
Coordination Languages: Back to the Future
with Linda

George Wells

Department of Computer Science, Rhodes University,
Grahamstown, 6140, South Africa

G.Wells@ru.ac.za

Abstract. The original Linda model of coordination has always been
attractive due primarily to its simplicity, but also due to the model’s
other strong features of orthogonality, and the spatial- and temporal-
decoupling of concurrent processes. Recently there has been a resurgence
of interest in the Linda coordination model, particularly in the Java com-
munity. We believe that the simplicity of this model still has much to
offer, but that there are still challenges in overcoming the performance
issues inherent in the Linda approach, and extending the range of appli-
cations to which it is suited. Our prior work has focused on mechanisms
for generalising the input mechanisms in the Linda model, over a range
of different implementation strategies. We believe that similar optimi-
sations may be applicable to other aspects of the model, especially in
the context of middleware support for components utilising web-services.
The outcome of such improvements would be to provide a simple, but
highly effective coordination language, that is applicable to a wide range
of different application areas.

1 Introduction

This paper is based on more than a decade of experience with the Linda1 model,
and a number of projects, both developing and using Linda-like systems. This
introductory section briefly describes the Linda programming model, outlines the
history of Linda, and summarises our experience. The second section summarises
some of the developments in this area in recent years. This is followed by a more
detailed presentation of our eLinda system, and particularly the development of
flexible matching mechanisms for input operations. This leads into a discussion
of the open issues in this field.

1.1 The Linda Programming Model

The Linda programming model has a highly desirable simplicity for writing par-
allel or distributed applications. As a coordination language it is responsible
solely for the coordination and communication requirements of an application,
1 Linda is a registered trademark of Scientific Computing Associates.



2 WCAT05

relying on a host language (e.g. C, C#, or Java) for expressing the computa-
tional requirements of the application (this aspect is discussed in more detail in
Section 1.2 below).

The Linda model comprises a conceptually shared memory store (called tuple
space) in which data is stored as records with typed fields (called tuples). The
tuple space is accessed using five simple operations2:

out Outputs a tuple from a process into the tuple space
in Removes a tuple from the tuple space and returns it to a process, blocking

if a suitable tuple cannot be found
rd Returns a copy of a tuple from the tuple space to a process, blocking if a

suitable tuple cannot be found
inp Non-blocking form of in — returns an indication of failure, rather than

blocking if no suitable tuple can be found
rdp Non-blocking form of rd

The input operations specify the tuple to be retrieved from the tuple space
using a form of associative addressing in which some of the fields in the tuple
(called an antituple, or template, in this context) have their values defined. These
are used to find a tuple with matching values for those fields. The remainder of
the fields in the antituple are variables which are bound to the values in the
retrieved tuple by the input operation (these fields are sometimes referred to
as wildcards). In this way, information is transferred between two (or more)
processes.

Fig. 1. A Simple One-to-One Communication Pattern

A simple one-to-one message communication between two processes can be
expressed using a combination of out and in as shown in Fig. 1. In this case
("point", 12, 67) is the tuple being deposited in the tuple space by Process 1.
The antituple, ("point", ?x, ?y), consists of one defined field (i.e. "point"),
which will be used to locate a matching tuple, and two wildcard fields, denoted
by a leading ?. The variables x and y will be bound to the values 12 and 67

2 A sixth operation, eval, used to create an active tuple, was proposed in the original
Linda model as a process creation mechanism, but can easily be synthesized from
the other operations, with some support from the compiler and runtime system, and
is not present in any of the commercial Java implementations of the Linda model.



G. Wells, Back to the Future with Linda 3

respectively, when the input operation succeeds, as shown in the diagram. If
more than one tuple in the tuple space is a match for an antituple, then any one
of the matching tuples may be returned by the input operations.

Other forms of communication (such as one-to-many broadcast operations,
many-to-one aggregation operations, etc.) and synchronization (e.g. semaphores,
barrier synchronization operations, etc.) are easily synthesized from the five basic
operations of the Linda model. Further details of the Linda programming model
can be found in [1].

