MIPS2C

programming from the machine up

Philip Machanick

MIPS2C: PROGRAMMING FROM THE MACHINE UP

First edition, 2015

Minor corrections: March 2017, April 2019, October 2020
Copyright © Philip Machanick 2014, 2015, 2016, 2017, 2018, 2019,
2020

Published by Philip Machanick in the RAMpage Research imprint
under an Attribution-NonCommercial 4.0 International (CC BY-NC
4.0) licence:
http://creativecommons.org/licenses/by-nc/4.0/

The quick summary: free to use however you like but not for
commercial purposes.

SPIM documentation: Appendix E is copyright to the author as
indicated on the first page and using this material does not imply
endorsement by James Larus of this book.

Picture credits: all illustrations are either by the author or from
public domain sources, as acknowledged in the text.

Author: Machanick, Philip, 1957-

Title: Mips2C: programming from the machine up / Philip Machanick
Edition: Isted.

Publisher: Grahamstown, South Africa : RAMpage Research, 2015.
ISBN: 978-0-8681048-7-4 (pbk.)

LoC classification : QA76

Last typeset 27 October 2020

http://creativecommons.org/licenses/by-nc/4.0/

Preface

HY THIS BOOK? Some years ago I took part in a panel discussion
s;s/ titled “Programming Early Considered Harmful” at the SIGCSE 2001
conference [Hitchner et al. 2001]. Once of those present was Yale
Patt, whom I had met briefly on a sabbatical at University of Michigan, where
he was at the time a professor working in computer architecture. His role
on the panel was to proselytise his book, Introduction to Computing Systems:
From bits & gates to C & beyond [Patt and Patel 2013], which introduced
programming from the low level up. I found the idea intriguing particularly as
I also was concerned with the problem that students tend to stick with the first
thing they learn. If my concern was correct, it should be better to start with the
programming model you want them to internalize, rather than start with machine-
level programming. Nonenetheless, I am always open to new ideas, and when the
opportunity presented itself to run a computer organization course followed by a
C course, I decided to try the idea for myself.

After reviewing the latest edition of Patt and Patel [2013], I saw a gap for a
treatment that focused more on assembly-level programming as it relates to C, and
less on the hardware. For any who disagrees, there is another book out there.

Another problem is that text books are becoming increasingly expensive.
Patt and Patel [2013] retails for over $150; the fifth edition of the classic
Computer Organization and Design: The Hardware/Software Interface [Patterson
and Hennessy 2014] lists at almost $90.

That takes me to another motivation for writing this book: affordability.
Where I live, South Africa, we are charged European prices for books. While
publishers do sometimes try to lower prices when we ask nicely, books are very
expensive in relation to earning power. We also have a significant fraction of
students from very low income groups. All of that motivates me to explore ways
of pushing cost down. One way I am doing that is by publishing this book with
a Creative Commons Attribution-NonCommercial license, which makes it free to

copy for non-commercial purposes. Another way I aim to bring costs down is by
publishing using print on demand (PoD). The cost per book printed using PoD
publishing is higher than the cost per book of a large print run, but a large print
run is only economic if a significant fraction of the books is sold. By using PoD,
I can also cut out the overheads of a publisher, who has to make money out of
successful books to pay for warehouses full of unsuccessful titles.

How well does it work?

My students do this course after a year of object-oriented programming so
it is not in that sense a low-level first approach. They find it hard to break out
of calling functions “methods”, as an example of an entrenched habit. Overall
though my experience is that the approach works. To some extent starting with
a relatively high-level language with classes and objects makes it easy to code
things that provide tangible results. Taking a dive after that into the low level is a
bit discomforting, but so is any real learning.

A few thoughts on my approach.

Standard MIPS-based treatments generally follow a particular standard for
compiler calling conventions; I construct my call stack slightly differently for
two reasons. The first is I find my approach a bit easier to explain. The second is
to get across to students that the stack is not a fixed structure in memory, but the
consequence of conventions that you can change.

I try to avoid teaching things in a way that has to be undone later. Rather,
I use simplifications, then fill in the gaps. For example, I introduce templates
for coding statements into assembly language (such as if statements or for loops)
without taking into account all the requirements for generality, then add in those
requirements.

Tuse C as a “pseudocode” deliberately in the first part of the book, even though
C is clearly a real language, to create familiarity with the syntax. For students
with a background in a C-like language, this should not present a major issue.
For others, the “pseudocode” is mainly used in small examples and should be
understandable from the context.

My intent is to put students in a position to understand topics like compilers,
recursion and data structures by seeing what happens underneath. I think the
approach works, though the best test is whether graduates who have learnt this
way are able to work more efficiently and with more insight later in life.

Finally, I look forward to hearing from others who use this material. If you
choose to use the free version, your views will be just as valuable as if you pay
for a commercially published copy.

Contents

Preface

List of Figures

List of Tables
Definitions

From the Machine...

1 Introduction

1.1 SomeBasics.
1.2 Machine Language versus High-
1.3 Code Translation
1.4 Machine Instruction Sets . . .
1.5 The Machine
1.6 Practicalities.
1.7 Further Reading
Exercises

2 Numbers and the Machine

2.1 Logic
22 Numbers.
2.3 Numbers and Logic
2.4 The Machine
Exercises

3 Assembly by Example
3.1 Instructions and their Formats

111

Level Language

vii

xi

20
20
26
35
38
47

49

v

4 Memory and Functions
4.1 Calling functions
4.2 Global Variables
4.4 Bigger Parameters
4.5 Recursion

5 Data Structures
5.1 Machine-Level Data
5.2 Arrays
5.3 Dynamic Data
5.4 Structured types
5.5 Objects
5.6 Putting it all Together

6 Performance
6.1 More at once
6.3 Input and Output
6.4 Energy and mobility
6.5 Wrap-up

..toC

7 Structure of a C Program
7.1 Minimal C Program

3.2 Memory access
3.3 ALU operations

3.4 Control

4.3 Local Variables and the Call Stack

Exercises

Exercises

6.2 Memory Hierarchy and Performance

Exercises

7.2 Program Files
7.3 Program File Contents
7.4 Major Constructs

3.5 Floating Point
Exercises

CONTENTS

CONTENTS

10

7.5 Main Program Parameters
7.6 Multifile Programs o o oo
7.7 FurtherReading
Exercises

The UNIX Command Line

81 CommandLine
8.2 Programming
8.3 More Complex Commands
84 Summary e e e
8.5 FurtherReading
Exercises

Simple C Examples

9.1 Simple functionsand IO
9.2 MorelO
9.3 BiggerExamples oL

Exercises e e

More Interesting Problems

10.1 More Types« v v v v i i et e e
10.2 Moreon CFile Layout
10.3 Examples e
10.4 Putting a program together
10.5 More complex examples
10.6 Summary e
Exercises

References

A

B

C

D

ASCII Character Set
MIPS Register Conventions
SPIM System Calls

SPIM Call Stack

208
210
212
212

215
215
220
224
227
228
228

231
231
235
240
245

248
248
251
252
270
275
282
282

285

287

290

292

294

vi

E SPIM Background

E.1

E.2

E.3
E.4
E.5

Index

SPIM
E.1.1 Simulation of a Virtual Machine
E.1.2 SPIM Interface
E.1.3 Surprising Features
E.1.4 Assembler Syntax
E.1.5 SystemCalls
Description of the MIPS R2000
E.2.1 CPURegisters
E22 ByteOrder
E.2.3 AddressingModes

E.2.4 Arithmetic and Logical Instructions
E.2.5 Constant-Manipulating Instructions

E.2.6 Comparison Instructions
E.2.7 Branch and Jump Instructions
E.2.8 Load Instructions
E.2.9 Store Instructions
E.2.10 Data Movement Instructions
E.2.11 Floating Point Instructions
E.2.12 Exception and Trap Instructions
Memory Usage
Calling Convention
Inputand Output

CONTENTS

296

List of Figures

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13

3.1
32
33
34
3.5
3.6
3.7
3.8
39
3.10
3.11

Major components of the memory hierarchy and CPU 14
Multilevel caches in a multicore deisign 15
A nand gate used to implementanot gate 21
Logicgatesymbols, 25
Exclusive or fromnand gates 25
IEEE 754 32-bit floating point 31
Half adderlogic 36
Full adder logicblock 36
Full adder logic circuit 37
Four-bit adder block diagram 38
SPIMatlaunch 41
SPIM user text segment atlaunch 41
SPIM upset about no main entry point 43
SPIM user text segment: minimal program 43
SPIM user text segment: forloop. 44
MIPS common instruction formats 50
MIPS load upper immediate instruction 52
SPIM datasegment 55
SPIM data segment: intialized 56
SPIM text segment: loads frommemory 56
Registersvs. RAM oL 57
SPIM text segment: more efficient loads from memory 59
SPIM data before and after saving SP 60
Sign-extending Lo e 61
Effectof shortloads 62
SPIM data layout with a short dataitem 63

vil

viii

3.12
3.13
3.14
3.15

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12

6.1
6.2
6.3
6.4
6.5

LIST OF FIGURES

SPIM expansion of mulo pseudoinstruction 64
Force high halfword to contain only low halfword sign bit 67
Looptemplates, 69
iftemplates 71
Abstract stackexample L Lo 80
Conceptual memory layout 81
Function call tree and register saving 83
Saving the return address, 87
More general loop and if templates 96
Data segmentusedsofar 98
More detail of stack storage scheme 105
Minimal function call templates 106
Stack frame: minimal example with two words for variables . . . 108
More general function templates 112
Data segment used so far (stack) 113
Call tree for running a Fibonacci example 115
Stack frame at two stages of the Fibonacci program 120
Extracting a character by shifting and masking 125
Indexing elements of 4 bytes 135
Conceptual view of aswitch 139
More templates: switch, break and continue 140
SwitchasseeninSPIM 142
Linked list 143
Minimal malloc implementation 144
Beforeand after SBRK 147
Initialized heap: nothing allocated 148
Simple listexample, 155
Implementation of anobject 163
Data segment used so far (stack) 168
The benefits of a better algorithm 172
The pipeline concept 174
Timing of determining branch outcome 177
Amdahl’'sLaw 179

Locality variations 182

LIST OF FIGURES ix

7.1
7.2
7.3
7.4
7.5
7.6
7.7

8.1
8.2

9.1

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

E.l
E.2
E.3
E.4
E.5

E.6

C preprocessor and compiler 195
Stack and local variable 0 000 198
Syntax of major C features 199
level syntax of C statements 201
Common forms of C expressions 202
Cloops o 208
Definitionina headerfile 210
One flavour of Linux graphical file browser 216
After launchingnano L L. 221
How scanf updates a variable inmemory 234
Binary treeexample Lo L 253
Quicksort recursion e e e e 258
Mergesort recursion and merges 260
How argc and argv are passed in and represented in memory . . 268
Source files for make example 273
Source files for make example: incorrect main program 273
Dependences of object files and executable for make example . . . 274
Bitsort firstpass oL 277
MIPS R2000 CPUand FPU 303
The Statusregister. 305
The Causeregister. o o 305
Layoutof memory. 316

Layout of a stack frame. The frame pointer points just below the
last argument passed on the stack. The stack pointer points to the
last word in the frame. 317
The terminal is controlled by four device registers, each of which
appears as a special memory location at the given address. Only a
few bits of the registers are actually used: the others always read
as zeroes and are ignored on writes. L. 319

List of Tables

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

5.1

7.1

9.1

Al
A2

B.1

C.1

E.1
E.2

ASCIlencodingexample 5
Binary and Decimal Units 18
Nand truthtable 21
Andand Or truthtable 22
De Morgan’s Law truthtable 24
And, Or, Xor truthtable 24
2’scomplementexamples Lo 29
Half adder truthtable 35
Full adder truthtable 37
Register conventionso 45
Sizes of standard C basictypes 124
Coperators e 203
Common formats for printf. 236
ASClIlencoding i 287
ASCII non-printing character encoding 289
Register conventions including floating point 290
SPIM systemcalls. 292
SYStEM SEIVICES. « + v v v v v v e e e e e e e e e e e 302
MIPS registers and the convention governing theiruse. 304

Definitions

A

absolute address — Address that can be used directly. See also address, relative address.

absolute path — A path from the root of the file system, in UNIX designated by starting with /.
See also system path, relative path, path.

abstraction — The principle of hiding all but the most essential details.

activation record — See stack frame.

actual parameter — See parameter.

address — Number signifying position relative to the start of main memory (RAM); usually
numbered in bytes. See also absolute address, relative address, pointer.

ALU - See arithmetic-logic unit.

Amdahl’s Law — A version of the speedup formula that emphasises the sequential fraction.

architecture — A consistent design that allows a range of implementations, each running the same
code subject only to available resources (memory, speed, connected devices). The Intel
IA32 architecture for example runs the same 32-bit instruction set across many designs
going back to the 80386, also called Intel386, 1386, or 386, going back to 1985.

argument — See parameter: term used in C-family languages for the value passed in.

arithmetic-logic unit (ALU) — component of CPU that decodes and executes instructions.

array — Data structure: elements accessed by (usually) integer index; in C, all elements are the
same type and an array is represented by the address of (pointer to) the first element.

ASCII — American Standard Code for Information Interchange — a 7-bit, extended to 8 bits, code
for representing characters. See also Appendix A.

assembler — A program that translates assembly language to machine code. See also assembly
language.

assembler directive — An instruction to an assembler that does not generate code. See also
assembler.

assembly language — A symbolic representation of machine code that mostly translates directly to
machine code instructions. See also assembler, pseudoinstruction, assembler directive.

B

bias — A way of representing positives and negatives where a bias has to be subtracted from the
number to represent its true value. In IEEE floating point, the exponent is represented this
way (bias = 127). Also called offset or excess.

big endian — Ordering of smaller items like bytes within a word that starts at the high-order (big)
end of the word, so bytes within a word appear in memory in order 0,1,2,3. See also little
endian, endianness.

X1

xii DEFINITIONS

bit — Binary digit (0 or 1 in a number represented in base 2).

boolean algebra — Rules for arithmetic with true (1) and false (0) values.

branch delay slot — The instruction immediately after a branch that is executed whether the branch
is taken or not. See also delayed branch.

branch instruction — Changes flow of control conditionally; encodes a condition and also has a
target address. A branch is faken if the condition is true. The address is usually relative.
See also jump instruction, delayed branch.

bytecode — A machine instruction set designed to be portable, usually interpreted or translated to
actual machine code.

C

cache — A fast memory that is used to fake the effect of the entire memory being faster than a
reasonably affordable memory technology. Decisions as to what is in a faster layer are
made in hardware. The fastest cache is integrated into the CPU in recent designs, and is
the highest-level or level 1 (also: LI cache). There can be 1 or more lower levels of cache,
usually in current designs integrated into the CPU chip, numbered L2, . ..

CISC — See complex instruction set computer.

compiled — Translated with significant changes in amount and style of code from a high-level
language to a lower-level language (usually machine code.

complement — In logic, inversion of all bits. See also two’s complement.

complex instruction set computer (CISC) — Any design that does not fit the RISC definition.
For example, with variable instruction lengths, instructions that only work with specific
registers and instructions that do arithmetic or logic on memory contents.

complexity — Growth rate of time or extra space needed by an algorithm expressed as the largest
term of a function of size of data N. See also space complexity, time complexity, complexity
class.

complexity class — Classification of a function in terms of its growth rate based on the largest term.
See also complexity.

constant pool — Region of memory containing constant values such as strings. See also heap,
stack, globals.

conditional — A C operator that given a boolean value selects between two alternatives. Written
bool 7?7 alt; : altjp.

contradiction — In logic, any formula that is false for all values of variables (or in a logic circuit,
all inputs). See also tautology.

coprocessor — An auxiliary processor outside the main logic path. See also floating-point unit,
graphics processing unit.

core — In designs with multiple CPUs on a chip (rmulticore), each CPU is called a core. Cores
often share the lowest-level on-chip cache.

CPU - See processor.

D

declaration — In C, the place where the type of a program construct (function, type or variable) is
known but does not require runtime resources. See also definition.

definition — In C, the place where a program construct (function or variable) requires runtime
resources. See also declaration.

Xiii

delayed branch — A branch instruction that executes the following instruction whether the branch
is taken or not. See also branch delay slot.

De Morgan’s Laws — In logic, rules to redistribute negation over and and or.

digit signal processor (DSP) — A specialized CPU that is designed for efficient digit-analog
conversion as in audio or video.

dispatch table — Table of addresses that can be used in a jump or similar instruction to direct to
code based on an index. See also jump table.

DRAM — See dynamic random access memory.

DSP — See digit signal processor.

dynamic instruction count — Count of instructions executed in a particular run of a program. See
also static instruction count.

dynamic linking — Linking that is delayed until a program runs. See also linker, library, static
linking, executable file, object file.

dynamic random access memory (DRAM) — RAM usually implemented with a capacitor storing a
bit that needs to be refreshed periodically to maintain its value: relatively inexpensive, but
not as fast as SRAM.

E

embedded system — A computer that is part of another machine or device.

endianness — Intel architectures are little-endian; MIPS can be either. See also little endian, big
endian.

excess — See bias.

executable file — A file that can be run directly. See also linker, object file.

F

floating point — Computer representation of numbers that can include fractions. Most CPUs
that support floating point have a separate set of registers for floating point values. The
IEEE 754 standard defines a range of different sizes of floating-point numbers and includes
concepts like representing +oo and not a number (or NaN).

Sfloating-point unit (FPU) — Component of a CPU that handles floating-point instructions, usually
with its own register set. See also coprocessor.

formal parameter — See parameter.

FPU - See floating-point unit.

frame pointer — Register to keep track of the start of the current stack frame. MIPS machine code
convention: register 30 ($£p or $30). Some compilers do not use a frame pointer (if you
know the size of the stack frame, you can work out everything you need from the stack
pointer).

function (procedure, subroutine) — Unit of code that can be invoked with a return address to return
to the point immediately after invocation; optionally can include parameters passed in, local
variables and a return value. In object-oriented languages, a method is the same thing with
added features: the ability to reference a specific object, and the possibility of finding a
different version of the method by inheritance.

G

garbage collector — Recovers memory no longer accessible by a program, usually when memory
starts to fill up. See also heap, managed-memory language — not a feature of C.

gate — Elementary logic function implemented in hardware. See universal gate.

Xiv DEFINITIONS

general-purpose computing on graphics processing units (GPGPU) — Using a GPU to speed up
non-graphics computation.

GPGPU - See general-purpose computing on graphics processing units.

GPU - See graphics processing unit.

graphics processing unit (GPU) — Component of a CPU that handles graphics instructions,
sometimes on a separate chip. See also coprocessor.

H

hard real time — A real-time requirement that if not met means system failure. See also real time,
soft real time.

heap — Region of memory containing dynamically allocated and deallocated data (also the name
of a data structure). See also globals, stack, constant pool.

hexadecimal (hex) — Base 16 — convenient for representing binary numbers since grouping bits in
4s starting from the low end of the number converts directly to hex.

high-level language (HLL) — A language designed for human convenience of programming, not
close to the machine. See also assembly language.

HLL architecture — Machine instruction set designed to be closer to a high-level language than
traditional machine code.

I

IEEE 754 — See floating point.

ILP — See instruction-level parallelism.

immediate operand — An operand value encoded into the instruction. See also operand.

infix notation — Function names are written between operands, as in arithmetic expressions. See
also postfix notation.

inheritance — Ability in object-oriented languages to derive a new class from a parent class with
the option to reuse or override methods of the parent class — not a feature of C (can be built
up laboriously in machine code).

instruction count — See static instruction count, dynamic instruction count.

instruction issue — Transition of an instruction to the execute stage (or first execute stage, with a
deeper pipeline).

instruction-level parallelism (ILP) — Increasing CPU throughput by overlapping execution of
instructions.

instruction set architecture (ISA) — Instruction set as seen by the programmer or compiler.

interpreted — Executed line-by-line, as opposed to compiled.

interrupt — Event that breaks the sequence of execution, often resulting in use of a jump table to
find an interrupt handler. See also interrupt handler, interrupt vector, jump table.

interrupt handler — Code invoked to handle an interrupt. Generally must be short to minimise
backing up other interrupts.

interrupt vector — Sequential (possibly with gaps) locations to which control transfers on an
interrupt, with one location for each type of interrupt.

