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Abstract— This paper discusses the use of Java and the
Linda coordination language (specifically, IBM’s TSpaces
implementation) for the construction of parallel processing
applications in the field of bioinformatics. Much existing
work in this field makes use of scripting languages such
as Perl. Java provides a more powerful programming and
deployment environment with strong support for process-
ing genetic data. Furthermore, the Linda approach greatly
simplifies the parallelization of bioinformatics applications.
Results of a DNA string searching application show very
favorable performance benefits arising from the use of Java
and TSpaces on a network of commodity workstations.
Near-linear speedup is observed for configurations of up
to 15 processors, and execution times are reduced by up
to 96%.

I. I NTRODUCTION

Much of the software development in the field
of bioinformatics is done using scripting languages
such as Perl. The project described in this paper
is an in-depth investigation of the suitability of
mainstream programming techniques for the de-
velopment of parallel bioinformatics applications.
The programming language used is Java1, together
with a commercially developed parallel program-
ming framework based on the Linda2 coordination
language, namely TSpaces from IBM[1].

A. Java and Linda

Java is a widely-used, general-purpose program-
ming language, developed by Sun Microsystems in
the mid-1990’s. It has rapidly become the program-
ming language of choice in many different areas,
and has been the subject of extensive language
and library development. In particular, it has strong
support for string-handling and pattern-matching,
provided by specialized libraries. Recent develop-
ments have led to increasing interest in Java as a

1Java is a registered trademark of Sun Microsystems Inc.
2Linda is a registered trademark of Scientific Computing Asso-

ciates.

language for scientific high-performance computing
(HPC)[2], [3], [4].

One of the major strengths of Java is its porta-
bility, allowing Java programs to be executed on
different hardware and operating system platforms
without the need for recompilation. All that is
required is a Java Virtual Machine (JVM), or in-
terpreter, for the specific combination of hardware
and operating system being used. While Linux was
used for this project, there is no reason why a
network of Windows PCs could not be used, or even
a heterogeneous collection of various types of PCs
and scientific workstations running a wide variety
of different operating systems.

TSpaces is based on the Linda coordination lan-
guage developed by David Gelernter at Yale in the
mid-1980’s[5]. After an initial period of intense
interest in this model, it lost popularity until the
development of a number of Java implementations
(both commercial and research projects) in the late
1990’s. In particular, Sun Microsystems developed
the JavaSpaces specification[6] as a component of
the Jini system[7]. Several other companies have
subsequently developed full commercial implemen-
tations of the JavaSpaces specification[8], [9]. Inde-
pendently, IBM developed TSpaces as a commercial
product, based on the Linda programming model[1],
[10]. In addition to these commercial developments,
a large number of research projects have focused on
Java implementations of Linda. A brief overview of
the Linda programming model is given in Section II
below.

B. Bioinformatics

Bioinformatics is a relatively new field arising
from the application of computers to various bi-
ological problems, particularly with regard to re-
search on genes and proteins. A recent paper by
Cohen provides a concise overview of the current



state of bioinformatics, and its relationship to both
biology and computer science as the foundational
disciplines[11].

The following definition for the termbioinformat-
ics has been proposed:

Bioinformatics is conceptualising biology
in terms of molecules and applying “in-
formatics techniques” to understand and
organise the information associated with
these molecules, on a large scale. In short,
bioinformatics is a management informa-
tion system for molecular biology[12].

While not wishing to delve too far into the realms
of biology and genetics, a brief overview of some
basic molecular biology may be in order. The basic
starting point is DNA, which is composed of four
deoxyribonucleotides, orbases: adenine, thymine,
cytosine, and guanine. These compounds are usually
referred to by the abbreviations of their initial
letters: A, T, C and G, respectively. A triplet of
bases is called acodon, and encodes the information
required to create anamino acid. There are twenty
amino acids, which may be also be represented
by single letter abbreviations. These amino acids
combine to form sequences, giving rise toproteins.

From this brief description, it should be clear that
DNA and protein sequences can easily be repre-
sented as strings of letters describing the component
parts. At this level, string comparisons and string
searching algorithms are essential in bioinformatics.
There is, of course,muchmore than this to bioin-
formatics, which includes many other categories
of problems, such as deriving three-dimensional
protein structures, etc. Further information may be
found in the many references on this subject, such
as [13].

