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Chapter 1

Introduction

This course examines some central issues in Computer Science such as: “What kind of problems can
we expect to solve with a computer? Are there problems that we cannot solve efficiently? Can we find
algorithms for all problems?”

1.1 Historical Overview

We can trace the history of computability and computation back to its origin with the first ideas about
theoretical limits to mathematical computation in the early 1900s. The first machines we would re-
cognise as computers were code-breaking machines in World War II; this lead to the development of
general-purpose computers in the 1950s. In the early days of development of electronic computers,
these ideas were further developed as computation moved away from paper to electronic machines. Up
to that time, the word “computer” meant a person who performed computation. In one of the last major
projects before elecronic computers replaced humans, a group of African American women did a lot
of the computation needed for the early space race [Shetterly 2017]; that women did this work was not
unusual and women were also among the pioneers of computer programming and computer science
[Howell 2017; Gürer 1995].

• 1930s, 1940s: Researchers like Alonzo Church, Emil Post, Alan Turing, A.A. Markov and
Stephen Kleene contributed proofs, models, and unsolved problems forming the basis of the
theory of computing still relevant today. For example, Church’s thesis is still considered the
most general concept of automated computation.

• 1950s: Noam Chomsky defined a set of formal languages and grammars, on which modern
computing languages are based, while Alan Turing introduced the Turing Machine, which still
forms the basis of all modern computer architectures. (The latter will only change when quantum
computing becomes a reality.)

• 1960s, 1970s: Much work was done on determining minimum resources required for computa-
tion; for example, how many operations and/or memory cells are needed. Nowadays, not many
computer users are even aware of these limitations, owing to the vast (relatively speaking!) re-
sources available in modern computers.

1.2 Example Problems

Some of the example problems we will consider in this course are described in the next few sub-
sections. Can you spot the problems that are efficiently solvable? Are there problems that may not be
solvable for all inputs?

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Travelling home from Makhanda. With petrol so expensive it is important to find the shortest distance!

1.2.1 Weary student

After finishing exams, the weary student needs to return home to recuperate for the next semester.
Unfortunately, they are not sure what the quickest route to their home town is. (Roads do not go
directly from Makhanda to every other town.) Given a description of the roads that connect different
towns (and their lengths) as shown in Fig. 1.1 can you find the shortest distance solution?

1.2.2 Cable laying

After deciding that the science faculty makes too many geeky jokes, the humanities faculty successfully
petitions Rhodes University to segregate the scientists from the rest of campus. Each department is
set up in its own new building, but the scientists soon discover that there is no Internet access. An
emergency of this magnitude must be dealt with immediately, but the staff are undecided on the quickest
way to solve this problem. Given a single team of workers, what is the quickest way to connect all the
buildings? The information including the time needed to trench fibre between each building is given in
the form shown in Fig. 1.2.

1.2.3 Traveling salesperson

A company has just launched a new range of household cleaning products. Named the Whizzo™ range
they could potentially change household cleaning as we know it. To promote this range, a salesperson
must tour all the major cities. Ideally they would like the tour to be as short as possible and include
every city, without visiting any city twice. Given a road map showing which cities are connected by
roads and the lengths of the roads, can you find this ideal route? (Obviously, in some cases there is no
exact solution since the roads may force the salesperson to visit the same city twice.)

1.2.4 New manager

Congratulations! You have just been hired as a manager by an ailing company. After some investigation
you realise that many employees are performing tasks to which they are not suited. You decide that the
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Figure 1.2: How best to connect new departmental buildings to campus? This figure shows the time it would take to
lay a cable connecting two departments. (Note: If Department A is connected to campus and we connect Department
B to Department A then it is also considered connected to campus.)

best way to turn things around and make the company profitable again is to reassign employees to tasks
that better suit them. Given a description (see Fig. 1.3) of the tasks the employees can perform and the
tasks needed to be completed, can you find the best assignment of tasks to employees?

1.2.5 Program analysis

MicroNaff has several buggy programs bundled together in an office suite. Most of the bugs result in
infinite loops and their customers are getting rather upset with them. They decide that rather than find
the bugs, they will instead write a program analysing their office suite and decide whether the program
will terminate for all possible input. If their new program gives the OK for their office suite, MicroNaff
can rest assured that the customers are obviously imagining the bugs. Can you write a program that
will test another program for an infinite loop?

Figure 1.3: Given many employees each with different abilities, and a set of tasks, find the best way to assign the
employees to these tasks.
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1.3 What Next?

It is not entirely obvious which of the above problems can be solved efficiently. In fact, some problems
listed above can be proven not to be solvable in general. Can you spot which these are? Since the limits
of computation are not entirely obvious, this course will first consider simpler computation systems
and their limitations in the next few chapters. Using simpler systems makes it possible to find their
limits of computation more easily. These limitations then suggest what changes should be made to turn
them into more powerful systems, thereby slowly building up to the conceptual equivalent of modern
computers.



Chapter 2

Finite State Automata

In this chapter we first discuss regular expressions, which are used to define patterns for matching
strings. Thereafter, we consider our simplest modest of computation – the Finite State Automaton1

(FSA). This machine has the ability to distinguish between valid and invalid strings. The set of valid
strings for an FSA is known as its language. We will look at another way of deriving an FSA’s language
using a grammar. FSA are useful for lexical analysis (which is covered in the third year compiler
course) as well as string matching.

After defining all the components of an FSA, several examples are shown to make the concepts
more concrete. An extension of the FSA is also considered, giving rise to non-deterministic automata.
Finally, we discuss what languages FSA cannot recognise, which will suggest how to turn them into
more powerful machines.

2.1 Regular Expressions

2.1.1 What is a regular expression?

A regular expression (or regex for short) is a text string that describes a search pattern. You may already
have encountered wildcard notations when working at the command line, e.g. using ls *.c in Linux
to list all C program files in a directory, or dir *.c to do the same in a Windows environment. You
can think of regular expressions as "wildcards on steroids".

A common notation for patterns is described as follows. Let Σ represent the finite set of symbols
belonging to the language, called the alphabet.

For example, Σi = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is an alphabet that we could refer to as digits. Note
however, that N = {0, 1, 2, 3, 4, 5, . . .} is not a valid alphabet as it is not finite.

Using a given alphabet, we can construct strings of length n (n ≥ 0), where each string is an ordered
n-tuple of elements of Σ written without punctuation. So for example, consider a small subset of the
English language with {a, . . . , z, A, . . . , Z} as its alphabet. Strings in this language could include dog,
Rhodes, and student2. For a simple language with Σ = {a, b}, possible strings might include aa,
ababab, and b amongst others. These strings have length 2, 6, and 1, respectively.

The set of all strings (of any finite length) over Σ is denoted by Σ∗. The empty string is a unique
string for all alphabets; it is denoted by Greek letter ε (pronounced epsilon or sometimes λ –lambda),
and has zero length.

1A note on Latin plurals: singular is automaton; plural is automata.
2Random examples; they are not related.

5



6 CHAPTER 2. FINITE STATE AUTOMATA

2.1.2 Creating and matching regular expressions

When defining a language, having an alphabet is not enough; we also need rules for creating strings
over that alphabet. There are several rules for creating regular expressions as given below:

1. Single symbol: Any symbol a ∈ Σ is a regular expression. In addition, ε is a regular expression.

2. Concatenation: Any two strings can be placed adjacent to each other to form a new string. For
example, let u = abb and v = abab where Σ = {a, b}; then uv = abbabab. This rule can be
applied to two or more strings.

3. Union: This rule involves using the union operator, denoted by +. Here, u+v(u, v ∈ Σ∗) means
either u or v. This rule can also be applied to two or more strings.

4. Repetition: The star operator can be used to create repeated substrings, where u∗ gives u1u2 . . . uk,
where k ≥ 0. Thus, if u = abb, u∗ gives ε or abb or abbabb or abbabbabb, etc. Note that the
star operator only applies to its immediate antecedent; therefore, you are should use parentheses
if the star operator applies to a complex regular expression. For example, a+ b∗ denotes strings
ε or a or b or bb or bbb, etc. Regular expression (a+ b)∗, however, denotes any combination of
a’s or b’s as well as ε.

Now that we have rules by which to create regular expressions, how do we use these to determine
whether a given string is valid (i.e. it matches the pattern given by the regular expression)? Using the
rules given above for creating regular expressions, we can state that:

• u matches a ∈ Σ, iff u = a

• u matches ε, iff u = ε

• u matches (r + s), iff u matches r or u matches s

• u matches rs, iff u = vw and v matches r and w matches s

• u matches r∗, iff u either matches r or u is a concatenation of strings, each of which matches r
– or u is ε

Some examples of regular expressions for Σ = {0, 1} are given below, together with an explanation of
what kinds of strings would be valid for each of these.

• 0+1 means only strings 0 and 1 are valid

• (0+1)∗ means ε or any combination of 0’s and 1’s in Σ∗ is valid

• 0(0+1)∗ means any combination of 0’s and 1’s starting with a 0 is valid

• ((0+1)(0+1))∗ means any string of even length in Σ∗ is valid3

• (ε+0)(ε+1)+11 means only strings ε, 0, 1, 01, 11 are valid

2.2 What is an FSA?

2.2.1 Definition

A Finite State Automaton is a machine suited to string recognition. As it reads a string the FSA changes
its internal state based on the string’s characters. Some of these states are accept states so that if the
string ends when the machine reaches in an accept state then the whole string is accepted. An informal
representation of an FSA is shown in Fig. 2.1, and the basic processing is shown in Fig. 2.2.

An FSA consists of several entities, which need to be defined (taken from Brookshear [1989]):
3Noting that zero is an even number.
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Figure 2.1: Conceptual model of an FSA.

Figure 2.2: As the input string is processed the internal state of the machine changes.
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state a b c accept?
q0 q1 error error no
q1 error q2 error no
q2 error error q3 no
q3 yes

Figure 2.3: FSA as a table. Every row is a state and has a transition for each letter of the alphabet (here, {a, b, c}).
If you label states with numbers (so they index the next state in the table) rather than names, you can use an invalid
number like -1 to indicate an error. The last row has no entries for the alphabet since there are no transitions out of it
but an accept state can have transitions out of it.

1. Alphabet: The alphabet of an FSA is the set of all characters from which the strings to be
recognised are constructed.

2. States: An FSA consists of a set of states. These represent intermediate or final steps in determ-
ining whether the string is acceptable or not.

3. Transition Function: The transition function (usually denoted δ) is the heart of the FSA. It is
a mapping from states and characters to the next state. This function therefore determines the
behaviour of the FSA. If a machine encounters symbol a while in state 12, it will move to the
new state determined by δ(12, a).

4. Accept States: A subset of the FSA’s states. If the machine finishes the string and is currently in
an accept state then the entire string is accepted, otherwise the entire string is rejected.

A way to represent the transition function is to use a table as in Fig. 2.3 in which there is a column for
each symbol in the alphabet. The start and accept states have to be separately noted. Each entry in the
table contains the number of the next state or an error indicator. We can use -1 to indicate an error; we
can’t indicate an accept state as easily as an accept state could also allow a transition out of it.

These five items are the only things allowed as part of an FSA and together define it completely.
Since it is hard to visualise the transition function we normally depict FSAs by graphical means, using
circles to denote states and arcs between these circles represent the transitions given by the transition
function. A single arrow points out the start state. Double circles are used to indicate accepting states
(of which there must be at least one). Each arc is labelled by the symbol (or ε) that is matched to trigger
that transition.

While a function must be defined for all possible inputs this can result in a cluttered graph. As a
result we will only show transitions that leave the FSA in a state from which it might still accept the
string. Implicit in our diagrams is an error state. Any undefined characters for each state will transition
to this error state. The error state is not an accept state and it is not possible to leave this error state. By
adopting these conventions our diagrams are far easier to read. See Fig. 2.4 for a comparison.

Figure 2.4: If a possible transition is not shown then it is assumed to lead to an implicit error state with no transition
out of it. This makes the two FSAs shown here equivalent.
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Figure 2.5: Simple vending machine FSA.

2.2.2 Example FSA

Vending machine

In Fig. 2.5 we see a simple soft drink vending machine. It accepts 50c, R1, and R2 coins. When
exactly R2.50 is reached the machine moves to an accept state and dispenses the soft drink. Spend a
few minutes getting used to this FSA. What is the alphabet of this machine? What changes would we
need to make if we allowed 20c coins? What if the price of a can was a more realistic R19.50?

Recognising numbers

In Fig. 2.6 we have an FSA that is able to recognise some of the valid floats for Java or generally a C-
like programming language. In this case the alphabet consists of the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., f}.
To make the diagram more readable we use the shorthand digit to represent a numeric character. Can
you create an FSA that recognises all valid longs? How about doubles?

2.3 Efficient String Recognition

In this section we’ll consider a powerful application of these automata: string search. This differs
slightly from the previous examples, in that we are happy if the string we are searching for matches
part of a longer string, rather than a test whether a whole string matches a given pattern.