ISA — See instruction set architecture.

issue — See instruction issue.

XV

J

JIT — see just in time compiler.

Jjump instruction — Changes flow of control unconditionally; a jump and link instruction stores the
return address. The address may be immediate or from a register but is usually absolute.
See also branch instruction.

Jjump table — Table of jump instructions that can be used to transfer control code based on an index.
See also interrupt, dispatch table.

Jjust in time (JIT) compiler — A compiler that translates to machine code immediately before the
particular code is needed; sometimes used as an alternative to interpreting bytecode.

L

L1, L2, etc. — First, second, etc., levels e.g. of a cache hierarchy in which L1 is the fastest and
closest to the CPU.

label — A name used in assembly language to mark a location in memory (an instruction or a
location where a constant has been placed; in SPIM’s assembly language, a label has a “:”
after its name where it is defined.

library — Precompiled code available to link into programs. See also linker, dynamic linking, static
linking.

linker — A program that combines separately compiled files. See also object file, library.

little endian — Ordering of smaller items like bytes within a word that starts at the low-order (little)
end of the word, so bytes within a word appear in memory in order 3,2,1,0. See also big
endian, endianness.

load — An instruction that copies memory contents to a register (in MIPS, there are different load
instructions for different sizes and types of operand, e.g., 1w loads a word into an integer
register). See also store.

locality — The principle that a program uses a small subset of memory at a time. See also spatial
locality, temporal locality.

M

machine code — Instructions that are directly interpreted by hardware with no further translation.
See also assembly language.

macro — Named text that can be substituted into other text by use of its name. Macros can also
have parameters; distinguished from functions in that they have no clear existence at run
time.

make — A UNIX utility that uses a Makefile (capital “M” optional) containing dependence rules
and actions to resolve failed dependences.

managed-memory language — A language in which inaccessible dynamically allocated data space
is automatically. See also garbage collector.

memory leak — A program not written in a managed-memory language starts to run out of memory
because the program does not correctly deallocate dynamic data when it is no longer
accessible.

method — not a feature of C or machine code (directly — you can make up a similar concept with
some effort) — see function.

MIPS — A RISC processor architecture common in embedded devices.

multicore — See core.

XVi DEFINITIONS

N

null pointer — A pointer value that represents no memory location, usually a zero. See also pointer.

(0]

object file — A compiled portion of a program that must be combined with other files to make an
executable file. See also linker.

one’s complement (1’s complement) — A way of representing integer negatives, by inverting all bits.
Not widely used since unlike two’s complement, it has a wasted value with zero represented
two ways, as all Os or all Is.

offset — See bias.

opcode — Part of an instruction that signifies what operation it performs (in MIPS, modified by
function bits).

operand — In a MIPS instruction or C expression, value to be used or in MIPS a destination for
computed value. See also immediate operand, register, infix notation.

operator — A built-in function with a special symbol, usually in infix notation, such as + or *.

P

parameter — value passed in to a function. In the function definition, called a formal parameter
and in the call, an actual parameter. In C, a formal parameter is called a parameter, and an
actual parameter an argument.

path — Sequence of directory names, in UNIX separated by “/”. See also system path, relative
path, absolute path.

pipeline — Organization of instruction execution overlapping sequential instructions. See also stall.

pointer — A value that contains a memory address. See also null pointer, reference.

pop — Remove an item from the top of a stack, adjusting the stack pointer back an item. See also
stack, push.

portable — Designed to run on more than one machine, possibly very different machines.

postfix notation — Function names are written after an operand, as in arithmetic expressions. See
also infix notation.

procedure — See function: a name used in older languages including Pascal.

processor — Logic unit that interprets instructions and includes the fastest layers of memory,
registers and caches. Also called central processing unit (CPU). See also core, arithmetic-
logic unit.

program counter (PC) — Register to keep track of the current instruction being executed. On
MIPS, it always is a multiple of 4 since instructions are word-aligned. Advances by 4 each
instruction, unless a flow control instruction changes it (jump or branch).

pseudoinstruction — An instruction in assembly language that is not a real machine instruction but
translates to one or more real machine instructions. See also assembler.

push — Add an item onto the top of a stack, advancing the stack pointer. See also stack, pop.

R

RAM — See random access memory.

random access memory (RAM) — Any memory that has an addressing scheme that equally allows
any item to be accesses without e.g., a delay to make that region accessible.

real time — A requirement that a task be done by a time deadline. See also hard real time, soft real
time.

recursion — See recursion.

Xvil

reduced instruction set computer (RISC) — An architecture in which all memory accesses are via
loads (copy to a register) or stores (copy a register to memory), all arithmetic and logic
is through registers, and instructions have relatively simple formats without variations in
instruction length. Also has a large set of general-purpose registers (MIPS has 32 integer
registers, though register zero —$zero or $0 — is hardwired to zeroes and register 31 — $ra
or $31 — is hardwired as the return address register). See also CISC.

reference — Slightly disguised pointer in languages with a higher-level approach than C.

register — Extra-fast memory designed into the CPU logic; usually a very limited number. Register
addresses are usually hard-coded into instructions for speed. See also spill registers, frame
pointer, stack pointer, program counter, reduced instruction set computer.

relative address — Address that must be added to a given location (usually the PC). See also
address, absolute address.

relative path — Path in UNIX starting with anything but “/”, relative to the current working
directory. See also system path, path, absolute path, working directory.

return address — Usually the address of the next instruction after a call instruction (e.g., jump and
link, jal). The MIPS architecture stores the return address in register 31 ($ra or $31, but
you can overrule this with the jalr instruction, which encodes a return address register).

RISC — See reduced instruction set computer.

S

shell — In UNIX-like systems, the environment where you run programs including a scripting
language.

short-circuit evaluation — Evaluation usually of logical or boolean expressions that stops as soon
as the answer is known.

sign bit — A bit used to signify negative (usually 1) or positive (usually 0). See also fwo’s
complement and signed magnitude.

signed magnitude — A way of representing integer negatives, by using the same bit representation
for a negative and positive, except the sign bit is 1 for a negative. Used in IEEE floating
point. See also two’s complement.

spatial locality — The principle that a program tends to use memory close to each other. See also
locality, temporal locality.

soft real time — A real-time requirement that if not met can be handled by a fallback option like a
drop in quality. See also real time, hard real time.

space complexity — Complexity expressed in terms of extra space needed by an algorithm over and

above the initial data. See also time complexity, complexity class.
tbefore
. tafrer .
spill registers — Save registers to RAM, usually on a function call.

speedup — After a change, . See also Amdahl’s Law.

SRAM - See static random access memory.

stack — At hardware level, a region of memory used to represent the state of function calls including
local variables, values that have to be saved across calls, parameters and the return address.
See also push, pop, heap, globals, constant pool, spill registers.

stack frame (activation record) — Contents of the stack representing the state of one particular
function call.

stack pointer — Register to keep track of the top of the stack. In MIPS machine code, by convention,
this is register 29 ($sp or $29). See also frame pointer.

Xviii DEFINITIONS

static definition — In C: function or variable with a name only visible in one compiled source file.

static instruction count — Count of the number of instructions in a program. See also dynamic
instruction count.

static linking — Linking that is done when creating an executable file. See also linker, library,
dynamic linking, executable file, object file.

stall — One or more lost cycles when a pipeline is unable to continue.

static random access memory (SRAM) — RAM usually implemented with a transistor storing a bit
that does not need to be refreshed periodically to maintain its value: relatively expensive,
and is faster than DRAM. Also requires more components than DRAM per bit, and hence
not as dense, which is why it is more expensive. Generally used for caches.

store — An instruction that copies register contents to memory (in MIPS, there are different store
instructions for different sizes and types of operand, e.g., sw stores a word from an integer
register). See also load.

structured data — A data type composed of one or more elements, not necessarily of the same type.
Called a struct in C; a class is the same concept but with methods and inheritance added.

subroutine — See function: a name used in older languages including FORTRAN.

system path — Sequence of path names, in UNIX separated by “:” used to find executables run
with no path name. See also path, relative path, absolute path.

T

taken branch — When the branch condition is true and the branch instruction jumps to the target
address rather than falling through to the next instruction, the branch is taken. See also
branch.

tautology — In logic, any formula that is true for all values of variables (or in a logic circuit, all
inputs). See also contradiction.

temporal locality — The principle that a program is likely to use the same memory again some time
soon. See also spatial locality, locality.

time complexity — Complexity expressed in terms of run time of an algorithm. See also space
complexity, complexity class.

truth table — Table showing all possible values of a logical or boolean function, given all possible
inputs.

two’s complement (2’s complement) — A way of representing integer negatives, by inverting all
bits and adding 1. In 2’s complement arithmetic, an overflow occurs if there is a carry in or
out of the sign bit, but not both. See also one’s complement.

U

universal gate — A gate that can be used to implement all other logic functions.

W

word-aligned — On a byte-addressed machine, an address that is an even multiple of the word size
(in MIPS, a multiple of 4).

working directory — Directory relative to which paths are defined. See also path, relative path,
absolute path.

y/

$zero — See reduced instruction set computer.

From the Machine...

1 Introduction

ROGRAMMING IN MANAGED-MEMORY LANGUAGES like Java, Python and

P C# takes a lot of pain out of programming, but also takes away the need to

understand at a deep level what is going on. Often, that is good enough.

You just want to get the job done with minimum pain, and with minimal chance
of programmer error.

By “managed-memory language”, I mean one where you do not have to
deallocate memory explicitly. Such languages also often include large libraries
of carefully-worked-out data structures and algorithms, so you don’t have to code
these rather basic things from scratch.

Why, anyway, would anyone want to get rid of such conveniences as automatic
memory management, high-level abstractions of data structures and classes with
inheritance? There are times when extreme efficiency is a concern, such as
programming a very small device, or where a task has to finish within a predicted
time.

How real are these scenarios?

Embedded

Don’t most computers you buy today have multiple cores running at over 2GHz
and RAM measured in Gbytes? Wrong. Most computers sold today are very
small devices that are part of another machine. There are obvious ones like
MP3 players, that you would know are in essence a scaled-down computer, and
slightly less obvious ones like a home ADSL router. But small computers are
part of many other things in less obvious ways — washing machines, cars, smaller
home appliances — to quote a few examples. When a computer is part of another
machine, it is called an embedded system and embedded systems may have severe
cost and power-use constraints. What’s more, they may have to continue running
unattended for years in the field, so they need to be simple and robust — and not

2

Introduction 3

run out of memory or processing speed because of minor efficiency issues.

Real Time

What of systems where time to complete is critical? A real-time system is one
where specific tasks have hard time limits. A hard read-time task is one where
failure to complete in time means the system is broken. Think anti-lock brakes on
a car. If the computer controlling the anti-lock system doesn’t react in time, the
system is flawed. A soft real-time task is one where there is an acceptable failure
mode if you run out of time. Think digital TV that pixellates when the signal is
lost — quality suffers but to a point you can tolerate that sort of failure.

While real-time and embedded systems can be programmed with managed-
memory languages, there are times when efficiency and timing predictability
are important enough to justify a language close to the hardware so you know
exactly what is going on without a few layers hiding how things work from the
programmer.

Why

Those examples are a partial justification. In addition, for someone studying
Computer Science (or related subjects), a deeper understanding is called for. You
need to know what is going on under the hood, just as a mechanical engineer who
wants to design cars needs to understand how they work, not just how to drive
them (or plug in an automated diagnostic tool).

Abstraction is an important design issue both in programming language design
and in programming — hiding the how and allowing the programmer to focus
on the why. Nonetheless, someone has to know what is going on underneath,
otherwise we cannot create new programming languages and tools like compilers.

So, in this book, we take a break from the world of managed-memory
languages and high-level abstractions, and start from the bottom up to see how
things work. By the end of the first part, you should have a good idea of how a low-
level language like C is implemented, and some idea of how higher-level concepts
like objects map to the hardware. The second part switches to C programming to
build on your understanding of the low-level concepts.

The aim is to give you base from which you can move in any direction,
from learning more about hardware to using higher-level languages with a clearer

4 CHAPTER 1. INTRODUCTION

understanding of how they work.

To help you see the big picture, every now and then you will see a grey box.
These are of two types to emphasise different kinds of important points.

The first is a “takehome”, as illustrated here:

The take home message? Sometimes it is useful to focus on one point to
understand the purpose of a particular section.

The second is a “headsup”, of which an example follows:

Heads up: Sometimes you need to know that a particular point or issue
could cause confusion, so you need to pay particular attention to it.

1.1 Some Basics

At its lowest level, a computer is an electronic device that responds to different
voltage levels you can think of as representing Os and 1s. These binary digits or
bits each represent one of two values but in combination represent as wide a range
of values as we need. Because a 0 can be thought of as a logical false value and a
1 as alogical true value, we can build up complicated operations by combinations
of simple boolean logic. Everything stored in a computer is represented as bits;
the actual interpretation of a given string of bits depends on the program. An
instruction at the machine level is just a string of bits; the same sequences of Os
and 1s could represent a location in memory, an integer value, a floating-point
value or a sequence of characters.

If you program in a managed-memory language, this very basic feature of a
computer is hidden — you don’t get to see how, for example, locations in memory
are represented, or manipulate them. You may have a high-level construct like
a reference that allows you to store the location of an object in a variable, but
you probably cannot do something like add 4 to the reference to make it point to
another part of memory, or reinterpret the bit string representing the reference as
another type of data.

Why would you want to do things like this?

If you are writing a compiler, one of the things you need to do is create
machine-level instructions. A machine-level instruction, as we will see, includes
components that are a fixed bit pattern, and may include other components
representing data values or locations in memory. To create a machine instruction,

Some Basics 5

Table 1.1: ASCIl encoding example: the per cent symbol

char H encoding
%“ Jofl1]olo[1]o]1

you need to be free to switch what a given bit pattern represents at one point (for
example, an integer) to something else containing the same bits (a segment of a
machine instruction). Here, we are not going to look at machine instructions as
bit patterns too often: we use a slightly more convenient notation called assembly
language that can be translated relatively straightforwardly to machine code by a
program called an assembler.

Let’s look at some examples.

Characters at machine level can be represented in various ways. A simple
approach is to use 8 bits to represent characters, as in ASCII (American Standard
Code for Information Interchange). A more modern design, Unicode, uses 16 bits,
sufficient to represent more complex alphabets. For our examples, to keep things
simple, we’ll stick with ASCII. ASCII was originally designed as a 7-bit code,
and the first 32 codes (numbered 0-31) are non-printing characters designed for
purposes like controlling printers or inserting codes in a data stream (such as an
end of file marker). ASCII evolved to an 8-bit code with several variants allowing
for extensions like accented characters in languages that use them. We will stick
to the simple alphanumeric subset of ASCII, including punctuation and control
characters — the original 7-bit design.

Here is an example. The character “%” is encoded as the number 37, or the
bit pattern in table 1.1. This bit pattern represents the binary number 1001015,.
There is a full listing of printable ASCII characters and a partial list of the more
interesting non-printing characters in Appendix A.

Already, we have seen that this one bit pattern can represent two completely
different things. In the MIPS instruction set (of which more later), 6 bits are
used to signify operations. The same 6 bits that represent the “%,” character (not
counting the O at the high end of the number) as a MIPS operation signifies a
logical or between two registers.

The take home message? A bit pattern can represent many things, and
the context and how it is used determines what it actually means.

6 CHAPTER 1. INTRODUCTION

1.2 Machine Language versus High-Level Language

How different are the low-level machine instructions from a language you may be
familiar with?

To start with, I will use a made up assembly language to express machine
instructions to give you a taste of what they look like; we will later graduate to
using the MIPS instruction set, which is only a little more difficult. I will express
programs in a pseudocode similar to C and translate them to assembly language.
We will later use a systematic approach for this, to get a feel for how a compiler
would do it.

Let’s take a simple construct — a for loop that adds the first N numbers from 0
up. Here it is in my C-like pseudocode:

sum = O;
for (1 = 0; 1 < N; i++)
sum += 1i;

Heads up: You may notice that my “pseudocode” looks suspiciously
like a real programming language rather than an approximate design
notation. This is deliberate: we will do C properly later so we might
as well get used to how it looks. A real pseudocode notation of course
does not follow syntax rules of a programming language and is allowed
to leave out inessential details.

An instruction in general is divided into an operation, encoded in an opcode,
and operands representing the data or machine address to be operated on. Our
machine language has special fast memory locations called registers that we use
to hold data values we are currently working with. Let’s call these RO...R16,
and assume that RO always contains the value zero. Our machine has operations
like test a value against a register for less than, and jump to a location if the
test is true (a branch instruction, written as brlt Ra,Rb,target, meaning go to
target if Ra < Rb - also sometimes called a conditional branch). We also
assume a brge Ra,Rb,target instruction that tests for Ra > Rb. We also can
jump unconditionally to a location in our code (a jump instruction, written as j
target). We can also do arithmetic between a pair of registers and store the result
in a destination register. Finally, we can add comments to our code using a “#”
symbol (the rest of the line after that is purely for the human reader). Our machine
code looks something like this:

Machine Language versus High-Level Language 7

assume N is in R1, use R2 to hold sum
use R3 to store the loop counter i

add R2,R0,RO # sum = 0;
add R3,RO,RO # for (i = 0; i < N; i++)
test: brge R3,R1,done # test before first iteration
add R2,R2,R3 # sum += i;
addi R3,R3,1 # increment loop counter
j test # back to the test
done: nop

A few more details: note the addi instruction. This has an example of an
immediate operand — a value built directly into the instruction, rather than fetched
from elsewhere. In this case, the immediate value is a 1. Also note the nop (no-
operation) instruction at the end of the loop. This is to provide a place to branch
to — usually, there would be an actual instruction there that did something useful.
Also note the use of labels — a word followed by a “:” in the left hand margin.
There is a fair amount of variation in notation in assemblers, aside from the
fact that the actual instruction set differs from machine to machine. Some, for
example, use a “;”” symbol to mark comments. Another variation is using a “#”
symbol to mark an immediate operand (obviously not so useful if the same symbol
is used to start a comment), or a “$” symbol at the start of a register name. When
we look at how to program a MIPS machine we will see a few of these variants.
If you use a specific assembler, you need to learn its conventions — but the main
thing you need to learn if you switch to a different machine is how its instruction

set differs.

Heads up: The MIPS assembler we use uses the “#” comment convention

but when displaying programs at run time in the debugger, uses a ;" as
a comment separator to keep things interesting.

Here is another variation. If we do the test at the end of the loop, our code
saves one instruction execution every time it goes through the loop body, at the
cost of a wasted jump instruction at the top. Also, if we branch from the test at
the end of the loop, we can eliminate the need to the extra nop instruction:

assume N is in R1, use R2 to hold sum
use R3 to store the loop counter i
add R2,R0O,RO # sum = O;
add R3,R0O,RO # for (1 = 0; 1 < N; i++)

8 CHAPTER 1. INTRODUCTION

j test # test before first iteration
body: add R2,R2,R3 # sum += 1i;
addi R3,R3,1 # increment loop counter

test: brlt R3,R1,body # not done? Go again

The number of instructions executed in a particular run of a program is called
the dynamic instruction count. The number of instructions you count by reading
the program is called the static instruction count. If you don’t count the nop
instruction, the two versions of the code have the same static instruction count
(6 instructions). The dynamic instruction count, however, is lower since the
repeated parts of the loop are shorter by 1 instruction. That may not look like a
lot, but loops are where many programs spend most of their time, and shortening
the loop dynamic instruction count by 25% per iteration (reducing from 4 to 3
instructions) is a significant improvement. Usually, if memory is not tight, you
are prepared to make your code take up more memory (higher static instruction
count) in exchange for reducing execution time (usually lower dynamic instruction
count — though there are other tricks like more efficient memory access that can
reduce run time without reducing the number of instructions executed. For more
on performance, see chapter 6).

