an alternative matching

algorithm with any anti-tuple. These might be characterised as a “heavy-weight”

solution (modifying the server) and a “light-weight” solution. The TSpaces approach

does allow the possibility of adding completely new commands, rather than simply

modifying the way in which the matching and retrieval operations work. However, it is

not clear that there is any great advantage to be gained from this. Even the example

presented in the TSpaces programming guide[77] simply shows how an existing feature

of TSpaces (i.e. tuple expiration) could be emulated. Essentially a tuple space is a

high-level communication abstraction, and as such the operations that one is likely to

need are those provided by the original Linda model: input and output of tuples.

The TSpaces implementation also raises concerns that must be addressed in a multi-

user (or multi-application) environment. As it is the server that is being reconfigured

to support new commands, there is the potential for one application to interfere with

another (possibly quite unintentionally). This is addressed to some degree in TSpaces

by the requirement that users adding new factories to the system must have the correct

authorisation, but this does add to the overall complexity of the process of installing

support for new operations, and may still be vulnerable to undesirable interference.

The eLinda approach simply associates a new matching operation with a specific anti-

tuple, and this is constrained in its actions by the programming interface available to

CHAPTER 6. EVALUATION OF ELINDA 97

it.

Moving on to more practical matters, the difficulty of programming a new command

handler in TSpaces appears to be roughly equivalent to that involved in writing a new

matcher in eLinda. Conceptually, the task might be slightly simpler in TSpaces, due to

the centralised tuple space model used (the Programmable Matching Engine approach

is oriented towards the distributed tuple space model, and writers of new matchers will

generally need to take this into consideration).

From the perspective of an application programmer using a new TSpaces command

or a Programmable Matching Engine matcher, the eLinda approach is much simpler.

The TSpaces approach requires the application to install a new factory and the associ-

ated new command handler, or handlers. The Programmable Matching Engine simply

requires that a programmable matcher object be created and associated with an input

operation.

6.1.2 Comparison with Research Systems

A number of other research projects based on Linda were discussed in sections 2.1.2 and

2.2.3. Those systems that have features which overlap with the extensions in eLinda

will be considered further in this section.

XMLSpaces

The extensions in XMLSpaces are designed primarily to support the matching of XML

documents as fields of tuples. This was discussed in Section 6.1.1, when considering the

support provided for XML by TSpaces. As noted there, this is a feature that, while it is

not currently supported by eLinda, would be easily provided, using the Programmable

Matching Engine.

Objective Linda and CO3PS

As discussed in Section 2.1.2, Objective Linda allows the matching method, match,

for tuples to be overridden. The same mechanism is also provided by CO3PS, which

is closely based on Objective Linda. This approach provides a limited subset of the

functionality of the Programmable Matching Engine. In particular, the matching is

effectively provided by the tuple, rather than the anti-tuple. This has the implication

that programmers writing classes for tuples need to consider how they may be retrieved.

This is somewhat counter-intuitive as it is the anti-tuple that is relevant to input

CHAPTER 6. EVALUATION OF ELINDA 98

operations in Linda systems. Associating the matching logic with the anti-tuples (as

is done in eLinda) is thus a more natural approach.

Furthermore, Objective Linda constrains the matching to a one-to-one situation:

the match method is called to determine whether the tuple matches a single anti-tuple.

Thus there is no way of providing the functionality inherent in Programmable Matching

Engine aggregating matchers. Such aggregating facilities are extremely useful in Linda

systems, as can be seen from their inclusion as distinct operations in TSpaces (e.g.

scan), and their use in applications such as the visual language parser of Section 5.3.

In CO3PS this approach has been used to implement a reflective architecture allow-

ing the non-functional requirements of an application to be provided for in way that

is transparent to the application. The key to this philosophy is that the semantics of

the coordination (tuple space) operations may not be altered by the imposition of non-

functional requirements. This approach could be modelled using eLinda, as it would

be simple to implement matchers that took into account non-functional constraints

(such as security, or retrieving tuples to satisfy some performance constraint for the

application). However, one of the strengths of the Programmable Matching Engine

is that it does permit the semantics of tuple retrieval operations to be changed (for

example, to return a pseudo-tuple, or to return multiple matching tuples).

The York Coordination Group

The work done on the collect and copy-collect operations at the University of

York has some similarity to the functionality provided by aggregating matchers. These

operations allow a collection of tuples to be selected from a tuple space, and moved or

copied to another tuple space. This tuple space will generally be a private, local tuple

space from which the tuples can be retrieved without interference from other processes.

This is very similar to the use of the Programmable Matching Engine “AllMatcher”,

except that the Programmable Matching Engine solution delivers the tuples directly

to the application without using an intermediate tuple space. Which of these two

approaches is preferable depends on the requirements of a specific application, but

it is likely that most applications will need to retrieve the tuples, in which case the

Programmable Matching Engine approach will be more useful.

Liam is the Linda system developed by Campbell, of the York Coordination Group,

using the CHAM (Chemical Abstract Machine—see Section 2.1.2, p. 15). As was noted

in the earlier discussion, the programming notation used by the CHAM is likely to be

CHAPTER 6. EVALUATION OF ELINDA 99

very difficult for most application programmers to use. Additionally, the matching

extensions in Liam are also limited to matching a single tuple—there is no possibility

of implementing aggregating matchers.

ELLIS

ELLIS was introduced in Section 2.1.2 (p. 15). As an object-oriented implementation

of Linda (in EuLisp) it allows the method used for tuple matching to be overridden.

However, this method is contained in the class used for tuple spaces, which leads to the

rather inelegant solution that new tuple space classes must be developed to support

new matchers. This also complicates the support of multiple matchers: the overridden

matcher method will need to be parameterised in order to be able to decide which

matching algorithm should be used. The Programmable Matching Engine approach of

associating a specific matcher object with an anti-tuple is generally easier to use, and

results in better application architectures. The programming interface for writing new

matchers in ELLIS also appears to be more complex than that for the Programmable

Matching Engine.

I-Tuples

As discussed in Chapter 2, the I-Tuples system allows simple updates of the values

contained in tuple space to be performed at the server, thus reducing the number of

network messages required. As with several of the TSpaces extensions this is not an

operation that the Programmable Matching Engine was intended to support directly.

However, it can be done very easily. A programmable matcher can use the normal

tuple operations and so, after locating the tuple to be updated, it could place the new,

updated tuple into tuple space using the usual out operation (or wr, if appropriate).

From an aesthetic viewpoint this is not ideal, but would not be as inelegant as

in the case of emulating some of the TSpace features discussed above. For example,

the example considered on page 14 might be handled as follows in eLinda, where the

addUpdateMatcher retrieved a tuple, incremented the value contained in it and then

placed a tuple containing the new value into the tuple space:

rd.addUpdateMatcher(?=someValue);

CHAPTER 6. EVALUATION OF ELINDA 100

6.2 Benchmark and Application Results

This section presents the results of a number of benchmarks and applications developed

using eLinda. Some of these are comparative, incorporating results found for other

Linda systems, while others examine specific aspects of the eLinda system (such as

communication performance, or scalability) in isolation. Additionally, some of the

testing compared the different implementations of eLinda. As a reminder, the key

features of these three implementations are as follows:

eLinda1 Fully distributed tuple space.

eLinda2 Centralised tuple space.

eLinda3 Centralised tuple space, with broadcast tuples (i.e. those tuples

output using the wr operation) cached on each processing node.

All the results presented in this section were obtained using the undergraduate

teaching laboratory in the Department of Computer at Rhodes University, unless oth-

erwise noted. The computers in this facility are all equipped with 133MHz Pentium I

processors and 32MB of main memory, and networked using standard 10Mb/s shared

Ethernet. The operating system used was Windows NT 4.0. The version of Java used

for all the testing was 1.3.0.

It should be noted that this hardware specification is barely adequate for the ex-

ecution of Java applications. Sun’s minimum recommended memory allowance for

Java is 32MB, and the minimum processor recommendation is a 166MHz Pentium

processor[143]. For some of the testing the limitations of the hardware became appar-

ent, particularly in the form of excessive virtual memory paging and, in some extreme

cases, complete system failures due to insufficient memory. These occurrences will be

noted where relevant in the discussion in the following sections.

6.2.1 Communication Benchmark

In order to assess the communication costs in eLinda, a simple communication bench-

mark program was written. This makes use of two processes, neither of which does any

processing but simply waits for a tuple to be deposited into tuple space by the other,

and then sends a reply. This is repeated a number of times to get a realistic average

communication time, that is, the average time taken to send information from one pro-

cess to another, communicating through the tuple space. The number of repetitions

was generally set to 100, with one exception, discussed below.

CHAPTER 6. EVALUATION OF ELINDA 101

Option Configurations/Values
eLinda eLinda1
Version eLinda2

eLinda3
Program Multiprocessing (separate computers)
Type Multithreaded (single computer)

No data
Data 40 bytes
Size 400 bytes

4000 bytes
40 000 bytes

Table 6.2: Options Tested with the Communication Benchmark

The amount of data included in the tuples was also varied, from none (the tuples

contained only a single identifying string of four characters), to an array of 10 000

integer values (i.e. 40 000 bytes of data). Two versions of the program were developed:

one using two distinct processes, running on separate computers, and one using two

threads on a single machine. The multithreaded version under eLinda1 was repeated

10 000 times, rather than 100 as for all the other tests. The reason for this is that, with

the distributed tuple space approach of eLinda1, there is no network communication

required for the multithreaded option, and a smaller value for the number of repetitions

would have resulted in program running times that would be too small to measure

accurately. The various options are summarised in Table 6.2.

This benchmark was run on two different system configurations:

1. 133Mhz Pentium I processor, 32MB memory, 10Mb/s Ethernet, Windows NT

4.0 (the configuration used for all the other testing).