While Java has been used in some bioinformatics
applications, and is supported by the development
of the BioJava libraries[14], [15], to date much
of the software development in this area has used
scripting languages such as Perl[16]. While such
scripting languages are relatively simple to use and
have strong support for string-matching operations
and for combining other applications, they suffer
from limitations such as poor performance due to
their interpreted nature and a lack of support for
parallel and distributed programming. This has led
to growing interest in Java for biological applica-

tions. Notable among these is the work of Sheil[17],
who developed a system to predict the secondary
structure of selected proteins using artificial neural
networks in parallel. This system utilized Java and
the JavaSpaces implementation of Linda, and hence
has much in common with our investigation.

The focus of the research conducted in this
project was the identification and location of specific
patterns in DNA that correspond to proteins of
interest. This involves the application of pattern-
matching techniques to strings representing both the
DNA sequences and themotifscorresponding to the
protein sequences of interest. Given the large vol-
umes of data involved (the complete human genome
comprises about 4GB of data when represented as
a text string), parallel programming becomes a de-
sirable, even necessary, technique for improving the
performance of such bioinformatics applications.

The remainder of this paper provides an overview
of the Linda programming model, a description of
our application and some performance results that
were obtained. We conclude with some observations
about the use of Java and TSpaces for bioinformat-
ics.

II. T HE L INDA PROGRAMMING MODEL

The Linda programming model has a highly
desirable simplicity for writing parallel or distrib-
uted applications. As acoordination languageit is
responsible solely for the coordination and commu-
nication requirements of an application, relying on a
host language(i.e. Java in this study) for expressing
the computational requirements of the application.

The Linda model comprises a conceptually shared
memory store (calledtuple space) in which data is
stored as records with typed fields (calledtuples).
The tuple space is accessed using five simple oper-
ations3:

out Outputs a tuple from a process into tuple
space

3A sixth operation,eval , used to create anactive tuple, was pro-
posed in the original Linda model as a process creation mechanism,
but can easily be synthesized from the other operations, with some
support from the compiler and runtime system, and is not present in
any of the commercial Java implementations of the Linda model.
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Fig. 1. A Simple One-to-One Communication Pattern

in Removes a tuple from the tuple space and
returns it to a process, blocking if a suitable
tuple cannot be found

rd Returns a copy of a tuple from the tuple
space to a process, blocking if a suitable
tuple cannot be found

inp Non-blocking form of in — returns an
indication of failure, rather than blocking
if no suitable tuple can be found

rdp Non-blocking form ofrd

Note that the names used for these operations
here are the original names used in Yale’s Linda
research. Both TSpaces and JavaSpaces use different
names for the operations.

Input operations specify the tuple to be retrieved
from the tuple space using a form ofassociative
addressingin which some of the fields in the tuple
(called anantituple, or template, in this context)
have their values defined. These are used to find
a tuple with matching values for those fields. The
remainder of the fields in the antituple are variables
which are bound to the values in the retrieved tuple
by the input operation (these fields are sometimes
referred to aswildcards). In this way, information
is transferred between two (or more) processes.

A simple one-to-one message communication
between two processes can be expressed using a
combination ofout and in as shown in Fig. 1.
In this case("point", 12, 67) is the tuple
being deposited in the tuple space by Process 1.
The antituple,("point", ?x, ?y) , consists of
one defined field (i.e."point" ), which will be
used to locate a matching tuple, and two wildcard
fields, denoted by a leading?. The variablesx and
y will be bound to the values 12 and 67 respectively,
when the input operation succeeds, as shown in
the diagram. If more than one tuple in the tuple
space is a match for an antituple, then any one of
the matching tuples may be returned by the input
operations.

Other forms of communication (such as one-
to-many broadcast operations, many-to-one ag-
gregation operations, etc.) and synchronization
(e.g. semaphores, barrier synchronization opera-
tions, etc.) are easily synthesized from the five basic
operations of the Linda model. Further details of the
Linda programming model can be found in [18].

III. T HE PARALLEL MOTIF SEARCHING

APPLICATION

In order to investigate the benefits of using Java
and Linda for bioinformatics a large, parallel ap-
plication was developed to search DNA sequences
for subsequences corresponding to specific proteins
(or motifs). This required the reverse-translation of
protein sequences to obtain regular expressions de-
scribing the equivalent DNA sequences. Once these
had been obtained, the regular expressions could be
used with the Javajava.util.regex package
(part of the standard Java libraries since version 1.4
was released) in order to locate the motifs within
DNA sequences.

The reverse-translation process involves several
steps and is described in more detail below, followed
by a description of the design of our application.

A. Obtaining Regular Expressions from Protein Se-
quences

The first step was to obtain suitable protein se-
quences. The consensus patterns for a number of
protein motifs were downloaded from the PROSITE
database[19]. The Sequence Manipulation Suite, de-
veloped by the Center for Computational Genomics
at Pennsylvania State University[20], was then used
for the actual reverse translation, producing a DNA
sequence. This was then expressed as a regular
expression, suitable for use in a searching algorithm.