1.2 The Past

Linda was originally developed at Yale University by David Gelernter and his
colleagues in the mid-1980’s[2]. This novel approach to the coordination and com-
munication between concurrent processes spawned many other research projects
(see, for example, [3, 4]). The research at Yale also led to the establishment of a
commercial company (Scientific Computing Associates) to develop and exploit
these ideas[5].

Coordination Linda was the first coordination language, and the term coor-
dination language appears to have been used for the first time in Gelernter and
Carriero’s 1992 paper “Coordination Languages and Their Significance”[6]:

“We introduced this term [i.e. coordination language] to designate the
linguistic embodiment of a coordination model. The issue is not mere
nomenclature. Our intention is to identify Linda and systems in its class
as complete languages in their own rights, not mere extensions to some
existing base language. Complete language means a complete coordina-
tion language of course, the embodiment of a comprehensive coordination
model.”[6, p. 99].

In this paper they draw a distinction between the computation model, used
to express the computational requirements of an algorithm (described in the
previous section as the host language), and the coordination model used to ex-
press the communication and synchronisation requirements. They point out that
these two aspects of a system’s construction may be embodied in a single lan-
guage (and much of their discussion is focused on refuting comments espousing
this approach[7]), or may be embodied in two separate, specialised languages —
their preferred approach.

Advantages of Coordination Languages This paper also gives a good expo-
sition of what the originators of Linda perceived as the unique strengths of their
approach. In essence, these are orthogonality and generality. They go to some
lengths to defend the position that computation and coordination are orthogonal
activities, and best supported by different languages. With respect to generality,
they suggest that the concept of a general-purpose coordination language arises



4 WCAT05

from the principle of orthogonality, and the comparison with general-purpose
computation languages. This separation has advantages of portability (in the
sense that a “Linda programmer” can adapt his/her knowledge of coordination
and concurrent programming to new computation languages easily), and support
for heterogeneity, which arises from portability:

“we make it easier . . . to switch base languages, simplify the job of teach-
ing parallelism, and allow implementation and tool-building investment
to be focused on a single coordination model”[6, p. 101].

In the case of coordination, they define generality as the ability to cover
the entire spectrum of concurrent activities: from multi-threaded applications
executing on a single processor, through tightly-coupled, fine-grained parallel
processing applications, to loosely-coupled, coarse-grained distributed applica-
tions. They cite the advantages of conceptual economy (or simplicity), flexibility
and “intellectual focus” for the generality in a coordination language. In support
of flexibility, they present a real example of a complex system, and then ask the
following question:

“Why should we accept three toolboxes, one for parallel applications
(say, message passing), one for uniprocessor concurrency (for example,
shared memory with locks), and one for trans-network communication
(say, RPC), when logically Linda works well in all three cases?”[6, p.
104].

In summary then, their article is an impassioned plea for a simple, flexible,
orthogonal approach to the construction of systems for a wide range of problems
requiring concurrency at many different levels, and a presentation of Linda as a
solution to this problem.

Adaptive Parallelism and Reuse Due to the temporal- and spatial-decoupl-
ing of communicating processes in the Linda model, it is an attractive platform
for adaptive systems, where processing nodes may come and go during the life-
time of some system. The Yale Linda group did considerable work on this as-
pect, developing a Linda-based system for adaptive parallelism called Piranha[8,
9]. This was also produced as a commercial product by Scientific Computing
Associates.

The decoupling of processes coordinated through a Linda tuple space also
supports reuse, as a common tuple structure is all that is required to provide
effective communication between components in a parallel or distributed process-
ing system. If data-type conversions are handled by the Linda system, then the
possibility of constructing heterogeneous processing systems becomes possible
too.

1.3 Linda Today

After a great deal of initial enthusiasm for the Linda concurrency model, interest
in this approach waned during the mid-1990’s. However, in the late 1990’s there



G. Wells, Back to the Future with Linda 5

was a resurgence of interest as a number of companies began to develop com-
mercial implementations of Linda in Java. Among these was Sun Microsystems,
which developed the JavaSpaces specification[10–12] as a component of the Jini
system[13]. This specification has been adopted by a number of other companies,
including GigaSpaces Technologies and Intamission, with their products, Giga-
Spaces[14] and Autevospaces[15], respectively. In addition, Scientific Computing
Associates have developed a Java implementation of Linda called JParadise[16].