2. 733MHz Pentium III processor, 128MB memory, 100Mb/s Ethernet, Windows

2000 Advanced Server.

Table 6.3 shows the results that were obtained. The results for the multiprocessing

version are also graphed in Figure 6.1. There are a number of unexpected findings

revealed in these results.

1. There is very little apparent dependency on the data size. In fact, in many cases,

the result when using tuples with no additional data is the slowest in a group.

2. The faster system configuration (i.e. using faster processors and a faster network)

yields results that are no better than the slower system configuration. In one case

CHAPTER 6. EVALUATION OF ELINDA 102

System Configuration 1 System Configuration 2
(Slow) (Fast)

eLinda1 Processes Threads† eLinda1 Processes Threads†
No data 41.35 9.64 No data 50.06 1.74
40 bytes 39.88 10.28 40 bytes 49.74 1.44
400 bytes 39.90 9.24 400 bytes 49.44 1.07
4000 bytes 40.29 12.51 4000 bytes 49.43 0.88
40 000 bytes 40.44 9.33 40 000 bytes 49.52 1.10
eLinda2 Processes Threads eLinda2 Processes Threads
No data 20.56 20.04 No data 20.00 20.00
40 bytes 20.68 19.97 40 bytes 20.00 19.99
400 bytes 20.90 20.08 400 bytes 20.00 20.00
4000 bytes 21.48 19.87 4000 bytes 19.80 20.19
40 000 bytes 20.65 20.02 40 000 bytes 19.99 20.08
eLinda3 Processes Threads eLinda3 Processes Threads
No data 20.23 20.32 No data 20.00 20.01
40 bytes 19.97 19.97 40 bytes 20.00 19.99
400 bytes 19.99 20.07 400 bytes 20.00 20.00
4000 bytes 19.88 19.86 4000 bytes 19.99 20.20
40 000 bytes 20.06 20.02 40 000 bytes 19.98 19.97
† Repeated 10 000 times.
Note: All times are in seconds.

Table 6.3: Results of the Communication Benchmark

(eLinda1, using processes rather than threads) the “fast” configuration performs

noticeably slower than the “slow” configuration, by a factor of around 25%.

3. The one set of results that does agree with intuitive expectations is for eLinda1,

when using threads. This is significantly faster on the “fast” system configuration,

by a factor that is close to the ratio of the processor speeds (133:733).

It is not clear why these findings do not agree with the obvious expectations. The

results for the multithreaded eLinda1 tests indicate that software-related factors (such

as garbage collection costs, or object serialisation overheads) can be ruled out as an

explanation, as these factors would also have been apparent in that case.

Considering hardware factors, it appears that use of the faster network (100Mb/s)

does not have a significant effect on the results (except for eLinda1, where it apparently

has a negative effect). Since this communication medium is a factor of ten times faster

than the “slow” network, it is to be expected that there would be some noticeable

benefit arising from its use. It is possible that the network access negotiation protocol

used by Ethernet (collision detection and “back off”) is having an adverse effect on the

CHAPTER 6. EVALUATION OF ELINDA 103

Figure 6.1: Communication Benchmark: Results for Processes

network performance. This would clearly be impacted by faster processors delivering

messages to the network interface for transmision more rapidly. However, it seems

unlikely that this would result in performance figures that are almost identical to those

for the slower network. One other possibility is that the bottleneck in these cases

may be the internal system bus that is used to transfer data from the processor to

the network interface card. If this bus is clocked at the same speed in both system

configurations then this may be the reason for these anomalous results.

There are some interesting results that can be derived from these measurements.

Firstly, the cost of network communication in eLinda can be calculated. If we take 20s

as the average time for 200 “messages” (i.e. matching pairs of tuple output and input

operations), we get an average of approximately 100ms per message. If we consider

the results for the multithreaded version of the program in eLinda1, where no network

activity is required, we get the following results:

Average time per message (with no data):

Slow configuration: 9.64s/20 000 = 0.48ms

Fast configuration: 1.74s/20 000 = 0.087ms

CHAPTER 6. EVALUATION OF ELINDA 104

Figure 6.2: Speedup for the Ray-Tracing Application

6.2.2 Ray-Tracing

The ray-tracing application was used mainly as a platform for comparing the three

Java Linda systems: eLinda, TSpaces and JavaSpaces. It was adapted from one of

the demonstration applications provided with the JavaSpaces system, and thus did not

make use of any of the extensions in eLinda. For this comparison only eLinda1 was

used.

The results of this study are summarised in Figure 6.2. This graph shows the

speedup of the ray-tracing program as the number of worker processes is increased,

relative to the time taken by a single worker. What this demonstrates clearly is the

similarity between the three implementations: all exhibit very similar behaviour, with

the speedup levelling off or, in some cases, decreasing from about seven worker pro-

cesses. The maximum speedup obtained was approximately 3 to 3.5 times, using six or

seven processors, as shown in Figure 6.2. The performance of eLinda and JavaSpaces

is very similar, while TSpaces is slightly more efficient, but not markedly so.

Actual timing results for this application are shown in Table 6.4, and are graphed

CHAPTER 6. EVALUATION OF ELINDA 105

Linda System

Workers eLinda TSpaces JavaSpaces

1 60.66 58.48 63.48

2 34.86 31.78 33.65

3 32.60 24.37 25.32

4 25.70 19.36 22.69

5 22.62 17.34 23.71

6 21.09 16.89 21.80

7 20.87 16.96 21.88

8 23.99 17.70 24.33

9 29.01 17.58

Note: Times are all in seconds.

Table 6.4: Detailed Results for the Ray-Tracing Application

in Figure 6.3. The ray-tracing application allows the size of the segments of the image

that are distributed to the workers to be changed. These results were all measured for

an image segment size of 200× 200 pixels (the full image is 640× 480 pixels). As can

be seen from these figures, TSpaces had the best performance overall. The results for

eLinda are very close to those for JavaSpaces, and fairly close to those for TSpaces.

A maximum of only eight worker processes could be used with JavaSpaces. Over this

limit the system became completely unstable.

To assess the impact of different image segment sizes, the measurements were re-

peated for 50 × 50 pixels, 100 × 100 pixels and 200 × 200 pixels. The best results for

all three systems were generally found for larger segment sizes. The results for eLinda

showing the impact of the segment size are summarised in Table 6.5. This clearly shows

that the application is communication-bound, favouring larger segment sizes.

6.2.3 Visual Language Parsing

The visual language parser was tested in a total of six different configurations. This

arose from the use of all three implementations of eLinda, combined with the two

different versions of the parser described in Section 5.3.5 (one where the grammar rules

were stored in a tuple space, and the other where the rules were cached in the worker

processes). The time taken for the build and check phases was measured separately,

for each worker process, and also for the master process. The tests were also performed

CHAPTER 6. EVALUATION OF ELINDA 106

Figure 6.3: Results for the Ray-Tracing Application

Image Size

Workers 50× 50 100× 100 200× 200

1 125.82 70.87 60.66

2 66.34 44.55 34.86

3 53.30 59.72 32.60

4 30.65 23.61 25.70

5 28.32 25.62 22.62

6 23.09 15.65 21.09

7 21.15 18.94 20.87

8 22.31 17.31 23.99

9 19.52 24.45 29.01

Note: Times are all in seconds.

Table 6.5: Results for Differing Image Segment Sizes for eLinda

CHAPTER 6. EVALUATION OF ELINDA 107

Note: VLP 1 refers to the visual parser without caching of the grammar rules, VLP 2

to the version with caching of the rules.

Figure 6.4: Speedup for the Visual Language Parser

for various numbers of workers: 1, 2, 4, 6 and 8. All the measurements in this section

were made using a small state transition diagram containing 21 symbols (representing

four states with six transitions).

TSpaces and JavaSpaces were not used for this application due to the difficulty of

expressing many of the required operations without the support of the Programmable

Matching Engine.

With the exception of eLinda1, all the tests showed increasing degrees of speedup,

up to the maximum tested configuration of eight processors. This can be seen clearly in

Figure 6.4. The average speedup using the eight processor configuration (but excluding

eLinda1) was 3.7 times.

This graph also shows the effects of the limited memory installed in the machines

used for testing. This caused excessive swapping when using six and eight worker

processes in the following configurations:

• eLinda1, with both versions of the visual parser.

• eLinda2, with the first (non-caching) version of the parser.

CHAPTER 6. EVALUATION OF ELINDA 108

Furthermore, it was impossible to obtain any results for eight workers with eLin-

da1 and the second (caching) version of the parser. The “Directory” handlers used in

eLinda1 generate approximate load measurements, which are reported by the system.

Under normal conditions the measured loads are around 3 or 4. During this testing,

for six and eight workers, loads as high as 25 were reported, reflecting the inability of

the processing platform to cope with the application.

While the speedup that is obtained is generally good, a comparison with the results

obtained from a sequential version of the program highlight the poor performance of

communication based on TCP/IP protocols over a 10Mb/s Ethernet network. The best

result that was obtained for the parallel versions of this application was 42.52s (for e-

Linda2 with the second, caching version of the parser, using eight worker processes),

where the sequential time is only 0.58s. Breaking this down into the two phases of the

parsing process reveals some interesting features:

1. The difference is most marked for the build phase, where the best parallel re-

sult was 32.48s, compared to 0.27s for the sequential version, i.e. two orders of

magnitude difference.

2. For the checking phase the difference is smaller, with the best parallel result

2.74s (eLinda2, with the first, non-caching version of the parser, using only two

workers), and the sequential result 0.31s. While this indicates that the speedup

for the checking phase is noticeably less pronounced than for the building phase,

it should be noted that the performance using eight worker processes was still

only 2.95s—there is not a great deal of difference between two workers and eight

workers. It should also be noted that the difference between the sequential and

parallel results here is only one order of magnitude.