If asked to search for a given string in a long text, most computer programmers will come up with a
solution similar to listing 2.1, without too much effort. This is called naïve string search – the obvious
algorithm. Take one position at a time in the string you are searching for and compare against the longer
string your are searching in. If there is a mismatch, slide the search string along one position and start
again. Stop when you reach the end of the search string and report where the match was in the long
string, or report -1 if you fall off the end of the long string without a match.
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Figure 2.6: FSA that recognises valid floating point numbers.

1 i n t f i n d ( char * f , char * l o n g S t r i n g ) {
2 i n t l l e n = s t r l e n ( l o n g S t r i n g ) ;
3 i n t f l e n = s t r l e n ( f ) ;
4 f o r ( i n t a =0; a< l l e n ; a ++)
5 {
6 f o r ( i n t b =0; b< f l e n ; b ++)
7 {
8 i f ( a+b >= l l e n )
9 re turn −1;

10 i f ( l o n g S t r i n g [ a+b ] != f [ b ] )
11 break ;
12 i f ( b+1 == f l e n )
13 re turn a ;
14 }
15 }
16 re turn −1;
17 }

Listing 2.1: Naïve string search

Analysing the complexity of this algorithm, we see that it is a function of the length of the search
string (m) and the length of the text in which to search (n). The worst case complexity for this
code occurs when searching for strings with lots of repeated characters. Trace through the code with
f="aaaaab" and longString = "aaaaaaaaaaaaaaaaaaaaaaaab". This should convince you that
the worst-case order of this algorithm is O(nm).

Fortunately there is an algorithm called Knuth-Morris-Pratt (KMP) after its inventors [Knuth et al.
1977] that has O(n + m) complexity. It is based on the idea of creating an FSA that can recognise
the string in a fast manner, with a number of tricks to avoid repeating work. The FSA in Fig. 2.7
reaches the accept state if and only if the string "aaaaab" has just been read. Using this FSA makes
string recognition very easy. We simply feed in the string, a character at a time to the FSA, if it ever
reaches the accept state then we know we have just finished reading the search string and can stop. This
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Figure 2.7: FSA that recognises the string "aaaaab".

procedure is clearly linear in the length of the text to search (i.e. O(n)). KMP differs from an FSA in
adding links to handle mismatches, which can result in skipping far ahead in the string; we will stick
with FSAs here, since we are working through models of computation, not methods of string search4.

An FSA-based method is useless if there is not an efficient means of constructing the FSA. To
construct the FSA we work exclusively with the search string. To represent the FSA we note that there
are only transitions one step forward (if the string matches) or a single jump backwards (if the string
does not match). We use an array to store the indices of these jumps backwards.

When determining how far back to jump the crucial insight is to see that one must jump to the
previous state that could start the search string. As an example consider the search string ‘ababcd’. In
this case if ‘abab’ has already been matched and the next letter is an ‘a’ then there is a failure (since
we did not read a ‘c’) but we could have already started reading ‘aba’ of the string we are looking for.
To check this we jump back to the matched state ‘ab’ and try to continue matching.

Given a matched string of length n, the problem is reduced to finding the smallest initial string that
can be thrown away while still leaving a string that forms an initial part of the search string. Fortunately
knowing how much of the string to throw away for the matched string of length (n− 1) makes the task
considerably easier. If the current character matches the next character then the position to jump back
is increased by one, otherwise the jump is back to the beginning of the string. In most cases there is no
such initial string and the matching process must start from the beginning again.

2.4 Non-deterministic FSA

Let’s try make our FSA more powerful. To do this, we introduce the concept of non-determinism. This
means our FSA can have several transitions for the same character in the same state. We assume that
our FSA can either ‘magically’ pick the correct decision, or it has the ability to explore all possible
options in parallel.

If a state has more than one transition out and one is labelled with the empty string, by ε, that
also makes the FSA nondeterministic as there is no way to determine whether the transition labelled ε
should be taken in preference to a non-empty transition without looking ahead.

How would a non-deterministic automaton (NFA) accept strings? Since we do not have the ability
to ‘magically’ pick the correct transition let us deal with performing the operations in parallel. The NFA
would need to maintain a set of all possible states that it could be in. If one of those states encounters
the implicit error state then it ceases to be a possible state and the machine can discard that possibility.
When the string terminates, if at least one of the possible states is an accept state then the entire string
is accepted, otherwise it is rejected.

As an example of an NFA consider Fig. 2.8. This NFA will recognise only integers, longs, floats
and doubles, which are valid in Java, C etc. The first transition in the NFA is not deterministic since
4Here is a detailed description of KMP: https://www.scaler.com/topics/data-structures/kmp-algorithm/

https://www.scaler.com/topics/data-structures/kmp-algorithm/


12 CHAPTER 2. FINITE STATE AUTOMATA

Figure 2.8: A non-deterministic FSA that recognises double, long, int and float types. Notice how simple determ-
inistic FSAs have been combined to create this NFA.

there are several transitions that expect a digit (and two that expect ‘.’ – in quotes to make the dot easier
to see). This means that our NFA will start by either magically guessing the correct type of the string
or running all the possibilities in parallel.

If the NFA in Fig. 2.8 was to process the string ‘1.3f’. The sequence would be as follows:

1. After the ‘1’ is encountered then the possible states would be {f1, d1, l1, i1}.

2. Encountering a ‘.’ reduces the set of possible states to{f3, d3}.

3. The ‘3’ leaves the set of possible states unchanged.

4. ‘f’ leaves but a single state left {f4}. Since this is the end of the string and f4 is an accept state
the entire string is accepted.

It can be shown that for every NFA there is an FSA that is able to recognise the same language! This
is a fairly unexpected result since it seems that we are endowing our machine with a powerful ability,
yet there is no additional power. The key insight is to realise that while the NFA is maintaining a set
of possible states, that set of states is itself a state. Since the number of states is finite, the number of
possible subsets (or power-sets) is also finite. We can represent the different subsets as different states,
and the resulting automaton is deterministic. This process is shown in Fig. 2.9 where each set of states
is merged into a single state in a new deterministic finite automaton (DFA) that recognises the same
strings as the original NFA.
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Figure 2.9: Converting a nondeterministic automaton into a deterministic one. Since the start state has two trans-
itions for a digit (states 1 and 4), we create a new state that is a set of states 1 and 4, both of which are reached from
state S by a digit. As state 4 is an accept state, the new state {1, 4} is also an accept state. If in this new state we
encounter a digit then state 1 transitions to itself and state 4 transitions to itself as well. This means in the state {1, 4}
a digit also transitions to itself. However if a ‘.’ is encountered, state 4 moves to the error state and state 1 moves to
state 2. Thus, if state {1, 4} encounters a ‘.’ it moves into state {2}. The rest of the transitions are similarly obtained.
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2.5 Links to a Grammar

2.5.1 What is a grammar?

Thinking back to your school days, you are likely to have been taught some grammar rules for a spoken
language. For the English language, these generally take the form of:
Sentence 7→ NounPhrase Predicate

NounPhrase 7→ Article Adjective CommonNoun
NounPhrase 7→ ProperNoun

Predicate 7→ Verb NounPhrase

Article 7→ a
Article 7→ the

Adjective 7→ hard-working
Adjective 7→ nasty

CommonNoun 7→ prac
CommonNoun 7→ student
ProperNoun 7→ Philip

Verb 7→ solves
Verb 7→ helps

This grammar allows us to derive very informative strings such as "Philip helps the hard-working
student"5 and "a hard-working student solves the nasty prac". In the above grammar we
can see that there are symbols such as "<NounPhrase>" that never appear in the final string. We will
call these symbols non-terminals and the symbols that do appear in the final string, terminals. Note
that the non-terminal symbols all start with an uppercase letter, while the terminal symbols start with a
lowercase letter. This convention will be used throughout these notes.

It is interesting to characterise the set of all strings accepted by an FSA. We call this set the language
of the FSA. It turns out that this set can be defined in a different manner to an automaton. This brings
us to the idea of a regular grammar.

2.5.2 Regular grammar

There is a simple grammar called a regular grammar that can generate all possible strings accepted by
an FSA. The grammar has a very restricted form with the rules taking one of the following two forms:

NonTerminal 7→ terminal NonTerminal
NonTerminal 7→ terminal

As an example let us consider creating the grammar for the FSA, considered previously, to recog-
nise floating point numbers (see Fig. 2.6):

5Similarity of the names of the first and third author is a coincidence.
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Start 7→ 0 Whole
Start 7→ 1 Whole
Start 7→ 2 Whole
Start 7→ 3 Whole
Start 7→ 4 Whole
Start 7→ 5 Whole
Start 7→ 6 Whole
Start 7→ 7 Whole
Start 7→ 8 Whole
Start 7→ 9 Whole
Start 7→ . Dot

Whole 7→ 0 Whole
Whole 7→ 1 Whole
Whole 7→ 2 Whole
Whole 7→ 3 Whole
Whole 7→ 4 Whole
Whole 7→ 5 Whole
Whole 7→ 6 Whole
Whole 7→ 7 Whole
Whole 7→ 8 Whole
Whole 7→ 9 Whole
Whole 7→ f
Whole 7→ . Frac

Dot 7→ 0 Frac
Dot 7→ 1 Frac
Dot 7→ 2 Frac
Dot 7→ 3 Frac
Dot 7→ 4 Frac
Dot 7→ 5 Frac
Dot 7→ 6 Frac
Dot 7→ 7 Frac
Dot 7→ 8 Frac
Dot 7→ 0 Frac

Frac 7→ 0 Frac
Frac 7→ 1 Frac
Frac 7→ 2 Frac
Frac 7→ 3 Frac
Frac 7→ 4 Frac
Frac 7→ 5 Frac
Frac 7→ 6 Frac
Frac 7→ 7 Frac
Frac 7→ 8 Frac
Frac 7→ 9 Frac
Frac 7→ f

It should be evident from studying Fig. 2.6 that there is a one-to-one mapping that turns our FSA into
this grammar. The astute reader will note that for the grammar rules we have given an explicit rule
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Table 2.1: Chomsky’s Hierarchy

Language class Grammar Automaton
0 Unrestricted Turing machine
1 Context-sensitive Linear-bounded automaton
2 Context-free Push-down automaton
3 Regular NFA or DFA

for each digit (which is the way it should be), whereas in the figure, we have represented multiple
transitions by a single path to make the diagram more readable. When we do practical work, we use a
tool, JFLAP, to implement automata, and JFLAP requires that you create a specific transition for each
input symbol.

To perform the conversion we turn our states into the non-terminals and for every transition of the
form δ(State, c) = State′ we add a rule to our grammar of the form State 7→ c State’. If the
state is an accept state then we add the rule containing a single terminal: State 7→ c.

It is possible to prove that an FsA can be represented by a regular grammar and vice-versa and
that regular expressions are also equivalent in expressive power. I other words, all three notations are
equivalent (define the same class of language).

2.5.3 Chomsky’s hierarchy

Not all computer languages can be described by a regular grammar. Noam Chomsky categorised regular
and other languages as in Tab. 2.1.

Since this is a hierarchy, every language of class 3 is also a language of classes 0, 1 and 2; every
language of class 1 is also a language of class 0; and so on. In terms of automata, a machine capable of
recognising a class 0 language is a powerful enough machine to recognize classes 1, 2 and 3. But not
vice-versa: an FSA for example cannot be constructed to recognize a class 0, 1 or 2 language. So why
not just stick with the most general class of automaton? Because the more general the class, the less
efficient the automaton is at solving problems that a less efficient atomaton can solve.

The distinction between languages can be seen by examining the structure of the production rules
of the corresponding grammar and the nature of the automata that can be used to identify them. In this
chapter, we discussed regular grammars and showed the format of the production rules defining such
grammars. In the next two chapters, we look at the remaining language classes defined by Chomsky.

2.5.4 Recognising strings or performing computations?

The approach we have taken thus far, might feel unnatural to some. We started out with the intention of
exploring the limits of computability and have now wandered into defining our own grammar. Surely
there are limits inherent in a grammar that are not inherent in general computability. Does this mean
we should rather forget about boring grammars and rather consider the limits of the latest and greatest
Whizzomatic™ computer that has just been released?

It turns out that an unrestricted grammar can be far more powerful than most people realise and can
perform any computation that the latest computer can. In fact since the grammar does not have any
space limitations it is more powerful since it will never run out of memory.

As an informal argument consider that under certain circumstances recognising that a string matches
certain requirements is the same as performing a calculation. If we found a grammar that could recog-
nise strings of the form: ‘12+13=25’, and ‘237+1=238’, then in effect we could say that the grammar
is able to perform addition.
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Figure 2.10: An attempt at writing an FSA that can recognise strings with balanced brackets.

2.6 Limitations of an FSA

Such a simple machine cannot hope to do everything, and we run into the FSA’s main limitation if we
try to design one that can recognise pairs of matching brackets. For my latest computer language I
want to read in expressions such as "(((()()))())" and determine whether the brackets are properly
balanced. This means that the entire string should contain an equal number of left and right brackets
and no prefix of the string should contain more right brackets than left brackets. This suggests an
architecture as shown in Fig. 2.10. Each time we encounter an opening bracket we increase the state by
one and every time we encounter a closing bracket we decrease the state by one. However to match all
possible strings with only a finite number of states is impossible. For any FSA designed it is possible to
create a string that is incorrectly handled. If the FSA has 1,000,000 states and then discards any strings
that exceed this limit then the string with 1,000,001 opening brackets followed by 1,000,001 closing
brackets is incorrectly rejected.