The notation I use here for our machine instructions is of course rather
different from the actual machine code on a real machine, which is just a string
of 1Is and 0s. Assuming we know how to encode instructions (which bits
signify the operation, which signify the register names, and so on), it is mostly
straightforward to convert our notation to machine code (if tedious and error-
prone). We also need to convert the names “test” and “done” to a numeric
representation in the instructions that use them. Hardly anyone actually programs
directly in machine code because an assembler, a relatively simple program, can
do this sort of conversion from a convenient notation for machine instructions,
assembly language, to real machine instructions. Though assembly language rules
are simple, an assembler can still throw out a program for violating the rules.

In our simple loop example, the conversion from C-like code to assembly
language is quite straightforward. As we will see with MIPS machine code, the
assembly language for which is not far from my made-up assembly language
example, things get a lot more complicated when you deal with examples with
more intricate logic or data structures.

Code Translation 9

The take home message? An assembler provides a more convenient
notation than machine code, though that notation is still very close to
the machine and not at all similar to a programming language you may
be used to.

1.3 Code Translation

An assembler is a relatively simple program — mostly, there is a one-to-one
mapping between lines of code and machine instructions. The assembler must
keep track of names you use for labels, and needs to know how to create the
bit pattern for every instruction. Some assemblers include pseudoinstructions —
instructions that don’t translate directly to machine code, but still can convert to
at most one or a small number of instructions.

In my small example, I translate

sum = 0;

add R2,RO,R0O

This is not the only way to zero a variable. You could also do a logical and with
zero. However, to the human reader, an instruction that copies the zero register
(RO) to another register is easier to understand. So an assembly may include a
pseudoinstruction like

copy R2,RO

and this instruction actually translates as machine code for something like
add R2,R0,R0. Since there is no real copy instruction, this is an example of
a pseudoinstruction. The MIPS assembler we will be using has a number of
pseudoinstructions. You do not need to know that they are not real machine
instructions in most cases because the assembler takes care of translation to
machine code. However, in a few cases, a pseudoinstruction translates to multiple
machine code instructions, so it is useful to understand what is going on when you
inspect the program in a debugger.

Converting to machine code where the gap between the language and machine
is bigger is not so trivial. A language that is significantly different from the
machine instruction set is called a high-level language (since “low-level” implies
closer to the hardware). Languages with complex features that have no direct

10 CHAPTER 1. INTRODUCTION

representation in the hardware like methods, objects, variable-sized arrays or lists
require complex translation to machine code. The nearest we see to any of this is
understanding how function call (also called procedure or subroutine call) works,
and how to access data via a memory address. A function call is like a more
primitive version of a method, in which you do not have the benefit of knowing
the identify of the object that invoked the function (there are no objects at machine
code level), or inheritance. Things like inheritance are of course layered on top of
the machine by the language implementation. We get a sense of how that works
in chapter 5.

There are two major approaches to translation to machine code. The first
is compiling, where the original code is translated once to machine code, and
the machine code (possibly with some additional work) can run directly on the
machine. The second is interpreting, where the program is not converted to
machine code but rather a program called an inferpreter examines each program
construct and decides what to do with it as the program runs.

Compilers are generally used for languages where it is hard to make sense of
the code by looking at one line at a time. Interpreters tend to be used for simpler
languages like scripting languages, where it is possible to make sense of the code
without reading a lot of surrounding context.

An in-between case is a language that is translated to an intermediate form by
a compiler, and that intermediate form (which is not machine code) is interpreted.
An example is Java, which is compiled to an instruction set called bytecode, which
can then be interpreted. Java is implemented this way for portability: any system
that can interpret the bytecode program can run it. If a program is compiled to the
real instruction set, it won’t run directly on a different machine. Interpreting is
generally slower than compiling so Java systems generally include a just in time
or JIT compiler that converts bytecode to machine code the first time it’s run.

At hardware level, machine code is run by an interpreter, but one implemented
in hardware. Each instruction has to be loaded from RAM, analysed for the type of
instruction, any data movements necessary set up and executed by the appropriate
part of the CPU’s logic.

The take home message? Compilers convert to machine code or
something like it. Interpreters work with a program a small piece at a
time but do not convert the program to machine code.

Machine Instruction Sets 11

1.4 Machine Instruction Sets

There are many different machine-level instruction sets. The most widely used
in commodity computers is Intel’s instruction set. In the 1970s and 1980s, there
was intensive debate as to the best way of designing machine instruction sets. On
the one hand, there were those who advocated high-level language architectures
(or HLL architectures) — machine instructions that had a direct correspondence
to constructs in programming languages, often a specific language. On the
other hand, there were those who advocated simpler designs that were easy to
implement in hardware. These simpler designs, the argument went, would be
easier to make fast because the hardware logic would be simpler, while any HLL
machine designed to be optimal for a particular language would be bound to have
the wrong design trade-offs for another language.

These arguments came to a head with the case for a reduced instruction set
computer (RISC): the argument was that a very regular design with very simple
modes of memory access would be faster overall, even if it resulted in a higher
instruction count than a more complex design [Patterson and Ditzel 1980]. What
followed was a move to quantitative design, an approach where philosophical
argument gave way to measurement using tools like simulators that allowed
comparison of different design choices [Hennessy and Patterson 2012].

Generally speaking, a RISC design has the following features:

* arelatively large number of general-purpose registers
* simple instruction formats, with all instructions the same length

* memory accesses either copy memory contents to a register (a load
instruction), or copy a register to memory (a store instruction)

The last detail is so important that another name for a RISC design is a load-
store architecture. Why is this a big deal? Registers are the fastest level of the
memory hierarchy, and managing their contents is an important part of machine-
level programming. Ordinary memory is so much slower that allowing arbitrary
instructions (e.g., an arithmetic operation) to work with slower memory makes it
much harder to design hardware for speed.

Instruction sets that do not fit the RISC definition are generally labelled as
complex instruction set computers or CISC.

12 CHAPTER 1. INTRODUCTION

The Intel design is firmly in the CISC camp, with details like instructions that
can act directly on memory, different lengths for different types of instructions,
and instructions that only work with specific registers.

This being the case, why is Intel so successful? A comprehensive answer
requires an advanced architecture course as background. A simple answer is
that Intel had the combination of economy of scale and very smart engineers
who rescued a flawed design by very good implementation and industry-leading
fabrication technology. A more complicated answer would have to go into details
of why multicore designs became popular [Olukotun et al. 1996], and the effect
of something called the memory wall, where chasing raw instruction execution
speed became increasingly wasted as the speed gap between conventional RAM
and processing speed grew [Wulf and McKee 1995].

Why did Intel designers make life so hard for themselves? When the
prehistoric predecessor of the Intel 32-bit (extended to 64-bit) instruction set was
designed, memory was very expensive, and an instruction set design that reduced
the memory footprint of compiled code was not a bad choice. A typical RISC
design uses about 25% more memory for compiled code than a typical CISC
design though in some cases the difference can be a lot bigger [Steenkiste 1989].
Unfortunately design trade-offs that made sense in the past are hard to change.
IBM invented the concept of an architecture in the 1960s. Up till then, each new
computer design ran different instructions. The IBM 360 family changed that:
it was a range of computers that could all run the same code, only subject to
constraints like speed, memory and attached devices [Amdahl et al. 2000]. That
was a huge gain, since one set of programming tools and a single operating system
worked across the whole range. Computer designers have since discovered the
cost of a consistent architecture: it’s hard to change once you have thousands —
possibly even millions — of different programs in wide use that rely on decisions
that in retrospect turn out to be mistakes.

If Intel is so successful, why are we looking here at the MIPS instruction set,
a RISC design? Two reasons. The Intel instruction set is very complex compared
with the MIPS design, and MIPS is widely used in embedded systems, so you
are more likely to actually need to know how to program it at hardware level. In
general, RISC designs are most popular at the very high end, where companies
like IBM make very fast designs that are too expensive for the commodity market
(their POWER architecture) and at the very low end, where Intel loses on energy
efficiency. Aside from MIPS, other players in the low-level market are ARM and
PowerPC (a low-cost version of IBM’s POWER architecture). At the high end,

The Machine 13

the Alpha processor used to be a leader but was discontinued after a series of
mergers, and the SPARC architecture (Sun Microsystems; now part of Oracle)
is still in relatively wide use. ARM is widely used in mobile devices from entry-
level cell phones to high-end smart phones and tablets. ARM gained its initial start
in the market by focussing on low-energy design. MIPS (owned since February
2013 by UK company Imagination Technologies, but founded in Silicon Valley
by Stanford University professor John Hennessy in 1992'), like ARM (also a UK
company), does not fabricate its own chips, but licenses designs to others. There
are many niches besides desktop computers — some very big, with annual sales in
the hundreds of millions of units.

Aside from the RISC-CISC divide, there are other specialised architectures
like graphics processing units (GPUs). A GPU is very fast, and some advocate
using a GPU for general-purpose computation, where speed gains are possible
(sometimes. .. [Caragea et al. 2010]) at the cost of high program complexity.
Another specialist style of processor is a digital signal processing unit (DSP), de-
signed to do very specific computations in areas like image and audio processing.
DPSs are in reasonably wide use too — but we do not look at any of these designs
since the complexity involved is not worth mastering unless you specifically need
to do so.

Although there are significant differences between RISC designs, knowing
one puts you close to knowing all of them, since they have a common design
philosophy. Learning a more difficult design only really teaches you that specific
design at the cost of significantly more pain.

All of these issues have roots in the relatively distant past (for a field that
advances so fast) but understanding a little history is always useful — mistakes are
often repeated by those who know no history.

The take home message? RISC designs are simple and regular, and only
access main memory to move data to or from registers (respectively, loads
or stores).

1.5 The Machine

Let’s now take a slightly more detailed look at the machine — what things like
registers are, layers of the memory hierarchy and flow of instructions through the

"http://www.stanford.edu/ hennessy/cv.html

http://www.stanford.edu/~hennessy/cv.html

14 CHAPTER 1. INTRODUCTION

core core core core

cache (SRAM)

main memory (DRAM)
T reg-ister
sw ¢ l file
l ALU
paging device (disk or SSD)
1
(a) Memory hierarchy and (b) Registers and ALU

logic

Figure 1.1: Major components of the memory hierarchy and CPU

Processor.

First, look at figure 1.1a. In most designs you can buy today, the central
processing unit (CPU) or processor is replicated, and each one is called a core. A
multicore design is one in which there is more than one CPU on the same chip.
As illustrated, there are four cores and the memory system is in layers. The cache
is a very fast kind of memory usually made of static RAM (SRAM). SRAM uses
transistors to store bits, and is fast, at the expense of lower density than dynamic
RAM (DRAM), which is used for the main memory. DRAM uses capacitors to
store bits. Lower density means you get fewer bits for your money. Because the
speed of cache is essential to performance, managing what is in cache is usually
done in the hardware to minimise delays. The virtual memory system manages
maintaining most recently accessed items in the main memory, made of DRAM.
Because the paging device is thousands to millions of times slower than DRAM,
managing what is in DRAM and what can be sent out to the paging device is
usually managed in software, though generally by the operating system rather
than by user-level programs.

Figure 1.1a does not show how the fastest level of memory, registers, is
organised. Registers are part of the CPU logic, and are fast enough to access
without delaying instruction execution. Figure 1.1b provides an overview of data
flows in the CPU. Each core has a complete set of logic including an arithmetic
logic unit (ALU) and registers. Not shown are details like communication with
main memory through the cache. For a typical ALU operation in a RISC machine,

The Machine 15
core ALU core ALU core ALU core ALU
L1 cache L1 cache L1 cache L1 cache
L2 cache L2 cache L2 cache L2 cache

shared L3 cache

Figure 1.2: Multilevel caches in a multicore deisign

a value is retrieved from two source registers, the ALU is signalled as to what to
do with these values and produces a result. The result is steered to the destination
register. The instruction encodes which registers to use for both the source and
destination, as well as what operation to perform.

Heads up: Registers are very different from the rest of memory. Because
there is a limited set of them, you can think of each one as having a name
even if that name looks remarkably like a number. On most machines,
the specific register name is built into the instruction somehow. That is
different from accessing main memory, which is accessed by an address,
and can be many different sizes depending on the specific machine and
how much money you have. A cache is in different category: you generally
do not know it is there, and it is managed purely in hardware. The
operating system may have access to special instructions to do things like
clear a cache but to user-level programs, a cache is invisible.

Real systems often have two or more layers of cache, with the highest-level
cache (sometimes called L/ for first-level cache) tightly integrated into the CPU
for maximum speed. Because the fastest kind of memory is relatively expensive
and consumes a lot of power per bit, lower levels of cache that are still faster than
main memory but slower than L1 provide a compromise solution. The CPU uses
L1 cache whenever it can, and drops down a slower bigger layer if the item it
needs is not in L1. The ideal effect is a memory as big as you can afford based
on the cheapest technology but as fast as the fastest you can buy. In practice, we
achieve something in between — not quite as cheap as the cheapest technology, and
not quite as fast as the speediest kind of RAM. Figure 1.2 illustrates a multicore
design (a general concept, not a specific system, though some Intel designs have a
similar cache hierarchy) with 3 levels of cache — darker colouring implies faster.

16 CHAPTER 1. INTRODUCTION

The cores each have their own caches down to L2, but share LL.3. Note how the
cache size increases as we go down the hierarchy. In a real design, the lowest-level
cache may be the largest single piece of logic on the chip, as depicted.

We will see more detail later, particularly of how memory is used under
programmer control — a programmer here meaning one who has access to the
hardware. For high-level languages, the “programmer” who sees the issues we
will be exploring is usually a compiler. Nonetheless, even in a managed-memory
language, there are aspects of memory usage you can control with useful (or the
opposite) effects on performance.

The take home message? Memory is organised in a hierarchy from
fastest (smallest) to slowest (biggest). Machine code has more control
over the memory hierarchy than an HLL does, so learning about machine
code is a useful start to understanding performance issues that arise from
memory use.

1.6 Practicalities

While there is a lot of MIPS hardware out there, it is often not in a convenient form
to program, like part of a network switch. So we will use a MIPS simulator called
SPIM. SPIM runs on a variety of platforms, meaning we do not need to worry too
much what sort of computer you want to use to run examples. A simulator is also
a little more forgiving than a real machine. You can crash programs on it as much
as you want, and not risk crashing the whole machine. You can also look in detail
at the state of registers. Unlike simulators used in computer architecture research,
SPIM does not aim to provide accurate statistics on execution time, or allow you
to change fundamental design parameters.

SPIM is a fairly faithful implementation of a MIPS assembler including
pseudo-instructions designed to simplify programming a bit. The notation differs
a little from that introduced on page 6. For example, register names start with “$”,
and some of my previous examples need more MIPS code to do the same thing.
But these are minor details. If you learn assembly-language programming for a
different instruction set, you will find much bigger differences: the approach to
machine instructions will differ a lot more than minor tweaks in syntax. A CISC
instruction set, like Intel’s, is a lot different, and other CISC instruction sets differ
a lot from each other. RISC instruction sets also differ from each other but not
nearly as much.

Practicalities 17

To program using SPIM, you create a text file in a plain text editor. The
SPIM program expects your assembly-language file to have a name ending in
one of “.s”, “.a” or “.asm”. We will stick with “.s” in our examples, which is
consistent with UNIX-type systems. Once you have created your program, you
can load it into SPIM and if your code is syntactically correct (even with a very
simple language you can get this wrong), you can run it. SPIM includes features
to step through a program one instruction at a time, and allows you to see contents
of memory and registers.

Another significant advantage of SPIM is it has a highly simplified system
call interface, allowing you to do things like display numbers as output without
all the complications of the real system calls you would need to do output and the
like on a real machine (all of this is usually hidden from you by the programming
language). The available system calls are listed in Appendix C.

SPIM started as an undergraduate student project in 1990. The author James
Larus now works at Microsoft Research after a long career at the University of
Wisconsin-Madison. You can find extensive documentation on SPIM and the
MIPS instruction set at his web site: http://pages.cs.wisc.edu/ larus/
spim.html. Some history and details of how SPIM runs are in appendix E. Will
any of your projects be this successful? Let me know in 20 years . ..

Finally, a note on units. In the decimal world, we are familiar with multiples
of powers of 10 with prefixes like £ for 1,000. In the computer world, particularly
with RAM, which for practical reasons is sized in powers of 2, we use multiples
of powers of 2. Traditional decimal multiplier names, kilo, mega, giga, etc. are
sometimes misused for binary multiples rather than the official standard names
(kibi, mebi, gibi, etc.). We will avoid confusion by using abbreviated prefixes as
in table 1.2. As a general rule, anything that is traditionally made of digital logic
uses powers of 2 multipliers and everything else uses decimal multipliers. The one
exception is flash, which, despite being made of digital logic, usually has sizes in
powers of 10, in keeping with disk sizing”.

The take home message? Programming at machine level can be very
hard. A simulator like SPIM takes away some of the pain and makes it
easier to understand how your code relates to the machine, which is the
whole point of this book.

Disks were originally sized in powers of 2, until marketing people noticed that decimal units are
smaller and hence make disks sound bigger than when sized in power of 2 units.

http://pages.cs.wisc.edu/~larus/spim.html
http://pages.cs.wisc.edu/~larus/spim.html

18

CHAPTER 1. INTRODUCTION

Table 1.2: Binary and Decimal Units
decimal binary
prefix multiplier | name || prefix multiplier | name
k 103 =1,000 | kilo Ki 210=1024 | kibi
M 10% = 1,000,000 | mega || Mi 220 = 1,048,576 | mebi
G 10° = 1,000,000,000 | giga || Gi 239 =1,073,741,824 | gibi
T 102 | tera Ti 240 | tebi
P 10'5 | peta || Pi 250 | pebi
E 10'8 | exa Ei 200 | exbi
Z 102! | zetta || Zi 270 | zebi
Y 10%* | yotta || Yi 280 | yobi

1.7 Further Reading

A good source on architecture material including the MIPS processor is Patterson
and Hennessy [2014]. Another take on programming from hardware up is Patt
and Patel [2013].

Exercises

1. Look up Appendix A and compare the encodings of uppercase and lower-
case letters.

(a) Assuming you have a lowercase letter, what arithmetic would you use
to convert it to the representation of the same uppercase letter?

(b) How would you do the reverse conversion (upper to lower)?

(¢) How would you check if a character was a digit?

(d) How would you check if a character was a letter of the alphabet?

2. For the two variations on implementation of a for loop, for N=10 (§1.2,

page

6):

(a) Count the number of instructions executed for each of the two

variations (dynamic instruction count). Do you need to include the
nop instruction in the count? Why?

(b) How much do the counts of executed instructions differ between the
two versions of the loop? What percent change does that represent?

Exercises 19

(c) Was changing the code worth the effort?
(d) Is eliminating the extra nop instruction significant? Explain.

(e) You could eliminate the wasted j instruction in the second example by
testing the loop condition at the top as well as at the bottom.

1. Write out this new version.

ii. Is the change worthwhile? Explain, comparing with the two
versions I give in §1.2, referring to the answers from previous
parts of this question.

3. Java compiles to bytecode and often uses a JIT compiler to achieve
reasonable speed. Find out how Python and C# are usually implemented.

(a) Are they compiled, interpreted or intermediate languages?

(b) Is it possible for a language to be compiled in some implementations
and interpreted in others? Explain.

(c) Aside from achieving portability, why else is Java compiled to
bytecode rather than machine code?

4. When the original predecessor of the current Intel instruction set was
created, a home computer had 16KiB of memory. That’s 16384 bytes.
Really. Discuss why an instruction set design that minimised memory
footprint may have seemed like a good idea at the time.

5. A typical CPU has anything from less than 10 to about 30 registers. A cache
is measured in thousands to a few million bytes. Main memory is billions
of bytes. “The ideal effect is a memory as big as you can afford based on
the cheapest technology but as fast as the fastest you can buy.” Discuss how
this could be possible.