The Effect of Synchronisation

In Section 5.3.3 the need for the introduction of “parsing levels” to loosely synchronise

the worker processes was discussed. The effects of this can be seen clearly in the results

that were obtained. A typical run with eight workers gave the set of timings shown in

Table 6.6 (these times are for the build phase only). These figures show how one of the

workers (number 4) did get ahead of the others, as explained in Section 5.3.3, finishing

in only 5.73s. This behaviour was observed about 12% of the time. The workload of

the other worker processes is well balanced, with the remaining results ranging from

29.01s to 31.31s.

CHAPTER 6. EVALUATION OF ELINDA 109

Worker Number: 1 2 3 4 5 6 7 8

30.31 30.09 29.04 5.73 29.76 29.01 29.53 29.02

Note: Times are all in seconds.

Table 6.6: Sample Results for the Build Phase with Eight Worker Processes

6.2.4 Multimedia Performance

The Java Media Framework (JMF) supports a wide variety of different protocols for

the transmission and presentation of audio and video data[140]. Of the many for-

mats available, JPEG and H.263 were selected for testing, as these are widely used in

practice. The JPEG (Joint Photographic Experts Group) image format is extensively

used on the Internet[83]. On the other hand, H.263 (a standard produced by the In-

ternational Telecommunications Union, ITU) is commonly used in video-conferencing

systems[1, 81]. All the testing described here was done using RTP (the Real-time

Transport Protocol) for the transmission of the data across the network.

The performance of the Java Media Framework for video transmission was measured

for a number of different image sizes. This was done for video-conferencing conditions,

using a low-cost commodity video camera (a Logitech QuickCam Express). This has

a maximum video capture rate of 15 frames per second at low resolution (160 × 120

pixels), using the custom software provided by the manufacturers of the camera. The

frame capture rate of the camera was set to nine frames per second for the testing

reported on here. The computers used for this testing were two 500MHz Pentium III

processors, using the Windows 2000 operating system. The machine doing the video

capture was equipped with 192MB of memory; that doing the display had 64MB of

memory. They were connected by a standard 10Mb/s Ethernet network. It should also

be noted that the encoding and decoding of the multimedia data was all performed

by the Java Media Framework software—there was no hardware codec support. The

results of this test are shown in Table 6.7.

These figures show adequate performance for desktop video-conferencing purposes,

in most cases. The performance using the H.263 format is slightly better than that for

the JPEG format for low resolutions, but deteriorates more rapidly as the image size

is increased.

CHAPTER 6. EVALUATION OF ELINDA 110

Resolution Video Format

(in pixels) JPEG/RTP H.263/RTP

128× 96 7.9–9.0 7.9–10.0

176× 144 6.4–7.9 7.9–8.5

320× 240 5.0–7.4 †
352× 288 4.5–5.5 0.5

Note: Results are all in Frames per Second (fps).

† Resolution not supported for RTP with H.263

in the JMF.

Table 6.7: Multimedia Transmission Results

6.3 Summary

This chapter has demonstrated the power and expressiveness of the Programmable

Matching Engine. In particular it has shown how almost all other proposed extensions

to Linda, of a similar nature, may be emulated using the Programmable Matching Eng-

ine. The benchmark and timing tests for the applications presented in this chapter have

demonstrated that, while the performance of the current Java implementations of eLin-

da is not good, it is very close to that of JavaSpaces and TSpaces (both of which were

produced by large commercial enterprises). Additionally, these results have highlighted

the poor performance of the TCP/IP protocols in Java, and their unsuitability for use

in communication-intensive parallel applications.

The following chapter draws some overall conclusions from the work done on eLin-

da, and the results presented in this chapter. It also proposes a number of areas for

further research that would address some of the negative findings, and build on the

existing strengths of eLinda.

Chapter 7

Conclusions and Future Research

Directions

This chapter presents an analysis of the results found and presented in the previous

chapter. This is followed by a discussion of possible future research directions arising

from this work and the results found. Lastly, some final conclusions are presented.

7.1 Analysis of Results

The results presented in the previous chapter fell into two categories: qualitative and

quantitative. They will be discussed here under these two headings.

7.1.1 Qualitative Results

The significant number of projects that have, in one way or another, extended the

facilities of the matching operations in Linda points to the weakness that is embodied

in the original programming model proposed by Gelernter. The nature of the exten-

sions ranges from those exemplified by TSpaces, where the tuple space server itself is

reconfigured to support new operations, through proposals such as I-Tuples and the

“mobile coordination” proposals that aim to increase the efficiency of simple updates,

to systems like XMLSpaces, Objective Linda and Liam where the matching process

is specified by overriding the matching method used, in some cases for very specific

purposes (e.g. XMLSpaces).

What is found in comparing these proposals with the eLinda Programmable Mat-

ching Engine is that the Programmable Matching Engine proposal can emulate all

111

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 112

of these alternative approaches. Furthermore, the Programmable Matching Engine

approach allows for a range of tuple space implementation techniques, ranging from

fully distributed to centralised, whereas most of the other systems are implemented

only for centralised configurations.

In many cases the Programmable Matching Engine approach is more intuitive and

elegant than the alternatives. The approach adopted in Objective Linda and CO3PS,

where the matching method in an object/tuple can be overridden, fits well with the

object-oriented philosophy of Java. However, it limits matching operations to one-to-

one situations, and fixes the matching possibilities at the time that the tuple class

is written. By providing the matcher as an independent object, the Programmable

Matching Engine approach opens up the possibilities of aggregating operations, and

provides the flexibility of being able to apply many matchers to a single type of tuple.

The approach used in TSpaces, while providing a high degree of flexibility, effectively

requires the (complex) reconfiguration of the tuple space server to support new oper-

ations.

Additionally, the support for distributed multimedia applications provided in e-

Linda greatly simplifies the development of this important class of applications, by

encapsulating all of the details of the transmission and presentation of multimedia

resources.

7.1.2 Quantitative Results

The performance results obtained for eLinda should be viewed in the light that the

Java implementation is intended as a demonstration of the new concepts proposed in

eLinda, and not necessarily as a production system for the development of parallel

applications. What is notable is that the performance of eLinda is reasonably close

to that of TSpaces, and generally as good or better than that of JavaSpaces—two

systems developed by very large organisations with considerable resources. This was

shown clearly by the results of the ray-tracing application, where eLinda was 24%

slower than TSpaces, and JavaSpaces was 29% slower than TSpaces (Section 6.2.2, p.

104).

That the bottleneck in the performance arises from the use of the TCP/IP protocols

in Java is also clear: 100ms per network “message” is a very high cost (Section 6.2.1,

p. 100). In this regard, the anomalies detected when testing the communication per-

formance of a fast system configuration need to be investigated further.

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 113

Given the poor overall performance, the scalability demonstrated by the example

applications running on eLinda demonstrates the viability of the fundamental approach.

This can be seen in the ray-tracing application where a speedup of 2.9 times was

achieved with seven processors (Section 6.2.2, p. 104). Even better was the speedup

obtained for the visual parser (3.7 times), which had not levelled off at the maximum

number of processors used (i.e. eight processors—Section 6.2.3, p. 105). This is an

encouraging basis for the possible development of an eLinda implementation using a

more suitable network and processor architecture.

With regard to the multimedia extensions in eLinda, the performance demonstrated

in this area is good for applications such as desktop videoconferencing. Adequate

performance for more demanding applications (such as high-resolution entertainment

broadcasts) would require the use of more sophisticated codec support, possibly with

hardware assistance.

7.2 Future Directions for Research

This section discusses a number of possible areas arising from this research work that

would be interesting, or useful, to explore in order to further develop the eLinda ap-

proach to the development of concurrent systems. These have been classified into three

categories: new features, implementation issues and applications.

7.2.1 New Features

Arising from the comparison of the Programmable Matching Engine facilities with the

similar features of other extended Linda systems (notably, TSpaces and I-Tuples) there

were some facilities of those systems that could be emulated in eLinda, but it was noted

that these solutions were aesthetically unpleasing. This arose from the use of the Prog-

rammable Matching Engine, which is intended primarily for increasing the flexibility

of the matching for input operations, to emulate output or update operations. This

suggests that it might be useful to develop new facilities for eLinda, similar to the

Programmable Matching Engine, but intended for output and/or update operations.

This would require extensions to the out and wr operations, and possibly adding

a further new operation along the lines of the tmexec operation in I-Tuples, or the

update and multiUpdate operations in TSpaces.

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 114

7.2.2 Implementation Issues

The implementation of eLinda in Java, using the Internet protocols for communica-

tion has proved successful as a demonstration of the validity of the ideas embodied in

the extensions to the conventional Linda programming model. However, the lack of

performance for concurrent programming in this environment is very apparent. Ac-

cordingly, it would be of great interest to develop other implementations of eLinda for

alternative hardware platforms, such as a tightly-coupled multicomputer architecture,

or a multiprocessor system with physically shared memory.

The approach taken by the Hyperion system (utilising a native code compiler for

Java, and emulating the shared Java memory model for distributed Java threads—see

Section 2.2.2) appears to hold potential for the efficient execution of multithreaded Java

programs on distributed “network of workstation” platforms. Given the good commu-

nication performance of the multithreaded version of the eLinda1 system (Table 6.3),

Hyperion may be a useful platform for the implementation of eLinda.

On the subject of implementation platforms, it would also be useful to explore

further the benefits that may be found from using high speed networks with widely-

available, commodity workstations.

Arising from the initial performance results for the multimedia support in eLinda, it

would be interesting to explore other data formats supported by the Java Media Frame-

work. Similarly, the performance benefits to be obtained from utilising specialised

hardware for encoding and decoding multimedia data streams should be investigated.

7.2.3 Applications

Visual Language Parsing

As was discussed in Chapter 5, there is some scope for increasing the overall paral-

lelism of the visual language parser by overlapping the execution of the two phases of

the algorithm (i.e. building the factored multiple derivation data structure, and the

subsequent checking of it). Some ideas for implementing this approach were presented

in Section 5.3.5.

In addition to this enhancement, there are a number of other aspects of this appli-

cation that could be explored further:

• Performing the building step as a sequential program stage, with the checking

stage done in parallel. This may yield better overall results as the parallel exe-

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 115

cution of the second stage showed more promising results than that of the first

stage.