The problem gets even worse if we wish to match pairs of different kinds of brackets. Consider
trying to match the following string "[([[]])()[()]]", this problem would suggest a solution of the form
given in Fig. 2.11. It should be clear that we cannot use a finite number of states to match arbitrary
strings of these forms. Ideally we should have some form of memory that can be used to remember
which brackets we have seen. This leads us into the next chapter on Pushdown Automata.

2.7 Pumping Lemma for Regular Languages

But first, let us be clear on why some languages cannot be regular. An FSM has a finite number of
states and a finite number of transitions. This leads to the Pumping Lemma for Regular Languages.

Figure 2.11: Things go even more badly wrong when trying to match different kinds of brackets!



18 CHAPTER 2. FINITE STATE AUTOMATA

For any regular language L, ∃ an integer p, such that ∀x ∈ L with |x| ≥ p, ∃u, v, w ∈ Σ∗, such
that x = uvw, and

1. |uv| ≤ p

2. |v| ≥ 1

3. ∀i ≥ 0 : uviw ∈ L

Let’s see if we can translate this into English.
A regular language can always be converted to an FSM and such an FSM must have a finite number

of transitions. Any language that allows a string longer than the longest string of transitions with no
repetition can only be recognised by an FSM with a loop. So the pumping lemma divides any such
string into three parts: a part that may or may not be of a fixed length with no loops (u), a part of non-
zero length that definitely has a loop (v) and another part that may or may not have a loop, w. If the
language is regular then repeating the v part any number of times should be possible as that corresponds
to the way the FSM would be constructed. Repeating this loop is “pumping” a string. If doing so results
in a string that is not part of the language, we have proved that the language is not regular.

A proof using the pumping lemma for regular languages (there is another one for context-free
languages) starts by assuming a language is regular, identifying a substring that could be pumped then
showing that repeating that substring takes you out of the language.

For example, you can prove that a language of the form anbn is not regular. Assume that it is
regular. Now set n = p, as defined in the lemma, and u = an, with v = bn and w = ε. Then if we
“pump” v, we get the string anbn+1, which is not in the language, so we have proved that the language
anbn isn’t regular.

Exercise 2.1

What is the purpose of the Dot state in Fig. 2.6 (on page 10)? What illegal string(s) would be accepted
without it?

Exercise 2.2

Extend the float-recognising FSA so that it also accepts floats of the form : "3e7f", "3.1415e-1f" and
".3e01f".

Exercise 2.3

Compare the efficiency of the Knuth-Morris-Pratt string matching algorithm with the naive method.
How do the methods compare for normal English text? How much of a difference is there on degenerate
text where there is lots of repeated characters?

Exercise 2.4

It is always good practise to ensure that illegal strings are correctly rejected. Simulate the NFA from
Fig. 2.8 and show that the string ‘1.2L’ has no route to a final state, which means the string is rejected.

Exercise 2.5

Turn the NFA in Fig. 2.8 into a deterministic FSA (DFA). You may try the power-set method but it may
be easier to try and solve the problem directly. How many states does your solution have? Construct a
regular grammar that creates the set of all strings accepted by your automaton.
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Exercise 2.6

Show using the pumping lemma for regular languages that checking for matching parentheses cannot
be done with an FSM (i.e., a language with this requirement is not regular). Hint: assume a string of
length p of one of the types of brackets exists in a string.

Exercise 2.7

The pumping lemma for regular languages can prove that a language is not regular. Can it prove that a
language is regular? Explain.



Chapter 3

Pushdown Automata

In this chapter we move on to a Pushdown Automaton (PDA) by augmenting a finite-state automaton
with a stack, which allows it to remember an arbitrary amount of information regarding the previously
seen symbols. This allows us to overcome the limitation of an FSA’s finiteness, and recognise more
languages. We will also show that a PDA is equivalent to a context-free grammar (CFG).

Most computer languages are designed to be parsed by a PDA as this simplifies writing the compiler.
Of course a machine as simple as a PDA must have some limitations. We highlight these limitations
and again seek a more powerful machine in the next chapter.

3.1 What is a PDA?

3.1.1 Definition

Conceptually, a PDA can be viewed as a finite-state automaton augmented with a stack. This is shown
in Fig. 3.1. For a more formal definition, a PDA comprises six components:

1. Input Alphabet: The set of all characters that can appear on the input tape.

2. Stack Symbols: Another set of characters (distinct from the input alphabet). This extra set of
characters can be pushed onto the stack to help the automaton remember intermediate calcula-
tions.

3. States: Exactly as with an FSA, a PDA must consist of a finite number of states.

4. Transition Function: The transition function is now a function that considers the current state,
the input character just read, and the character on the top of the stack. It then outputs a new state,
to which the PDA will transition. It also decides whether to pop a symbol off the stack as well as
whether to push any number of symbols onto the stack.

5. Start State: A single state must be identified as the state from which to start.

6. Accept States: A subset of the states at which, if the end of the string is reached and the stack is
empty, then the entire string is accepted.

By contrast with FSAs, PDAs have increased power when they are made non-deterministic. As a
simple example consider a PDA that detects palindromes (Fig. 3.3(b)1). At the beginning of the string
characters are pushed onto the stack. For the last half of the string, characters are popped off the stack
and compared. If they all match, the string is accepted as a palindrome. Unfortunately it is impossible
to tell deterministically when the middle of the string has been reached. To solve this problem we
assume that the PDA is able to non-deterministically choose when to start popping the characters off.
1We use here the notation of JFLAP, which uses λ for the empty string, which means the same thing as ε.

20
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Figure 3.1: Conceptual model of a PDA.

The languages recognised by deterministic PDA are also interesting, and lead naturally to computer
programming language design since the languages are sufficiently complex to express one’s thoughts,
yet still reasonably simple to recognise2. To cover them adequately would require an entire course by
itself, and is beyond the scope of these notes. The interested reader is advised to consult Aho et al.
[1986] or Terry [2004].

2It is possible to parse languages from non-deterministic PDA, but the complexity of parsing changes fromO(n) toO(n3). This
is done using the CYK algorithm [Cohen 1997].

Figure 3.2: As the input string is processed, subexpressions are pushed onto the stack and popped off as characters
are read.
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3.1.2 Examples of PDAs

Before we cover the examples we first explain the notation used when describing a transition. Every
arc is annotated with a string containing three components of the form: ‘Read, Pop;Push’. The first
represents the single character that will be read, the second represents the single symbol that will be
popped off the stack. The final component consists of any number of symbols that can be pushed onto
the stack. In all these cases, where ‘λ’ (empty string, the same as ε) is shown, that action is in effect
not performed for that transition.

If the same symbol occurs in more than one of the three components, the transition should only
happen if it matches in all cases (e.g., if you have a symbol X in the input and also as the symbol to pop,
the transition should only happen if the input is X and the top item on the stack is also X – you can’t pop
something off the stack unless it is at the top).

Recognising matching brackets

Fig. 3.3(a) depicts a PDA capable of matching different kinds of bracket. Every time we encounter an
opening bracket we push it onto the stack. If a closing bracket is encountered, the top symbol is popped
off the stack and compared. If the brackets are not of the same type, the PDA goes into the implicit
error state, otherwise the recognition process continues. Notice that in this example it is not necessary
to use non-determinism.

Look at the transitions for an open bracket of either type. For instance, for a square bracket, the
Read, Pop;Push sequence is [, λ ; [. So if the input open square bracket is read, nothing (λ) is
popped off the stack and an open square bracket is pushed onto the stack.

Compare with the transitions for a close bracket of either type. Staying with square brackets, if the
next input is a close square bracket, the Read, Pop;Push sequence is ], [ ; λ. This means: if there
is a close square bracket on the input, there must be an open square bracket on the top of the stack, so
you can pop it and push nothing, i.e., λ. This means that any close bracket of either type – compare the
rules for ( and ) – can only be processed if an open bracket of the same type is at the top of the stack.

Palindromes

Another task that an FSA cannot perform is palindrome recognition. A palindrome is a string that reads
the same when reversed. Simple examples include mom, hannah. The PDA in 3.3(b) has two states: the
first pushes new input onto the stack; the second pops the top of the stack if it matches the input. Here
we simplify the alphabet to {a, b, c, d} to avoid writing transitions for every character in the alphabet
Σ. Why does this work? In the first state, for every symbol we read, we do not pop anything (λ in
the middle position of the label on the arc), but we do push the same character as we just read. In the
second state, for every character on the input, we pop the matching character off the top of the stack
and push nothing (our friend λ).

Can you explain why there is a transitions back to the ‘pushing’ state from the ‘popping’ state?
Why is this PDA nondeterministic?

Soap-opera recogniser

Not illustrated here, since the JFLAP simulator we use doesn’t easily represent big alphabets and whole
words: you could create a PDA that is capable of recognising soap-opera plots of the following form:
‘Lee’s father’s cousin’s sister kidnapped Cheryl’s mother’s cousin.’, ‘Glen’s mother’s sister’s cousin’s
father loves Maggie’s brother.’. To start the PDA we push several symbols onto the stack. These
symbols determine which transitions are applicable in the processing state. Some of the transitions
push other symbols onto the stack, others simply pop the symbols off. The last symbol on the stack is
the full stop, which marks the end of the sentence. Popping this symbol off leads to the accept state.
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(a) Matching brackets (b) Recognising palindromes

(c) Recognising arithmetic expressions

Figure 3.3: Several examples of PDAs.

We use several shorthand notations:

act = {framed, kidnapped, blackmailed, drugged, loves, killed}.
nam = {Barker, Lee,Maggie,Glen, Steve,Agnes,Nandipha, V usi}.
rel = {father,mother, sister, brother, cousin}.

Recognising arithmetic expressions

Since PDAs are capable of matching brackets they can also recognise arithmetic expressions. Fig. 3.3(c)
shows a PDA capable of recognising expressions such as: a+a, b*(a+a+a) and (b+b)*(a+a). We use
the trick of pushing a symbol that is not in the language onto the stack to determine which transitions
are applicable. When several transitions are applicable, we rely very heavily on the non-determinism
of the machine to choose the correct transition3.

The last example is not so easy to understand straight from examining the PDA; more complex
examples are better described by a grammar. As with FSAs, a particular class of grammar can be
shown to have equivalent expressive power to a PDA: a context-free grammar.

3.2 Context-Free Grammar

A context-free grammar is less restricted than a regular grammar, with the only restriction being that
only a single non-terminal is allowed on the left-hand side of all rules. The right-hand side can contain

3It is possible to parse expressions of this form without using non-determinism, which matters for reasons of efficiency in
compilers; here we just want to show that it is possible for a PDA to recognise these expressions, which FSAs were not able to.
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any combination of terminals and non-terminals. By only allowing a single non-terminal on the left-
hand side of a rule, we are able to expand a non-terminal without having to consider any symbols next
to it (i.e. we do not consider the context of the non-terminal).

In the example below, we consider a context-free grammar for the simple algebraic expressions
considered in the previous section:
Start 7→ Expression
Expression 7→ ( Expression )
Expression 7→ Expression + Expression
Expression 7→ Expression * Expression
Expression 7→ a
Expression 7→ b

We make the claim that any context-free grammar can be recognised by a PDA; nondeterminism is
a property of the grammar as well as of a PDA so if the grammar is deterministic, so is a PDA that
recognizes it. Focus for now on how the PDA works; we will return to nondeterminism.

In the beginning, an E is pushed onto the stack. This is directly equivalent to the start rule (assuming
that E is short for Expression) and determines which transitions are applicable. In general the stack
contains non-terminals (Stack Symbols) and terminals (Input Alphabet), which have yet to be processed.

1. For every rule that maps a non-terminal to some other combination of symbols we have a trans-
ition, which does not read any characters, pops off the applicable non-terminal, and pushes the
combination of other symbols.

2. If there is a terminal symbol on top of the stack then it is popped off; provided it matches the
symbol on the input tape.

If there are several possibilities we use non-determinism to choose the correct option. If going either
way has the same result, the grammar and hence the PDA is unambiguous.

In this manner the PDA will slowly work through the input string, using only rules from the gram-
mar. If the end of the input is reached and there are no symbols on the stack then the string is accepted.
This corresponds to a correct derivation from the grammar.

Because there are straightforward transformation rules to convert a context-free grammar to a PDA,
this means that a CFG is no more powerful that a PDA.

A similar argument shows that the language of any PDA can be represented by a context-free
grammar. This is more technical in nature, however, and will not be covered in the course. The
interested reader is advised to consult Brookshear [1989] for more details.

Putting these two arguments together shows that a PDA and a CFG represent the same class of
languages.

For programming languages, it is important that a grammar be unambiguous – i.e., there is only
one way a particular string can match the grammar. Deterministic PDAs are always unambiguous; it
is possible that a nondeterministic grammar (and hence the matching PDA) is also unambiguous. All
of this was well understood by the 1970s [Hopcroft and Ullman 1979] – as we said at the outset, this
course is about the good stuff that doesn’t change.