6. Give advantages and disadvantages of using a simulator like SPIM to learn
assembly-language programming.

2 Numbers and the Machine

incidence. Electronic logic is very easy to construct using exactly two
values that can be represented as two different voltages, or two different
switch positions. Back in the 19th century, an English mathematician, George

COMPUTERS GENERALLY DO THINGS BY POWERS OF TWO. This is no co-

Boole, invented a form of algebra for expressing logic. He saw this as an
application of mathematical methods to philosophy. Most people would regard
pure mathematics and philosophy as far removed from practicality, yet his work
became the basis for one of the fastest-developing industries of all time.

Out of recognition of Boole, we often talk of boolean values for data
types representing values in logic (in some languages shortened to bool for
the type name), and we use the terms “boolean” and “logical” interchangeably
when talking about operations (basic built-in functions) and functions (more
complicated logic built up out of basic operations).

In logic, there are two values: false and true. These two values can be
represented, respectively, by the numbers 0 and 1. If you represent numbers in
base 2, each digit is either a 0 or a 1. Operations on numbers can be thought of
then as combinations of logical or boolean operations. To understand how this
all works, we need a little logic and some concept of working with numbers in
different bases.

Integers are relatively straightforward; representing fractions gets more com-
plicated. Let’s start with the absolute simplest thing, logic, and work our way
through to the harder stuff. As we go along, I point to examples in real computers.

2.1 Logic

Logic operations at machine level are very efficient because the machine can work
on a whole machine word at a time. Exactly what constitutes a word depends on
the specific machine, or even on the specific mode in which it is running. It is

20

Logic 21

Table 2.1: Truth table example: nand

A B | Anand B
0 O 1
0 1 1
1 0 1
1 1 0

common for a machine word to be 32 bits long (or 4 bytes), though 64-bit words
are increasingly common. Most instruction sets also allow operations on smaller
and sometimes larger units. To keep things simple, I restrict examples in this
chapter to byte-width (8-bit) operations where possible.

The most basic operation at machine level for our purposes is nand or not
and. At hardware level, basic logic operators are implemented in gates — a unit
of hardware that takes one or more inputs and usually has one output. A nand
gate can easily be built out of basic electronics and has the useful property that it
can be used to construct any other logic operation, meaning it is a universal gate.
We can express values of a logic operation with a truth table — a representation of
the output for any input. We can do this because there are only two values, so a
complete table (at least for simple logic operations or functions) is small enough
to write out. Table 2.1 is an example, illustrating the nand operation.

Since we are working close to the machine it is convenient to express boolean
values as 1s and Os, and I will mostly do that from here on, but remember that
these values represent true and false.

Let’s take a closer look at the table to see how we can use nand to express
other logical operations. Tie both inputs together so A=B, and it becomes an
inverter, i.e., a logical not or negation function. In the truth table, this situation
corresponds to the two lines where A and B have the same input. Satisfy yourself
that this situation corresponds to the truth table for an inverter.

Figure 2.1 illustrates how to implement a not gate using a nand gate; see figure
2.2 for how common gates are illustrated in logic circuits.

Once you have a logical not, you can use your nand to make an and — just
negate its output. How about making a logical or? A logical or produces a 1 if any

A pa

Figure 2.1: A nand gate used to implement a not gate

22 CHAPTER 2. NUMBERS AND THE MACHINE

of its inputs is a 1; it produces a 0 only if both inputs are 0. The nand operation
does the opposite: it produces a 0 only if both inputs are 1, and 1 otherwise. So if
we invert both its inputs, we get an or.

Table 2.2 illustrates the and and or functions. Relate table 2.2 to table 2.1 and
make sure you understand the explanation of how the and and or operations can
be derived from nand.

It is tedious to write out and and or in long boolean expressions. There are
several alternative notations for shortening their names. The simplest if you are
in a plain-text world is to write and as a “.” and or as a “+”. This is because and
is a little like multiplying by 1s and Os (anything you multiply by 0 is 0) and or
is slightly less like addition. Adding any combination of a 1 and a 0 gives you
a 1; adding two 1s should give you the value 2, which is not quite right. And
of course adding O to itself should result in 0. The problem with this notation is
that it looks too much like arithmetic and is not exactly the same thing. For this
reason, programming languages often use another notation for logical or boolean
operations. In C-like languages, we use the symbols “&&” for a logical and, or
“&” if we want the operation to apply a bit at a time, and or is spelt as “| | or “|”
for the bitwise equivalent.

For handwritten equations, the most convenient notation is A for and and V
for or. If you remember that the version pointing up looks like an “A” for and, it
is easy to remember which symbol is which. Exclusive or (often abbreviated to
xor) is effectively a not equals operation, and is written as a circle around a plus
sign: @. Drawing a tight border around a plus sign makes it look kind of exclusive
(like a gated community with a high fence).

Finally, we need a notation for negation. In C-like languages, a logical not is
“1” , written before the
expression to which it applies — much as you would put a minus sign before an
arithmetic expression to negate it. Yet another notation (called overbar) is to draw

(13 2

. Another common notation is “—”, as with

‘6'9’

written as

a horizontal line above an expression you are negating.

Table 2.2: Truth table example: and and or

A B|AandB | AorB
0 O 0 0
0 1 0 1
1 0 0 1
1 1 1 1

Logic 23

The following two pairs of equations collectively express De Morgan’s
Laws, often useful for simplifying logical expressions, using alternative negation

notations:
AVB = AAB
—-AV —B —(AAB) 2.1)
ANB AV

BN

~AA-B = —(AVB) (2.2)

I will generally use the A (overbar) notation, since it is a little quicker to write
and easier to read. Also, the overbar notation reduces the need to bracket
subexpressions, since a line over a subexpression indicates that you must calculate
that subexpression as a unit before negating (inverting) it.

De Morgan’s Laws can be summarised like this, for any expression containing
an and or an or:

 swap the and for an or — or vice-versa

* swap negating from the whole expression to the subexpressions joined by
the and or the or — or vice-versa

The following identities are also useful for simplifying logical expressions (it
should be obvious from truth table 2.2 why equations 2.3-2.8 hold):

AV1 = 1 or-tautology (2.3)
AV0O = A or-identity 2.4)
ANO = O (2.5)
ANl = A and-identity (2.6)
ANA = 0 (2.7)
AVA 1 (2.8)
AN(BVC) = (AAB)V(AAC) distribution of and overor (2.9)
AV (BAC) = (AVB)A(AVC) distribution of or over and (2.10)

A few points to note:

 any formula that is always true no matter what the values of the variables
is called a rautology

24 CHAPTER 2. NUMBERS AND THE MACHINE

Table 2.3: Truth table example: proof of one of De Morgan's Laws

A B|A|B|AVB|AAB|AAB
0 0|11 1 0 1
0 1]1|/0]| 1 0 1
1 0/0|1]| 1 0 1
1 1/]0/0| O 1 0

Table 2.4: Truth table example extended: xor added

A B|AANB|AVB | A®B
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

* any formula that is always false no matter what the values of the variables
is called a contradiction

In a logic circuit, a tautology (contradiction) is always true (false) for all inputs.

Back to truth tables — simple proofs in logic can be constructed by writing out
a truth table. Let’s try that with equation 2.1. Table 2.3 demonstrates that for all
possible values of A and B, equation 2.1 holds. To check, identify the columns of
the table that represent the left and right hand sides of the equation, and note that
every entry is the same. To help you, the relevant columns of the table in are in
bold text.

Finally, let’s look at notation for describing logic circuits. There are various
variations again, but we will stick with the most common version, illustrated in
figure 2.2. I’ve added one more useful operation, exclusive or.

If you start from thinking of the symbol for and as looking like the “D” in
“AND”, it becomes easy to remember which is which. A small circle on the
output indicates negating, so it should be clear why a nand looks like an and gate
with a circle at the output. And exclusive or? It has an extra curve at the inputs
like a fence to make it look exclusive. For completeness, table 2.4 extends table
2.2 to include xor.

Ironically the symbol for nand looks as if it is made out of and and an inverter,
whereas in hardware, a nand gate is likely to be a fundamental building block. But
from here on, we use the logic operations and diagrams without worrying about

Logic 25

A— A A— A
Q
D 0 e -

() 0=ANAB (b) 0=AVB (c) 0=ANAB (d) 0=A®B

Figure 2.2: Logic gate symbols

A DO—I_ Q
D= D

Figure 2.3: Exclusive or from nand gates

what the hardware building blocks really are.

The symbols for logic operations are useful for visualising logic circuits.
Designers generally draw diagrams representing logic with information flow from
left to right and secondarily top to bottom.

To illustrate how a single universal gate like nand can be used to build other
operations (nor is also a universal gate), take a look at figure 2.3'. Looks
impressive. But is it correct? Let’s write out the exclusive or circuit as a logical
expression (reading left to right and if there is any vertical arrangement, top to
bottom):

QO = (ANAANB)A(BANAAB) (2.11)

This doesn’t look promising as a start — writing a truth table for something this
complicated wouldn’t be much fun, with a lot of potential for error, so let’s try a
little logic algebra. We can simplify this using De Morgan’s Laws (remember, the
overbar groups terms, so we have to add bracketing when we take it away):

Q = (ANAAB)V(BANAAB)
Apply De Morgan’s Laws again (this time, we do need additional brackets):

Q = (AN(AVB))V(BA(AVB))

Image source: http://en.wikipedia.org/wiki/XOR_gate.

http://en.wikipedia.org/wiki/XOR_gate

26 CHAPTER 2. NUMBERS AND THE MACHINE

This is not looking a whole lot simpler. We will make it look worse in one more
step, then collapse it down to something manageable. Apply equations 2.3-2.10:

Q = ((ANA)V(AAB))V((BAA)V (BAB))
= (AAB)V(BAA) (2.12)

This now is a simple enough expression to put into a truth table to verify that it
matches the xor definition (A & B) in table 2.4.

There is a lot more to digital logic than this; a logic design course would cover
design simplification techniques, how design elements like adders and flip-flops
(that can store a bit) work, how clock signals are used, and much more. What
we have covered here should be sufficient to get you started on a programmer’s
perspective of logic. We will go into a little more detail, but not nearly as much
as you would see in a logic design course.

The take home message? Understanding a little boolean algebra can do
wonders for simplifying logic. Even if you never get into logic design, you
can use these concepts in programming.

2.2 Numbers

On now to numbers. Remember, everything in the hardware world is a 0 or a
1. That rather limits your options for counting unless you can represent bigger
numbers using binary digits or bits. First, let’s start with some basics on how we
represent numbers, then look at how we can take this to the logic space.

Regular numbers we use are expressed in base 10. The rightmost (low-order)
digit represents values from O to 9. The next digit to its left represents values (if
not 0) from 10 to 90. In general, the digit in position j, numbering from O and
from the right, represents its value times 10/. If we want to extract the decimal
digits one at a time starting from the low-order digit, we can divide by 10, and the
next digit is the remainder of this division. For example, if the number is 342, we
can extract the digits one at a time as follows:

next divide divide result remainder

342 =10 34 — 2
34 +10 3 —4
3+10 0 —3

This example shows how we can create a formula for base conversion. If we
want to see how a number is represented in base 2 — as it would be in computer

Numbers 27

hardware — instead of dividing by 10 and keeping the remainder, we can divide by
2 and keep the remainder. Let’s do that for 342 and see what we get.
next divide divide result remainder

342 =2 171 —0
171 =2 85 —1
85 +2 42 —1
42 =2 21 —0
21 =2 10 —1
10 -2 5 —0
5+2 2 —1
22 1 —0
1+2 0 —1

So this means the base 2 (binary) representation of 342, is (low digit from the

first row of the calculation) 101010110,. Let’s check by writing each position as a

multiple of a power of 2, this time starting from the high digit and working down:
power power value multiple contribution

28 256 1 256
27 128 0 0
26 64 1 64
27 32 0 0
24 16 1 16
23 8 0 0
22 4 1 4
2! 2 1 2
20 1 0 0

total 342

Heads up: For base conversion, it is not too hard to remember that you
divide to obtain the next digit of a whole number because dividing is like
shifting the number to the right, with the low digit dropping off at the
right end. For obtaining the digits of a fraction, you move the number the
opposite way to obtain the next digit, hence multiplying — as we will see
shortly.

Once we have a number in binary, it is rather long and unwieldy, so a common
trick is to write binary numbers, unless we need to see the bit pattern explicitly,
in hexadecimal (base 16 — commonly called hex). Converting a binary number
to hex is pretty easy. A hex digit represents values from 0 to 15. We write the

28 CHAPTER 2. NUMBERS AND THE MACHINE

values that require 2 digits in decimal as A-F, representing the decimal values 10-
15. Since a hex digit represents 16 different values and 4 bits also represent 16
different values, we can convert to hex simply by grouping bits in fours (starting
from the lowest-order digit, if the number of bits isn’t a multiple of 4). Here’s an
example (note the split between groups of 4 bits in the binary representation):

42 = 0010[1010,
= 2A6

Since writing a subscript 16 is tedious (and not possible in a simple programming
editor), we write hex numbers as “0x” before the digits instead. In this case: 0x2A.

Integers

A practical issue with computer representation of numbers is that we have a fixed-
length storage unit at machine level. In §2.1, I mention units like words and bytes.
Any arithmetic instruction at hardware level (at least in designs in common use)
specifies the size of the operand. If, for example, we have a byte-sized operation,
we have 8 bits, meaning we can represent 28 different values. If you look at the
3420 to base 2 conversion example, we used 9 bits to store that number. What
would the largest number be that we could store in 8 bits? We know it has to be
smaller than 256, because we write 256 in binary as a 1 followed by 8 zeros. In
general, for base r, the biggest number we can store in j digits is 7/ — 1. Think of
base 10: if you have 3 digits, the largest number you can represent is 999, which
is 10> — 1. So the biggest number we can store in 8 bits is 255, which is 28 — 1,
which is not too surprising really because 2% is the smallest number that needs 9
bits, because it has the 9th bit set, and all the others zero.

This is all well and good if we are only dealing with positive numbers, but we
sometimes need negative numbers as well. There are many ways to represent
negative values but the most popular at hardware level for integers is two’s
complement, also called 2’s complement. In 2’s complement notation, you convert
between positive and negative by two simple steps:

1. invert all the bits
2. add 1

2’s complement notation has several advantages. Negative values always have
the high-order bit set, so you can easily split positive and negative values on that

Numbers 29

Table 2.5: Two's complement examples, in 8 bits

positive base 10 base 2 complement 2’s complement
42 00101010 11010101 11010110

27 00011011 11100100 11100101

1 00000001 11111110 11111111

bit (which you can think of as the sign bif). Arithmetic operations just work.
Testing for ordering is simple: a test for example for “less than” can be done with
a subtraction and checking if the sign bit of the result is set. If you want to test
ordering directly, you have to treat the sign bit as a separate case but once you
have split positives and negatives, the same rule applies to testing for ordering.
A bigger number (closer to 0 if negative) has more bits set at the high end of the
word than a smaller number, whether it is positive or negative.

Another option is one’s complement, which omits the step of adding 1. It is
simpler conceptually but has the drawback that zero has two representations, all
0 bits or all 1 bits, and you cannot separate positives and negatives simply by
looking at one bit. Yet another option is signed magnitude: negation is simply by
flipping the sign bit. We will see signed magnitude and yet another variation on
representing negative values when we look at floating point numbers.

Heads up: Two’s complement representation only works if we store a
number in a predefined number of bits. If you need e.g. an 8-bit number,
you should use all the bits even if the high-order bits are zero, otherwise
you can make a mistake when negating.

Look at the examples in table 2.5. As the positive values get smaller, the base 2
representation has fewer and fewer set (1) bits in the higher positions. Look across
to the last column, which represents the negative version of the same number. As
the absolute value gets smaller, the number of high-order 1 bits increases. In fact
the “biggest” negative number is -1 (in the last row of the table). That is in fact
exactly what we want, since -1 is the largest negative integer.

Another nice feature of 2’s complement is it is easy to widen a number, i.e.,
represent it in more bits. All you have to do is copy the sign bit to the left (the
high-order direction) when copying to a wider representation. This is called sign-
extending. So a an 8-bit representation of 42 1s 00101010, and -421s 11010110. If
we want to move these to a 16-bit representation, all we need do is copy the high-
order (sign) bit to the left 8 times, in the high-order direction. This is obvious for

30 CHAPTER 2. NUMBERS AND THE MACHINE

the positive number: zeroes to the left of any number do not change its value. Let’s
complement and add 1 to make sure this works for the negative representation,
with the extra 8 zeroed bits added to the left of the binary representation of 42:
0000000000101010 4219 in binary
1111111111010101 complement

1111111111010110 add 1 to get —421
Check that the first line (42;¢) and the last line (—421¢) are the same as their 8-bit

representations except for sign extension to the left by 8 bits.
Let’s do an example of 2’s complement arithmetic. We will calculate 27 + -1.
From table 2.5 we can look up the 2’s complement representations to add and the

arithmetic is as follows:
00011011

+ 11111111

1+ 00011010
...and we have a problem — there is a 1 carried out of the last position, but we

only have 8 bits, so where does it go?

But first, what do we expect the answer to be? If the system works, it should
be 26, or, in 8 bits of binary, 00011010, — which is exactly our answer, so we are
OK if we can get away with losing the carry-out bit. That brings me to another
rule of 2’s complement arithmetic: if you carry in to the high-order digit (sign
bit), you have to carry out of it. If not, you have an overflow error. So this time,
we’re good. Also bad: if you carry out of the sign bit when you didn’t carry in.

In general, hardware supports a range of different sizes and formats: unsigned
integers are available if you don’t need negative values, and the extra bit you gain
approximately doubles the range in the positive direction. With 8 bits in unsigned
format you can represent numbers in the range ()..(28 — 1) or 0..255. With 2’s
complement representation, you can represent numbers in the range —27..(27 — 1)
or —128..127. Whether unsigned or 2’s complement values, there are 2% = 256
different bit patterns. There is one more negative than positive value because zero
takes up one of the bit patterns with the sign bit not set.

Multiplication and division at hardware level are much more complicated than
addition and subtraction. What we have so far is enough to illustrate the general
principles.

The take home message? Tiwo’s complement arithmetic relies on a fixed-
precision representation of integers. Converting between positives and
negatives is easy and arithmetic generally just works, as long as you check
correctly for overflows.

Numbers 31

1 bit 8 bits 23 bits

S exp significand

Figure 2.4: |IEEE 754 32-bit floating point

Floats

There are various ways of representing fractional values. The most common in
current usage is the IEEE standard for floating point. A floating point number
consists of the digits and an exponent, in effect a scale that positions the divide
between fraction and whole number. You should be familiar with scientific
notation for base 10, for example, 2,345,100 is written as 2.3451 x 10° in scientific
notation. Usually scientists write numbers in this format as a single non-zero digit
before the decimal, because that makes it easy to compare values across a wide
range of scales. Placing the split between fraction and whole number at a standard
position is called normalising.

In binary representation, a normalised floating point number is represented
with a 1 in the most significant position, and the fraction part starts immediately
after, as with a normalised decimal number. Since this 1 is always there, it does
not have to be stored. The only exception is where the exponent is all zeros.
This convention buys an extra bit of precision (all numbers except 0 have a 1
in them somewhere) at the expense of a little complexity, which is tolerable for
floating point since the basic operations are a lot more complex to implement
than for integer. In other words, we represent all numbers except those with zero
exponents as S1 . xXXXXXXXXXXXXXXXXXX X 24P but don’t store the high-order 1.

Rather than using 2’s complement, the widely-used IEEE 754 standard [IEEE
2008] uses signed magnitude, meaning a sign bit is used to indicate negative
numbers, and the bit string for a positive and negative value is otherwise the same.
In addition to the bits representing the digits of the number, there is an exponent.
In the IEEE standard, the exponent is represented in an offset or excess notation.
Just to be different, in the IEEE standard this approach is called the exponent
bias. An exponent uses 8 bits in 32-bit floating point, and the actual value of the
exponent is found by subtracting 127 (the bias) from the stored value. The IEEE
standard has tricks to identify special values representing c and —eoo, as well as
values that are “not a number” (or NalN), using the fact that the bit pattern of all 1s
for the exponent does not represent an allowed value. The effect of these special
values is to allow errors to propagate if they aren’t handled immediately.