For example, the consensus pattern for the protein
sequence for the “Homeobox” engrailed-type pro-
tein is L-M-A-[EQ]-G-L-Y-N (the letters here
represent various amino acids). This is then stripped
of all characters other than the amino acid specifiers,
yielding LMAEQGLYN, and reverse-translated us-
ing the Sequence Manipulation Suite. This process
results in considerable redundancy as a particular
amino acid may be produced by a number of
codons. For example, the amino acid represented
by L may have either aT or C in the first position
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of the codon, aT in the second position and any
one of the four DNA bases in the third position
— this particular combination can be represented
by the regular expression[TC]T[GATC] . The final
result is the regular expression corresponding to the
“Homeobox” engrailed-type protein:

[TC]T[GATC]ATGGC[GATC][GC]A[GA]GG
[GATC][TC]T[GATC]TA[TC]AA[TC]

Of particular interest in this expression is the
subsequence[GC]A[GA] . This is the translation
of the [EQ] protein sequence, formed from the
combination of the regular expressions for theE and
Q amino acids (E = GA[GA] andQ = CA[GA] ).

B. The Design of the Parallel Motif Searching Ap-
plication

The motif searching application was developed
using the classic replicated-worker pattern[6]. In this
case, the master/controller process deposits tuples
into the tuple space that specify the work to be
done by the remainder of the processes (i.e. the
“workers”). Each tuple contains the name of the
file containing the DNA sequence to be scanned,
a unique task number and the total number of tasks
generated (usually, but not necessarily, equal to the
number of worker processes). The task number,
and total number of tasks are used by the worker
processes to determine which segment of the DNA
sequence is to be searched. The calculation of
the start and end points of the segment also has
to include a degree of overlap between adjoining
sections to allow for motifs that may span two
segments.

After retrieving a tuple with the task parameters,
a worker process reads in the calculated segment
of the specified DNA sequence from the given file
(using the Java random access file facilities). The
regular expressions for the motifs of interest are then
read in, and thejava.util.regex library used
to perform the searching of the DNA segment. The
workers take the results found (start- and end-points
of identified motifs, and the actual DNA sequences
for the motifs) and return these to the master process
as tuples.

The master process retrieves the result tuples,
and is then responsible for collating them, and
detecting and removing any duplicates found (due

to the overlapping of adjoining segments, described
above). Finally, the results are summarized and
reported (together with processing time taken) to
the user of the program.

IV. EXPERIMENTAL PERFORMANCERESULTS

AND DISCUSSION

The performance of the Parallel Motif Searching
application was measured for various different sizes
of DNA sequences (ranging from 60MB to 1GB),
and for various numbers of worker processes. With
the exception of the 60MB DNA sequence, it was
found that the volume of data was too large to be
handled by a single process and so even when only
a single worker process was used for the larger
sequence, the tasks had to be divided into a number
of subtasks. This fact underscores the need for the
parallelization of this application.

A. Experimental Environment

The network of workstations that was used for
the experimental work consisted of a number of
commodity PCs, such as might typically be found
in any university or research center. These machines
were all identical, equipped with Intel Pentium 4
processors, running at 2.4Ghz, and with 512MB
of RAM. A fast (100MBps), switched Ethernet
network was used for the communication. Each
machine ran the Red Hat Linux operating system,
version 3.1.10, and the Java Development Kit used
was version 1.4.203. The DNA sequences were
stored on a central file server and accessed using a
shared network drive. Each experiment was repeated
a number of times and the average of the results
calculated, to minimize the effect of any variations
due to other network traffic, or other factors.

B. Results

The results found for each of the DNA sequences
followed a similar pattern. Only the largest sequence
(i.e. the 1GB file, comprised of the first five human
chromosomes) is reported on in detail here (full de-
tails are available in [21]). Fig. 2 shows the speedup4

measured for various numbers of processors. As can

4The speedup is calculated as the ratio of the single-worker time
to that of then-worker time. A related factor isefficiency: the ratio
between the speedup and number of processors, usually expressed as
a percentage.
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Fig. 2. Speedup for the 1GB DNA Sequence

be seen quite clearly, there is near-linear speedup
(i.e. close to 100% efficiency) for configurations
up to about 15 processors. Above this level the
efficiency starts to decrease, but increasing speedup
is still experienced until the number of processors
exceeds 50. Using 50 processors, the efficiency is
46%.