This Expression grammar above is ambiguous – it can either interpret an expression like a + b *
a the way you would expect with multiplication first or the “wrong” way with addition first, depending
how the nondeterminism is resolved. A real programming language should define such constructs
unambiguously. One way of doing so is to define higher-precedence operations with another layer of
rules, such as in this revised grammar.
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Start 7→ Expression
Expression 7→ Term + Term
Expression 7→ Term
Term 7→ Term * Factor
Term 7→ Factor
Factor 7→ a
Factor 7→ b
Factor 7→ ( Expression )

With this version of the grammar, if you match the a + b part of a + b * a first using the rule
Expression 7→ Term + Term

then there is no further expansion that allows the * a to match. If however you use the rightmost Term
in the following

Term 7→ Term * Factor
we have grouped the sub-expression containing the multiply as Term * Factor so it will be treated as
a unit and hence prioritised over the addition.

3.3 Limitations of a PDA

Since the possible languages of PDAs are the same as the possible languages of context-free grammars,
we can find their limitations by looking for languages that do depend on the context. The language
consisting of the strings: {abc, aabbcc, aaabbbccc, . . . , anbncn} is context-sensitive since we can only
add another ab to our string if we add a c several characters away. This means that a PDA cannot
recognise this language.

In the next chapter we examine simple computational systems that are able to recognise this lan-
guage. This is achieved by modifying the machine so that it is able to write on the tape, which negates
the need for a stack.

There is a pumping lemma for context-free languages. As with regular languages, a string that
is in the language can be split but instead of splitting three ways with one part that can be pumped,
the equivalent lemma for context-free languages splits a string from the language five ways with two
independent parts of the form xn and yn that must both be “pumped” at the same time. As with the
regular language version, you can show a that a language is not in this class (context free) using proof
by contradiction. But you cannot use this lemma to show that a language is context-free. If you look at
the above example, you will see it has three parts that are repeated n times – this hints that the pumping
lemma for context-free languages, starting with such a string, would “pump” it to an example that no
longer fits the language definition.

We will not look into this further – but if you want to venture into the theory of languages, this is
something you will need to know.

Exercise 3.1

Extend the palindrome PDA so that it is able to discard punctuation such as spaces, colons and apo-
strophes. This should make your new PDA able to recognise much longer palindromes such as: ‘a
man, a plan, a canal:panama!’

Exercise 3.2

Create a PDA that recognises soap operas then convert it into a context-free grammar that can generate
all the soap-opera plots. Simplify the problem by using short symbols to represent words. Implement
this grammar in your favourite programming language and randomly generate a few sentences. How



26 CHAPTER 3. PUSHDOWN AUTOMATA

many have actually happened on a soap opera? (Consult someone ‘knowledgeable’ if you do not watch
soap operas.)

Exercise 3.3

Actually the soap-opera recogniser is even simpler than a PDA, it is possible to recognise soap operas
with only an FSA.

• Simplify your context-free grammar from the above exercise into a regular grammar.

• Now convert your simplified grammar into an FSA.

Exercise 3.4

Convert the non-deterministic PDA that recognises simple arithmetic expressions into a deterministic
PDA. (This means that at no point should more than one transition be applicable.)

Exercise 3.5

Write a context-free grammar that generates all strings with twice as many ‘a’s as b’s.

Exercise 3.6

A grammar is said to be ambiguous if there are two ways of deriving the same string. In the ambiguous
grammar below the following string has two possible derivations:

if a then if b then c else d

Find both derivations. What implications does this have for most computer languages? Can you rewrite
the grammar to remove the ambiguity as we did for the expressions example?

Statement 7→ if Statement then Statement else Statement
Statement 7→ if Statement then Statement
Statement 7→ a
Statement 7→ b
Statement 7→ c
Statement 7→ d



Chapter 4

Turing Machine

This chapter defines the Turing Machine (TM) as designed by Alan Turing in 1936. It is a simple
machine, yet a surprising amount can be done with it. We explore the equivalent grammar (known as a
context-sensitive grammar). A simple programming language is also considered, which turns out to be
surprisingly powerful as well. These results lead us to state the Church-Turing thesis.

4.1 What is a TM?

4.1.1 Definition

A TM was initially proposed as a model of human computation by Alan Turing. In the original model
Turing envisaged [Brookshear 1989]:

". . . that the human could only concentrate on a restricted portion of the paper at any time
and, in turn, the collection of marks found on this portion of paper could be considered
collectively as a single symbol. . . Turing argued that when considering a particular section
of the paper, the human mind could either alter that section or choose to move to another
section. Which action would be taken and the details of that action would depend on the
symbol currently in that section and the human’s state of mind. As with the number of
symbols, Turing reasoned that the human mind was capable of only a finite number of dis-
tinguishable states of mind. . . To keep the availability of paper from restricting the power
of the model, Turing proposed that the amount of paper available for the computation be
unlimited.

Using this model as a skeleton for designing our automaton we arrive at the model depicted in Fig. 4.1,
which consists of:

1. Input Tape: We imagine the input tape as unlimited in either direction. At any step the auto-
maton can choose to move one step left, move one step right, or stay where it is. At the beginning
of the computation the input tape is marked with any necessary input, and blanks are assumed in
unused cells (depicted in these notes by #1).

2. Input Alphabet: A set of symbols from which the input will be constructed.

3. Tape Symbols: An extra set of symbols that the machine can use to help process the data. This
helps separate inputs or mark a position to return to later.

4. Initial State: The state in which the TM is initially started.

1Except when we reproduce examples from JFLAP, which depicts a blank cell as a small square, in which case we are free to use
hashes as tape symbols.

27
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Figure 4.1: Conceptual model of a TM

5. Halt States: Typically we define two states which signal that the machine has stopped pro-
cessing. The accept state indicates that the input has been accepted, while the reject state indic-
ates that the input was rejected. In our diagrams we will assume that the reject state is implicitly
the error state and therefore not shown.

6. Transition Function For every state and every possible symbol read there must be a clear action
to be performed. This action consists of two choices: write a new symbol drawn from either the
input alphabet or tape symbols and move either left or right. To concisely specify the transitions
we will adopt the notation given in Fig. 4.2.

4.1.2 Misbehaving TMs

In the previous chapters on FSA and PDA we were guaranteed that for any finite input, these machines
would terminate. This was because at each step the machine’s head would always advance by one
step2. Since TMs can move backwards and forwards, it is easy to create machines which get stuck in an
infinite loop. A simple example of such a machine would move one step right regardless of the symbol
read. Since the input tape is infinite, this machine never terminates.

If it can be proved that a TM will always terminate then the TM is said to decide the language. If
no proof is found then a TM can only accept the language. (This does not mean that there is no proof,
it might just be that the proof has not yet been found.)

4.1.3 Example TMs

Detecting Palindromes

The TM in Fig. 4.3 is capable of deterministically deciding palindromes. This is in contrast to the
pushdown automaton for the same language, which was non-deterministic. To keep it simple, we use
a two-character alphabet, Σ = {0, 1}. The machine starts with its head at the leftmost character. It
then deletes the character (replaces it by a blank) and searches for the rightmost character. If these two
2A nondeterministic PDA may have to explore a lot of variations but the number is finite.
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(a) Reading an x in s1 will write a
y, and the head moves left. Reading
an a will write a b, and move right.
Reading any other symbol will trans-
ition to the error Halt state.

(b) Reading an x moves the head
left and it does not write anything.
All other symbols get overwritten
with a b, and the head moves right.

(c) For all characters other than an a
(which will be replaced by a b, with
a move to the right) the machine will
not write anything, and move one
step left.

Figure 4.2: Notation for depicting transitions in a TM: symbol read/symbol written/direction to move.

□ ; □ , R

0 ; □ , R

1 ; 1 , R

0 ; □ 
, L

□ ; □ , L

1 ; 1 , R
0 ; 0 , R

0 ; 0 , R

□ ; □ , S

1 ; 1 , L

1 
; □

 , 
R

□ ; □ , L

1 ; □ , L 0 ; 0 , L

q0

q1 q2

q3

q4 q5

q6

Figure 4.3: Palindrome TM. This one is created in JFLAP so blanks are depicted as small squares, not as #.
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0 1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

q0

q1

q1

q1

q1

q1


1 1 1 1 0q1

1 1 1 1 0q2

1 1 1 1q3

Figure 4.4: Deleting letters to decide a palindrome (Σ = {0, 1}).

characters do not match (as determined by the state of the machine) then the machine rejects the input.
Otherwise the machine deletes the letter and returns to the new leftmost letter. This process is repeated
until there are no more letters left in the string when the string is accepted as a palindrome. Note that
the assumption is there is an even number of letters; a palindrome with an odd number of letters should
end when trying to find a match at the end of the string finds a null string.

The top part of the diagram illustrates the case where the left position being compared with the right
position is a 1; the bottom part is the same logic for matching a 0 at the start with a 0 at the end. In
both cases, after finding the matching rightmost symbol, in state q3 they skip over all alphabet symbols
to the left until they hit an empty cell then move right, back to q0. If the TM finds no more alphabet
symbols before hitting a blank in q0, that means a palindrome (length zero is allowed) has been found.

Figure 4.5: The anbncn TM. Note that this one is created in JFLAP, which represents an empty space on the tape
as a small square, rather than a #.
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a a b b c c

X a b b c c

X a b b c c

X a Y b c c

X a Y b c c

X a Y b Z c

q0

q1

q1

q2

q2

q3

X a Y b Z cq3

X a Y b Z cq3

X a Y b Z cq3

X a Y b Z cq0

Figure 4.6: Counting letters to decide membership of the set {anbncn}.

Deciding the language {anbncn}

Fig. 4.5 shows a TM that can recognise the language anbncn, which a PDA could not3. This shows that
the TM has different capabilities than a PDA, and since it is possible to simulate a PDA on a TM, this
means that a TM is strictly more powerful than a PDA.

How does it work? It moves to the right when it sees an a, overwriting it with X, then skipping
ahead to find a b, which it overwrites with a Y, and ends by replacing the first c it finds by Z, then
moves back to the first position where and a was replaced by an X.

In a bit more detail, state q1 skips over any a after the one replaced by X until it hits a b; q2 skips
over any more b after the one replaced by Y until it hits a c, then it backtracks first through any of a, b,
Y or Z until it hits an X, representing the last a that was overwritten. This takes it back to the start state.
As the transition from q3 to q0 has moved to the right, it should find the next a – unless we have run
out of as. Note the start state q0 has another transition to q4 that allows consuming all Y and Z to the
right of the current position and eventually goes to the final state on a blank (a small square in JFLAP
notation).

States q1, q2 and q3 need to skip the new tape symbols (X, Y, Z) that have overwritten the alphabet
symbols; these transitions only apply after the first pass, when alphabet symbols have been replaced on
the tape.

Each pass should replace exactly one of each of the original letters by X, Y or Z. Thus, when the last
a is converted and we reach the rightmost end of the string, backtracking should only find X, Y or Z and
there will be no match on a at the start state. We confirm that the absence of an a at the start means all
other letters have been counted off by scanning for Y or Z after we fail to find an a to the right of the
last X in the start state (q0).

This TM should fail to recognize a string if any of the as, bs or cs were not the same number (n).
Some of the steps the machine takes are shown in Fig. 4.6; notice how the letters are rewritten as

we go. Once all cs are found, it should only be possible to get to the right end of the string (marked by
a blank cell to the right) if all of the original letters have been replaced by their new values.

3Source: https://scanftree.com/automata/turing-machine-for-a-to-power-n-b-to-power-n-c-to-power-n.

https://scanftree.com/automata/turing-machine-for-a-to-power-n-b-to-power-n-c-to-power-n
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Figure 4.7: This TM is capable of XOR-ing two numbers. The second number is overwritten with the answer repres-
ented as 0=X and 1=Y and there is a hash sign separating the two numbers.

The strategy is slightly different here from the palindrome TM: instead of deleting each alphabet
symbol, it is replaced by a tape symbol (not in the alphabet). Why? This way, we could recover the
original data if we wanted to. The approach is only slightly more complicated: instead of skipping
blank cells, we skip cells containing the tape symbols (X, Y, Z). It is a simple exercise to extend the
given TM so that, once it has checked for the required language anbncn, it can scan over the tape again
and replace the tape symbols by the original letters from the alphabet.

XOR-ing two numbers

Turing machines are capable of XOR-ing two numbers in binary (see Fig. 4.7). Two numbers in binary
are placed on the machine’s input. For simplicity both numbers are assumed to have equal length, and
the two numbers are separated by a hash sign (#). The second is replaced by the answer on the tape,
but with the answer represented as 0=X and 1=Y.

The machine deletes the least significant bits and writes the result in the place of the right-hand
number. To read off the answer the final output string must be converted to 0s and 1s (a simple exercise
to add to the given TM).

The state of the machine’s tape is shown in Fig. 4.8 up to the point where the second digit is about
to be processed.