• Sharing information from the checking stage among the workers. Currently the

worker processes do not share any information during this stage. However, due

to the redundancy present in the factored multiple derivation data structure, this

means that there is a considerable amount of duplication of effort between the

workers.

Naturally, sharing this information will increase the communication load on the

system, and so would have to be approached carefully with the current imple-

mentations of eLinda. In this regard, it may be possible to use the concept

of “parsing levels” that was introduced in the parallelisation of this algorithm.

In this case, only information for the higher levels would be shared, in order

to reduce the communication requirements (at the lower levels the information

required is more easily derived).

Various combinations of these different approaches could also be studied in order

to obtain optimal performance from the parser.

Multimedia Applications

It would be useful to develop some full-scale multimedia applications, such as a video-

conferencing system or computer-based education lessons. These could be used to

explore the multimedia features and the performance of eLinda and the Java Media

Framework further.

New Application Areas

Given the unsuitability of the current Java implementation for high performance, par-

allel processing it would interesting to explore the possibilities of applying the cur-

rent implementations of eLinda to coarse-grained, distributed applications with more

favourable communication:computation ratios. An application such as searching the

World-Wide Web might benefit from the simplicity of the Linda programming model,

and could make good use of the Programmable Matching Engine facilities to support

flexible matching for such searches.

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 116

7.3 Conclusion

eLinda and the related research and production systems described here have clearly

shown the need for extensions to the original associative matching model in Linda. The

Programmable Matching Engine provides an elegant, simple, but highly expressive so-

lution to the problem of implementing complex matching operations in Linda. Its

ability to emulate the other proposals for extended matching facilities, and to exceed

their capabilities is clear. Particularly in the area of distributed multimedia applica-

tions the use of eLinda can greatly simplify the work of application developers, building

on the inherent simplicity of the original Linda approach.

While it is apparent that the current Java implementations of eLinda do not pro-

vide the necessary performance for serious use, this work has served as a significant

step towards validating the novel concepts in eLinda as powerful tools for simplifying

application development.

Bibliography

[1] 4i2i Communications Ltd. H.263 video coding. URL: http://www.4i2i.com/-

h263 video codec.htm, 1998.

[2] S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. IEEE Computer,

19(8):26–34, August 1986.

[3] S. Ahuja, N. Carriero, D. Gelernter, and V. Krishnaswamy. Matching language

and hardware for parallel computation in the Linda machine. IEEE Trans. Com-

puters, 37(8):921–929, August 1988.

[4] B.G. Anderson and D. Shasha. Persistent Linda: Linda + transactions + query

processing. In Banâtre and Métayer [9], pages 93–109.

[5] G. Antoniu, L. Bougé, P. Hatcher, M. MacBeth, K. McGuigan, and R. Namyst.

The Hyperion system: Compiling multithreaded Java bytecode for distributed

execution. Parallel Computing, 27(10):1279–1297, September 2001.

[6] C. Austin and M. Pawlan. Advanced Programming for the Java 2 Platform.

Addison-Wesley, September 2000.

[7] A. Baba and J. Tanaka. Eviss: a visual system having a spatial parser generator.

In Proc. Asia Pacific Computer Human Interaction, pages 158–164, 1998.

[8] H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum. Orca: a language based on

shared data-objects. In Wilson [164], pages 5–13.

[9] J.P. Banâtre and D. Le Métayer, editors. Research Directions in High-Level Par-

allel Programming Languages, volume 574 of Lecture Notes in Computer Science.

Springer-Verlag, 1992.

[10] R. Baraglia, D. Laforenza, and R. Perego. Programming a workstation clus-

ter with PVM and Linda: a qualitative and quantitative comparison. In Proc.

117

BIBLIOGRAPHY 118

AICA’93 International Section: Parallel and Distributed Architectures and Algo-

rithms, pages 101–114, 1993.

[11] A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff. Charlotte: Metacomputing

on the Web. In Proceedings of the 9th Conference on Parallel and Distributed

Computing Systems, 1996.

[12] R. Bjornson. Linda on Distributed Memory Multiprocessors. PhD thesis, Yale

University, 1992. Technical Report 931.

[13] T. Brecht, H. Sandhu, M. Shan, and J. Talbot. ParaWeb: Towards world-

wide supercomputing. In Proceedings of the Seventh ACM SIGOPS European

Workshop on System Support for Worldwide Applications, 1996.

[14] P. Broadbery and K. Playford. Using object-oriented mechanisms to describe

Linda. In Wilson [164], pages 14–26.

[15] A. Burns and A.J. Wellings. Real-Time Systems and Their Programming Lan-

guages. Addison-Wesley, 1990.

[16] P. Butcher. Lucinda. In Wilson [164], pages 27–38.

[17] P. Butcher, A. Wood, and M. Atkins. Global synchronisation in Linda. Concur-

rency: Practice and Experience, 6(6):505–516, September 1994.

[18] P. Butcher and H. Zedan. Lucinda—a polymorphic Linda. In Banâtre and

Métayer [9], pages 126–146.

[19] C.J. Calsen, I. Cheng, and P.L. Hagen. The AUC C++ Linda system. In Wilson

[164], pages 39–73.

[20] D. Campbell, H. Osborne, A. Wood, and D. Bridge. Parallel case base retrieval:

an implementation on distributed Linda. In Proc. Ninth IASTED International

Conference: PDCS ’97, pages 525–530. IASTED/Acta Press, 1997.

[21] D. Campbell, A. Wood, H. Osborne, and D. Bridge. Linda for case base retrieval:

A case for extending the functionality of Linda and its abstract machine. In Proc.

Thirty-First Annual Hawaii International Conference on System Sciences, pages

226–235. IEEE Computer Society, 1998.

BIBLIOGRAPHY 119

[22] D.K.G. Campbell. Constraint matching retrieval in Linda: extending retrieval

functionality and distributing query processing. Technical Report YCS 285, Uni-

versity of York, 1997.

[23] S. Cannon and L. Denys. A self-configuring distributed kernel for satellite net-

works. In P.H. Welch and A.W.P. Bakkers, editors, Communicating Process

Architectures 2000, volume 58 of Concurrent Systems Engineering Series, pages

109–119. IOS Press, September 2000.

[24] S.R. Cannon and D. Dunn. Adding fault-tolerant transaction processing to

LINDA. Software—Practice and Experience, 24(5):449–466, May 1994.

[25] B. Carpenter, G. Fox, S. H. Ko, and S. Lim. Object serialization for marshal-

ing data in a Java interface to MPI. Concurrency: Practice and Experience,

12(7):539–553, June 2000.

[26] N. Carriero and D. Gelernter. The S/Net’s Linda kernel. Operating Systems

Review, 19(5):54–71, March 1985.

[27] N. Carriero and D. Gelernter. Applications experience with Linda. ACM SIG-

PLAN Notices, 23(9):173–187, September 1988.

[28] N. Carriero and D. Gelernter. How to write parallel programs: A guide to the

perplexed. ACM Computing Surveys, 21(3):323–357, September 1989.

[29] N. Carriero and D. Gelernter. Linda in context. Comm. ACM, 32(4):444–458,

April 1989.

[30] N. Carriero and D. Gelernter. How to Write Parallel Programs: A First Course.

The MIT Press, 1990.

[31] N. Carriero and D. Gelernter. New optimization strategies for the Linda pre-

compiler. In Wilson [164], pages 74–83.

[32] N. Carriero, D. Gelernter, D. Kaminsky, and J. Westbrook. Adaptive parallelism

with Piranha. Technical Report 954, Yale University, 1993.

[33] N. Carriero, D. Gelernter, and J. Leichter. Distributed data structures in Linda.

In Proc. 13th Symposium on Principles of Programming Languages, pages 236–

242, January 1986.

BIBLIOGRAPHY 120

[34] A.G. Chalmers. A Minimum Path Parallel Processing Environment. PhD thesis,

University of Bristol, 1991.

[35] M. Chen, P. Townsend, and J.A. Vince, editors. High Performance Computing

for Computer Graphics and Visualisation. Springer-Verlag, 1996.

[36] S. Chok and K. Marriott. Parsing visual languages. In Proc. 18th Australasian

Computer Science Conference, pages 90–98, February 1995.

[37] P. Ciancarini. Parallel logic programming using the Linda model of computation.

In Banâtre and Métayer [9], pages 110–125.

[38] P. Ciancarini, F. Franze, and C. Mascolo. Using a coordination language to

specify and analyze systems containing mobile components. ACM Trans. on

Software Engineering and Methodology, 9(2):167–198, 2000.

[39] P.G. Clayton, F.K. de Heer Menlah, G.C. Wells, and E.P. Wentworth. An imple-

mentation of Linda tuple space under the Helios operating system. South African

Computer Journal, 6:3–10, March 1992.

[40] P.G. Clayton and G.M. Rehmet. Implementing adaptive parallelism on a het-

erogeneous cluster of networked workstations. In Proc. Research Manpower in

Computer Science: Report Back Conference, December 1994.

[41] P.G. Clayton and G.M. Rehmet. Implementing adaptive parallelism on a het-

erogeneous cluster of networked workstations. In Proc. 1995 International

Conference on Parallel and Distributed Processing Techniques and Applications

(PDPTA’1995), pages 571–580, November 1995.

[42] R. Cleaveland, S.A. Smolka, et al. Strategic directions in concurrency research.

ACM Computing Surveys, 28(4), December 1996.

[43] J. Conde. Mobile agents in Java. URL: http://wwwinfo.cern.ch/asd/rd45/-

white-papers/9812/agents2.html, December 1998.

[44] H.M. Deitel, P.J. Deitel, T.R. Nieto, T.M. Lin, and P. Sadhu. XML: How to

Program. Prentice-Hall, 2001.