32 CHAPTER 2. NUMBERS AND THE MACHINE

Figure 2.4 illustrates the layout of an IEEE-standard 32-bit floating point
number. Although only 23 bits are represented for the significand — the digits
of the number — remember there is an implicit leading 1 unless the exponent is
zero so in effect there are 24 bits of precision. The IEEE standard defines a range
of sizes from 16 bits to 128, though the 32-bit version and a 64-bit double are the
two sizes in common use.

Heads up: If you do anything related to two’s complement such as
inverting all or some of the bits of an IEEE floating-point number you
are doing the wrong thing. Two’s complement is for integer values only.

A number v represented in this format with sign bit S, exponent bias 127,
exponent E and significand F (for fraction) is not simple to define, with variations
using reserved bit patterns (not only the NaN and e concepts above). The common
case is

v = —15x(14F)x2E71%7 (2.13)

The —15 simply expresses the fact that the sign bit if 1 negates the number (x° is
always 1). The 1 + F part signifies the addition of the missing 1, which we can
add this way because we know the first bit represented is the start of the fraction
part after this missing 1. You should read the F' as the binary digits to the right of
the point.

You may be wondering why exponents are represented this way. Testing for
ordering is easier if the smallest exponent allowed is represented as all Os, and
they increase from there. Putting the exponent at the high end of the word just
after the sign bit, given this excess notation, makes comparison for ordering a lot
easier.

Floating point is a large complicated area of system design. For our purposes
it is sufficient to know the general principles. Let’s see how we represent a couple
of values. First, 12.1. We convert this to binary as follows, starting with the whole
number part:

next divide divide result remainder

12 -2 6 — 0
62 3 —0
32 1 —1
1+2 0 —1

So 1219 = 1100, (which you can check easily: 23422 +0+0=8+4 = 12).
To convert a fraction to another base, multiply by the new base, and the whole

Numbers 33

number part of the answer is the next digit to the right (starting at the point).
Each time, discard the digit you used to find the number to the right of the fraction
(unless it’s a zero). So to convert 0.1 to binary:

next multiply multiply result whole number

0.1 x2 0.2 —0
0.2 x2 0.4 —0
04 x2 0.8 —0
0.8 x2 1.6 —1
0.6 x2 1.2 —1
02 x2 0.4 —0

So far, we have the fraction part is 0.000110;, — and it seems a pattern is developing
since we got back to 0.4. So, strangely if you are used to base 10, 0.1;¢ is a
recurring fraction in binary. If we write out the first 32 digits, it comes out as

0.0001100110011001100110011001,
Putting this together, we have

12.119 ~ 1100.0001100110011001100110011001,
to more digits than we have space for in a 32-bit number. Let’s look now at how
we encode this in IEEE single format. We have 23 bits for the significand plus the
high-order 1 we do not represent, which goes before the point. That means our bit
pattern is

10000011001100110011001
Not quite — the next digit we discarded is a 1, so we should round up, and our bit
pattern then is the truncated bit pattern plus 1:
10000011001100110011010

Next, we need the exponent. If we put back the missing 1 and put the binary point
to its immediate right, how many bit positions must we shift the point to get the
right magnitude, and in which direction? To get our number back to looking like
this (with the discarded “1” temporarily back):

1100.00011001100110011010
we need to shift the binary (not decimal!) point 3 places to the right. Shifting a
point to the right is multiplying by a positive power, so our exponent value is 3 .
In excess notation, that means the stored exponent value is 3 + 127 = 130 which
in binary is 10000010. Finally, we must set the sign bit, in this case, to 0. So let’s
pack this all into a 32-bit IEEE single. First the sign bit, then the exponent in 8
bits and finally the significand (without the leading 1) in 23 bits:

0110000010/10000011001100110011010
Now, let’s split the bits in 4s and express this as a hex number:

34 CHAPTER 2. NUMBERS AND THE MACHINE

0100/000110100/00011100111001/100111010

4 1 4 1 9 9 9 a
Here’s a trick to check this. Now we have the hex representation, launch SPIM
and change the register panel to FP Regs. Change any $f register to “4141999a”
in hexadecimal mode, then change the register panel to decimal.

Finally, go back to equation 2.13 and check the working against the equation.

One significant practical issue is that the number of digits represented (about
7, converted to decimal) is much smaller than the range of values (up to about
10®). This means you can easily lose precision by doing arithmetic in the wrong
order.

For example:

a = 1E20;

b = 1E-20;

c = 1E20 - 1;
d=(a+b) - c;

With this example we don’t have enough digits of precision to represent a number
representing the answer to 10?2 + 10720 so the result of a + b is 10%° after losing
low-order precision. The value of c is close enough to 10%° as well that we lose
the —1 to roundoff. So what is stored in d is 0. If we reorder the calculation as
follows:

d=(a-c) + b;

we still lose a little to roundoff, and get a tiny amount closer to the correct answer
(1 + 10~20; with available bits, the most accurate answer should in fact be 1).
What is now stored in d is 1 x 1072°. The FORTRAN programming language
is popular among those who do long chains of calculations because it respects
the order of computation as written by the programmer. Other languages that
take a more permissive approach to code optimisation can destroy the effect of a
carefully selected order of calculation where the programmer is aware of potential
for round-off error.

Heads up: We have only looked at a small fraction of the complications
of floating point. Try to understand what we have covered because it is the
essentials of the subject but if you ever do computations where precision
and error in calculation is really important, study the subject in more
depth.

Numbers and Logic 35

Table 2.6: Truth table: Half adder (S=A + B ignoring carry; C=carry bit)

C

—_ - O O
—_ O = Ol
S = = Ol
- o O O

Converting between integer and floating point is complicated by the fact that
integer and float registers can’t be used together in most instructions. If, for
example, we want to round a floating point number to the nearest integer, we
need to add 0.5 (or subtract if negative), truncate to an integer and transfer it
to an integer register. MIPS considers the floating point unit (FPU) to be a
coprocessor, and is numbered 1. Instructions specific to movement between the
ALU and the FPU refer to coprocessor 1 (not to be confused with a lowercase
“L”). Another example of a coprocessor is a graphics processing unit (GPU).
Historically, coprocessors were a separate chip, which is still the case for high-end
GPUs, but seldom today for FPUs, though some designs that don’t need floating
point and are cost-constrained leave out the FPU.

The take home message? Floating point arithmetic is very complicated,
and a specialist subject. We only need know generalities of how it works,
and the kind of traps and pitfalls that can catch the unwary.

2.3 Numbers and Logic

Let’s tie some of this together now and take a look at how computer logic to
do simple arithmetic works. Adding numbers is one of the simpler arithmetic
operations, so let’s take a brief look at that. If you add one bit at a time, what are
the possible outputs? If you add anything but a pair of 1s, your answer can only
be a single bit. If you add a pair of 1s, your answer carries out. So the minimum
operation you need is one where you can add a pair of bits and carry out another
bit.

We can draw up a truth table to cover all the variations. Table 2.6 describes
a half adder, so called because it lacks a crucial detail to implement addition: a
carry in from the next lower bit. Observe that the carry bit is only 1 in the case
where the two inputs are 1, as noted above. What kind of logic circuit could

36 CHAPTER 2. NUMBERS AND THE MACHINE

AO_JD_OS
D_QC

Figure 2.5: Half adder logic

A B

v

Co 1-bit full “«C,
adder

v

S

Figure 2.6: Full adder logic block

realise this function? Let’s start with the carry, since that has one distinct case:
both inputs 1. What logic function only produces a 1 exactly when both its inputs
are 1? That looks like and. Now, what about a logic function that produces a 0
when its inputs are the same? That would be xor. We can write this as a pair of
equations for the two outputs, the sum S and the carry out C:

S = A®B (2.14)
C = AAB (2.15)

Figure 2.5 illustrates the logic circuit’. Now we have the low-level construct right,
we can apply our old friend, abstraction, and hide the details. A logic block such
as a half adder can be drawn as if it’s a primitive. However, that’s not terribly
useful as we really want the real deal, a logic block that can take a carry in as
well. Let’s start from what we want the logic block to look like in figure 2.6, then
look at what we need to add to the logic circuit. We want a carry in bit Cj,, two
input bits A and B, a sum bit S and a carry out bit C,,;. Earlier you may recall I
said we generally want our logic diagrams to flow left to right, then top to bottom.
You will see shortly why this logic block has the flow backwards.

Having decided what we want out of the logic block, let’s define it as before
with a truth table. This time, we have an additional input, the carry in, so that will
double the number of rows of the truth table. The first half is exactly as before,

’Image source for logic circuits in this section: http://en.wikipedia.org/wiki/Adder_
%28electronics’29.

http://en.wikipedia.org/wiki/Adder_%28electronics%29
http://en.wikipedia.org/wiki/Adder_%28electronics%29

Numbers and Logic 37

Table 2.7: Truth table: Full adder (Cj,=carry in, S=C;, +A + B ignoring carry
out; C,y=carry out)

Cin A B|S Cout
0O 0 0(0] O
0O O 1/|1] 0
0O 1 0|1 O
0O 1 1|0] 1
1 0 O0(1, O
1 0 10| 1
1 1 0(0] 1
I 1 11 1

OT’T’
Y

o

COUt

0
5

Figure 2.7: Full adder logic circuit

and the second half reflects the case where there is a carry in.

There are many ways this function could be implemented. You could for
example combine two half adders. The circuit in figure 2.7 is an example. You
can show it implements the truth table of table 2.7 by writing out the truth table of
the circuit and showing the outputs are the same (S and C,,;) for the same inputs
(A, B and Cy).

Let’s see how we can use this full adder to build a circuit that can add more
than one bit at a time. Simple. We can cascade our adders. Note now why it makes
sense for the logic to go from right to left. The low-order bits are added on the
right, the natural place for them if we are writing out a number, and carry outs feed
to the left as input to the carry in of the next higher-order bit. Figure 2.8 illustrates
a 4-bit adder using this approach. This is not a super-efficient way of adding, as
there is a delay for the carries to propagate through the entire width of the number.
A real adder will do more of the work in parallel, requiring more complex logic,
and could also use custom-designed components rather than standard logic gates,
since an adder is such a highly used component.

38 CHAPTER 2. NUMBERS AND THE MACHINE

As Bs A B Aq B+ Ao

(A AR AN

Cour € 1-bit full |e— 1-bit full |€— 1-bit full |€— 1-bit full “«C,.

adder adder adder adder
v v v v
Ss Sy Sy So

Figure 2.8: Four-bit adder block diagram

Also missing is logic to check for overflows. For two’s complement arith-
metic, the condition of no overflow requires checking if there is either:

* neither a carry in to nor out of the highest bit or
* both a carry in and a carry out

If neither of these conditions holds, an overflow should be signalled.

2.4 The Machine

Now we have some theory, let’s see how this looks at machine code level, this
time taking a look at actual MIPS instructions rather than our previous simplified
machine code. Recall that on page 11, I said a RISC instruction set has a large
number of general purpose registers. The MIPS design has 32 integer registers
though, strictly speaking, some are not general-purpose. For example, register
0 is hardwired to contain the value 0, and some other registers are reserved by
convention for specific purposes. Since 32 registers is a high number to manage,
when programming at assembly level, the assembler provides special names to
subsets of the registers. One register is reserved for the assembler’s own use (e.g.,
it can construct instructions for you in some cases to keep things simple, and may
sometimes need an extra register). Here are a few more categories of register:

* temporaries — registers that could be overwritten when you call a function

* saved temporaries — registers that are guaranteed not to be overwritten when
you call a function

* result registers — used to return function values as well as targets for
arithmetic expressions

The Machine 39

» parameter values — used to pass parameters to functions

* context setup — stored memory locations that help us keep track of where
we are relative to function calls

global pointer — where to find global variables

— stack pointer — keeps track of where we can add local memory for
function calls and local variables

Jframe pointer — where we can find local variables and parameters that
aren’t in registers

return address — where to go to when we return from a function

We will return to details of function calling, so this is just background for now. At
this stage we will mainly use temporary registers.

The whole register set is numbered from 0 to 31. $0, register number 0, is
the zero register, also called $zero. In simple examples to get us started we will
use temporary registers named $t0-$t9. Let’s work our way towards reusing our
simple for loop example, but this time rewritten as proper MIPS code, starting
from the second version (page 7).

But first, we need some standard details that go with every example. Here are
some preliminaries:

» segment type — we need to tell the assembler whether we are introducing
new code or writing out data values

— text segment — contains code (the reasons for this mysterious usage is
lost in the mists of time?>).

— data segment — usually constant values that you will load into registers;
we generally store constant values here, rather than variables, which
go in other memory that we will see later

We can put data and text segments wherever we like but it is easier to see
what is going on in a code file if you have one data segment at the start, and
a single code (text) segment after that

3Why text? This usage goes back at least to the Multics operating system, a project that started
in 1965. Possibly back in those days, machine code was something programmers routinely read?
More about Multics here: http://www.multicians.org/history.html.

http://www.multicians.org/history.html

40 CHAPTER 2. NUMBERS AND THE MACHINE

* entry point — in SPIM, the convention is you label an instruction as “main”
to indicate where execution starts

* exit from your code — you need to pass control back to the “operating
system” (OS); in this case, the simulator fakes a minimal OS that you can
return to when your code completes

Here is a minimal example — a program that has no data segment, and its text
segment only sets up a system call to exit:

.text
main: 1i $vO, 10 # system call code for exit = 10
syscall # call OS

Lines in assembly language may be labelled, and you can use these as names
representing a location in your program in branch and jump instructions, among
other things. A label is the first word on a line and is followed by “:”. Here, we
have the required label for the code entry point, ‘main”. Words starting with a “.”
are directives — they generally do not define a machine instruction, but contain
information for the assembler, such as divisions of memory (like .text, which
means what follows goes into the text segment), or indicating the type of data to be
loaded at a given location. The first instruction is a load immediate, an instruction
that puts the value given in the instruction into the named register. Note we are
using a register $vO0 to pass a value into our system call. The next instruction is
a system call, a special instruction that takes us out of normal execution and into
the operating system.

Let’s see what happens if you type this program into a text file, “minimal.s”
and load it into SPIM.

First, we need to see what SPIM looks like before we load our program. If
you launch SPIM, it has a big window showing register contents and preloaded
code, as in figure 2.9. There should be another window called “Console”, used for
simple input and output. The smaller top section of code (“User Text Segment”)
is where your code will slot in, and the code (“Kernel Text Segment”) below fakes
the effect of part of the operating system. The user text segment contains code to
pass in information from the environment where the program runs, which we will
ignore. Figure 2.10 shows the part of the user text segment we are interested in.

Let’s take this from left to right, then top to bottom. The first number in “[]~
is the machine address. This is displayed in hexadecimal and goes up in steps of
4. Why? Because MIPS addresses refer to bytes, and each machine instruction

The Machine

41

[-XeX¢) QtSpim
= & 4 g a > wm @ = o
FPRegs | IntRegs[16] | Data Text
006 Int Regs [16] o6 Text
PC =0 U xt Segment [00400000]..[00440000]
EPC =0 00400000] 8£a40000 1w $4, 0($29) ; 1w $a0 0($sp) # arge
cause 0 00400004] 27250004 addiu’$s, $29, 4 7 addiu sal $sp 4 # argv
BadvAddr = 0 08 426 4 addiu $6, 55, 4 7 addiu $a2 Sal 4 # envp
Status 3000££10 4 0c 004 0 lll u $4, 2 7 811 $v0 s
n 0c23021 ; addu Saz $a2 $v0
A 0 4 14] 0c00(0 ill OXWWDWQ [main) i Jjal main
18) 00000000 7 189: nop
w ° 20001c] 32020008 ofd 52, $0, 10 7 191: 11 $vo 10
0] 0000000c all 7 192: syscall # syscall 10 (exit)
o
° Kernel Text Segment [80000000).. (80010000
° 80000180] 0001d821 addu $27, $0, $1 ; 90: move $ki sat # Save sat
=0 0000184] 3c019000 lui $1, -28672 7 92: sw $v0 sl # Not re-entrant and we can’t trust $sp
2 0000188] ac220200 sw $2, 512($1)
Jeseease 000018c] 3c019000 lui $1, -28672 ; 93: sw Sa0 s2 # But we need to use these registers
TE£££d60 0000190] ac240204 sw $4, 516($1)
0 0000194] 40126800 mfcO $26, $13 951 m{cﬂ $k0 $13 # Cause register
H 0000198 001a2082 1 520 5K0 2 ¢ Extzace’ Exccode Field
o 19¢ 084 £ and.\ SiD sa0
0 1a0] 34020004 : 1i v t .y.c.u 4 (print_str)
H 1ad] 30049000 1a sao,
0 1a8. 000000 103: syscal
0 lac] 34020001 u svu 1 # syscall 1 (print_int)
° 150) 0012082 0 k0 % 3" Exract Sxocode’ield
o 1b4] 3084001f andi $4, $4, 31 1071 and) saD sa0
0 1b8] 0000000c syscall :
° 1bc] 34020004 ori $2, $O, i ua o5 a 4 # uyacul 4 (print_str)
0 1c0] 3344003c andi $4, $26, 60 7 amh $a0 $k0 0:
o 00001cé] 3c019000 lui $1, -28672 7 w sa0 exCp/Slﬂ)
0 00001c8] 00240821 addu $1, $1, 4
° 00001cc] 8c240180 xw $4, 384(51)
0 00001d0] 00000000 7
° 0000:d4] 0000000c syac: } 11t syee
H 00001d3] 54010015 ors 81, 30, 24 1165 S%e5kD ox18 ok po # Bad P exception requires special checks
o 1dc] 14320008 blu $1, 316. 32 [ol)c-ﬂxtl‘mooldcl
o
o

1e0] 00000000
lei] 40047000 meeo s4, e 110} 2220 sa0 s14 # 5
10008000 1e8] 30840003 andi 5¢, $& $30: andi $a0 a0 ox3 # Ts EPC word-aligned?
7££££d50 1ec] 1000004 beq 50,54, ™ |ux_pc-ox|mmc|
o 1£0] 00000000 nop
o 1£4] 34020008 ou 52, 50, 10 1i $v0 10 # Exit on really bad FC
1£8] 0000000c sysc
1fc] 34020004 Ii $v0 4 # syscall 4 (print_str)
00] 3019000 $e612 |_ma la sa0 _mz_
204] 34240004 $1, 13 (Cm2])
08] 0000000c sys syscall
20c] 00122082 s26, 2 sl $a0 5K0 2 ¢ Extract Exccode Field
o 154, 54, andi’ $a0 $a0 0:
4 Bne 50, 54, 8" {rett oxloooozu), 2565 fie Job 6 Tt # 8 menne accmption wes sm Inturrept
o » nop
o meco 526, m£cO $kO $14 # Dump EFC registes
7 ddiu 526, $26, 4 addiu $k0 5ko 4 # Skip ‘fauiting instruction
o mtco 526, 513 mtco sko
c i 51, -28672 Tw3v0 1'% Restore other registers
c: 1w 52, 512(s1)
c lui s, -2867; ; 154: 1w sa0 s2
c: 1w 54, '516(51)
o ddu §1, 50, 527 ; 157: move sat ski # Restore Sat

SFIVIVETSION Y. 1.7 O FEDTUary 1Z; ZUT.
Copyright 1990-2012, James R. Larus.
All Rights Reserved.

SPIM is distributed under a BSD license.

[00400014]
[00400018]
[0040001c]
[00400020]

0c000000
00000000
3402000a
0000000c

Figure 2.10: SPIM user text

See the file README for a full copyright notice.

Figure 2.9: SPI

jal 0x00000000 [main]
nop

ori $2, $0,
syscall

10

M at launch

; 188: jal main
; 189:
; 191:
; 192:

nop
1i $v0 10
syscall # syscall 10 (exit)

segment at launch

42 CHAPTER 2. NUMBERS AND THE MACHINE

is 4 bytes (32 bits). The next number is the machine instruction, also displayed
in hex (in the actual hardware, all numbers are binary — hex is commonly used to
display memory and register contents and machine addresses because it’s much
easier to read but easy to convert to binary when you need to). After that is the
representation of the machine instruction in human-readable (assembly-language)
form. Next is a line number from the original source file and finally the instruction
as it appeared in the original source file. We will see shortly why we need the
instruction displayed in two variants. The first instruction, a jump and link, is the
basis for creating function calls. It not only goes to the named location, but also
records the location of the next instruction (in register 31, also called $ra, for
return address — needed to get back when the function returns). We will return to
function calls later, so don’t worry about the detail. Next is a nop. For now take
it that this does nothing.