Multiplication

Here we describe the possible design of a TM which accepts strings of the following form: {aibjck|i×
j = k and i, j, k > 0}. Once the input string has been received [Sipser 1997]:

1. Scan the input from left to right to ensure that it is a member of a∗b∗c∗ and reject if it is not.

2. Return the head to the left-hand side of the tape.

3. Delete an a and scan to the right until a b occurs. Shuttle between the b’s and c’s deleting of each
until all the b’s are gone.

4. Restore the deleted b’s and repeat stage 3 if there is another a to delete. If all a’s are deleted,
check on whether all c’s are also deleted. If yes accept, otherwise reject.
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0 1 1 # 1 1 1

1 1 # 1 1 1

1 1 # 1 1 1

1 1 # 1 1 1

1 1 # 1 1 1

1 1 # Y 1 1

q0

q1

q1

q1

q2

q3


1 1 # Y 1 1q4

1 1 # Y 1 1q4

1 1 # Y 1 1q4

Figure 4.8: XOR-ing two numbers. Note: the final result must be converted from X and Y to 0 and 1, respectively.

4.1.4 Improving the TM?

How should we improve our TM concept to arrive at a more powerful computational model? By this
we mean a model that can solve problems that a TM cannot solve (just as a PDA could not recognize
anbncn whereas a TM can). Efficiency is not the concern here – clearly it is easy to design a machine
that is more efficient than a TM.

It is not at all obvious that we can design a more powerful computational model.
Should we give the machine several input tapes and let it choose which tape to read from next? It

turns out it is possible to emulate such a machine on a single-tape TM [Martin 2003].
If we allow the TM to non-deterministically pick its actions, we can still simulate this machine

using a deterministic machine, which carefully remembers which decisions it has made and slowly
works through all possible alternatives (it is easiest to show this using a three-tape TM which in turn is
equivalent to a single tape TM [Martin 2003]).

Allowing random access of the tape (i.e., the TM can now jump to any location it desires) also does
not improve its power. If a TM is given k registers storing locations to jump to, then it can be simulated
on a k + 3 tape TM [Kinber and Smith 2001]. Again this multi-tape machine can in turn be simulated
by a single-tape TM.

Remember that these other possible TMs would in all likelihood be much more efficient, just as
fancy computers nowadays with pipelining and predictive branching are much more efficient than old
computers. However, since there is nothing new that they can compute, hese features do not add to the
computational power, which is what we are looking for.

Instead let us compare other computational systems and possibly draw inspiration from them as to
the next feature which will improve the power of a TM.

4.2 Context-sensitive Language

Context-sensitive grammars have no restrictions on the form that their rules can take. Any number of
terminals and non-terminals are allowed on both sides of the transition. This lack of restrictions makes
them very powerful. In fact they are equivalent to TMs in their capabilities (the proof is beyond the
scope of these notes, but see Brookshear [1989] for more details).
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As an example the following grammar recognises the language of the form {anbncn}. This is a
grammar, which a PDA is unable to recognise, yet a TM can:
S 7→ abNSc
S 7→ ε

bNa 7→ abN
bNc 7→ bc
bNb 7→ bbN

As further proof that recognising a language is equivalent to performing a computation consider the
grammar presented below. It is capable of generating strings such as: ‘R1R⊕0=1’, ‘R0101R⊕0011=1001’.
The ‘R’s surrounding the first number represent that it has been reversed (as it was in our TM). In fact
it is capable of generating all bitstrings that satisfy the XOR operation.
S 7→ R M=

M 7→ R ⊕
M 7→ 0M0 P0

M 7→ 0M1 P1

M 7→ 1M0 P1

M 7→ 1M1 P0

P00 7→ 0P0

P01 7→ 1P0

P10 7→ 0P1

P11 7→ 1P1

P0= 7→ =0
P1= 7→ =1

4.3 Impoverished Programming Language

In this section a very simple programming language is created. So simple that there are only four types
of statements: create a new variable, increment it, decrement it, and a while-loop which tests for zero.
The variables are also very simple, and cannot represent negative numbers4. Their syntax is as follows:
int a - Declaration
a++ - Increment
a--- Decrement
while (a!=0){ - While-loop

//do something
}

This is a very basic language, yet we can copy a few of our favourite constructs from other program-
ming languages. To set the value of a variable to zero:
while (a!=0){

a--
}

As shorthand we will refer to the above code as clear, but remember, it is not a function (method), just

4Trying to decrement a variable whose value is already zero, returns zero.



4.4. CHURCH-TURING THESIS 35

shorthand – it stands for the same code. To copy a value to another variable we can use the following
shorthand b<-a which represents:
//Copy a’s value to b
clear temp
clear b
while (a!=0){

a--
temp++

}
while (temp!=0){

a++
b++
temp--

}

When we need an if (a!=0) then ..1.. else ..2..let us use the following code:
temp<-a
clear aux
aux++

while (temp!=0){
..1..
clear temp
aux--

}

while (aux!=0){
..2..

clear aux
}

That may not look super clear but work through it carefully. IF a is not zero, the first while loop will run
exactly once since temp is initialised to a and clearede after the code in the position ..1.. is processed,
If you get into the first while loop, aux (set to 1 outside the first loop) is decremented so the second
loop won’t be executed. If it is, it gets executed once, as aux is cleared (set to zero) inside the second
loop.

Initially it seems as if this computer language will be useless, yet we have been able to define some
essential programming constructs from this basic definition. In fact this language has been shown to be
equivalent in power to the TM. The proof is beyond the scope of these notes and is not covered here.
All of these different approaches to computation are equivalent (in terms of computing power – not
efficiency, which is not what concerns us for now).

Knowing that all these models are equivalent means that we can choose any of them, depending
which works best in that scenario, to prove theoretical results such as whether it is possible at all to
computer a particular function.

4.4 Church-Turing Thesis

In the previous three sections on TMs, context-sensitive languages, and the impoverished program-
ming language, there do not seem to be enough mechanisms for solving complex problems. Yet Tur-
ing conjectured in the 1930s that these systems have the same computational power as any possible
computational system. So far no-one has been able to prove otherwise, since all proposed models of
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computation so far can be emulated on a TM.
It is known as the Church-Turing thesis since a similar theory by Alonzo Church that viewed com-

putation as recursively applying functions to other functions independently arrived at an equivalent
conclusion. Church’s theory has led to a field of programming known as functional programming.

This does not mean that all attempts to advance programming languages are futile. For practical pur-
poses there is a vast difference between using the impoverished programming language, and a high-level
language. Humans are fallible and known to make lots of careless little mistakes. If a programming
language helps avoid such mistakes then it makes sense to use it. The efficiency of the impoverished
language will also be terrible; there are no arithmetic operations beyond counting. If one wanted to
implement 128 bit cryptography in this language, it would take an impractically long time to count up
to numbers this large.

Since we appear to have reached the theoretical bounds of a computational system, let us instead
focus now on more practical issues. We might be able to prove that our TM can solve the problem, but
if it takes more than 10 billion years to halt, it is probably not a practical system. In the next chapter
we will turn from analysing the system to analysing the performance of individual problems.

Exercise 4.1

In the previous chapter we made the claim that being able to write on the input tape meant that there
was no need for a stack. Give details of how a stack could be implemented on a TM. (Hint: efficiency
is not important here.)

Exercise 4.2

Design a TM that can reverse a string. This would allow the XOR machine to accept two ordinary
numbers and reverse the number itself.

Exercise 4.3

Alter the palindrome of Fig. 4.3 so that it will not accept a zero-length string.

Exercise 4.4

For the TM of Fig. 4.5, enumerate all ways it could fail and check that the TM will actually fail in those
cases. Will it work for an empty tape, i.e., where N = 0 in aNbncN?

Exercise 4.5

For the TM of Fig. 4.5, add extra states starting from the original TM’s final state to restore the letters
of the alphabet {a, b, c} to the tape.

Exercise 4.6

Add the missing part of the TM in Fig. 4.7 to convert the answer from X and Y to 0 and 1, respectively.
Now add in an extra check that the second number is not longer than the first (hint: do this before
getting rid of X and Y – if the two numbers are the same length, there should be no left over 0s or 1s on
the right. What would happen if the first number was longer than the second number?

Exercise 4.7

Find a corresponding context-sensitive grammar that is able to reverse a string of non-terminals (en-
suring that they can only become terminal symbols when they have been properly reversed). This will
allow the XOR grammar to generate correct strings that are easy to read.
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Exercise 4.8

Construct a context-sensitive grammar that can generate the correct addition of any two binary numbers
of equal length. This means one should be able to derive strings such as: ‘1011+0001=1100’.

Exercise 4.9

Write short code snippets to perform: addition, subtraction, multiplication and division in the impov-
erished programming language. Let your code accept the values from variables a and b and store the
answer in ans.

Exercise 4.10

Implement the factorial function in the impoverished programming language.

Exercise 4.11

Many interesting computational systems have been shown to be equivalent to a TM. One of the most
surprising is Conway’s Game of Life. This is a simple two-dimensional world of finite state automata,
each only has two possible states ‘dead’ or ‘alive’. The states are updated according to very basic rules:

• Live cells with less than two living neighbours die from loneliness.

• Live cells with two or three living neighbours carry on living.

• Live cells with more than three living neighbours die from over-crowding.

• Dead cells with exactly three living neighbours come back to life.

These simple rules give rise to many patterns, and many different behaviours have been observed. By
combining some of these behaviours correctly it is theoretically possible to create a computer capable
of performing any computation. Find out how such a game could be turned into a computer. (The
Internet provides many implementations of the Game of life, as well as examples of interesting patterns
found.)

Exercise 4.12

Initially recursive function theory (on which Church’s view of computation was based) conjectured
that all computable functions could be composed from simple functions composed in simple ways.
However, in 1928 Ackermann found a function that cannot be constructed in such a manner, yet is
computable. The definition is as follows:

A(0, y) = y + 1

A(x, 0) = A(x− 1, 1)

A(x, y) = A(x− 1, A(x, y − 1))

Implement this function in your favorite programming language. What is the biggest value of x for

which you can compute A(x, 1)?



Chapter 5

Computability Theory

Theory of computing deals with problems, and two important questions about those problems: Can the
problem be solved using an algorithm and if so, what resources will be required? The first question is
dealt with by computability theory and the second is handled by complexity theory.

In an attempt to answer the former question, we classify problems as either tractable (guaranteeing
a solution in polynomial time), intractable (solutions to these problems appear to take an exponential
amount of time) and undecidable (these problems might never complete). While many of the problems
we classify were presented in the introductory chapter we also introduce a few others.

It is important to understand the difference between studying the properties of problems and the
properties of algorithms.

A problem has inherent properties that define whether it is solvable or not and, if so, how efficient
a solution could be found. Knowing that does not define a solution; an algorithm does. Knowing an
algorithm tells us a problem is solvable and also tells us, if we know how to do algorithm analysis,
how efficient it is. But even if we know an algorithm, is it the best we can find? For example, we
know that the best sorting algorithms (excluding special cases, like the data is already sorted), take
time O(n log n). But is there a theoretical limit that says we can’t do better than this, or should we still
look for better algorithms?

We study a range of problems and their properties in this chapter and turn to complexity theory in
the next chapter, which takes us a bit closer to algorithm analysis though still mostly in the problem
domain.

5.1 Computability

Computability theory deals with whether a problem can be solved at all, regardless of the resources
required. In the first part of this course we discussed various computational models as shown in Fig. 5.1.
Now we need to deal with the possibility that a problem may not be solveable.

A problem is computable (the term decidable means the same thing) if there exists an algorithm that
solves the problem. For an algorithm to be a solution to a problem, it must always terminate (otherwise
it is not an algorithm) and must always produce the correct output for all possible inputs to the program.
If no such algorithm exists, the problem is uncomputable (or undecidable).

5.2 Undecidable Problems

A problem is undecidable if it can be proven that not all inputs will terminate (regardless of the al-
gorithm used). This is disconcerting since it means for some problems we cannot tell if we are making
progress towards an answer, or are stuck trying to solve a problem with no solution.

All undecidable problems share the following properties:

38
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Figure 5.1: Categories of Computability

• They have a possibly infinite search space.

• The worst case bound on complexity cannot be proved.

• As n increases, there are always new cases that are not handled by previous heuristics.

Thus, any algorithm for these problems is infinite in either time or space and the assertion that logic
can solve any problem is instrinsically false.

5.2.1 Halting problem

The implication of this problem is that no compiler can test whether your program has an infinite loop.
Once the undecidability of the halting problem has been proved, the result can be used to prove that
other problems are also undecidable by showing that they can be reduced to the problem in question.

The halting problem was introduced in Chapter 1. MicroNaff is going to have a hard time writing
their code verifier since it is impossible to determine whether all programs will halt for a given input.
This can be proven by contradiction. Assume that there exists a program that correctly identifies pro-
grams that halt for all types of input and always terminates. Call this program ‘Halts’. Now construct
a program ‘S’ of form given in listing 5.1.