[45] A. Douglas, A. Wood, and A. Rowstron. Linda implementation revisited. In

P. Nixon, editor, Transputer and occam Developments (Proc. 18th World Occam

BIBLIOGRAPHY 121

and Transputer User Group Technical Meeting), pages 125–138. IOS Press, April

1995.

[46] C. Faasen. Intermediate uniformly distributed tuple space on Transputer meshes.

In Banâtre and Métayer [9], pages 157–173.

[47] A. Ferrari. JPVM: The Java Parallel Virtual Machine. URL: http://-

www.cs.virginia.edu/~ajf2j/jpvm.html, February 1999.

[48] M.J. Flynn. Some computer organizations and their effectiveness. IEEE Trans.

Computers, 21(9):948–960, 1972.

[49] M. Foster, N. Matloff, R. Pandey, D. Standring, and R. Sweeney. I-Tuples: A

programmer-controllable performance enhancement for the Linda environment.

In H.R. Arabnia, editor, Proc. International Conference on Parallel and Dis-

tributed Processing Techniques and Applications (PDPTA’2001), pages 357–361.

CSREA Press, June 2001.

[50] E. Freeman and S. Hupfer. A model for 3D interaction with hierarchical infor-

mation spaces. Technical Report Yale-CS TR 1071, Yale University, May 1995.

Position Paper, CHI ’95 Research Symposium.

[51] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces Principles, Patterns, and

Practice. Addison-Wesley, 1999.

[52] R.P. Futrelle and N. Nikolakis. Efficient analysis of complex diagrams using

constraint-based parsing. In International Conference on Document Analysis

and Recognition (ICDAR-95), pages 782–790, August 1995.

[53] R.P. Futrelle and N. Nikolakis. Diagram analysis using context-based con-

straint grammars. Technical Report NU-CCS-96-01, College of Computer Sci-

ence, Northeastern University, 1996.

[54] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.

PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial for Networked

Parallel Computing. Scientific and Engineering Computation. MIT Press, 1994.

[55] G.A. Geist, J.A. Kohl, and P.M. Papadopoulos. PVM and MPI: A comparison

of features. Calculateurs Parallèles, 8(2), 1996.

BIBLIOGRAPHY 122

[56] D. Gelernter. Generative communication in Linda. ACM Trans. Programming

Languages and Systems, 7(1):80–112, January 1985.

[57] D. Gelernter. Current research on Linda. In Banâtre and Métayer [9], pages

74–76.

[58] D. Gelernter and N. Carriero. Coordination languages and their significance.

Comm. ACM, 35(2):97–107, February 1992.

[59] A.S. Glassner, editor. An Introduction to Ray Tracing. Academic Press, 1989.

[60] E.J. Golin. A Method for the Specification and Parsing of Visual Languages. PhD

thesis, Brown University, 1991.

[61] P. Gray and V. Sunderam. IceT: Distributed computing and Java. In Proceedings

of ACM 1997 Workshop on Java for Science and Engineering, June 1997.

[62] D. Grune, H.E. Bal, C.J.H. Jacobs, and K.G. Langendoen. Modern Compiler

Design. Worldwide Series in Computer Science. John Wiley and Sons, 2000.

[63] P.B. Hansen. The programming language Concurrent Pascal. IEEE Trans. Soft-

ware Engineering, 1(2):199–207, June 1975.

[64] P.B. Hansen. An evaluation of the Message-Passing Interface. ACM Sigplan

Notices, 33(3):65–72, March 1998.

[65] C.G. Harrison, D.M. Chess, and A. Kershenbaum. Mobile agents: Are they a

good idea? Technical report, IBM, March 1995.

[66] W. Hasselbring. Combining SETL/E with Linda. In Wilson [164], pages 84–99.

[67] R. Hempel. The MPI standard for message passing. In W. Gentzsch and

U. Harms, editors, High-Performance Computing and Networking, International

Conference and Exhibition, Proceedings, Volume II: Networking and Tools, vol-

ume 797 of Lecture Notes in Computer Science, pages 247–252. Springer-Verlag,

1994.

[68] G. Hilderink. CSP for Java. URL: http://www.rt.el.utwente.nl/javapp,

October 2000.

BIBLIOGRAPHY 123

[69] G. Hilderink, A. Bakkers, and J. Broenink. A distributed real-time Java system

based on CSP. In The Third IEEE International Symposium on Object-Oriented

Real-Time Distributed Computing, ISORC 2000, pages 400–407, March 2000.

[70] C.A.R. Hoare. Communicating sequential processes. Comm. ACM, 21(8):666–

677, August 1978.

[71] C.A.R. Hoare. Communicating Sequential Processes. International Series in Com-

puter Science. Prentice Hall, 1985.

[72] T. Holvoet. An Approach for Open Concurrent Software Development. PhD

thesis, Department of Computer Science, K.U.Leuven, December 1997.

[73] T. Holvoet and Y. Berbers. Reflective programmable coordination media. In H.R.

Arabnia, editor, Proc. International Conference on Parallel and Distributed Pro-

cessing Techniques and Applications (PDPTA’2001), pages 1236–1242. CSREA

Press, June 2001.

[74] S. Hupfer, D. Kaminsky, N. Carriero, and D. Gelernter. Coordination applica-

tions of Linda. In Banâtre and Métayer [9], pages 187–194.

[75] D.C. Hyde. Introduction to the programming language occam. URL: http://-

www.eg.bucknell.edu/~cs366/occam.html, March 1995.

[76] IBM. TSpaces. URL: http://www.almaden.ibm.com/cs/TSpaces/index.html.

[77] IBM. The TSpaces programmer’s guide. URL: http://www.almaden.ibm.com/-

cs/TSpaces/html/ProgrGuide.html.

[78] IBM. TSpaces user’s guide. URL: http://www.almaden.ibm.com/cs/-

TSpaces/html/UserGuide.html.

[79] IBM. The TSpaces vision. URL: http://www.almaden.ibm.com/cs/TSpaces/-

html/Vision.html.

[80] IBM. IBM Aglets software development kit. URL: http://-

www.trl.ibm.co.jp/aglets/, June 2000.

[81] ITU-T. Video coding for low bit rate communication. ITU Recommendation

H.263 (02/98), 1998.

BIBLIOGRAPHY 124

[82] S. Jagannathan. Expressing fine-grained parallelism using concurrent data struc-

tures. In Banâtre and Métayer [9], pages 77–92.

[83] Joint Photographic Experts Group. JPEG home page. ISO/IEC JTC1 SC29

Working Group 1. URL: http://www.jpeg.org/.

[84] G. Jones. Programming in occam. International Series in Computer Science.

Prentice-Hall, 1987.

[85] D.L. Kaminsky. Adaptive Parallelism with Piranha. PhD thesis, Yale University,

May 1994.

[86] T. Kielmann. Object-Oriented Distributed Programming with Objective Linda.

In First International Workshop on High Speed Networks and Open Distributed

Platforms, St. Petersburg, Russia, June 1995.

[87] T. Kielmann. Objective Linda: A Coordination Model for Object-Oriented Par-

allel Programming. PhD thesis, University of Siegen, Germany, 1997.

[88] T. Kielmann, P. Hatcher, L. Bougé, and H.E. Bal. Enabling Java for high-

performance computing: Exploiting distributed shared memory and remote

method invocation. Comm. ACM, October 2001. Accepted for publication in

the special issue on High Performance Java.

[89] A.J.F. Kok. Ray Tracing and Radiosity Algorithms for Photorealistic Image Syn-

thesis. PhD thesis, Delft University of Technology, 1994.

[90] E. Kühn. Introduction: How to approach the virtual shared memory paradigm.

Parallel and Distributed Computing Practices, 1(3), June 1998. URL: http://-

orca.st.usm.edu/pdcp/vols/vol01no3introduction.html.

[91] D. Lea. Concurrent Programming in Java: Design Principles and Patterns.

Addison-Wesley, 1997.

[92] M.L. Liu. On the power of abstraction—a look at the paradigms and technologies

in distributed applications. In 2001 International Conference on Parallel and

Distributed Processing Techniques and Applications (PDPTA’2001), June 2001.

Poster presentation.

[93] N. MacDonald. Linda work in Edinburgh. In Wilson [164], pages 100–104.

BIBLIOGRAPHY 125

[94] K. Marriott and B. Meyer. The classification of visual languages by grammar

hierarchies. Journal of Visual Languages and Computing, 8(4):375–402, August

1997.

[95] S. Matsuoka and S. Kawai. Using tuple space communication in distributed

object-oriented languages. In Proc. OOPSLA ’88, pages 276–284, September

1988.

[96] D. May. Occam. SIGPLAN Notices, 18(4):69–79, April 1983.

[97] D. May and R. Taylor. Occam: An overview. Microprocessors and Microsystems,

8(2):73–79, March 1984.

[98] R. Menezes. Ligia: Incorporating garbage collection in a Java based Linda-like

run-time system. In Proc. Second Workshop on Distributed Systems (WOSID’98),

pages 81–88, 1998.

[99] R. Menezes and A. Wood. Garbage collection in open distributed tuple space

systems. In Proc. Fifteenth Brazilian Computer Networks Symposium—SBRC

’97, pages 525–543, May 1997.

[100] R. Menezes and A. Wood. Coordination of distributed I/O in tuple space sys-

tems. In Proc. Thirty-First Annual Hawaii International Conference on System

Sciences, pages 216–225. IEEE Computer Society, 1998.

[101] R. Menezes and A. Wood. Using tuple monitoring and process registration in the

implementation of garbage collection in open Linda-like systems. In Proc. Tenth

IASTED International Conference: PDCS’98, pages 490–495. IASTED/Acta

Press, October 1998.

[102] B. Meyer. Pictures depicting pictures: On the specification of visual languages

by visual grammars. Technical Report TRHA139, Fern Universität, 1992.

[103] B. Meyer. Pictures depicting pictures: On the specification of visual languages

by visual grammars. In IEEE Workshop on Visual Languages, pages 41–47,

September 1992.