Sun’s JavaSpaces specification provides for a Linda-like tuple space for data
storage. There are a number of extensions present in JavaSpaces, in addition
to the basic input and output operations, which have different names to the
original Linda operations, but provide essentially the same functionality. These
extensions are mainly focused on improving support for commercial applications,
and include transaction support, leases for tuples (essentially a time-out, or
expiration mechanism) and asynchronous event notification.

Independently, IBM developed a Linda system in Java, called TSpaces[17,
18]. This is similar to JavaSpaces in that it offers many of the same features for
the support of commercial applications, but the implementation is considerably
simpler and easier to use. The basic input/output operations have also been
extended to include support for advanced matching (using named “index” fields,
AND and OR operations), multiple-tuple operations and XML content.

In addition to these commercial developments, there are numerous recent and
current research projects investigating various aspects of the Linda programming
model, or using it as a platform for research in concurrent programming. A small
selection of these projects may be found in the reference list[19–24].

1.4 Our Experience

Interest in the Linda model began at Rhodes University around 1990[25], with
the local development of a Linda implementation, called Rhoda, for a Transputer
cluster[26]. This was followed by the development of a platform for adaptive
parallelism called Remora[27, 28], which was modeled on Yale’s Piranha system.

In the mid-1990’s, the author began the development of an extended Linda
system, again targeting Transputer clusters, and with parallel rendering of photo-
realistic computer graphics as an application area[29, 30]. To support this re-
search, an initial proof-of-concept system was developed using the Parallel Vir-
tual Machine (PVM)[31]. Around 1997, it became apparent that the Transputer
would no longer be developed or supported by the manufacturers, and a change of
focus was required. Accordingly, the concepts that were embedded in the initial
proposals were incorporated into a Linda-like system developed in Java[32–37]
with additional support for multimedia applications. This system, called eLin-
da, was the central focus of the author’s Ph.D. thesis[38]. The eLinda system is
described in more detail below, in Section 2.

Recent work has also involved the use of the commercially-developed TSpaces
system for a bioinformatics data-mining application[39, 40]. This research pro-
duced some very pleasing performance results, and quite coincidentally demon-
strated some of the strengths alluded to by Gelernter and Carriero in the paper



6 WCAT05

referred to in Section 1.2[6], such as the use of Linda for simplifying quite differ-
ent aspects of the system (in this case, both distributed network communication
and single-processor interprocess communication).

2 The eLinda Project

The initial goal of the eLinda research project was to investigate techniques for
efficient communication in fully-distributed tuple space models (i.e. where any
tuple can be stored on any processing node, with the possibility of duplication).
This involved adding a new output operation to the Linda model, wr, which is
intended for use with the rd input operation to suggest that broadcast com-
munication is required. A secondary goal was to explore efficient support for
multimedia communication, built upon the Java Media Framework (JMF)[41].
A later goal, which became the major focus of the project, was to generalise the
associative matching technique used for the input operations in Linda. This led
to the development of the Programmable Matching Engine (PME).

2.1 The Programmable Matching Engine

One of the weaknesses of the original Linda model is the simple associative
matching technique that is used to locate suitable tuples for the input operations.
This relies on exact matching (type and value) of any specified fields, and type-
matching for the undefined fields (often called wildcard, or formal fields). This
makes some simple input operations difficult to express efficiently. For example,
if a tuple is required with the minimum value of a particular field, then the
application must retrieve all matching fields (using inp), sort through these to
find the one with the minimum value, and then return the remaining tuples to
the tuple space. While this procedure is performed, other processes cannot access
the tuples, potentially restricting the degree of parallelism that can be exploited.