1 Program H a l t s (C , I ) \ \
2 / / A c c e p t s code C and i n p u t I and r e t u r n s t r u e or f a l s e \ \
3 / / R e p r e s e n t i n g whe ther program C w i l l t e r m i n a t e w i t h i n p u t I \ \
4 / / Note t h a t i t \ emph { a lways } t e r m i n a t e s .
5 \ b e g i n { v e r b a t i m }
6 Program S (W)
7 I f H a l t s (W,W)
8 While t r u e
9 {

10 / / I n f i n i t e Loop !
11 }
12 E l s e
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Figure 5.2: A solution to Post’s Correspondence Problem: Given a set of dominoes (on the left) is it possible to find
a configuration (with possibly repeated dominoes) where the string formed by the top row is the same as the string
formed in the bottom row (as shown on the right).

13 Re t u r n f a l s e

Listing 5.1: The Halting Problem

Consider what happens when ‘S(S)’ is called. This in turn calls Halts(S,S), which must return an
answer.

• If it returns false (i.e. Halts deems S to be a program that does not halt when run with an input
of S) then S(S) returns immediately. This clearly contradicts the prediction made by Halts.

• If it returns true (i.e. Halts predicts that S is a program that halts when run with an input of
S) then S(S) goes into an infinite loop. Again this clearly contradicts the prediction made by
Halts.

Since both possibilities lead to contradiction this means one of our assumptions must have been incon-
sistent. This means our original assumption of Halts being a program that always halts and always
returns the correct answer is incorrect. There is no such program.

Remember that this is just to prove the existence of a single problem that is undecidable. However,
many problems can be shown to be equivalent to solving the Halting problem, which means they are
also undecidable. Another well-known example of an undecidable problem is Post’s Correspondence
Problem.

5.2.2 Post’s correspondence problem

In Post’s Correspondence problem several dominoes are given [Linz 2001]. Each domino has writing
on the top half and the lower half. A sequence of these dominoes can generate two strings, by con-
catenating the strings of the top halves and doing likewise for the lower halves. The task is to find
whether there is a sequence of dominoes that produce identical strings from both the upper and lower
halves. An example correspondence problem and a solution is shown in Fig. 5.2. It has been proven
undecidable with 7 or more dominoes. This means that in some cases, given a set of seven dominoes,
it is impossible to tell whether or not the matching process will terminate.

1000 01 1 00

0 0 101 001

001 01 01 10

0 011 101 001

1 10 011

101 00 11

(a) Problem A

1000 01 1 00

0 0 101 001

001 01 01 10

0 011 101 001

1 10 011

101 00 11

(b) Problem B

1000 01 1 00

0 0 101 001

001 01 01 10

0 011 101 001

1 10 011

101 00 11

(c) Problem C

Figure 5.3: Three instances of Post’s Correspondence Problem. Two are solvable; one hard, the other easy and the
other has no solution.
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Figure 5.4: BB(2)

Figure 5.5: BB(3)

Exercise 5.1

In Fig. 5.3 three examples of Post Correspondence Problems are shown. Two of these are solvable,
while the third can be shown not to have any solutions1.

1. Can you find the problem with no solutions?

2. Much harder for one of them at least. . . solve the other two problems!

5.2.3 Busy beaver

An interesting function related to the Halting Problem is the Busy Beaver function. A Busy Beaver is a
TM (with n states) that starts with a blank tape and writes the maximum number of ones before halting.

Although the problem is well-defined,BB(n) is extremely difficult to calculate, even for very small
values of n. Part of this difficulty is due to the number of possible TMs being exponential in n. It is
made worse by the fact that some of the machines do not halt, while others just run for a really long
time. Since telling the difference in all cases would be equivalent to solving the halting problem we
have to run all possible candidates for a long time.

1If you give up, try the solver here https://www.arnevogel.com/post-correspondence-problem.

Figure 5.6: BB(6)

https://www.arnevogel.com/post-correspondence-problem
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Let BB(n) be the maximum number of ones written for an n state machine before halting (note
that not all TMs have been tested forBB(5) andBB(6), T (n) be the number of transitions made when
writing the maximum number of ones, and S(n) be the maximum number of transitions for any n state
machine. Then, we have:

BB(2) = 4 T (2) = 6 S(2) = 6
BB(3) = 6 T (3) = 14 S(3) = 21
BB(4) = 13 T (4) = 107 S(4) = 107
BB(5) ≥ 4098 T (5) = 47, 176, 870 S(5) ≥ 47, 176, 870
BB(6) ≥ 3.51518267 T (6) = 7.41236534 S(6) ≥ 7.41236534

5.2.4 Wang tiles

This problem is stated as follows. Given a set of tiles, can all k × n rectangles be tiled using the given
set? A valid tiling is one where the colour of adjacent edges match.

It is possible to translate any Turing machine into a set of Wang tiles, such that the Wang tiles can
tile the plane, if and only if the Turing machine never halts. But as the halting problem is undecidable,
the Wang tiling problem is also undecidable.

Figure 5.7: Set of Wang Tiles



Chapter 6

Complexity Theory

Having seen some examples in the previous chapter of problems that are undecidable, we know seek to
classify tractable and intractable problems. While many of the problems we classify were presented in
the introductory chapter we also introduce a few others. We define the complexity classes P and NP
(see Fig. 6.1), and discuss whether P = NP , which is an open issue in Computer Science today.

Complexity theory deals with the relative computational difficulty of computing functions and solv-
ing other problems.

As noted in the previous chapter, we are primarily concerned here with analysing problems, not
algorithms: if a theoretical analysis shows that it is not possible to find an efficient algorithm, we can
save ourselves the bother of trying to find one. Alternatively: we can change our focus to finding an
approximate solution – one that breaks the definition of a true algorithm by finding solutions that are
not 100% correct.

As with computability theory, an important part of the theory of complexity is showing that different
problems fall in the same class, so a result needs only to be proved once and then it applies to a wide
range of problems. Since this is an introductory course, we do not cover such proofs but it is important
to be aware that this is possible as a problem can be described as being in a particular class like NP-
Complete, and knowing this tells you whether an efficient solution is possible.

• Time complexity is the measure of how long a computation takes to execute. On a Turing ma-
chine this is counted as the number of moves. On a digital computer, it is the number of instruc-
tions executed – or more accurately, elapsed time.

• Space complexity is the measure of how much storage is required over and above the input data.
On a Turing machine this is the number of additional tape squares used. On a digital computer it
is the number of bytes used for intermediate results.

Both measures are functions of the size of input, n.

6.1 Big-O Notation

You have already used this notation in your Advanced Programming course. Here we give a brief recap
of the relevant definitions.

Big-O describes the asymptotic upper bound for the magnitude of a function in terms of another
function, usually a simpler function. A more formal definition states that a function f(n) is O(g(n)) if
given a constant C, f(n) ≤ Cg(n), for sufficiently large values of n. Thus, function g(n) is the upper
bound of function f . Note, that since we are interested in the worst case performance, complexity is a
guarantee that the algorithm will finish in the time given by the Big-O value.

We can also define a lower bound on complexity, written as Big-Omega (Ω), where the inequality
is reversed (f(n) ≥ Cg(n)), and a tight bound on complexity, written as Big-Theta (Θ), where the
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functions f and g differ asymptotically by a constant factor (f(n) = Cg(n)). In all cases, “Big”
means it is a capital letter. We only use Big-O here but it is useful to know the other variants for more
advanced studies of algorithms. Often, when we say big-O, we really mean Θ(g(n)) – but even when
we genuinely mean O(g(n), we want a reasonably tight bound, i.e., one that is informative, So it is not
useful to describe an algorithm that takes time that is a function of k(n log n) plus lower terms as being
in O(n2 even if it is technically true.

The important thing to understand is that all these notations are “asymptotic”, i.e., they apply for
sufficiently large n. We are not concerned with smaller values of n unless the complexity is a very
fast-growing function, like an so asymptotic behaviour is useful to characterise complexity.

Since we are interested in the rate of growth as n increases, only the most significant factors are
retained and any constant multiplicative factors are removed. For example, O(2n + n64) is given as
O(2n) and O(32n2) is given as O(n2).

Exercise 6.1

To test your understanding of the rate of growth, arrange the following in increasing order of complex-
ity: n,

√
n, n2, n!, n−1, n5, 2n, log(n), n

2
3

Exercise 6.2

Consider a program that takes n seconds to run where n is the number of items processed. Complete
the following table:

Figure 6.1: Categories of Complexity
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Time for Time for Time for Time for
10 items 20 items 40 items 80 Items

n 10 20 40 80
2n

n2

2n

Exercise 6.3

Find the complexity of the following factorial program:

results = 1
for i = 1 to n

result = result * i
return result

6.2 Graph Theory

Since most of the examples we look at in this chapter deal with graphs, we first cover some graph theory
so that we can discuss the solutions with clarity and exactness.

6.2.1 Terminology

Vertex

Often also called a node, a vertex is an abstraction of some item. In the introductory chapter vertices
were used as abstractions of cities (in Fig. 1.1) and buildings (in Fig. 1.2). This abstraction is useful
since it generally does not matter if we are talking about buildings or cities; what is important are the
relations between them.

Two vertices are adjacent if they are joined directly by an edge (see below).

Edge

Edges connect two vertices. Edges can be directed, or undirected. If an edge is undirected and connects
vertex A with vertex B then it also connects vertex B with vertex A. (Think of this as a two-way street,
if you travel from X to Y using only two-way streets then you are guaranteed to be able to retrace your
steps.)

If the edge is directed then a connection from vertex A to vertex B does not imply that vertex B is
connected to vertex A (although this does not rule out another edge connecting them).

In some of the problems we consider, edges are also weighted. This means there is some cost
associated with traversing the edge. For our purposes we will only consider nonnegative weightings.

The number of edges attached to a vertex is the degree of that vertex.

Graph

A graph consists of a set of vertices and a set of edges connecting them. The edges can be directed
(giving a directed graph), or undirected (giving an undirected graph).

A connected graph has a path from every vertex to every other vertex.
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Tree

A Tree is simply a graph with no cycles in it. This means that for any starting vertex it is impossible
to find a path that returns to the starting vertex (root) without visiting any vertex more than once. A
vertex with no successors is called a leaf.

A connected tree has links between a node and its parent and children nodes.
The height of a tree is the longest path (number of edges) from the root to a leaf. A tree is perfectly

balanced if all subtrees starting at the same level have the same height; it is balanced if no subtree at
the same level differs in height by more than 1. It can be shown that a perfectly balanced tree with L
leaves has height log2 L; for an ordinary balanced tree, its height ≥ log2 L.

Bipartite Graph

A Bipartite graph is a graph whose nodes can naturally be split into two subsets, with none of the
graph’s edges joining vertices in the same subset. This means that all vertices from the one subset only
have edges connecting to vertices from the other subset.

Hamiltonian Path

A Hamiltonian path is a path in an undirected graph that visits all vertices exactly once. A graph with
a Hamiltonian path is called a traceable graph.

Hamiltonian Cycle

A Hamiltonian cycle is a path that visits all vertices exactly once and at the end of the path is able to
return to the initial vertex.

Euler Path

A Euler path is a path that traverses each edge exactly once. How does this differ from a Hamiltonian
Path?

Spanning Tree

A spanning tree for a graph is a connected tree that contains all vertices of the graph. Every connected
graph contains a spanning tree as a subgraph.

Graph Colouring

Colouring of a graph with k colours assigns one of the colours to each vertex, so that no edge joins
vertices of the same colour. A bipartite graph is 2-colourable.The chromatic number of a graph is the
smallest number of colours that can be used in colouring.

6.2.2 Representing graphs

A typical representation makes use of an adjacency matrix. For a graph with n vertices, we need an
n× n matrix. The matrix contains a 1 in position [i][j] if there is an edge between vertices i and j (see
Fig. 6.2).

6.2.3 Abstract Decision-Tree Proof of Bounds of Sorting

If you study sorting algorithms, you will know that in the general case (no special knowledge of the
data, like it is already sorted), the best algorithms seem to be able to do no better than O(n log n). Is
this a hard limit or could a clever programmer come up with something better?
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Figure 6.2: Adjacency matrix representations of a graph.

We can study the problem of sorting in the abstract without considering any algorithm by construct-
ing a tree representing every move any algorithm that compares pairs of values to sort would make. The
first move compares two values and, depending on the outcome, does some other comparison. It keeps
doing this until the data is reordered in such a way that is sorted. If the original data is in a different
order, the sequence of moves would differ. We can draw a tree that represents all such moves, without
being specific about what they are. All we know is that each leaf of the tree represents a different
reordering of the original data. Why? Because each different ordering of the original data will be a
different path through the tree and hence must end at a different leaf.

How many leaves L will this decision tree have? We can reorder n values n! different ways so n!

is the number of leaves in the tree. The shortest possible path through the tree is n− 1 since you have
to do n − 1 comparisons at least with a method like this; the height of the tree gives you the worst
case. What is the lowest height the tree can have? That would be if it is balanced, so the height of the
tree ≥ log2L and L = n! so we can use Stirling’s approximation to factorials to simplify the height to
≈ n logn−n log e, hence O(n log n)1.