[104] N. Minar. Computational media for mobile agents. URL: http://-

nelson.www.media.mit.edu/people/nelson/research/dc/dc.html, Decem-

ber 1996.

BIBLIOGRAPHY 126

[105] MPI Forum. Message Passing Interface (MPI) Forum home page. URL: http://-

www.mpi-forum.org/.

[106] Object Management Group (OMG). CORBA basics. URL: http://-

www.omg.org/gettingstarted/corbafaq.htm.

[107] S.S. Owicki and L. Lamport. Proving liveness properties of concurrent programs.

ACM Trans. Programming Languages and Systems, 4(4):455–495, 1982.

[108] A.E. Paalder. A C++ implementation of a parser for visual languages based

on relational grammars. Master’s thesis, Universiteit Leiden, August 1994.

http://www.liacs.nl/MScThesis/paalder.94.ps.gz.

[109] P.S. Pacheco. A User’s Guide to MPI. University of San Francisco, March 1998.

URL: ftp://math.usfca.edu/pub/MPI/mpi.guide.ps.

[110] J. Padget, P. Broadbery, and D. Hutchinson. Mixing concurrency abstractions

and classes. In Banâtre and Métayer [9], pages 174–186.

[111] G.A. Papadopoulos and F. Arbab. Coordination models and languages. In Mar-

vin V. Zelkowitz, editor, The Engineering of Large Systems, volume 46 of Ad-

vances in Computers, pages 329–400. Academic Press, August 1998.

[112] E. W. Parsons, M. Brorsson, and K. C. Sevcik. Predicting the performance of

distributed virtual shared-memory applications. IBM Systems Journal, 36(4),

1997. URL: http://www.research.ibm.com/journal/sj/364/parsons.html.

[113] B.T. Phong. Illumination for computer generated pictures. Comm. ACM,

18(6):311–317, June 1975.

[114] S. Raina. Virtual shared memory: A survey of techniques and systems. Technical

Report CSTR-92-36, Department of Computer Science, University of Bristol,

December 1992.

[115] S. Raina. Emulation of a Virtual Shared Memory Architecture. PhD thesis,

University of Bristol, 1993.

[116] G.M. Rehmet. Adaptive parallelism under Linda. In Proc. Eighth National

Computer Science research Students’ Conference, June 1993.

BIBLIOGRAPHY 127

[117] G.M. Rehmet. Remora: Implementing adaptive parallelism on a heterogeneous

cluster of networked workstations. Master’s thesis, Rhodes University, 1995.

[118] G.M. Rehmet and P.G. Clayton. Peforming parallel computations over exist-

ing networks. In Proc. Conference of the Computer Society of South Africa

(CSSA’93), August 1993.

[119] J. Rekers. The use of graph grammars for defining the syntax of graphical lan-

guages. Technical report, Department of Computer Science, Leiden University,

November 1994.

[120] J. Rekers. A course on visual languages. URL: http://-

www.wi.leidenuniv.nl/CS/SEIS/vislang/VLcourse.html, 1995.

[121] J. Robie, J. Lapp, and D. Schach. XML Query Language (XQL). URL:

http://www.w3.org/TandS/QL/QL98/pp/xql.html, September 1998.

[122] D. Rossi. Jada: Multiple object spaces for Java. URL: http://-

www.cs.unibo.it/~rossi/jada.

[123] D. Rossi, G. Cabri, and E. Denti. Tuple-based technologies for coordination. In

A. Omicini, R. Tolksdorf, G. Weiss, and F. Zambonelli, editors, Coordination

Models and Applications for Agents. Springer, 2001.

[124] A. Rowstron. Mobile co-ordination: Providing fault tolerance in tuple space

based co-ordination languages. URL: http://www.research.microsoft.com/-

~antr/papers/mobile.ps.gz, 1999.

[125] A. Rowstron, A. Douglas, and A. Wood. A distributed Linda-like kernel for

PVM. In J. Dongarra, M. Gengler, B. Tourancheau, and X. Vigouroux, editors,

Proc. EuroPVM ’95, pages 107–112, 1995.

[126] A. Rowstron and A. Wood. An efficient distributed tuple space implementa-

tion for networks of workstations. In L. Bougé, P. Fraigniaud, A. Mignotte,

and Y. Robert, editors, Proc. Euro-Par ’96, volume 1124 of Lecture Notes in

Computer Science, August 1996.

[127] A. Rowstron and A. Wood. Solving the Linda multiple rd problem. In P. Cian-

carini and C. Hankin, editors, Coordination Languages and Models, Proc. Coor-

BIBLIOGRAPHY 128

dination ’96, volume 1061 of Lecture Notes in Computer Science, pages 357–367.

Springer-Verlag, 1996.

[128] A. Rowstron and A. Wood. BONITA: a set of tuple space primitives for dis-

tributed coordination. In Proc. Thirtieth Annual Hawaii International Confer-

ence on System Sciences, pages 379–388, Hawaii, 1997. IEEE Computer Society

Press.

[129] U. Rüde. Vorlesungsskript technik des wissenschaftlichen rechnens. URL: http:-

//wwwzenger.informatik.tu-muenchen.de/lehre/skripten/wissrech/-

skript.html, June 1995.

[130] S. Schneider. Concurrent and Real-time Systems: The CSP Approach. Wiley,

1999.

[131] G. Schoinas. POSBYL: Implementing the blackboard model in a distributed

memory environment using Linda. In Wilson [164], pages 105–116.

[132] T.E. Schouten and H. van Nieuwkerk. RTLINDA: A Linda-like system for a

real-time VMEbus environment. In Wilson [164], pages 117–123.

[133] H. Schulzrinne. RTP: About RTP and the Audio-Video Transport Working

Group. URL: http://www.cs.columbia.edu/~hgs/rtp/, 1999.

[134] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A transport

protocol for real-time applications. Internet Draft RFC 1889, January 1996.

[135] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming Protocol (RTSP).

Internet Draft RFC 2326, April 1998.

[136] Scientific Computing Associates. Virtual shared memory and the Paradise system

for distributed computing. Technical report, Scientific Computing Associates,

April 1999.

[137] D. Shires, R. Mohan, and A. Mark. An evaluation of HPF and MPI approaches

and performance in unstructured finite element simulations. In H.R. Arabnia,

editor, Proc. International Conference on Parallel and Distributed Processing

Techniques and Applications (PDPTA’2001), pages 13–19. CSREA Press, June

2001.

BIBLIOGRAPHY 129

[138] A. Smith. Towards wide-area network Piranha: Implementing Java-Linda. URL:

http://www.cs.yale.edu/homes/asmith/cs690/cs690.html.

[139] A.B. Sudell. Design and implementation of a tuple-space server for Java. URL:

http://www.op.net/~asudell/is/linda/linda.html, December 1998.

[140] Sun Microsystems. Java Media Framework API. URL: http://java.sun.com/-

products/java-media/jmf/index.html.

[141] Sun Microsystems. Jini connection technology. URL: http://www.sun.com/-

jini.

[142] Sun Microsystems. Object serialization. Java 2 SDK, Standard Edition Version

1.3.0 Documentation, 2000.

[143] Sun Microsystems. System requirements. Java 2 SDK, Standard Edition Version

1.3.0, README File, 2000.

[144] V.S. Sunderam. PVM: A framework for parallel distributed computing. Concur-

rency: Practice and Experience, 2(4):315–339, December 1990.

[145] O. Thomas. A Linda kernel for Unix networks. In Wilson [164], pages 124–128.

[146] R. Thomas, L.R. Rogers, and J.L. Yates. Advanced Programmer’s Guide to UNIX

System V. Osborne McGraw-Hill, 1986.

[147] R. Tolksdorf. Laura: A coordination language for open distributed systems.

Technical Report 1992/35, Technische Universität Berlin, 1992.

[148] R. Tolksdorf. Laura: A coordination language for open distributed systems. In

Proc. 13th IEEE International Conference on Distributed Computing Systems

ICDCS 93, pages 39–46, 1993.

[149] R. Tolksdorf and D. Glaubitz. Coordinating web-based systems with documents

in XMLSpaces. URL: http://flp.cs.tu-berlin.de/~tolk/xmlspaces/-

webxmlspaces.pdf, 2001.

[150] L.G. Valiant. A bridging model for parallel computation. Comm. ACM,

33(8):103–111, August 1990.

BIBLIOGRAPHY 130

[151] R. van der Goot, J. Schaeffer, and G. Wilson. Safer tuple spaces. In D. Garlan

and D. Le Métayer, editors, Proc. 2nd Int. Conf. on Coordination Models and

Languages, volume 1282, pages 289–301, Berlin, Germany, 1997. Springer-Verlag,

Berlin.

[152] P. Walker. The Transputer. Byte, May 1985.

[153] P.H. Welch. “wot, no chickens?”. URL: http://www.cs.ukc.ac.uk/projects/-

ofa/java-threads/0.html, September 1996.

[154] P.H. Welch. Communicating Sequential Processes for Java (JCSP). URL:

http://www.cs.ukc.ac.uk/projects/ofa/jcsp, August 2000.

[155] P.H. Welch and J.M.R. Martin. Formal analysis of concurrent Java systems. In

P.H. Welch and A.W.P. Bakkers, editors, Communicating Process Architectures

2000, volume 58 of Concurrent Systems Engineering Series, pages 275–301. IOS

Press, September 2000.

[156] G.C. Wells and A.G. Chalmers. An extended Linda system using PVM. In Proc.

1995 PVM Users’ Group Meeting, May 1995. URL: http://www.cs.cmu.edu/-

Web/Groups/pvmug95.html.

[157] G.C. Wells and A.G. Chalmers. Extensions to Linda for graphical applications.

In Proc. International Workshop on High Performance Computing for Computer

Graphics and Visualisation, pages 174–181, July 1995. Reprinted in [35].