The Programmable Matching Engine allows the programmer of an applica-
tion to specify a custom matcher that is used internally during the retrieval
of tuples from the tuple space. This can easily implement operations such as
retrieving the minimum value. When the tuple space is fully-distributed, the
PME allows the matching to be distributed. In the example above, the segments
of tuple space held on each separate processor would be searched for the local
minima and these returned to the processing node which originated the input
operation. The matcher on this node is then responsible for selecting the global
minimum from the resulting set of tuples.

There are still situations where a “global view” of the tuples in tuple space
is required. A simple example of this is where the tuple with the median value
of some field is required. In this case, a single matcher requires the values of the
field in all the tuples in order to select the matching tuple. However, the PME
still provides improved efficiency, as it is possible for a customised matcher to
gather only the specified field values in order to determine the median value
and then request this tuple from the processing node that holds it. These field



G. Wells, Back to the Future with Linda 7

values can also be communicated using a single network message. Both of these
optimisations provide for more efficient network usage than if the application
were to handle the problem explicitly without using the PME.

The development of new, customised matchers is supported by a simple li-
brary of support functions, providing developers with the ability to interact
directly with the tuple space, and communicate with distributed components
of the tuple space. The matchers themselves are written to conform to a simple
Java interface, which requires only two methods to be written: the first to search
the tuples currently in tuple space, and the second to be used when an input
operation is blocked, as new tuples are added to the tuple space (this may simply
do nothing if blocking input operations are not supported by the matcher).

2.2 Applications of eLinda

The benefits of the PME have been demonstrated by applying it to the problem
of parsing graphical languages[42]. For this application four new matchers were
developed. Two of these were general purpose, allowing for the retrieval of tuples
where a field matches one of a set of possible values, and for retrieving a list of
tuples that match some criterion, respectively. The other two were specific to
the application, allowing for the input of tuples describing graphical components
of the language that meet specified criteria (e.g. containment in a specified two-
dimensional area). The Java classes implementing these matchers range in size
from 67 to 130 lines of heavily-commented code, which, while not an accurate
reflection of complexity, indicates the relative simplicity of using the PME.

Another application that was developed was a simple video-on-demand sys-
tem[42]. A client program could search for a video, potentially retrieving a num-
ber of matching tuples from a number of suppliers. As implemented, a customised
matcher allowed the retrieval of a video with the minimum value of the cost field.
More complex matchers that took into account factors such as quality-of-service,
available bandwidth, etc. could also be provided for such an application. The ex-
perience gained in developing this application suggested that the Linda model
may be useful in supporting service-oriented architectures, and, more specifically,
“web services” (see Section 3.1).

3 Open Issues

The underlying “open issue” that has motivated our previous research, and much
of the other research on Linda, is the performance question: can a coordination
model with a high level of abstraction provide reasonable efficiency for practical
applications? Our experience, and the recent interest in Linda systems in Java,
suggest that the Linda model is coming into favour, specifically as a mechanism
for distributed applications running on general-purpose networks of worksta-
tions.



8 WCAT05

3.1 Linda for Heterogeneous Web Services

Our testing of eLinda, TSpaces, JavaSpaces and GigaSpaces revealed that the
performance of these systems is not ideal for relatively fine-grained parallel-
processing applications, such as parallel ray-tracing[33, 36]. Focusing on distrib-
uted applications, and the current interest in web-services (or, more generally,
service-oriented architectures) for distributed processing, suggests that the im-
plementation of the Linda model as middleware for web-services would be a use-
ful avenue of exploration. The ease-of-use of the Linda model and the spatial-
and temporal-decoupling that it provides would be extremely beneficial as a mid-
dleware layer for applications based on web services. This appears to be largely
unexplored territory at present, except for the work of Lucchi and Zavattaro[23],
who focus specifically on the security of a tuple space web-service.

Our intention is to reimplement the eLinda system as an XML-based web
service. This raises a number of questions, as yet unanswered, as to the best
approach to take. The web-services community appears to be divided between
the use of RPC models, based on protocols and standards such as SOAP and
WSDL, and the direct use of XML and the basic World Wide Web protocols
and standards (an approach referred to as Representational State Transfer, or
REST)[43, 44]. The relative simplicity of the REST approach is appealing, but
there are questions around issues such as security and reliability, which require
investigation before implementation commences. The opportunity will also be
taken to redesign some of the fundamental features of the eLinda system, which
should also produce some general performance improvements.