The third instruction has an interesting feature: the original source instruction
has been translated to an ori. What’s going on here? There isn’t actually a
load immediate instruction in the MIPS instruction set, but the assembler is
kind enough to fake the effect with another instruction, ori. The or immediate
instruction takes the logical or of a register value and a value embedded in the
instruction and stores the result in the destination register. Here, the first source
operand is $0, which always contains the value 0 and, if you recall our standard
logic identities, A V0 = A, so the effect of this instruction is exactly the same
as a load immediate. We could of course write our code using the ori instruction
directly, but li makes the intent clearer. This li is an example of a pseudoinstruction
(remember that concept from page 9?): an “instruction” that does not exist in
machine code, but which the assembler fakes with one or more real instructions.

What happens if you try to run SPIM in this state? You should see a complaint
something like figure 2.11. Why is it complaining? It points to a specific machine
instruction, at location 0x00400014, the jal instruction. What does it mean by
“Instruction references undefined symbol”? The predefined jal instruction wants
to jump to a location labeled main and there is no such location — we need to add
in some of our own code before it will run. At this point, SPIM has not actually
run much code — it has given up when trying to jump to a non-existent instruction.
When SPIM starts running, it runs whatever has been put into memory. If it runs
into something that is not properly defined (in this case, the main program), the
run can fail in interesting ways. SPIM includes an assembler, which translates to
machine code when you ask it to load a new program. When it assembles your
code, translating from assembly language, it can pick up some mistakes, but not

The Machine 43

niv |oe) — v

R19 [83] = 0 [800001c4] 3c019000 1lui $i, -28
= L ———— 0l =l 81, o1
RO OO $4, 384(

11
Instruction references undefined symbol at :}: 22&
0x00400014

[0x00400014] 0x0c000000 jal B
0x00000000 [main] ; 188: jal main $0, 54,
$2, 50,

$2, so,
CAbort | [ok | [3%E

$4, 526

Figure 2.11: SPIM upset about no main entry point

User Text Segment [00400000]..[00440000]
[00400000] 8£fa40000 1w $4, 0($29) ; 183: lw sa0 0(Ssp) # argc
[00400004] 27a50004 addiu $5, $29, 4 ; 184: addiu Sal S$Ssp 4 # argv
[00400008] 24a60004 addiu $6, $5, 4 ; 185: addiu $a2 Sal 4 # envp
[0040000c] 00041080 sl1l1 $2, $4, 2 ; 186: sl11 $v0 $Sa0 2
[00400010] 00c23021 addu $6, $6, $2 ; 187: addu $a2 sa2 $v0
[00400014] 0c100009 jal[0x00400024] [main] ; 188: jal main
[00400018] 00000000 nop ; 189: nop
[0040001c] 3402000a ori $2, $0, 10 ; 191: 1i $v0 10
[00400020] 0000000c syscall ; 192: syscall # syscall 10 (exit)
;

[00400024]| 3402000a ori $2, $0, 10 ; 2: 11 $v0, 10 # system call code for exit = 10

[00400028] 0000000c syscall ; 3: syscall # call 0S
Figure 2.12: SPIM user text segment: minimal program
nearly as many as with HLL compilers.

Luckily we have an example all ready — the minimal example on page 40.
Here it is again for ease of reference:

.text
main: 1i $vO, 10 # system call code for exit = 10
syscall # call 0S

Ask SPIM to reinitialise and load this file, minimal. s.

Now take a look at the text segment (assuming nothing broke). Note that the
Jal instruction now has the correct target address as marked in figure 2.12 — and
the corresponding address in the left column is also marked. Take close look and
identify where our own code is patched in to the predefined SPIM code. As in the
previous example, the li pseudoinstruction is replaced by an ori — but now in two
places, in our own code and in the pre-defined SPIM startup code.

Now we finally have the pieces together to implement our for loop. Let’s start
by rewriting it in MIPS format, and add initialisation of the loop limit N to 4.

.text

44 CHAPTER 2. NUMBERS AND THE MACHINE

[00400024] 340a0004 ori $10, $0, 4

[00400028] 00004021 addu $8, $0, $O : move S$t0, Szero # sum = 0;

[0040002c] 00004821 addu $9, $0, SO ; 8: move Stl, Szero # for (i = 0; 1

[00400030] 0810000f 3j 0x0040003c [test] ; 9: j test # test before first iteration

[00400034] 01094020 add $8, $8, $9 ; 10: add $t0,$t0,5tl # sum += i;
2‘:dy-0x004

: 1i §t2, 4 # N = 4;

N N
® N %

[00400038] 21290001 addi $9, $9, 1 ; 11: addi st1,$tl1,1 # increment loop counter
[0040003c] 012a082a |slt $1, $9, S10 ; 12: blt $tl,$t2,body # not done? Go again

[00400040] 1420fffd |bne $1, $0, -12 00040]
[00400044] 3402000a ori $2, $O0, 10 ; 13: 1i Sv0, 10 # system call code for exit = 10
[00400048] 0000000c syscall ; 14: syscall # call 0S

Figure 2.13: SPIM user text segment: for loop

register use:

$t0 : sum
$t1 ;4
$t2 : N
main: 1li $t2, 4 # N = 4;
move $t0, $zero # sum = 0;
move $t1, $zero # for (i = 0; i < N; i++)
j test # test before 1st iteration
body: add $t0,$t0,$t1 # sum += 1i;
addi $t1,$t1,1 # increment loop counter
test: blt $t1,$t2,body # not done? Go again
1i $v0, 10 # system call code for exit = 10
syscall # call OS

Note use of comments — mainly the original C-style source code, but with a
few explanations of non-obvious details. I also document register usage. Since
this piece of code stands alone and doesn’t call any functions, I can safely use
temporary registers that aren’t saved across a function call.

Load this code into SPIM (using Reinitialize and load file to clear out the
previous example).

Heads up: If you load the file without using the “Reinitialize” version of
the command, SPIM will add the file to the existing contents of memory,
something we don’t want. At least, not right now.

The standard initialisation code is the same; look for your main program
(jal 0x00400024 [main] tells you where to look). Figure 2.13 contains the
relevant part of the user text segment. Note how the test label in the j instruction
is replaced by 0x0040003c by the assembler.

The blt instruction is more interesting. Note that it has been replaced by two

The Machine 45

Table 2.8: Register conventions

symbolic name register number usage

$zero 0 zero constant (HW)
$at 1 assembler temporary
$vo-$vi 2-3 function or expression result
$a0-$a3 4-7 function parameters
$to-$t7 8-15 temporary

$s0-$s7 16-23 saved temporary
$t8-$t9 24-25 temporary

$k0-$k1 26-27 reserved for OS kernel
$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return address (HW)

instructions (outlined with a rectangle). This is because MIPS does not have a blt
instruction and once again the assembler kindly creates one for us out of two more
primitive instructions. This is an example of a pseudoinstruction that expands to
more than one real instruction. Note also that the branch has the number -12 in
the place of the label. If the condition in the branch instruction is true, it transfers
control to an instruction at a position relative to itself. Since instructions take up 4
bytes (32 bits), an offset of -12 means go back 3 instructions (as indicated by the
arrow). The calculates this offset for us, which is just as well with complications
like pseudoinstructions that can expand to more than one real instruction.

To make it even more complicated, the number stored in the instruction isn’t
actually -12. Since machine instructions are always on whole word boundaries, it
isn’t necessary to store all the bits representing locations that can’t be instructions.
So the actual number stored in the branch instruction is -3 (check in binary: what
is -3 in two’s complement notation?).

It is useful at this point to list register conventions more completely. Except
for $zero (also called $0, fixed to the value O by hardware) and $ra ($31, used
to save a return address with a function call), these are strictly conventions,
and are not designed into the hardware. However being able to pass values to
functions, keep track of global variables and other similar purposes makes it
necessary that different parts of a program (possibly created at different times
with different tools) be able to communicate, hence standards for how registers
are used. Table 2.8 lists conventions for the 32 MIPS integer registers; only those
labelled “(HW)” have a purpose actually defined in hardware. This list is extended

46 CHAPTER 2. NUMBERS AND THE MACHINE

in Appendix B to include floating-point registers. Take a look now at the pair of
instructions highlighted in figure 2.13 that the assembler generated for us. Note
how both instructions use register $1, the register listed in table 2.8 as $at. This
register is reserved for the assembler so it can convert pseudoinstructions to actual
instructions even in cases where it may need an extra register. You should never
use this register in your own code.

Heads up: Many of the MIPS register conventions are purely
conveniences for the programmer: we enforce those conventions in the
way we code to make coding easier. A saved or temporary register (for
example) as far as the hardware is concerned can be used absolutely any
way we like but we should observe the standard conventions so our code
is understandable to ourselves and others and so it can be combined with
other code not written by ourselves.

One final detail: you may be wondering what the s1t $1, $9, $10 instruc-
tion does. If we translate it to the symbolic register names, it is a bit easier to
relate to the original code. Let’s also include the branch, with the label put back
to replace the -12:

slt $at, $t1, $t2
bne $at, $zero, body

In our code, we had:
blt $t1,$t2,body

The slt (set less than) instruction computes a less than comparison, and stores
it in a target register (in this case, $at, also known as $1). MIPS only has two
conditional branches, a bne for branch on not equal, and beq for branch on equal.
Other inequalities are constructed by the assembler in much the same way as the
blt pseudoinstruction.

The take home message? Though MIPS is a simple assembly language,
the large number of registers can be confusing, and we rely on conventions
to manage them conveniently. Pseudoinstructions as well as symbolic
register names make things easier for the programmer at the cost of
occasional differences between the real machine code and assembly-
language instructions.

Exercises 47

Exercises

1. Use a truth table to prove the second De Morgan’s Law in equation 2.2.

2. Write out truth tables for all the identities in equations 2.3-2.10 and show
that they all hold.

3. Exactly which simplifying equations apply to the simplifying step in
equation 2.12? Show each step in detail.

4. Use a truth table to prove that the final simplified version of equation 2.12
matches the definition of exclusive or in table 2.4.

5. Draw a logic circuit for the final simplified version of equation 2.12.

6. Convert 125 and 130 to binary, and add them using 8 bits, assuming 2’s
complement representation of negative numbers.

(a) Is your answer correct?

(b) Take the 2’s complement of your answer. What do you get now?

(c) Review the rules for detecting overflow in 2’s complement arithmetic.
Do you have a problem with this calculation? Explain.

7. Convert -14. 2 into IEEE 32-bit format, and check your answer in SPIM as
suggested on page 34.

8. Is there a way to reorder the calculation on page 34 so that the answer comes
out as 1? Is there a general rule you could apply to minimise roundoff error,
if you know the magnitude of the numbers?

9. Show that the logic circuit of figure 2.7 implements the truth table of table
2.7. To do this, write out the logic expression corresponding to the circuit.
Simplify if possible then write out a truth table for the circuit and compare
the outputs with table 2.7.

10. Design a full adder by combining two half adders. Study the truth table 2.7

to make sure you have the details right:

(a) Draw the logic blocks for two half adders, showing how they combine
to form a full adder, adding any additional logic you may need to link
them. Hint: you want to add the A and B inputs, then add the result to
the carry in Cj,, then combine the carry outs from the two half adders.

48

11.

12.

13.

14.

CHAPTER 2. NUMBERS AND THE MACHINE

(b) Expand your logic blocks to show the combined logic circuit the two
half adders represent.

(c) How much does your circuit differ from that in figure 2.7?
Work out the logic for checking for overflow in 2’s complement addition. If
there is a carry in to the sign bit, there must also be a carry out. The value

we are calculating is a bit V for overflow (O looks too much like a zero),
and the inputs are C;, and C,,,. V should be set to signal an overflow error.

(a) Write out the truth table showing when V' should be set, given inputs
Ci,, and C,,; for the sign bit.

(b) Find a boolean expression that implements the truth table.

(c) Draw a logic circuit that implements the boolean expression.

Why do you think only a restricted subset of registers is guaranteed to be
saved across a function call?

The SPIM assembler fakes a load immediate instruction (li) using ori
(or immediate), using the fact that AV 0 = A and register $zero. What
arithmetic operation could you use instead of ori to have the same effect?

Why do you think the MIPS designers did not provide instructions for the
full range of conditional branches?

3 Assembly by Example

EARNING TO PROGRAM IN ASSEMBLY LANGUAGE is a difficult skill. For-
L tunately, we only need to understand the general idea and how to construct
small examples for most purposes, because compilers handle large pro-
grams. The goal is to give you a sense of how high-level language constructs
are built up from below, so you will gain a better appreciation of efficiency issues.
Should you ever get into compiler writing, creating low-level device drivers, or
otherwise need to understand machine code in more detail, you will have the
basics to get started.

Once basics are out of the way, I show how to use standard templates to
generate your code. The first versions of these templates are as simple as
possible, and I later generalise them so they work for more complex scenarios,
like programs with more than one instance of the same control construct. While
assembly language gives you total freedom to write code as you like, using
templates has two benefits:

* you can focus on the hard parts of coding, rather than work out the logic for
basics like loops every time

* using a template gives you some idea how a compiler works, a useful start
if you go on to do a compiler course

In this chapter, I introduce a bit more detail of MIPS instructions and their
formats, then go on to translation of common constructs to MIPS assembly
language.

3.1 Instructions and their Formats

The MIPS architecture has remarkably few instruction types — just three basic
formats for most operations (operating system interactions like system calls are

49

50 CHAPTER 3. ASSEMBLY BY EXAMPLE

R opcode rs rt rd shiftamt | function

31 26 25 2120 16 15 1110 65 0
| opcode rs rt immediate

31 26 25 2120 16 15 0
J opcode address

31 26 25 0

Figure 3.1: MIPS common instruction formats

an exception to the common layout; floating point instructions are based on a
similar pattern but differ in detail). Figure 3.1 illustrates these three formats.
The first thing to note is that the opcode is only 6 bits. That allows for 26 = 64
different opcodes. However, the function field in effect extends the opcode field
for instructions that don’t allow for an immediate operand in the instruction word.
The function field is also 6 bits long, so a fairly large instruction set could be
encoded if all available bit combinations were used. Even if half the opcodes
were used for the cases where the function field does not exist, encoding over
2000 instructions is possible with this scheme.

Heads up: An immediate operand must be a fixed value that you know
when you write down the instruction because it is embedded in the code
itself. In some cases you can use a name for a value, but that name has
to represent a value known to the assembler. It must also fit in the limited
number of bits allowed for an immediate operand.

Let’s look at the formats in a little more detail. In general, when we write
instructions in MIPS assembly language we usually put the destination — the
place where a value is stored — on the left, which is natural if you are used to
reading assignment statements in common HLLs that write an assignment with the
destination on the left. An exception as we see later is sfore instructions, where
the memory location to which the store is targeted is written last on the line, not
first, to put memory addressing into a position consistent with load instructions.

The R format is for instructions that use three registers, generally an operation
like

R[d] = R[s] OP R[t]

In this instruction format, you can think of d as specifying the destination. One

Instructions and their Formats 51

exception to this general rule is logical shift instructions, which send the result to
R[d] after doing a left or right shift on the contents of R[t]; in this case R[s]
is ignored because the shift amount is built into the instruction. There are also
variable shift instructions where the shift amount is in R[s] (e.g., s11v: shift left
logical variable).

The I format is for instructions that use two registers, and an immediate
operand (a value built in to the instruction), generally of the form

R[t] = R[s] OP immediate

where immediate is a 16-bit value built in to the instruction. Load and store
instructions are of a similar format, but use the registers differently. In both cases,
R[s] plus the immediate operand (which is a signed number) form the address
and R[t] is the source of the value for a store instruction (copy from a register to
a memory location) or the destination for a load (copy from a memory location to
a register).

The J format is for instructions that have a single immediate operand, generally
of the form

OP immediate

where immediate here is a 26-bit value built in to the instruction. A j (jump, or
unconditional branch) instruction is of this format, hence the name.

In all cases, OP is defined by the opcode, as well as the function code in the
case of the R format.

Given that the immediate field is only 16 bits, how do you create constants
in your code that are longer than this? Let’s say you need to initialise a variable
called population with the value 420,000. This number translates to base 2 as
01100110 1000 1010 0000 (or in hex, 0x668 A0 — note the way I split the bits into
groups of four to make conversion to hex easier). This is clearly longer than 16
bits so how can we create this value in a register either to use directly or to put in
memory to use later (initialise a variable as the HLL types say)?

This is where logical shift instructions are useful. We can load the high 16 bits
into a register, shift left 16 bits, then put the low 16 bits into the register. The high
16 bits (4 hex digits) are 0x0006 and the low 16 bits are 0x68AO0.

To build up this example, we will assume we can put a variable in the data
segment. This is not what the data segment is usually used for: we need more
concepts than we have currently to implement variables properly. But first, we
will start with all values in registers.

We start from something like this in a HLL:

52 CHAPTER 3. ASSEMBLY BY EXAMPLE

lui $t0, 0x0006 0x000

lofolofoefofofofo oo oo [z [z o JorforferforfofoforororforforfoToToToTo]

Figure 3.2: MIPS load upper immediate instruction

population = 420000;

Now in MIPS code:

1i $t0, 0x0006 # population = 420000;
sll $t0, $t0, 16 # shift the high 16 bits left
ori $t0, $t0, Ox68A0 # combine high and low 16 bits

If you embed this in the minimal SPIM program and run it, you should end up
with register $t0 containing 668a0. Check the Int regs panel in the main SPIM
window. Confirm this is the value you want by switching the register view to
decimal (the heading changes to Int Regs [10]). Which real machine register is
this? If you want to see what the program does in detail, run it a step at a time.
Before you do this, clear the registers so it starts from scratch.

Loading a word in two 16-bit chunks is frequent enough requirement that even
the MIPS designers who favour simpler instructions relented and provide a single
instruction that does the first two lines of our example:

lui $t0, 0x0006 # population = 420000;

This load upper immediate instruction shifts the immediate operand 16 bits to the
left (zeroing the low bits), and puts the result in the target register (here, $t0).
Figure 3.2 illustrates how lui puts a value into a register. The shaded low 16 bits
are always zeroed by the instruction.

For completeness, here is the code with the extra wrappers needed for SPIM
execution. From here on, I assume you can add this extra material and leave it out
of small examples:

initialize the population variable in register $tO
.text

main: 1i $t1, 0x0006 # population = 420000;
s11l $t2, $t1, 16 # shift the high 16 bits left
1i $t1, 0x68A0 # load the low 16 bits
or $t2, $t2, $t1 # combine high and low 16 bits
1i $v0, 10 # system call code for exit = 10
syscall # call 0S

Memory access 53

We used two instructions here to do something that is logically a single operation.
The MIPS designers deliberately made choices like this. Creating a large constant
is not something that happens often in code — it is more common to initialise
variables with small values like O or 1. If the designers created an instruction that
could initialise a register with a bigger value than 16 bits (e.g., by allowing an
instruction to be longer than one word), it would rarely be used, but would add to
the overall complexity of the design.

On now to a wider range of examples. We will start with memory accessing,
move on to arithmetic and logic operations, and conclude with control (we already
saw a for loop).

3.2 Memory access

Using registers is all well and good but since we only have 32 of them (and some
are not freely available, like $zero), we need to be able to access a bigger memory.
Registers are needed for arithmetic and logic operations, but we do not need to
have all our data available at once. When we are not doing computations on data,
we need to store it in a bigger memory — the main memory or RAM. We need to
be able to load values into registers as well and, to do all this, we need to be able
to access a specific location in memory.