In absolute terms, the time taken by a single
worker process was 4 hours, 48 minutes (this re-
quired using 20 separate segments to accommodate
the volume of data). This was reduced to a min-
imum of 12 minutes and 27 seconds, when using
50 processors — a highly significant reduction in
overall processing time. Table I gives the details of
the time taken for various numbers of processors.

C. Discussion

These results compare well with similar studies.
For example, Kleinjunget al investigated the use of
parallel computing in bioinformatics for performing
multiple sequence alignments[22]. Their system was
developed in C, using MPI (the Message Passing

TABLE I

AVERAGE EXECUTION TIMES FOR THE1GB GENOME USING A

RANGE OF PROCESSORS

Number of Average Time
Processors h m s ms
1 4 48 06 606
5 1 07 13 811
10 34 05 541
15 23 50 925
20 21 46 214
25 19 02 972
30 16 52 907
35 15 20 859
40 14 03 161
45 13 15 599
50 12 27 503
55 12 48 264

Interface)[23] for parallelization. They reported that
their parallel program performed up to ten times
faster on 25 processors compared to the single
processor version (giving an efficiency rating of
only 40%). The equivalent speedup measured for
our application on 25 processors was 15 (i.e. an
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efficiency of 60%).
Sheil, using Java and JavaSpaces for predicting

protein structures using neural networks, reports
a speedup of 7.6 times on eight processors5[17],
giving an efficiency measure of 95%. Again, this
compares well with our results: using ten processors
(the closest comparable datapoint), the speedup that
we measured was 8.4 times for the 1GB sequence
(which still requires each worker to process a num-
ber of separate segments, due to the space limita-
tions discussed above); for the 250MB sequence, we
measured a speedup of 9.1, using ten processors.

With regard to the various implementations of the
Linda model in Java, Shiel makes the observation
that “Jini and JavaSpaces are not easy to use in a
rapid development environment — and there is no
reason why they should not be”[17]. In another, ear-
lier study of Linda systems in Java, we have drawn
similar conclusions[27]. In this regard, TSpaces is
a much simpler system to use than JavaSpaces.

V. CONCLUSIONS

This study has demonstrated that Java provides
a powerful programming and runtime environ-
ment, with good support for bioinformatics appli-
cations. This is particularly true with regard to
string-matching operations using regular expres-
sions, where thejava.util.regex package is
very useful. Furthermore, the Linda programming
model, embodied in TSpaces, greatly simplifies the
parallelization of bioinformatics applications. At the
outset of this project, the author responsible for the
development of the software had very little prior
programming experience, and none in the field of
distributed/parallel programming. That this project
was successfully completed in less than a year
indicates the ease with which these tools may be
deployed.

While scripting languages like Perl have good
support for regular-expression matching and basic
string-processing operations, and are good at linking
together other applications, such environments do
not usually have as extensive support for aspects
such as parallel and distributed execution of algo-
rithms. A quick survey of the World-Wide Web
revealed only a version of PVM[24] for Perl[25],

5This was the largest network used in his work.

dated 1996, and a form of distributed shared mem-
ory (loosely related to the Linda model)[26], which
underscores this point.

Results of the DNA motif searching application
show that very good performance benefits may be
derived from the use of parallel/distributed program-
ming techniques, using a network of commodity
workstations, such as those commonly found in
most universities or research centers. As indicated
in the discussion of results in the previous section,
the performance results found in this study are
comparable with, or better than results reported in
similar studies.

While this study used a dedicated network of
workstations for the parallel execution of the ap-
plication, this is unlikely to be available at all
times in a typical research situation. In this regard,
Gelernter’s research group at Yale did some work on
a variation of Linda that providedadaptive paral-
lelism[28], [29]. This is a technique that makes use
of idle time on workstations in a research group or
workgroup. The technique is adaptive, in that, if the
user of a PC or workstation starts to make extensive
use of the computer, then the parallel framework
automatically backs off, ensuring that the back-
ground use of the machine for a parallel/distributed
processing application does not become intrusive.
Similar work has been done in projects such as
the well-known SETI screensaver[30]. Techniques
such as these would be very useful in extending the
practical viability of our work.

As the field of bioinformatics continues to de-
velop and mature, it is our belief that increasing use
will have to be made of development tools and lan-
guages, such as Java, that have wide adoption in the
computer industry, and consequent strong support
from commercial and open-source developers and
researchers. The wide availability of packages such
as TSpaces and JavaSpaces for parallel and distrib-
uted programming in these language environments
will further encourage developments in this regard.
Scripting languages such as Perl will no doubt
continue to have a vital role to play, but increasingly
this will be confined to the area of combining other
applications and interfacing between them.
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