Does this establish O(n log n) as the best a sort can do? No. If we are sorting by comparison, this
establishes its worst case is O(n log n) and we can also show that the average path through the tree is
O(n log n). However: if you can find a sorting method that does not involve pairwise comparisons,
you can do better – for example, a bucket sort places values directly in a “bucket” representing a value
of range of values. A version of this is a lexicographic sort, where each bucket represents a single letter
of the alphabet. If you sort words k letters long and recursively sort each bucket the same way, the sort
does k×n moves, which makes it O(n).

What we have done here is argue in general about sorting algorithms. Just as with the Halting
Problem, we did not need to look at a specific algorithm. This is why this analysis is part of complexity
theory, not analysis of algorithms, as would be the case e.g. if we anaylzed quicksort or mergesort.

Exercise 6.4

Write out the decision tree proof that sorting by comparison algorithms can’t have a worst case better
than O(n log n) in more detail. Explain why a lexicographic sort, despite this proof, is O(n).

Is this really the best we can do? Unless we can make assumptions about the data, yes. Here is an
example. Let’s say we know that we can arrange the data in order by sorting on it one bit at a time. This
works for integers; for 1s and 2s complement, we would need to sort the sign bit differently. Otherwise,
if the sorting algorithm splits b-bit numbers based on whether each bit is 0 or 1, the algorithm looks a
lot like quicksort, except it runs in time O(n). Why? Because for each bit position, a number is looked
at a constant number of times, k and there are b bits. So there are kb comparisons and at most kb swaps

1Explained more formally in these Stanford University notes: https://web.stanford.edu/class/archive/cs/cs161/
cs161.1168/lecture7.pdf

https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture7.pdf
https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture7.pdf
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Figure 6.3: Bitsort first pass.

for each number and kbn operations are in O(n).
Is this really better than O(n log n)? After all, to represent n unique numbers, you need at least

log2 n bits. However, the overheads are very low compared with quicksort and an implementation of
bitsort can be very fast, at the expense of only working for very specific data types.

Listing 6.1 is C code for bitsort; see if you can work out what it does.

1 void b i t s o r t ( i n t d a t a [ ] , i n t N, unsigned b i t ) {
2 i f (N < 2) re turn ;
3 i n t s t a r t = 0 , end = N−1;
4 whi le ( s t a r t < end ) {
5 i f ( ! ( d a t a [ s t a r t ] & b i t ) ) {
6 s t a r t ++;
7 c o n t in u e ;
8 }
9 i f ( d a t a [ end ] & b i t ) {

10 end − −;
11 c o n t in u e ;
12 }
13 SWAP( i n t , d a t a [ s t a r t ] , d a t a [ end ] )
14 s t a r t ++;
15 end − −;
16 }
17 i f ( d a t a [ s t a r t ] & b i t ) s t a r t − −;
18 b i t >>= 1 ;
19 i f ( b i t ) {
20 i f ( s t a r t > 0 && s t a r t < N)
21 b i t s o r t ( da t a , s t a r t +1 , b i t ) ;
22 i f ( s t a r t < N−1)
23 b i t s o r t (& d a t a [ s t a r t +1 ] , N− s t a r t −1 , b i t ) ;
24 }
25 }

Listing 6.1: Bitsort

The basic idea (so far only considering unsigned numbers) is you start with the high bit, and partition
the data between those with the bit set and those where the bit is not set. Those with the high bit set are
higher values. Figure 6.3 illustrates the first pass through the data. We start with one pointer or index
to the first element, and scan towards the end of the array until it hits a 1 in its current bit position. We
then scan the opposite way until we hit a 0. As long as the high and low pointers do not meet, whenever
the lower hits a 1 and the higher hits a 0, the numbers are in the wrong order, and so we can swap them.

Once we have sorted on one bit, we can partition the data where that bit switches from 0 to 1, and
sort recursively on the next bit, until we run out of bits to sort.

For signed numbers, we need to reverse the order for the sign bit, then treat each partition the same
way from then on assuming 1s or 2s complement as bitwise ordering of positives and negatives works
the same way, except the sign bit puts numbers in sorted order with a 0 ahead of a 1.

The detail of the method isn’t important – just the question of whether we have invalidated the tree-
based proof of the O(n log n) bound on the worst case of sorting by pairwise comparisons. The critical
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words are by pairwise comparisons. We have not actually compared pairs of values. We have compared
bits. This may seem to be a small distinction but it makes a difference, and this insight leads to the
broader field of radix (another word for base), lexicographic (from the same root as lexicon, another
word for dictionary) and bucket sorts, where we use a known property of the data to place elements
directly rather than having to do pairwise comparisons.

6.3 Polynomial Problems

In this section we present the good news. Problems here are considered tractable since they are guar-
anteed to finish in polynomial time. This means that the time it takes is O(np) for some constant value
p. In some cases p might be very big (say p = 10); then the algorithm will be unusable for all but
the smallest n. In practical terms, even p = 2 grows very fast, and we look for better algorithms.
For example, sorting methods with O(n2) time do not scale well, though they can be faster than more
complicated O(n log n) methods for small n. However O(np) is still not as bad as problems covered
in the next section, which are thought to have exponential complexity.

Polynomial-time problems are in class P .

6.3.1 Weary student (Shortest path)

In this section we show that the weary student problem has a polynomial-order solution, which should
be good news for all students who will be traveling in the holidays. In the example considered here we
will assume the student comes from Johannesburg and needs to return. In this solution we will make
the simplifying assumption that there are no cycles in our graph. This simplifies our solution since
there is no need to maintain a list of previously visited cities (vertices).

The solution presented here uses dynamic programming. Dynamic programming is a bit like recur-
sion in that we solve sub-problems to solve a bigger problem. Unlike recursion, we solve sub-problems
bottom-up, which creates the possibility of reusing partial solutions as we go along. To calculate the
shortest path from Makhanda to Johannesburg we first calculate the shortest paths from:

• Gqeberha to Johannesburg,

• East London to Johannesburg,

• and Middelburg to Johannesburg.

Once all of these shortest paths are known then it is trivial to find the shortest path from Makhanda;
add the distance to get to each of the cities to the shortest distance from those cities. The city with the
smallest sum represents the best route to go, and the sum represents the distance you will have to travel.

In more formal terms, given a weighted directed graph, containing no cycles, we wish to find the
shortest path from vertex S to D. Let:

• the set of vertices be {vi} where i is numbered from 1..n.

• the set of edges form the set{ej} where j is numbered from 1..m.

• from(ej) be the function that returns the vertex which edge ej starts from.

• to(ej) be the function that returns the vertex that edge ej goes to.

• For efficiency purposes we store intermediate results for other vertices in an array as this ensures
they are not recomputed. This array is called dist.

Storing intermediate results is typical of a dynamic programming algorithm; if we used recursion,
we would repeat a lot of calculations. The pseudocode in listing 6.2 specifies this algorithm more
succinctly.
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(a) Going via Gqeberha

(b) Going via East London

(c) Going via Middelburg

Figure 6.4: To calculate the shortest distance from Makhanda to Johannesburg, we first calculate the shortest
distance from Makhanda’s neighbours. Note: we use an old map showing names as Port Elizabeth (Gqeberha) and
Grahamstown (Makhanda).
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1 i f ( v _ i ==d ) re turn 0
2 i f d i s t [ i ] i s known re turn d i s t [ i ]
3 ans = ∞
4 f o r each of t h e v e r t i c e s d i r e c t l y c o n n e c t e d t o vi
5
6 temp = sd ( v_k , d )
7 temp = temp + ( edge we i gh t )
8 i f ( temp < ans ) ans = temp
9

10 d i s t [ i ] = ans
11 re turn ans

Listing 6.2: Find the shortest distance from vertex vi to destination d

Now that we have given a formal description of the algorithm, let us trace through it to ensure we un-
derstand it fully.

sd(GT, Jo) = min(132 + sd(PE, Jo), 180 + sd(EL, Jo), 249 + sd(Mi, Jo))

sd(PE, Jo) = 335 + sd(Ge, Jo)

= 335 + 438 + sd(CT, Jo)

= 132 + 335 + 438 +∞
= ∞

sd(EL, Jo) = 674 + sd(Du, Jo)

= 674 + 290 + sd(Ha, Jo)

sd(Ha, Jo) = min(268, 260 + sd(Er, Jo))

= min(268, 260 + 147)

= 268

sd(EL, Jo) = 674 + 290 + 268

= 1232

sd(Mi, Jo) = min(538 + sd(Up, Jo), 403 + sd(Ki, Jo), 319 + sd(Bl, Jo))

sd(Up, Jo) = min(796, 361 + sd(Sp, Jo))

= min(796, 361 + 541 + sd(CT, Jo)

= min(796,∞)

= 796

sd(Ki, Jo) = 476
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sd(Bl, Jo) = min(398, 320 + sd(Ha, Jo))

= min(398, 320 + 268)

= 398

sd(Mi, Jo) = min(538 + 796, 403 + 476, 319 + 398)

= 717

sd(GT, Jo) = min(132 +∞, 180 + 1232, 249 + 717)

= 966

Notice how saving the result for sd(Ha, Jo) saved us having to recompute it when we calculated
sd(Bl, Jo). In graphs with more edges we can expect this to save us even more effort. Since the array
ensures that we never visit a vertex more than once we know that our traversal is linear in the number
of vertices (O(n)). At each vertex we do work proportional to the number of edges (O(m)), this means
a rough upper bound on this algorithm is O(mn), which is polynomial2 and hence tractable.

6.3.2 Cable laying (minimum spanning tree)

To solve the cable-laying problem we need to find what is known in graph terminology as a minimum
spanning tree. The ‘minimal’ refers to the fact that the sum of all the edges found is the minimum
possible. ‘Spanning’ refers to the fact that every vertex is reachable from every other. The ‘tree’ refers
to the fact that there must be no cycles in the solution. If there was a cycle it would be possible to drop
one of the edges and still reach all other vertices.

In this solution we present Prim’s algorithm. There are other well-known algorithms (such as
Kruskal or Borůvka). Prim’s algorithm works by picking an initial edge and then growing the tree from
the already connected vertices.

To start the algorithm we note that the shortest edge of any vertex will always be part of the minimal
spanning tree. As an informal proof: imagine that the algorithm is nearly complete and only has to
connect one more vertex. This means that all the other vertices are already connected and we must
choose which edge to use to connect this last vertex. Our choice is simple. We pick the shortest edge
since there is no better choice.

This gives us our starting step; now let us imagine we have constructed some of our tree: how
should we pick the next vertex to include? Again it helps if we imagine that all the unconnected nodes
have been connected together in another tree and we now seek the best place to connect these two trees.
This is simply the shortest edge between the two trees. This suggests that we must find the shortest
edge that connects a connected vertex with an unconnected vertex.

A more formal algorithm is given in listing 6.3.

1 mst ( edges ) −− minimum s p a n n i n g t r e e , r e t u r n s l i s t o f used edges
2 I n i t i a l i s e b o o l e a n a r r a y used t o a l l f a l s e .
3 I n i t i a l i s e l i s t ans t o { } .
4 P ick a random v e r t e x .
5 Add t h e v e r t e x ’ s s h o r t e s t edge t o ans , s e t used f o r bo th v e r t i c e s t o t r u e .
6 While t h e r e a r e unused v e r t i c e s :
7 Find s m a l l e s t edge between a used ( vi ) and an unused v e r t e x ( vj ) .
8 Add t h i s edge t o ans and s e t used [ j ]= t r u e
9 R e t u r n ans

Listing 6.3: mst(edges) – minimum spanning tree, returns list of used edges

2We don’t know the exact relationship of m and n but they are related by a constant so O(mn) is in effect O(n2).
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(a) Choose Random vertex (Stats), and find shortest
edge = Physics-Stats (0.5 days)

(b) Shortest edge between used and unused vertices = CS-
Physics (1 day).

(c) Shortest edge between used and unused vertices
= Maths-Physics (1.5 days)

(d) Shortest edge between used and unused vertices
= Maths-Campus (1 Day)

(e) Shortest edge between used and unused vertices = CS-
Chemistry (2 days)

(f) The finished tree

Figure 6.5: Finding the minimal spanning tree for the science departments.
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The solution for the cable-laying problem is shown in Fig. 6.5. After the tree has been constructed
it is easy to determine the shortest time in which all departments will have their internet connection
restored. Assuming a single team of workers laying the cable, the time taken will be 8 days, which is
the sum of all the used edges.

To analyse the complexity of this algorithm we note that we have to add n−) vertices to the tree
(O(n)). For each addition though we might be forced to search through the entire list of edges (O(m)).
This means order is again roughly O(mn). This is again polynomial and so considered tractable. Be
aware that it is possible to improve the order of this algorithm using more sophisticated data structures,
however for our purposes we just need to show that it is possible to find a polynomial algorithm.

6.3.3 New manager

Figure 6.6: Transforming the problem into a graph problem.

Assigning employees to tasks can also be shown to have a polynomial solution. The trick is to turn the
problem into a graph. In Fig. 6.6 we create a directed bipartite graph, connecting people to the jobs
they are able to perform. A source node, and a sink node are also added, as they simplify the algorithm.
The source node connects to all people, while all the jobs are connected to the sink node.