You can think of MIPS integer registers as a small array called R, indexed
from O to 31. There are also floating-point registers, a similar-sized array called
F. Floating-point registers can also be combined in pairs to form a double-word
(64-bit) number, in which case you only have even-numbered registers (FO, F2
...F30). You can think of RAM as a giant array of bytes, indexed from 0. At
machine level, in fact, that is all it is. Other meanings, as indicated on page 5,
are imposed purely by the way the memory is interpreted. Sometimes, we refer to
registers as array elements, like R [n], when the MIPS assembly notation of $n is
not convenient or clear.

Heads up: Floating-point double precision registers are the same
hardware as single-precision registers, but used in pairs. If you use
double-precision registers, it is up to you not to use either half as a single-
precision register.

Let’s look at some examples of how memory contents is moved between RAM
and registers. Once in a register, any arithmetic or logic operation can be applied,
but any change in value is not permanent until copied back to RAM, because a

54 CHAPTER 3. ASSEMBLY BY EXAMPLE

register value at some point is likely to be overwritten simply because there are so
few registers.

An important thing to understand is the concept of a machine address. An
address is simply an index into the RAM array. An address can be absolute — an
index from the zeroth byte in RAM — or relative — an offset from a given location.
Machine addresses in our SPIM implementation of the MIPS instruction set are
32 bits though 64-bit addressing is increasingly common. Because addresses are
so big, relative addresses are useful because they allow much smaller numbers
to be used, an important consideration if the address is built into the instruction.
Machine addresses start from 0 and go up to whatever maximum size the particular
system supports. Absolute addresses consequently are represented as unsigned
integers. Relative addresses, on the other hand, can be negative, since they specify
an offset from a given location. Our simple loop example used both kinds of
address. A MIPS j instruction uses absolute addresses, while branch instructions
use relative addresses. Part of the reason for this distinction is a branch instruction
needs more bits for specifying the register containing the condition whereas a
Jump (unconditional branch) can use more bits for the address. Also, branches are
often used for shortish offsets to implement constructs like loops and conditional
code. A jump instruction can be paired with a branch if a branch needs to move a
longer distance than its offset permits.

Relative addresses are useful for another reason: they make it easy to relocate
code, i.e., load it into a different part of memory. If code is relocated, all absolute
addresses have to be adjusted so they work in the new location. We will look at
some of this in more detail later (§5.6, page 168). For now, we are going to do
some simple examples to get a sense of the issues.

First, clear out any previous example from SPIM using Reinitialize Simu-
lator. Now in the main window, click on the Data tab. Figure 3.3 illustrates the
top part of that view. The User data part is supposed to contain constant values;
for now we treat this area as if it contains global variables. We will now look at
how to create a global variable in that space with an initial value and load it into
a register. The way we are going to do this now is a rough approximation to the
way it should be done, to illustrate the principles.

The new instructions we need are one to load an address — the location in
memory where the variable is stored — into a register, and an instruction to use
that address to load the item it points to into a register. In our MIPS examples,
an address is 32 bits (MIPS also has a 64-bit mode, but we do not use that in any
examples). As we saw with the example on page 52, we can’t load a 32-bit value

Memory access 55

Text Data
Q @ Data
User data segment [10000000)..[10040000)
[10000000]..[1003££££] 00000000
User Stack [7ffffd6c]..[80000000)
[7£££fd6c) 00000002
[7££££470] 7ffffde3 7L££f£ffdb7 00000000 7Jf£ffffdd 4 4 4 e 4 e e e
[7££££d80] TEE£££85 Tfffffac TELEffff3c TELE££29 s o s sbheoos®anal)sas
[7££££490] TEf££f1d 7fffffl0e 7ffffee3 7ffffeaZ « & v ¢ 4 4 4 4 4 0 . .
[7£££fda0] 7ffffeed 7ffffe39 7Jffffel? 7Jffffell Moo e 9 oo o000 00020s

Figure 3.3: SPIM data segment

immediately into a register; we need two steps to do this. That is not always true:
if the lower 16 bits are zero, we can do this in one step using a lui instruction.

Heads up: This method for accessing a “variable” will later be how
we access constants that we know before the program runs. To implement
variables properly, we need to know about concepts like how to implement
a stack and dynamic allocation, and where global variables are stored.

Fortunately, a MIPS assembler has a useful pseudoinstruction to save us
having to think through all this: la Rn, label. This load address pseudoinstruction
uses the assembler’s knowledge of the position the label represents in the data
segment to determine whether it can create an address in one or two steps. Assume
now we have our population variable set up as a global, and another variable,
max_age as well, and we want to load each into a register to perform arithmetic
or logic operations. We need assembly code that looks like this:

.data
population: .word 420000
max_age: .word 120
.text
main: la $t0, population # address of population variable
lw $t1, 0($t0) # load value at population
la $t0, max_age # address of max_age variable
1w $t2, 0($t0) # load value at max_age

In the data segment, you tell the assembler how big an item you want at a given
label and also give it an initial value. Here, we want our value to be stored in a
word (4 bytes). We will later see examples of other sizes.

56 CHAPTER 3. ASSEMBLY BY EXAMPLE

hex Text Data
0 @ Data

User data segment [10000000]..[10040000]

[10000000]..[1000££££] 00000000

[10010000] 000668a0 00000078 00000000 00000000 .h..x
[10010010]..[1003££££] 00000000

User Stack [7f£fffd6c)..[80000000)

[7£fffdéc] 00000002 e e

[7££££d470] 7ffffde3 7Tf£f£ffdb7 00000000 7Jfffffdd . . . & ¢ 4 4 4 4 4 2 = = = = =
[7££££d480] TEE£££85 Tfffffac TELffff3c TLL£££29 T A e
[7££££d490] TEE£££f1d Tfffff0e 7Tffffee3 7TffffeaZ . . & 4 4 4 4 4 2 & 2 = 2 = * =
[7£££fdal] Tffffeed 7Tffffe39 Tffffel7’ 7Tffffell Moo a9 0 0 v o o o o o o o
decimal

User data segment [10000000]..[10040000]

[10000000]..[1000££££] 00000000

[10010000] 0000420000 0000000120 0000000000 0000000000 .h..x
[10010010]..[1003££££] 00000000

Figure 3.4: SPIM data segment: intialized

[00400024] 3c081001 1lui $8, 4097 [population]; 6: la $t0, population # address of population variable
[00400028] 84090000 1w $9, 0($8) ; 7: 1w $t1, 0($t0) # load value

~

7

[0040002c] 3c011001 1lui $1, 4097 [max_age] ; 8: la $t0, max_age # address of maximum age variable
[00400030] 34280004 ori $8, $1, 4 [max_age]
[00400034] 8d0a0000 1w $10, 0($8) ; 9: 1w $t2, 0($t0) # load value

Figure 3.5: SPIM text segment: loads from memory

Heads up: The load address pseudoinstruction only applies when we are
dealing with a labelled location in our assembler code. When we deal
with variables properly, we need a different approach, since we cannot
rely on the assembler knowing where the variable is stored.

If you make a file with this (plus the usual glue at the end to exit to the
operating system) and load it into SPIM, take a look now at the data segment. In
figure 3.4 the top part shows the user data segment plus part of the stack (more on
that soon) in default hexadecimal view and the lower part of the figure in decimal
mode. See if you can find our initial values 420,000 and 120. What address do you
think 420,000 is stored at? Now click on the Text tab, and see what your loaded
and assembled code looks like (ignoring the standard stuff before your code).

Figure 3.5 shows the main parts of the text segment that are of interest. First,
note how the address of the population variable is loaded into register $t0 (real
register $8). The la pseudoinstruction is replaced by a single instruction, a lui.
Why is this possible? Because the start address of our variable area is an even
multiple of 2!6: 0x10010000 (you can see this by looking at the data segment; 2'6
in hex is 0x10000, 65536 in decimal, so any multiple of 216 viewed in hex, has at
least 4 zeroes at the low end of the number).

Memory access 57

no. _contents 0x1000FFEO |0x1
00 0x1000FFE4 |0
1lo 0x1000FFES |0x2
0x1000FFEC | 0XFF
2(0x10010000 el o
3o 0x1000FFF4 |0
0x1000FFF8|0x12
410 0x1000FFFC |0
5 (0x42 < : x10010000{0x42)
value copied from RAMI 005 000 [oxal
6l0 by 1w instruction using
address in R[2] 0x10010008(0
7|0 0x1001000C |0
0x10010010 |0
0x10010014 |0

Figure 3.6: Registers (left) vs. RAM (right)

To obtain the address of the max_age variable, the same instruction is used,
followed by ori $8, $1, 4. The effect of this is to add a 4 into the low order bits
of the word. An addition could also be used but a logical or is generally preferred
over addition where possible, as unnecessary extra logic such as checking for
overflow need not happen in the hardware. Now we can do the load instruction to
place max_age in a register, ready for any further processing. Run the example,
and check that the registers $t1 and $t2 (real registers $9 and $10) contain the
correct values.

Note also in this example the use of the $1 register by the assembler, also
known as $at — the assembler temporary register.

You need to be very clear on the difference between a number that represents
a value, such as an integer, and a number that represents a location in memory —
an address. Figure 3.6 illustrates contents of machine registers (only 8 so we can
see clearly what’s going on) for an arbitrary example and a portion of memory
(from machine address 0x1000FFEO to 0x10010014). The numbers on the side
of the registers and RAM are not actually stored but represent where we are in the
register file or in memory. Register 2 contains a number that represents a machine
address and can be used by an instruction like 1w to copy the memory contents
into a register. Assuming that an instruction like 1w $5, (0) $2 has been executed,
the contents of the memory location pointed at by register 2 is now in register 5.
Note that I have illustrated the contents of memory with one row representing a

58 CHAPTER 3. ASSEMBLY BY EXAMPLE

machine word, which means that the machine addresses go up in units of 4.

For registers in a real MIPS machine, see table 2.8 on page 45.

Remember, a number represents exactly what you use it for. A processor has
no way of knowing whether bits in a register are a machine address (or pointer
in languages with that concept, like C), an integer, or a string of characters. HLL
programming insulates you from that reality because the compiler stops you from
using a bit pattern as something other than its original purpose (less so in C, as
we will see later). In assembly language, you can do whatever you like so, for
example, you can treat the number you have loaded into a register from a location
in memory as an address, even if it was not constructed as one.

If we can only use the efficiency gain of starting the data segment at an address
that’s an even multiple of 216 for the very first variable, that seems a bit of a waste.
The cost of starting variables at a 2!6-multiple address is wasting memory to place
variables at that location rather than the absolute first free spot in memory. If
you are a compiler, you should know what variables you have placed where, and
should be able to calculate the offset of each variable from the start of the data
segment. Since load instructions include a 16-bit offset, added to the address
given in the register, a compiler can use the offset to avoid using two instructions
to create an address. How big can this offset actually be? Since the offset is a
16-bit signed value, the biggest positive offset is 21> — 1 = 32767 and the biggest
negative offset is —2!° = —32768. The positive offset should be big enough to
deal with most global variables without having to use more than one instruction
to create an address.

When we get to the proper way to handle variables, the issues are a little
different — but this simplified view of how to create variables is a useful
introduction to offset addressing, which we will need later for offsets from the
start of the actual space in which variables are stored, and offsets from the start of
a data structure.

Back to our example. If we are a compiler, we know that the variable
population is at the start of an even 2!® boundary, so we can load the address
directly and use it with a zero offset. What about max_age? We know it is
the next variable after population, so all we need to know is how many bytes
population needs. In our definition of the data segment, we say it is a word,
which is 4 bytes. If you look at the code the assembler generated for the la
pseudoinstruction to create the address of max_age, it added 4 onto the address
of the first variable. So that is all consistent. We can now do our example more
efficiently:

Memory access 59

[00400024] 3c081001 1lui $8, 4097 [population]; 6: la $t0, population # address of population variable
[00400028] 8d090000 1w $9, 0($8) ; 7: 1w $tl1, 0($t0) # load value
[0040002c] 8d0a0004 1w $10, E]($8) ; 8: lw $t2, 4(st0) # load value at max_age

Figure 3.7: SPIM text segment: more efficient loads from memory

.data
population: .word 420000
max_age: .word 120
.text
main: la $t0, population # address of population variable
1w $t1, 0($t0) # load value at population
lw $t2, 4($t0) # load value at max_age

Load this version into SPIM and check again that it runs as it should, and the
right values are in the destination registers. Figure 3.7 illustrates how the new text
segment cuts our previous code from five instructions to load two variables to three
instructions, and only needs to use one lui instruction with no modifications to set
up the address for both load instructions. Note also the offset of 4 highlighted in
the figure.

From now on, when addressing variables in memory, we will use offsets and
create the base address once wherever possible. When we do proper methods of
accessing variables, we will still use offsets, but we will seldom need to create a
base address. There is a dedicated register, by convention, $gp (real register $28)
that should point to the start of the global variables. This means we only need set
up the global variable base address register once at the start of our program and
use it unchanged from there on. Take a look at the registers set up by SPIM. What
address does $gp point to? It is set to 10008000. Not exactly the start address
of our “variables”, 0x10010000. What’s going on? Remember, the area we have
been using for “variables” is in fact a region that would usually be used to store
constant values. I cheated a bit in using this as global variable space because it’s
a quick way of getting started. Let’s leave this for now and get back to memory
layout in detail later, where we can do this the proper way.

Just one more thing on memory referencing for now: storing register values
back into memory. Let’s just store a value already in a register. In the SPIM
register list, you will see R29, also called sp. if you look in the register panel on
the left hand side of the main SPIM window, you will see something like this:

R29 [sp] = 7ffffd6c

60 CHAPTER 3. ASSEMBLY BY EXAMPLE

User data segment [10000000]..[10040000]

[10000000]..[1003£f£££] 00000000
R29 [sp] = 7ffffdéc

User data segment [10000000]..[10040000]
[10000000]..[1000£f£££f] 00000000
[10010000] 7ffffdéc 00000000 00000000 00000000 1 o v v v e h e e e e e e e e

[10010010]..[1003££££] 00000000

Figure 3.8: SPIM data before (top) and after (bottom) saving SP

We will get to the purpose of this register (the stack pointer) in a while. For now,
since it has a value in it already, let’s see how to store that value to memory. Let’s
create a variable for it in the data segment called saveSP, then store the register
contents there. As before, we have to put the address of the variable into a register
and, as with the load operation, store the contents of the sp register using the $t0
register as the index into the RAM array:

.data

saveSP: .word O
.text

main: la $t0, saveSP # address of sp save location
sw $sp, 0($t0) # store stack pointer value

Try this example, and check that the memory contents is updated as indicated in
Figure 3.8. Whatever value the $sp register has should be repeated in memory at
the location labelled by saveSP. On page 50, I mentioned that store instructions
have the destination last, in contrast to other instruction types. This is so the
order of operands is consistent with a load, which has the memory address last.
Although this breaks an easy-to-remember rule, it does mean that if you line up
loads and stores, you can easily see if they refer to the same or nearby memory
locations, and if they use the same registers.

Storing the stack pointer in memory is something we will do frequently once
we get to more general code — if not exactly the way illustrated here.

The take home message? Registers are a small array of (mostly)
general-purpose memory. Main memory or RAM is a giant array of bytes
that can be used for longer-term storage. A memory address is a pointer
into the RAM array and is used in a load instruction to copy RAM contents
into a register and a store instruction to copy a register into RAM.

ALU operations 61

4-bit number 8-bit number
decimal | original 2’s complement | original 2’s complement
3| 1101 0011 | 11111101 00000011

Figure 3.9: Sign-extending: extended bits shown in bold

3.3 ALU operations

Once we have values in registers, we can use them in arithmetic and logic
operations. Logic operations can be comparisons, as well as operations that
perform boolean algebra on register contents. We have already seen a few
examples — one is the use of an or operation to add in low-order bits after setting
the high order bits of an address. A lot of the rest you can pick up from examples
and the instruction summary (pages 307-316).

A few things might not be so clear though. First, when you have a negative
number in an immediate operand, before it can be used in arithmetic on a register
that is wider than the immediate operand, it must be sign-extended. As explained
on page 29, this means that to widen its representation, the sign bit (O or 1) has
to be replicated to the higher positions to the left of the narrower representation’s
sign bit. Figure 3.9 contains a reminder of sign extending. The numbers 3 and -3,
represented in 2’s complement, are shown in 4-bit and 8-bit versions. The wide
version of both the positive and the negative number is the same as the narrower
version, except the sign bit is repeated 4 more times in the high-order half of the
8-bit version.

Unsigned operations do not necessarily use unsigned data, but they do not
cause overflows to be picked up. So you can, for example, write something like
addiu $t0, $t0, -32768 (the addiu instruction is add immediate unsigned).
What happens is the immediate operand is converted to the bit pattern for —32768
(the 2’s complement of 0x8000 which for a 16-bit number is also 0x8000, because
the positive number 32768 is too big to fit in 16 bits).

Another thing to note is that as seen after we did the for loop on page 43, the
MIPS instruction set does not have branch instructions that compute comparisons
like less than. Instead, comparisons are generally done in registers exactly as
arithmetic is done. One of the reasons for that is it makes it possible for compiler
writers to use much the same approach for boolean (or logical) expressions as they
do for arithmetic. Everything takes the form of either two register operands used
to compute a value for a destination register operand, or a single register operand

62 CHAPTER 3. ASSEMBLY BY EXAMPLE

registers : memory contents

R8 [t0] = ffffface : User data segment [10000000]..[10040000]

R9 [tl] = face 1110000000]..[1000££££] 00000000

R10 [t2] = fffffffe: [10010000] 00feface 00000000 00000000 00000000
R11 [t3] = fe 1[10010010]..[1003ff£f£f] 00000000

R12 [t4] = 10010000 1"

R13 [t5] = 10010002 »

Figure 3.10: Effect of short loads

and an immediate used to compute a result for the target register operand.

ALU operations generally operate on a whole register, though you can load
load or store a halfword (16 bits) or byte (8 bits). When you load a halfword
or byte into a register in unsigned mode the high bits (that aren’t included in the
loaded value) are set to zero. In signed mode, it is sign-extended (the sign bit is
copied to the remaining high bits to make a valid 32-bit number). If you store a
halfword or byte, only that number of bits is written to memory, so stores do not
have an unsigned mode. You need to be careful that you do not lose information or
break negative numbers in halfword and byte mode. We will however mainly use
full words for numbers (almost always in signed mode) and bytes (using unsigned
loads) for characters, so we should not run into this issue.

Let’s do one example with a few pieces of arithmetic and a logic test to put all
this together. Here’s some C-like code that calculates a boolean value (true if the
given age is less than 10,000 days, false otherwise):

int age = 21;

int daysperyear = 365;

bool agelessThanlOk = false;
agelLessThanl0k = age * 365 < 10000;

This time since the example is a bit longer, here is the entire source code, including
the exit code:

psuedocode with register assignments:

$t0: base address for variables

$t1 int age = 21;

$t2 int daysperyear = 365;

$t3 bool agelLT10k = false;

agelLT10k = age * 365 < 10000;
.data

age: .word 21

daysperyear: .word 365

ALU operations 63

age :daysperyear > ageLT10k

<

Figure 3.11: SPIM data layout with a short data item

>
>

ageLT10k: .byte 0
.text

main: la $t0, age
1w $t1, 0($t0)
v $t2, 4($t0)
1bu $t3, 8($t0)
mulo $t4, $t1, $t2
slti $t3, $t4, 10000
sb $t3, 8($t0)

standard exit convention
1i $vO, 10
syscall

age address

load value at age ($t1)
load value at daysperyear ($t2)
load value at ageLT10k ($t3)
templ = age * daysperyear
ageLT10k = templ < 10000

store value at agelLT10k

H OH OH OB H H O

+H

syscall code for exit = 10
call 0S

+*+

There are a few things to note here.

First, I put the boolean value in a byte rather than a word. Since I put it last, this
should present no complications. The MIPS instruction set prefers to load words
on a whole-word boundary (an address that is a multiple of 4). In fact if you try
to do a load or store at an unaligned address, you get an exception (crashing your
program). The MIPS instruction set has special instructions to do unaligned loads
and stores. If I placed another variable wider (including a 16-bit halfword) than a
byte after this byte-length variable, I would have to worry about that. The SPIM
assembler takes a helpful view of this: to avoid trouble, it starts each value at an
appropriate boundary (word, halfword, etc.), so you don’t run into trouble if you
follow a byte or a halfword by a longer data value. If you are creating your own
data layout in memory, this is an issue you need to pay attention to.