As a central issue in redeveloping the eLinda system as middleware for web
services, we plan to investigate language interoperability issues, specifically com-
paring the use of C# and Java for client and server implementations, and het-
erogeneous system configurations, but not limited to these two languages. This
will support an investigation of the interoperability issues between applications
developed in different programming languages making use of a common Linda
tuple space service, and will also permit comparative performance studies. In-
teroperability of data-types expressed in XML is a thorny issue and we expect
to face considerable difficulty in this regard. However, we believe that the Linda
web-service approach has great promise for supporting component reuse and
simplifying the development of complex systems composed of web-services. In
particular, Linda’s spatial decoupling provides a platform for the simplification
of problems such as service discovery.

If the language interoperability problems can be solved, then we will poten-
tially have a very useful mechanism in place to allow for heterogeneous system
components to be combined in very flexible ways. The strongly-decoupled nature
of Linda may be particularly useful for solving problems involved in adaptation.
It is hoped that this aspect can be explored further during the workshop discus-
sions.



G. Wells, Back to the Future with Linda 9

3.2 Improved Flexibility

Comparison of the Programmable Matching Engine with related features of other
extended Linda dialects (particularly TSpaces[17, 45] and I-Tuples[46]) suggests
that there may be some benefit to be had from applying similar techniques to
output or update operations[38]. The extended update operations are intended
to optimise the common sequence of retrieving a tuple, modifying a field’s value,
then returning the tuple to tuple space. For simple operations, such as incre-
menting a numeric field, there may be considerable efficiency gains to be had
if the operation is carried out by the server, directly in tuple space, minimising
the network communication required. Extended output operations are typically
quite simple (e.g. TSpaces’ multiWrite command), but may provide useful re-
ductions in the load imposed on the network.

The Programmable Matching Engine in eLinda was developed specifically
as a mechanism for increasing the flexibility of the matching process used for
input operations. Despite this, it can be used, albeit awkwardly, to emulate the
update and extended output operations of these other Linda systems. Providing
a better design for the handling of output or update operations would be a useful
extension to the demonstrated benefits provided by the PME.

Our plan is to implement new update operations analogous to the existing
flexible input operations provided by the eLinda PME. This will be followed by
application development and testing to assess the benefits of these new oper-
ations. Extended, flexible output operations will also be considered, but these
should be relatively simple to implement and test. These extensions will be com-
pared, both quantitatively and qualitatively, with the existing commercial and
research systems that have adopted similar extensions. Formal modeling of the
PME and these new extensions would also be extremely desirable. As always,
the goal will be to assess whether the enhancements can improve the flexibility
and performance of Linda systems, while preserving the fundamental simplicity
of the model.

The wide-spread commercial development of Linda implementations in Java
indicates that there is still much interest in the original Linda model of coordi-
nation. However, research (our own, and that of others) also indicates that there
is considerable scope for improving both the performance and flexibility of use
of the Linda programming model. While our prior research has addressed some
specific issues in these areas, much remains to be done.

In summary, our hypothesis is that there is considerable scope for the adop-
tion of the original Linda coordination model, with some extensions, as a simple,
flexible coordination mechanism for distributed applications running on general-
purpose networks of workstations. In particular, we envisage a place for Linda
as middleware for heterogeneous, spatially-decoupled components executing in a
web-services environment. This hypothesis needs to be tested by in-depth quan-
titative and qualitative investigation of the implementation and use of a Linda
system in such an environment.



10 WCAT05

Acknowledgments

The eLinda research project is supported by the National Research Foundation
(NRF) of South Africa, and by the Distributed Multimedia Centre of Excellence
in the Department of Computer Science at Rhodes University, with funding from
Telkom SA, Business Connexion, Comverse, Verso Technologies and THRIP. The
author particularly wishes to thank Alan Chalmers of the University of Bristol,
and Peter Clayton for their valuable advice and support over many years, and
Peter Wentworth for the many thought-provoking discussions on these topics.