[158] G.C. Wells, A.G. Chalmers, and P.G. Clayton. An extended version of Linda for

Transputer systems. In B.C. O’Neill, editor, Parallel Processing Developments

(Proc. 19th World Occam and Transputer User Group Technical Meeting), pages

233–240. IOS Press, April 1996.

[159] G.C. Wells, A.G. Chalmers, and P.G. Clayton. An extended ver-

sion of Linda for distributed multimedia applications. SAIC-

SIT ’99, November 1999. URL: http://www.cs.wits.ac.za/-

~philip/SAICSIT/SAICSIT-99/papers ideas.html.

[160] G.C. Wells, A.G. Chalmers, and P.G. Clayton. A comparison of Linda imple-

mentations in Java. In P.H. Welch and A.W.P. Bakkers, editors, Communicating

Process Architectures 2000, volume 58 of Concurrent Systems Engineering Series,

pages 63–75. IOS Press, September 2000.

BIBLIOGRAPHY 131

[161] G.C. Wells, A.G. Chalmers, and P.G. Clayton. Extending Linda to simplify appli-

cation development. In H.R. Arabnia, editor, Proc. International Conference on

Parallel and Distributed Processing Techniques and Applications (PDPTA’2001),

pages 108–114. CSREA Press, June 2001.

[162] T. Whitted. An improved illumination model for shaded display. Comm. ACM,

23(6):343–349, June 1980.

[163] G. Wilson. Improving the performance of generative communication systems by

using application-specific mapping functions. In Wilson [164], pages 129–142.

[164] G. Wilson, editor. Linda-Like Systems and Their Implementation. Technical

Report 91-13. Edinburgh Parallel Computing Centre, June 1991.

[165] A. Wood. Coordination with attributes. In P. Ciancarini and A.L. Wolf, editors,

Coordination Languages and Models: Proc. Third International Conference CO-

ORDINATION ’99, volume 1594 of Lecture Notes in Computer Science, pages

21–36, 1999.

[166] A.M. Wood and D.K.G. Campbell. Generic operations for concurrent knowledge

manipulation architectures. In Proc. Applied Informatics ’98, 1998.

[167] World Wide Web Consortium. Extensible markup language (XML). URL:

http://www.w3.org/XML.

[168] World Wide Web Consortium. XML Path language (XPath) version 1.0. W3C

Recommendation, URL: http://www.w3.org/TR/xpath.html, November 1999.

[169] World Wide Web Consortium. XQuery 1.0: An XML Query Language. W3C

Working Draft, URL: http://www.w3.org/TR/xquery/, June 2001.

[170] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford. T Spaces. IBM

Systems Journal, 37(3):454–474, 1998.

[171] M.R. Zargham. Computer Architecture: Single and Parallel Systems. Prentice-

Hall, 1996.

[172] S.E. Zenith. The axiomatic characterization of Ease. In Wilson [164], pages

143–152.

BIBLIOGRAPHY 132

[173] S.E. Zenith. A rationale for programming with Ease. In Banâtre and Métayer

[9], pages 147–156.

Appendix A

Writing New Matchers

This appendix gives a more detailed overview of the support methods provided by the

eLinda system for writing new matchers, explaining in greater detail the principles

discussed in Chapter 4. It also presents a complete example of a matcher written for

the Programmable Matching Engine.

A.1 Support Functions

The support functions provided by the eLinda system fall into one of two categories:

those provided by the tuple and anti-tuple objects and those provided by the tuple

space manager (for communication and accessing the tuple space).

A.1.1 Tuple Support Functions

There are two methods of the Tuple class that may be used when writing new matchers.

These are summarised in Table A.1.

In the eLinda system the AntiTuple class is a subclass of the Tuple class, and

so inherits the methods of Table A.1, while adding a number of others. These are

summarised in Table A.3. These methods allow a matcher to determine the exact

nature of the matching operation (i.e. to distinguish between the four different input

operations), which fields it should make use of (i.e. those marked with ?= in the ideal

syntax), and also to apply the standard matching algorithm in various ways.

133

APPENDIX A. WRITING NEW MATCHERS 134

boolean localTuple() Returns an indication of whether the tuple
is considered to “belong” to the local processing node. This
allows a matcher to exclude non-local tuples if necessary (for
example, to prevent double counting of tuples that have been
broadcast).

String getSignature () Returns a string representing the type sig-
nature of the tuple. This can be used to extract the type of
each field, which may be necessary in a matcher (for example,
to detect attempts to perform arithmetic matching operations
on non-numeric fields). The field types are encoded as shown
in Table A.2.

Table A.1: Methods of the Tuple Class Used in Matching

Code Type
s String
b byte
h short
i integer
l long
f float
d double
t boolean
c char
m MultiMediaResource object
o Object (used for any serializable Java object)

Table A.2: Encoding of Tuple Field Types

APPENDIX A. WRITING NEW MATCHERS 135

long getMatcherMask () Get the bit mask specifying which fields
should be used by the programmable matcher.

boolean isMatcherField (int index) Tell whether a field is a
matcher field (i.e. one specified for use with a programmable
matcher). This simply checks the matcher bit mask set by
setMatcherMask.

boolean isWild (int index) Tell whether a field is a wildcard or
not.

long getFieldMask () Return a bit mask where wildcard fields are
0 and other fields are 1. The least significant bit of the bit mask
corresponds to the first tuple field.

boolean maskedMatch (Tuple t, long mask) Matching algo-
rithm to see if a tuple matches this anti-tuple, comparing only
the fields specified by a bit mask. If there is a 1 in the bit mask
then the comparison is made.

boolean standardMatch (Tuple t) Matching algorithm to see if a
tuple matches this anti-tuple. This takes wildcards into account.

boolean isPredicate () Tell whether the tuple space operation for
this anti-tuple is a predicate form (i.e. inp or rdp).

boolean isIn () Tell whether the tuple space operation for this
anti-tuple is a deleting form (i.e. in or inp).

Table A.3: Matching Methods of the AntiTuple Class

APPENDIX A. WRITING NEW MATCHERS 136

int scatter (AntiTuple at) Distributes the given anti-tuple
across the network to remote matchers. It returns the index
number to be used for gathering the results.

Tuple[] gather (int gatherIndex) Returns the tuples resulting
from a scatter operation. The parameter is the value returned
by the corresponding scatter method.

void broadcastDelete (Tuple t) Broadcast a message to all other
tuple spaces to delete the specified tuple (or anti-tuple).

void replaceTuple (Tuple t) Replaces the specified tuple into the
tuple space. This can be used by matchers to return unneeded
tuples.

void replaceTuples (Tuple[] t) Replaces the given array of tu-
ples into the tuple space. This can be used by matchers to
return unneeded tuples from scatter/gather operations. Null
entries in the array are ignored.

Table A.4: Communication and Tuple Space Access Methods

A.1.2 Communication and Tuple Space Access

New matchers may interact directly with the eLinda system to access and replace tuples

in the tuple space, communicate requests to other processors and subsequently retrieve

the results of such requests, etc.

The methods available to a matcher for communication and tuple space access are

all static methods of the TSManager class. They are summarised in Table A.4.

A.2 An Example Matcher

The example is a simple numeric matcher that returns the tuple with a specified field

(or fields) closest to some given value(s). Matchers written for similar purposes would

follow a very similar pattern and be of comparable complexity.

// ClosestMatcher.java

import gcw.eLinda.*;

/** This class implements a programmable matcher for the eLinda
* system.
* The result of this matcher is a tuple which contains
* the closest match for the specified numeric fields of the

APPENDIX A. WRITING NEW MATCHERS 137

* tuples.
*/

public class ClosestMatcher
implements ProgrammableMatcher, java.io.Serializable

{ /** Type signature of the tuples.
*/

private String signature;

public ClosestMatcher ()
{
} // constructor

private double findDiff (Tuple t, AntiTuple at)
throws MatcherException

{ double diff = 0.0;
int k;
try
{ for (k = 0; k < signature.length(); k++)

if (at.isMatcherField(k))
switch (signature.charAt(k))
{ case ’b’:

diff += Math.abs(at.unpackByte(k) -
t.unpackByte(k));

break;
case ’h’:
diff += Math.abs(at.unpackShort(k) -
t.unpackShort(k));

break;
case ’i’:
diff += Math.abs(at.unpackInt(k) -
t.unpackInt(k));

break;
case ’l’:
diff += Math.abs(at.unpackLong(k) -
t.unpackLong(k));

break;
case ’f’:
diff += Math.abs(at.unpackFloat(k) -
t.unpackFloat(k));

break;
case ’d’:
diff += Math.abs(at.unpackDouble(k) -
t.unpackDouble(k));

break;
default:
System.out.println("INTERNAL ERROR:" +
" ClosestMatcher: Non-numeric field!");

break;

APPENDIX A. WRITING NEW MATCHERS 138

}
}

catch (InvalidTupleException e)
{ throw new MatcherException("ClosestMatcher: " +

"Exception unpacking tuple: " + e.toString());
}

return diff;
} // findDiff

public Tuple matchList (AntiTuple a, TupleIterator it)
throws MatcherException

{ long mask = a.getMatcherMask();
if (mask == 0)
throw new MatcherException("ClosestMatcher: " +

"No matcher mask specified.");

Tuple n = null, closest = null;
boolean hadResults = false;
int k, bitPos;
double diff = 0.0;
signature = a.getSignature();

for (k = 0, bitPos = 1;
k < signature.length();
k++, bitPos <<= 1)

if ((mask & bitPos) != 0)
{ if ("bhilfd".indexOf(signature.charAt(k)) == -1)

throw new MatcherException("ClosestMatcher: " +
"Non-numeric field specified (" + k + ").");

}

// If we survived the checking and setup distribute the
// request to the other TSM’s
int gatherIndex = TSManager.scatter(a);

// Now start iteration through the tuples
try
{ n = it.firstTuple();

while (n != null) // Calculate diffs
{ if (n.localTuple() && a.maskedMatch(n, ~mask))