To perform a matching3 we look for a path from the source node to the sink node. If there is no
path then the matching process is over and as many people as possible have been assigned jobs. If we
find a path to the sink node, we indicate that the path has been used by reversing all the edges in that
path. If a matching is bad, then the reversed direction of the edge allows us to reassign jobs. This can
be seen in Fig. 6.7 where bad assignments occur in the first two matchings, and are then reassigned in
the last two matchings. We obtain the final assignment by examining the reversed edges, which will
point from a job to a person, indicating which person should be assigned that job.

This algorithm is guaranteed to terminate since for every path we find we reverse one more edge
from the source to a person. Since there are only a finite number of people, we will eventually run out
of possible edges from which to leave the source vertex. This will ensure there are no more paths and
the algorithm will terminate.

As an informal argument that this procedure will always result in the largest number of assigned
jobs, consider the graph found at the end of this algorithm. There will be no more paths, meaning that
3Maximum matching is actually a specialisation of the network flow algorithm. Imagine a network of roads that is used by many
cars to get from point A to point B. All the roads can handle different amounts of traffic as some of the roads are highways and
some are single-lane country roads. The network-flow algorithm is capable of calculating the maximum number of cars that can
use this system of roads.
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every edge from the source to a person (i.e. an unmatched person) has no path. This means that every
job that an unmatched person could perform has already been assigned. Moreover since there are no
paths it also means that one cannot travel from an already assigned skill, to a matched person and find
another job that has not been matched. This means that every unmatched person’s set of jobs is already
performed by someone else and there is no job, to which a matched person could switch, that is not
already matched. This is the definition of an optimal matching.

More formally the algorithm can be described as in listing 6.4.

1 f i n d p a t h ( s , d )
2 i f s ==d re turn t r u e
3 i f v i s i t e d [ s ] re turn f a l s e
4 $ v i s i t e d [ s ] = t r u e
5 f o r each v e r t e x ( v _ i ) t h a t s c o n n e c t s t o
6 i f f i n d p a t h ( v_i , d ) re turn t r u e
7 re turn f a l s e
8
9 mm

10 C r e a t e a p p r o p r i a t e g raph wi th s i n k and s o u r c e v e r t i c e s .
11 n=0
12 I n i t i a l i s e b o o l e a n a r r a y v i s i t e d t o a l l f a l s e .
13 While f i n d p a t h ( sou rce , s i n k )
14 n=n+1
15 Reve r se a l l edges t h a t make up t h e p a t h .
16 R e s e t v i s i t e d t o a l l f a l s e .
17 n r e p r e s e n t s t h e maximum number o f a s s i g n m e n t s p o s s i b l e ; t h e i n d i v i d u a l a s s i g n m e n t s

a r e g i v e n by t h e r e v e r s e d edges , which a r e n o t c o n n e c t e d t o t h e s o u r c e o r s i n k .

Listing 6.4: mm – perform a maximal matching

Let us give a rough approximation of the order of this technique, by considering the worst case. Here
if k matchings have been made then in the worst case the available path will cover 2(k + 1) edges.
This path corresponds to the previous k matchings all being reassigned (each requiring 2 edges) and
traversing the source and sink edge. Since we would have to do this for all of the n nodes, this makes
the algorithm at worst an O(n2) algorithm. This is still considered efficient when compared to the
problems presented in the next section.

6.4 NP-Complete Problems

These are problems that are conjectured to have no solution in polynomial time. So far researchers have
only been able to find solutions that are exponential in time. However these problems do have solutions
in non-deterministic polynomial time (NP). This means that if we had a computer that was capable of
non-deterministically choosing the correct decision at every point then these problems could be solved
in polynomial time. The problem class known as NP-Complete (NPC) are the hardest problems in
NP . If a proof is found that NPC problems can be solved in polynomial time then it will show that all
problems in NP are also in P .

An interesting aspect of these problems is that they have all been proven equivalent to each other.
This means that it is possible to transform one problem into another using an algorithm of polynomial
order. If we find an efficient (i.e. tractable) solution for one of these problems then it will be pos-
sible to solve all the problems by transforming them into the solvable problem, solving them and then
transforming them back.

It must be emphasized that the question of proving or disproving whether the class of Polynomial
problems (P) is equal to the class of Nondeterministic Polynomial problems (NP) is the largest out-
standing issue in theoretical computer science today. It has also motivated a great deal of research on
quantum computing, which would be able to solve NP problems in polynomial time.
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(a) Assigning Alice to Accounts.

(b) Assigning Brenda to Deliveries.

(c) Charlene’s only path is through Deliveries and Brenda. This reassigns Brenda to Pro-
gramming and Charlene is assigned Deliveries.

(d) Diana’s only path is through Alice and Accounts. This reassigns Alice to Sales and
Diana is assigned Accounts.

Figure 6.7: Using a graph to solve the matching problem.
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6.4.1 Traveling salesperson (Hamiltonian cycle)

The traveling salesperson problem described in the introductory chapter is trying to find a Hamiltonian
path in a graph representing a road map. Unfortunately the traveling salesperson problem is a problem
that arises frequently in real life in such application as: the design of telephone networks, integrated
circuits, the programming of industrial robots etc. [Harel 1989].

An exponential algorithm for this problem is easy to find. Just generate all paths and remember the
minimum. The order of generating all paths if there are n vertices and roughly k edges at every vertex
is O(kn). Unfortunately researchers have not been able to significantly improve that bound and still
guarantee optimality. In some cases heuristics (or rules-of-thumb), which seem to work, can achieve
acceptable results.

Finding a better guaranteed-optimal algorithm appears difficult as the solution is heavily influenced
by the global structure of the graph, yet there appears no simple way of using this global structure when
deciding on the next vertex to include in the path.

6.4.2 Satisfiability problem

The Satisfiability problem (SAT) uses Boolean expressions in Conjunctive Normal Form (CNF). A
satisfiable Boolean expression is one that can be true.

e = t1 ∩ t2 ∩ t3 . . . ∩ tn
Each ti is formed by or-ing Boolean variables or their negation (∼):
ti = s0 ∪ sm ∪ . . . ∪ sk
where the si are called literals, and the ti are called clauses. Or: CNF is ands of ors of variables

(including negations of variables). Any logical expression can be converted to CNF form using standard
rules of logic like De Morgan’s Law, negation of negation, distributive laws, etc.

Problem: Given a satisfiable expression (one where it can be true) e in CNF, find an assignment of
values to the variables that will make the value of e true – i.e., show that it is in fact satisfiable.

Examples:

e = (x∪ ∼ x) ∩ (x ∪ y) ⇒ x = T ; y = F

e = (x ∪ y)∩ ∼ x∩ ∼ y ⇒ No Solution

Solution:

• Deterministic algorithm easy – exhaustive approach

– All possibilities of n variable values = O(2n)

A non-deterministic algorithm can be found that is in O(n).

– An oracle provides the correct value of each variable [Blass and Gurevich 1982]

2-SAT

Given an expression in CNF where every clause contains at most 2 literals, can you find a satisfying
assignment? Yes, in polynomial time.

Can draw an implication graph and check it for cycles. Replace each disjunction by a pair of
implications: If node u is true then node v is also, if there exists an edge from u to v.

The implication graph for the 2-SAT clause given below is shown in Fig. 6.8.

(x0 ∨ x2) ∧ (x0 ∨ ¬x3) ∧ (x1 ∨ ¬x3) ∧ (x1 ∨ ¬x4) ∧ (x2 ∨ ¬x4)∧

(x0 ∨ x5) ∧ (x1 ∨ x5) ∧ (x2 ∨ x5) ∧ (x3 ∨ x6) ∧ (x4 ∨ x6) ∧ (x5 ∨ x6)
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Figure 6.8: Implication graph for a 2-SAT clause.

3-SAT

This problem has historical significance as it was the first problem to be proven NP-complete.The
proof uses the Cook-Levin Theorem, which provides a way of converting Turing machines into Boolean
formulas if we know a bound on the run time.

Input for the problem consists of a long Boolean expression of the form:

(v1 ∨ ¬v2 ∨ v3) ∧ (¬v1 ∨ ¬v2 ∨ ¬v3) ∧ . . . ∧ (v15 ∨ ¬v17 ∨ vk)

One must then find a set of assignments {v1 = true, v2 = false, . . . , vk = false} that satisfy the
input expression. This problem has a naïve solution of testing all possible assignments. Unfortunately
the number of possible assignments is O(2k).

One can see that it is easy to verify a given solution, one can simply substitute the values in the
expression and evaluate it. This has linear order, and is a lower bound on the complexity of the solution.
Unfortunately researchers have only been able to prove an upper bound, which is exponential. By
tightening the bounds of our proof we may yet find out if this problem is contained in P or NP .

6.4.3 3-Colour problem

Problem: Colour a graph with R,G,B so that no adjacent vertices end up with the same colour.
This can be proved to be NP-complete by a reduction from SAT (convert it to a known problem).

Can we make a graph that is 3-colourable iff the Boolean formula is satisfiable?

6.4.4 Other NP problems

15-puzzle: Finding any answer is in P . Finding the optimal answer is NP-complete.
Knapsack problem or bin packing: This is a maximization problem based on items with a cost at-

tached. The aim is to fit the maximum number of items into the knapsack, subject to a given constraint,
or to use the minimum number of bins.
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6.4.5 Sample reductions

1. Traveling Salesperson (TS): given a weighted graph G and integer k, is there a cycle with cost
≥ k that visits each vertex exactly once?

Hamiltonian cycle (HC): given a graph G, is there a cycle that visits each vertex exactly once?

It is possible to reduce HC to TS: Given input graph G to HP, set the cost of each edge to 1, and
consider TS with k = the number of vertices.

2. HC: Given an undirected graph, does it have an HC?

Direct Hamiltonian cycle (DHC): Given a directed graph, does it have a HC?

Reducing HC to DHC: Replace each undirected edge (u,v) by a directed edge from u to v and
from v to a.

Reducing DHC to HC: very complicated reduction

Exercise 6.5

Show that exponential order will always be greater than polynomial order for large enough n. Find the
smallest integer n for which 1.0001n > n10,000.

Exercise 6.6

Modify the dynamic programming algorithm so that it can handle graphs with cycles. Analyse the
order of your algorithm in the worst case. Experimentally create some graphs and try to approximate
the average order too.

Exercise 6.7

Write a program that solves the Travelling Salesperson problem. To simplify the problem just search
for any Hamiltonian path, rather than the shortest. Write a method that generates random graphs, with
roughly half of the vertices connected to any given vertex. Test your solution on these random graphs
for various sizes. Try graphs with 5, 10, and 15 vertices. How long might it take your program for 30
or 40 vertices?

Exercise 6.8

Read up on modifications to the minimum spanning tree algorithm that change the order toO(m log(m)).



Chapter 7

Conclusion

This brief course is logically split into two main themes; discovering the limitations implicit in different
models of computation, and differentiating between practical and impractical solutions to problems.

The simplest model of computation – the finite-state automaton – is able to recognise simple num-
bers and variable names. Trying to add non-determinism to a finite-state automaton did not increase
its power as it was possible to use a deterministic FSA with a larger number of states to simulate the
non-deterministic FSA. The finiteness of these state machines is their main limitation; as a result they
cannot remember an arbitrary number of previous symbols.

To overcome this limitation, we introduced the pushdown automaton. This machine had a memory
that can remember as many previously seen symbols as is necessary, using a stack. While there are
differences between deterministic and non-deterministic pushdown automata, these differences are not
covered as they are more appropriately covered in a compiler course. Instead the limitations of push-
down automata are emphasized. Since pushdown automata are equivalent to context-free grammars,
pushdown machines are unable to recognise any language that depends on context.

Thus the next logical improvement was to be able to test for the context of a symbol. This is done
by allowing the machine to move both backwards and forwards along the input tape. If the machine
is allowed to write on the tape as well then a separate memory is unnecessary since the symbols can
be stored on the tape itself. This is a Turing machine, and is thought to have the same computational
power as any possible computational system.

The second theme of the course looked at individual problems, and tried to classify their complexity.
Several definitions were used; a problem could be classified as tractable, which meant that the best
solutions were guaranteed to solve the problem in polynomial time. If a problem was intractable,
this meant that we have only be been able to find solutions with exponential (or worse) complexity.
Problems with exponential complexity are impractical, since it could take billions of years to solve
reasonably small instances.

Showing that a problem was undecidable however meant that there were some inputs for the prob-
lem that either would not terminate or would result in an incorrect answer. This is very disturbing since
it means that these problems are unsolvable for all cases, regardless of new developments in computers
and algorithms.

This gives a much clearer view of the computability of certain problems. If a problem can be solved
on a pushdown automaton or a finite-state machine then it is tractable. If the problem requires a Turing
machine and does not seem to have an efficient solution there are now several options. Proving the
problem equivalent to a known NP-complete problem, will show that currently there is no known
polynomial solution and the problem is intractable. If the problem can be shown equivalent to the
halting problem, then the problem is undecidable and has no solution that works for all possible inputs.

In the last two cases an optimal solution appears infeasible, and one should instead find heuristics
that can produce reasonable solutions. In this sense the theory of computing can be an immensely
useful and practical tool for any computer scientist.
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