References

1. Carriero, N., Gelernter, D.: How to Write Parallel Programs: A First Course. The
MIT Press (1990)

2. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7 (1985) 80–112

3. Banâtre, J., Métayer, D.L., eds.: Research Directions in High-Level Parallel Pro-
gramming Languages. Volume 574 of Lecture Notes in Computer Science. Springer-
Verlag (1992)

4. Wilson, G.: Linda-like systems and their implementation. Technical Report 91-13,
Edinburgh Parallel Computing Centre (1991)

5. Scientific Computing Associates: Home page. URL: http://-

www.lindaspaces.com/index.html (2004)
6. Gelernter, D., Carriero, N.: Coordination languages and their significance. Comm.

ACM 35 (1992) 97–107
7. Kahn, K., Miller, M.: Technical correspondence. Comm. ACM 32 (1989) 1253–

1255
8. Carriero, N., Gelernter, D., Kaminsky, D., Westbrook, J.: Adaptive parallelism

with Piranha. Technical Report 954, Yale University (1993)
9. Kaminsky, D.: Adaptive Parallelism with Piranha. PhD thesis, Yale University

(1994)
10. Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces Principles, Patterns, and Practice.

Addison-Wesley (1999)
11. Sun Microsystems: JavaSpaces service specification. (URL: http://-

java.sun.com/products/jini/2.0/doc/specs/html/jsTOC.html)
12. Bishop, P., Warren, N.: JavaSpaces in Practice. Addison Wesley (2002)
13. Sun Microsystems: Jini connection technology. (URL: http://www.sun.com/jini)
14. GigaSpaces Technologies Ltd.: GigaSpaces. URL: http://www.gigaspaces.com/-

index.htm (2001)
15. Intamission Ltd.: AutevoSpaces: Product overview. URL: http://-

www.intamission.com/downloads/datasheets/AutevoSpaces-Overview.pdf

(2003)
16. Scientific Computing Associates: Virtual shared memory and the Paradise sys-

tem for distributed computing. Technical report, Scientific Computing Associates
(1999)

17. Wyckoff, P., McLaughry, S., Lehman, T., Ford, D.: T Spaces. IBM Systems Journal
37 (1998) 454–474

18. IBM: TSpaces. (URL: http://www.almaden.ibm.com/cs/TSpaces/index.html)



G. Wells, Back to the Future with Linda 11

19. De Nicola, R., Ferrari, G., Meredith, G., eds.: Proc. 6th International Conference
on Coordination Models and Languages, COORDINATION 2004. Volume 2949 of
Lecture Notes in Computer Science. Springer-Verlag, Pisa, Italy (2004)

20. Carbunar, B., Valente, M.T., Vitek, J.: Coordination and mobility in CoreLime.
Math. Struct. in Comp. Science 14 (2004) 397–419

21. Bruni, R., Montanari, U.: Concurrent models for Linda with transactions. Math.
Struct. in Comp. Science 14 (2004) 421–468

22. Charles, A., Menezes, R., Tolksdorf, R.: On the implementation of SwarmLinda.
In: ACM-SE 42: Proc. 42nd Annual Southeast Regional Conference, New York,
NY, USA, ACM Press (2004) 297–298

23. Lucchi, R., Zavattaro, G.: WSSecSpaces: a secure data-driven coordination service
for web services applications. In: SAC ’04: Proc. 2004 ACM Symposium on Applied
Computing, New York, NY, USA, ACM Press (2004) 487–491

24. Cheung, L., Kwok, Y.: On load balancing approaches for distributed object com-
puting systems. J. Supercomput. 27 (2004) 149–175

25. Wells, G.: An implementation of Linda. In Cilliers, C., ed.: Proc. Fifth Computer
Science Research Students’ Conference, Katberg (1990) 302–307

26. Clayton, P., de Heer Menlah, F., Wells, G., Wentworth, E.: An implementation
of Linda tuple space under the Helios operating system. South African Computer
Journal 6 (1992) 3–10

27. Rehmet, G.: Remora: Implementing adaptive parallelism on a heterogeneous clus-
ter of networked workstations. Master’s thesis, Rhodes University (1995)

28. Clayton, P., Rehmet, G.: Implementing adaptive parallelism on a heterogeneous
cluster of networked workstations. In: Proc. 1995 International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA’1995).
(1995) 571–580

29. Wells, G., Chalmers, A.: Extensions to Linda for graphical applications. In: Proc.
International Workshop on High Performance Computing for Computer Graphics
and Visualisation. (1995) 174–181 Reprinted in [47].