// Don’t duplicate work of remote matchers
if (! hadResults) // This is the first match
{ diff = findDiff(n, a);
closest = n;
hadResults = true;

}
else // Second or subsequent match
{ double nDiff = findDiff(n, a);

APPENDIX A. WRITING NEW MATCHERS 139

if (nDiff < diff)
{ diff = nDiff;
closest = n;

}
}

n = it.nextTuple();
}

it.end();
}

catch (IterationException e)
{ throw new MatcherException("ClosestMatcher: " +

"failed during iteration: " + e.toString());
}

// Now gather the global results
Tuple[] results = TSManager.gather(gatherIndex);
int closestIndex = -1;
if (results != null)
{ for (k = 0; k < results.length; k++)

if (results[k] != null)
{ if (! hadResults) // This is the first

{ diff = findDiff(results[k], a);
closest = results[k];
closestIndex = k;
hadResults = true;

}
else // Second or subsequent match
{ double nDiff = findDiff(results[k], a);
if (nDiff < diff)
{ diff = nDiff;
closest = results[k];
closestIndex = k;

}
}

}
}

// Now sort out the results
if (hadResults) // We have an answer!
{ if (a.localTuple())

TSManager.broadcastDelete(a);
if (a.isIn())
// Must sort out tuples in tuple space
{ if (closestIndex != -1)

// It was a scatter/gather tuple
{ results[closestIndex] = null;

// Don’t return this one
}

APPENDIX A. WRITING NEW MATCHERS 140

else // It was a local tuple
try
{ for (n = it.firstTuple();

n != null;
n = it.nextTuple())

// Restart local iterator
if (n.equals(closest))
{ it.deleteCurrentTuple();

break;
}

}
catch (IterationException e)
{ throw new MatcherException(

"ClosestMatcher: failed during " +
"iteration: " + e.toString());

}
TSManager.replaceTuples(results);
// Throw the unwanted ones back

}
return closest;

}

return null; // No result
} // matchList

public boolean match (AntiTuple a, Tuple t)
throws MatcherException

{ if (a.maskedMatch(t, ~a.getMatcherMask()))
return true; // Must be the closest so far!

else
return false;

} // match

/** Override toString to give matcher name.
*/

public String toString()
{ return "ClosestMatcher";
} // toString

} // class ClosestMatcher

Appendix B

Preprocessor Support

Traditionally Linda systems have made use of a preprocessor to integrate Linda (the

coordination language) with the host language[19, 31]. This style of approach has been

adopted in eLinda, but a preprocessor has not been written. This is partly due to

the fact that the provision of a preprocessor was seen as incidental to the main area

of interest, namely focussing on the programmable matching mechanism, distributed

multimedia and efficiency concerns.

The author has previously had experience in implementing such a preprocessor,

using C as the host language[39]. This appendix outlines some of the issues that a

Java preprocessor for eLinda would need to take into account.

B.1 Requirements for an eLinda Preprocessor

All of the eLinda examples presented in this thesis have made use of the so-called “ideal

syntax” that a typical preprocessor would support. As an example, consider the fol-

lowing simple code extract: in("point", ?x, ?y). In eLinda without a preprocessor

(or after preprocessing was done) this would actually appear as follows:

AntiTuple template = new AntiTuple("sii");

Tuple retrieved = null;

template.addString("point");

template.addWild(’i’);

template.addWild(’i’);

retrieved = space.in(template);

x = retrieved.unpackInt(1);

y = retrieved.unpackInt(2);

141

APPENDIX B. PREPROCESSOR SUPPORT 142

Note that this example has been simplified slightly—all exception-handling code

has been omitted, as has the code required to declare and open the tuple space (called

space in the example code above).

In order to perform this kind of transformation a preprocessor must parse the

original source program, building up a symbol table with type information. As the

syntax of Java for type declarations is considerably simpler than that of C this would

not be particularly difficult. When the preprocessor encountered an eLinda operation,

such as the in shown above, the type information from the symbol table could be

used to construct the correct type signature required by the AntiTuple constructor

(i.e. "sii" here), and also to specify the type of the wildcard fields (there is some

redundancy here, which is useful for error-checking). The preprocessor would also

need to generate the necessary assignments, required for the binding of the retrieved

tuple values to the wildcard variables.

This is complicated slightly when the Programmable Matching Engine mechanisms

must be supported. As an example of this, the following program code extract shows

the Programmable Matching Engine being used to retrieve a tuple corresponding to

some multimedia resource with a minimum cost value:

rdp.minimum(?videoStore, "Star Wars", ?=cost)

After preprocessing the modified source code would appear as follows (again, the

code required for exception-handling and declaration of the tuple space has been omit-

ted, as has the “unpacking” of the retrieved tuple):

AntiTuple template = new AntiTuple("ssf");

template.addWild(’s’); // Video store name

template.addString("Star Wars"); // Video name

template.addWild(’f’); // Cost

template.setMatcher(new MinimumMatcher());

template.setMatcherMask(0x4); // Bit mask

Tuple videoTuple = videoSpace.rdp(template);

. . .

Notice here how the necessary matcher has been created, and it and the bitmask

specifying the field that must be used by the matcher have been added to the anti-tuple.

It should also be noted that the multimedia features in eLinda require no special

support from the preprocessor. The only interaction is that the MultiMediaResource

class is recognised as a known type by the preprocessor, and encoded as ’m’ in the

type signatures for tuples and anti-tuples, as shown in the example above.

APPENDIX B. PREPROCESSOR SUPPORT 143

B.1.1 Tuple Space Analysis

One of the tasks normally performed by a Linda preprocessor is an analysis of the usage

of the tuples. This allows the preprocessor to perform what amounts to a refactorisation

of the tuples into disjoint sets that may be stored in separate tuple spaces[19, 31].

This kind of analysis requires a global view of an application so that all processes

are considered. For example, it may be found that the master process in a particular

application outputs tuples of the form ("work", someInt), and then retrieves tuples

of the form ("result", ?someInt). In turn, the analysis of the worker processes will

probably discover that they input tuples of the form ("work", ?someInt) and create

tuples of the form ("result", intResult). In a simple case like this it is easy to

see that there are two distinct groups of tuples being used in this example: the work

specifications and the results. Both sets of tuples have the same type signature, namely

(string, int).

The first optimisation that a preprocessor can perform is to create two separate

tuple spaces for the two groups of tuples. This has the advantage of preventing the

master process from having to search through outstanding work specifications when

retrieving results, and vice versa for the workers. Having done this, the second opti-

misation that can be performed by the preprocessor is to remove the strings from the

tuples. These were initially necessary to distinguish work requests from results. Now

that these groups of tuples are stored in separate tuple spaces this distinction is implicit

in the specification of the tuple space to be used for a particular operation. Decreasing

the redundant information in the tuples has the obvious advantage of decreasing the

work that must be done by the matching algorithm.

The example considered above was extremely simple. In general, the task of per-

forming the analysis and then the optimisation of the tuple space access operations

may be considerably more complex. However, it is a valuable feature of a preprocessor,

as it allows programmers to focus their attention on the development of the application

at hand by automating the optimisation of the tuple space operations.

The eLinda system includes the features that would be required to support these

optimisations. These are the ability to create distinct tuple spaces, based on a combi-

nation of a programmer-specified name and type signature information.

Further details of the analysis and optimisation performed by a typical Linda pre-

processor can be found in [19, 31, 39]. An interesting perspective on the limitations of

automatic optimisation for Linda systems can be found in [163].

APPENDIX B. PREPROCESSOR SUPPORT 144

B.2 Preprocessing: JavaSpaces and TSpaces

The initial design of eLinda was completed before JavaSpaces and TSpaces were re-

leased. Neither of these systems uses a preprocessor, but rather they both make use of

the object-oriented features of Java to partially circumvent the need for preprocessing.

Notably, they both use the standard syntax of Java for their tuple space operations.

On the negative side, neither system provides any kind of optimisation of the tuple

space access operations. The sort of analysis and optimisation that was described

earlier would need to be performed explicitly by programmers. Both systems do provide

the ability to create multiple, distinct tuple spaces that can be used for this purpose.

The two systems are essentially very similar, but differ in the details of how tuples

and anti-tuples are created. These mechanisms will be considered briefly in the next

two sections.

B.2.1 TSpaces

TSpaces provides two ways of creating tuples:

1. Objects can be passed to the constructor of the Tuple class to create a tuple with

these objects as its fields. An anti-tuple is created in exactly the same way, but

using a Class object to specify the type of a wildcard field, rather than a normal

data-containing object.

2. Programmers can create their own classes as subclasses of the provided Sub-

classableTuple class. It appears from the documentation that the matching

method (i.e. SuperTuple.matches()) could be overridden in this case, providing

a similar facility to that found in Objective Linda.

The objects created in either of these two ways may then be passed as parameters

to the methods of the TupleSpace objects that implement the client side of the tuple

spaces.

B.2.2 JavaSpaces

JavaSpaces implements support for tuples slightly differently. It provides a Java inter-

face, called Entry, as part of the Jini system. This interface must be implemented by

any class in an application that is to be used as a tuple. Any public object reference1

1The use of private fields or of primitive data fields is not supported.

APPENDIX B. PREPROCESSOR SUPPORT 145

contained in such a class is then effectively a field of the tuple. The wildcard fields in

anti-tuples are specified by setting the corresponding reference fields to null.

As is the case for TSpaces, objects created in this way may be used with the methods

of the JavaSpace objects that implement the tuple spaces.

B.2.3 Application to eLinda

The approaches adopted by TSpaces and JavaSpaces could be adopted for use in a

redesigned eLinda system. This would have the advantage that the syntax is that

with which Java programmers are already familiar. Additionally, the need to perform

a separate preprocessing stage during compilation would be removed, with obvious

performance benefits for the program development process. However the ability to

perform automatic optimisations is not possible with this model, moving the responsi-

bility of handling potentially complex optimisation steps onto the programmers using

the system.