30. Wells, G., Chalmers, A., Clayton, P.: An extended version of Linda for Transputer
systems. In O’Neill, B., ed.: Parallel Processing Developments (Proc. 19th World
Occam and Transputer User Group Technical Meeting), IOS Press (1996) 233–240

31. Wells, G., Chalmers, A.: An extended Linda system using PVM. In: Proc. 1995
PVM Users’ Group Meeting. (1995) URL: http://www.cs.cmu.edu/Web/Groups/-
pvmug95.html.

32. Wells, G., Chalmers, A., Clayton, P.: An extended version of Linda for distributed
multimedia applications. In: Proc. SAICSIT ’99. (1999)

33. Wells, G., Chalmers, A., Clayton, P.: A comparison of Linda implementations in
Java. In Welch, P., Bakkers, A., eds.: Communicating Process Architectures 2000.
Volume 58 of Concurrent Systems Engineering Series. IOS Press (2000) 63–75

34. Wells, G., Chalmers, A., Clayton, P.: Extending Linda to simplify application
development. In Arabnia, H., ed.: Proc. International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA’2001). CSREA Press
(2001) 108–114

35. Wells, G., Chalmers, A., Clayton, P.: Extending the matching facilities of Linda.
In Arbab, F., Talcott, C., eds.: Proc. 5th International Conference on Coordination
Models and Languages (COORDINATION 2002). Volume 2315 of Lecture Notes
in Computer Science., Springer (2002) 380–388

36. Wells, G., Chalmers, A., Clayton, P.: Linda implementations in Java for concurrent
systems. Concurrency and Computation: Practice and Experience 16 (2004) 1005–
1022



12 WCAT05

37. Wells, G.: New and improved: Linda in Java. In Gibson, P., Power, J., Waldron,
J., eds.: Proc. Third International Conference on the Principles and Practice of
Programming in Java (PPPJ 2004). ACM International Conference Proceedings
Series, Las Vegas (2004) 67–74.

38. Wells, G.: A Programmable Matching Engine for Application Development in
Linda. PhD thesis, University of Bristol, U.K. (2001)

39. Akhurst, T.: The role of parallel computing in bioinformatics. Master’s thesis,
Rhodes University (2004)

40. Wells, G., Akhurst, T.: Using Java and Linda for parallel processing in bioinfor-
matics for simplicity, power and portability. In: Proc. IPS-USA-2005, Cambridge,
MA, USA (2005)

41. Sun Microsystems: Java Media Framework API. (URL: http://java.sun.com/-
products/java-media/jmf/index.html)

42. Wells, G.: New and improved: Linda in Java. Science of Computer Programming
(2005) In press.

43. Asaravala, A.: Giving SOAP a REST. URL: http://www.devx.com/DevX/-

Article/8155 (2002)
44. McMillan, R.: A RESTful approach to web services. URL: http://-

www.networkworld.com/ee/2003/eerest.html (2003)
45. IBM: The TSpaces programmer’s guide. (URL: http://www.almaden.ibm.com/-

cs/TSpaces/html/ProgrGuide.html)
46. Foster, M., Matloff, N., Pandey, R., Standring, D., Sweeney, R.: I-Tuples: A

programmer-controllable performance enhancement for the Linda environment.
In Arabnia, H., ed.: Proc. International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’2001). CSREA Press (2001)
357–361

47. Chen, M., Townsend, P., Vince, J., eds.: High Performance Computing for Com-
puter Graphics and Visualisation. Springer-Verlag (1996)