Figure 3.11 shows how our data is laid out (each block represents a byte).
With this layout, we need an offset of 4 from the start of our data area to get to
daysperyear and an offset of 8 to get to ageLT10k. If we had more byte-sized
data items, the assembler would continue filling the word. If in doubt about the
layout, create your data segment, load your program and see how SPIM has placed
the data items by viewing the data segment.

You may be wondering why, with an offset of 8 from the start of our data
area, why the ageLT10k byte is at the low end of the word, not the high end,
apparently leaving a 3-byte gap. This is because the version of SPIM I am running

64 CHAPTER 3. ASSEMBLY BY EXAMPLE

[00400024] 3c081001 1lui $8, 4097 [age] ; 12: la $t0, age # age address

[00400028] 8d090000 1w $9, 0($8) ; 13: 1w St1, 0(st0) # load value at age (s$tl)

[0040002c] 8d0a0004 1w $10, 4($8) ; 14: 1w $t2, 4($t0) # load value at daysperyear (S$t2)
[00400030] 910b0008 1lbu $11, 8($8) ; 15: lbu $t3, 8(S$t0) # load value at ageLessThanlOk ($t3)
[00400034] 012b0018 mult $9, $11 ; 16: mulo St4, Stl, S$t3 # templ = age * daysperyear

[00400038] 00000810 mfhi $1

[0040003c] 00006012 mflo $12

[00400040] 000c67c3 sra $12, $12, 31

[00400044] 102c0002 beq $1, $12, 8

[00400048] 0000000d break $0

[0040004c] 00006012 mflo $12

[00400050] 298b2710 slti $11, $12, 10000 ; 17: slti $§t3, $t4, 10000 # ageLessThanlOk = templ

Figure 3.12: SPIM expansion of mulo pseudoinstruction

uses little-endian ordering, which means that bytes are numbered from the little
(low-order) end of the word. MIPS supports both little-endian and big-endian byte
ordering. This is usually not an issue for programmers, except when interchanging
information at a very low level between different types of system (e.g. over a
network).

Second, I used an unsigned load byte instruction to load the boolean value.
This is not strictly necessary since it was a zero value, but signals my intent not to
use it as a signed value.

Finally, the multiply instruction (mulo for multiply with overflow) presents an
interesting issue: if you multiply two n-bit numbers, the product could require up
to 2n — 1 bits to represent — for practical purposes, double the width. The multiply
instruction in our code is yet another example of a pseudoinstruction. In this case,
it takes care of the possibility that we overflowed when multiplying. Load the
example, and see what the SPIM assembler generates. Figure 3.12 illustrates what
SPIM turns that one innocent-looking instruction into (look for the lines without
a comment on the side, starting from the mult instruction that SPIM created at
address 0x00400034).

Let’s take the real multiply code sequence one instruction at a time. First,
the real mult instruction does not store its result in a regular register but instead
in a pair of registers containing the high and low parts of the resulting value
(remember, it could be up to double the width, approximately, of the source
operands). So the instruction mult $9, $11 has no explicit destination (the
named registers are the real names of $t1 and $t3, as in the pseudoinstruction,
mulo $t4, $t1, $t3). Look in the SPIM register panel, and you will find two
registers there representing the multiply target called HI and LO. If all goes well,
only the LO register will contain the complete result. To test for this, we need to
check if the high-order bit of LO (the sign bit) is equal to all of the bits of HI. Why?
If the answer is positive, the sign bit of LO will be 0, and the entire contents of HI

ALU operations 65

will be 0. If the answer is negative, the sign bit of LO will be 1, and the entire
contents of HI will be 1s. If either condition does not hold, we’ve overflowed.

Heads up: In addition to the mult, there is a mul instruction that has
the regular 3-register format. Only use this instruction if you are sure the
multiply will not overflow (a compiler can detect this if it has information
about the values being multiplied). This instruction is incorrectly listed
in the SPIM reference as a pseudoinstruction in the SPIM reference
(Appendix E).

The next two instructions SPIM generated copy the contents of the HI and LO
registers to regular registers, where their values can be checked:

mfhi $1
mflo $12

Register $1 is the assembler temporary, so that is OK. Register $12 is the
destination of the pseudoinstruction result, so it’s OK to use that because we
intend to overwrite it anyway. The next instruction needs some explanation:

sra $12, $12, 31

This is an sra (for shift right arithmetic) instruction. Note the shift amount in the
instruction, 31. This has the effect of replicating the sign bit (high-order bit) all
the way to the right of the number (the low-order bit). Since it’s an arithmetic
shift rather than a logical shift, if the sign bit is set, it will sign-extend as it shifts,
i.e., we will end up with $12 containing either all 1s if the sign bit was set, or
all Os if it wasn’t. A logical right shift by contrast always fills from the left with
zeroes. Remember, $12 was a copy of L0 before the shift and $1 is a copy of HI.
Once we have that straight, it becomes clear why the next instruction (branch if
equal)

beq $1, $12, 8

is a check for whether the HI register contains nothing but the sign bit extended
left from the LO register. If we pass this test, because of the 8 in the branch, we
skip ahead 2 instructions (remember, each instruction takes up 4 bytes). If we fail
this test, i.e., the branch falls through to the next instruction, we run into

break $0

66 CHAPTER 3. ASSEMBLY BY EXAMPLE
which forces your program to die with an overflow error.’

If on the other hand the test is passed, the final instruction generated from the
original mulo pseudoinstruction is

mflo $12

which puts the answer in the register where we want it ($t4, our name for the real
register $12).

At this point, it is worth a pause to thank the MIPS designers for the concept
of pseudoinstructions. Imagine if you had to get all this right every time you had
to do a multiply.

Why is this not all put into a real instruction? Multiplies are relatively
complicated to implement in hardware, so splitting some of the logic of how you
handle multiplies into multiple instructions makes it easier for hardware designers
to implement a faster clock speed. The price of 7 instructions instead of one may
seem high, but if the gain is even a modest increase in clock speed, you would have
to have a program with a high fraction of multiplies to lose. Also, compiler writers
can avoid all this complication if they know the answer will be too small to cause
an overflow, and there are special cases where less expensive instructions can
be used (in one instruction: mul $t4,$t1,$t3). The MIPS instruction set was
designed by a compiler expert (John Hennessy), who understood when a compiler
can make choices like this.

Let’s take an example where the compiler may know better: multiplying two
16-bit numbers. If we load two 16-bit (halfword in MIPS terminology, or short int
in C) numbers into a pair of registers, multiplying them should not overflow into
the HI register. On the other hand, if we want to copy the result back to a 16-bit
variable in memory, we need to check that we haven’t overflowed into the high
half of the 32-bit register in which we did the arithmetic. How can we check for
that? As with the 32-bit multiply, the high half of the register should contain the
same bit throughout as the sign bit of the low half of the register. Why? Because
with 2’s complement representation, all the bits to the left of the sign bit if we
widen the number should be the same as the original sign bit, as discussed on
page 29, and narrowing the number should follow the same rule in reverse.

How can we check if the high 16 bits of a word are all the same bit as the
highest bit of the lower half of the word? One trick is to shift the low halfword all

IThis is an error in the way SPIM displays the instruction because the break instruction takes an
immediate operand not a register. If you use a break in your own code, SPIM will object if you
use this syntax. It should actually be “break 0.

ALU operations 67

|0|0|0|0|0|0|0|OIOIOIOIOIOIh(TfIt(I)ﬂl.IIGObI-tOIOIOIOIOIOIOIOIOIOIOIOI1|1 Ol

[oTo]o[o[o]o[o]o]o]o[oo]o]]:[o[olee]eo o o ol elo o o o o]q]
arithmetic shift right 16 bits

[o[efo]ofo]ofo]ofo]ofo]ofo]ofefo] o o[o[o]ofo[o[o]ofoo]o]o]1]:]o]

Figure 3.13: Force high halfword to contain only low halfword sign bit

the way to the high halfword (16 bits to the left), then do an arithmetic right shift
back to where it started (16 to the right). Since an arithmetic right shift copies
the sign to the right, we can compare the result with the original value. If there
had been an overflow into the high halfword, at least one bit will be different from
the low halfword’s sign bit. We can do this by the following steps, assuming our
value is in register $t0:

s1l $t1, $t0 16 # shift tO 16 left into $t1
sra $t1, $t1, 16 # arithmetic shift t1 16 right
beq $t1, $t0, ok # shifts changed nothing? good
#
#

break 0O otherwise error

ok: nop or next useful instruction
Figure 3.13 illustrates the effect of the two shifts. Shading indicates bits whose
values are created by shifting.

Heads up: Arithmetic right shifts copy the sign bit (sign extension). All
other shifts fill in from the left or right with zeros. The MIPS instruction
set includes five bits in shift instructions so that the shift amount can be
hard-coded into the instruction (like an immediate operand, but using a
different part of the instruction word), but there are also instructions that
allow a register to be used for the shift amount.

Why will this work? If we have not had an overflow into the top half of the
word, all the high 16 bits should be the same as the low halfword’s sign bit. Our
left and right shifting ensures that this is true so our final result (in the example, in
register $t 1) should be the same as the original value (register $t0 in our example)
unless an overflow occurred.

You should convince yourself that the test will fail if any of the bits in the
higher halfword differ from the lower halfword’s sign bit. Give it a try. Put the
above code snippet into a runnable program, and run it first with 11 $t0, 32767,

68 CHAPTER 3. ASSEMBLY BY EXAMPLE

the biggest number that can fit into 16 bits using signed numbers, then with $t0
initialized to 32768, which should be an overflow. In 16 bits, the bit pattern for
32768 (hex 0x8000, binary 1000 0000 0000 0000) represents -32768, but if
you arrive at -32768 in a 32-bit calculation, all 16 of the the high-halfword bits
should be set. If on the other hand you arrive at +32768 in a 32-bit calculation,
none of the high-halfword bits should be set. To see what is happening clearly,
put the SPIM register view into binary mode.

This last example illustrates that you can find relatively simple solutions
to problems like this one if you take a bit of time to check through available
instruction options and think through how best to use them.

The take home message? Most ALU operations are a simple translation
from C-like pseudocode, but multiplies are a lot more complex because of
the high likelihood of overflow. You can use a pseudoinstruction rather
than have to work out all the detail of how to handle multiply overflows
yourself.

3.4 Control

We have already seen a few examples with conditional branch and jump (uncon-
ditional branch) instructions, including a for loop. Let’s now go on to a more
complete set of examples. But first a few definitions.

We have already seen two (real, not pseudo) branch instructions, branch equal
(beq) and branch not equal (bne). Both compare a pair of registers, and use a 16-
bit offset for the branch target address (the place to go to if the branch condition
is true). This 16-bit offset, though MIPS uses byte addresses, is stretched by the
fact that instructions can only occur at whole-word boundaries (every 4 bytes).
This means that the low 2 bits of every instruction address are zeroes, so MIPS
instructions containing instruction addresses simply leave out the low 2 bits. This
means that instead of 16 bits allowing a range of -32768 to 32767 bytes, the
range is stretched by a factor of 4. So most programs are not going to run into
a problem with constructs like for loops being unable to use branch instructions
directly (the alternative: branch to a j instruction to go further). There are a few
other conditional branches, but these plus pseudoinstructions for branches testing
inequalities will be good enough for now.

Control 69

initialise loop counter

j test # test before 1lst iteration
body: # body of loop here j test # test before 1st iteration
rest of body body: # body of loop here
increment loop counter # rest of body
test: b R1,R2,body # not done? Go again test: b__ R1,R2,body # not done? Go again
(a) for template (b) while template

Figure 3.14: Loop templates

Loops

For completeness, figure 3.14a illustrates a generic template for a the for loop.
Compare it with the specific example we had before on page 43. We will later
generalise this to make it work for programs with more than one loop. Obviously
the branch condition depends how you set up the for loop, but it should be true
for the case where the loop continues.

Heads up: You can still write correct code if you ignore the template
concept but that is a bad idea. Totally unstructured assembly language
code is very hard to read and debug. By using these templates, you also
gain experience of thinking like a compiler, a useful skill if you later study
how to write a compiler.

Now on to another loop construct: while. The general form of a while loop is
in figure 3.14b. The branch condition at the test label is based on the condition
to keep going, as with the for loop. Here is an example, starting with C-like
pseudocode:

// how often can we double an age up to 1007
int doublings = O;
int age = 42;
while (age < 100) {
age = age * 2;
doublings ++;

}

Our example added into the template looks like this:

register use:
$t0 : doublings

$t1 : age
$t2 : holds const value 100
main: move $t0, $zero # int doublings = 0;

1i $t1, 42 # int age = 42

70 CHAPTER 3. ASSEMBLY BY EXAMPLE

1i $t2, 100 constant 100
while (age < 100) {
j test test before 1st iteration

body: add $t1,$t1,$t1
addi $t0,$t0,1
test: blt $t1,$t2,body

age = age * 2;
doublings ++;
} not done? (age < 100)

H OH H H H

The lines preceding the j test are initialisations, and the rest is just a matter
of substituting specifics into the generic template. This time I didn’t bother with
loading from memory; we have done that enough times now to leave that out until
we do memory layout properly.

What does the example do? It doubles the value we set up for age until it
passes 100. Since we initialise the value for the count of doublings to 0, what we
should end up with is a count of how often we can double the given age without
reaching 100, in this case, twice. Load the program into SPIM and verify that at
the end, $t0 has the value 2.

The two examples in figure 3.14 are obviously very similar, because a for
loop really does the same thing as a while loop, except it puts the initialisation
and increment into the loop header rather than allowing you to put them wherever
you like (or leave them out if they don’t apply).

The take home message? Creating loops using standard templates
reduces the chances of error. Look out for more templates.

Conditional Code

Finally, to straightforward conditional code, an if statement. Let’s take two
examples with and without an else branch. Take a look at the templates in figure
3.15. Unlike with the loops, we have to invert the condition because the branch
instruction jumps us around the true branch of the if. For the first example, ignore
the C syntax for reading a number if you don’t know the language (yet). You can
just take it that “scanf ("%d", &value)” does what you want.

// count numbers read in that are < O
int value;
int negatives = 0;
scanf ("%d", &value);
if (value < 0)
negatives ++;

Control 71

b__ R1, R2, else # invert condition
true branch

j done
b__ R1, R2, done # invert condition else:
true branch # false branch
done: nop # or next instruction done: nop # or next instruction
(a) if template (b) if-else template

Figure 3.15: if templates

To implement this example, which reads in a number and adds to a count if it’s
negative, we need a SPIM system call, coded 5, which returns a value in register
$vo0.

At this point it is useful to add another assembler feature: macros. A macro
is a piece of text that has a name and wherever the name appears, it is as if you
had typed that piece of text in. For system calls, it is inconvenient to memorise
what the number is that invokes a particular call. We now have two: one to exit
the program (coded 10) and one to read an integer (coded 5). So let’s give them
names, so we only need look this up once. The syntax for this is pretty simple:

NAME = value

Then, whenever the word NAME appears, whatever was after the = replaces the
word NAME. Let’s look at the whole example this time to see where the macro
definitions fit in as well as their use:

// count numbers read in that are < 0

READ_INT = 5
EXIT = 10
.text

register use:
$s0 : value
$s1 : negatives

main: 1i $s1, O # negatives = 0
1i $vO, READ_INT # sscanf ("%d", &value);
syscall
move $s0, $vO # copy read int into value
bge $s0, $0, done # if (value < 0)
addi $s1, $s1, 1 # negatives ++;

done: nop # or next useful instruction

usual exit to 0S
1i $vO, EXIT # set up exit system call
syscall # call 0S

72 CHAPTER 3. ASSEMBLY BY EXAMPLE

Why did I use s registers this time rather than use one of our usual $t temporaries?
When you call a function, as we will see later, if the function changes any $s
register, it is required to restore the value. Here, I do not call any functions.
A system call in a real machine may have protocols on what registers it may
guarantee to save, but that is not an issue in SPIM because SPIM system calls are
faked in C code that runs outside the simulator. Here, for that reason, I could have
just carried on using $t registers, and we will soon see cases where we actually
do need to consider using $s registers. On the whole it is easier to keep track of
what you are doing to use either

* only unsaved ($t) registers in a leaf function (calls no functions)
* only saved ($s) registers if you call functions

At times, you will need to use $t registers when it is not ideal to do so because
there are more of them than $s registers but for simple examples, we will follow
the convention outlined here.

Load the above example into SPIM and run it a few times, resetting the
registers each time to start from scratch. You should see that when you enter a
negative number in the Console window, register $s1 (real register $17) becomes
I. Now let’s add an else branch (count positives including 0 in a different
variable):

// count numbers read in that are < 0O
int value;
int negatives = 0, positives = 0;
scanf ("%d", &value);
if (value < 0)

negatives ++;
else

positives++;

Here is the main body of the MIPS code for that:

main: 1i $si1, O # negatives = 0
1i $s2, O # positives = 0
1i $vO, READ_INT # scanf ("%d", &value);
syscall
move $s0, $vO # copy read int into value

bge $s0, $0, else # if (value < 0)
addi $s1, $s1, 1 # negatives ++;
j done

Control 73

else
else: addi $s2, $s2, 1 # positives ++;
done: nop # or next useful instruction

Heads up: An if with or without an else is a little challenging because
you need to invert the condition fo jump past the true branch.

Finally, let’s consider a more advanced control construct, a switch statement.
If you are unfamiliar with C and its close relatives, this will be a new one. The
switch statement, given a value (in this case, our variable called value), contains
cases, each of which is labeled with a constant value. If the given value matches
a case label, the switch jumps to that case label, and continues down from there.
A break statement jumps out of the switch.

Here is an example to illustrate the concept. Assume we have an int variable,
value, and we want to update a count of how often we have seen a number in one
of these categories: zero, a 1 or a 2, or anything else. Here is a switch statement
that solves the problem:

switch (value) {

case O:
zeroes++;

break;

case l:case 2:
onesAndTwos++;

break;

default:
others++;

break;

}

To code a switch statement efficiently in assembly language requires some
concepts we haven’t covered yet. For now, contemplate the example, and try
to think how you could program it with what you already know already.

The take home message? Use named constants and templates to simplify
your code and make it easier to read. You will be thankful you did so when
tracking down bugs.

74 CHAPTER 3. ASSEMBLY BY EXAMPLE

3.5 Floating Point

Since floating point gets complicated without going far into it, I am not going to
do a lot of examples. Here is a complete example containing a few elements we
need for later programs:

* a wider range of system calls (Appendix C, table C)
* storing values that would appear inline in C code in a constant pool

Here is the program. It reads in a floating-point number representing a radius,
squares it, multiplies by 7 (to a reasonable approximation), prints out the area and
prints out the integer value of the area (rounded, after adding 0.5, so it rounds
to the nearest whole number). You may want to check table B.1 in Appendix B
for floating-point register conventions, though we only really need worry in this
example about registers used in system calls.

READ_FLOAT =

PRINT_CHAR = 11

PRINT_FLOAT = 2

PRINT_INT = 1

EXIT = 10
.data

consts: .float 3.141592653589793 0.5
newline: .ascii "\n"

.text
registers:

$s0: start address of constants
$sl: newline character
$t0: short-term temporary value
$f0: value returned from syscall, short-term temporary
$£f10: short-term temporary value
$£f12: passed in to syscall, working results
main: 1i $vO, READ_FLOAT # read radius
syscall # return in $£0
mul.s $£f0,$f0,$£f0 # radius square
la $s0, consts # no FP immediates

l.s $£10, 0($s0) # const: pi value

mul.s $£f12, $£10, $f0 # pi * radius * radius

1i $vO, PRINT_FLOAT # print radius (float)
syscall # prints the float in $£12
la $t0, newline # get newline char

Floating Point 75

1b $s1 0($t0) # in saved temporary register
move $a0, $si

1i $vO, PRINT_CHAR # print newline

syscall

1.s $£f0, 4($s0) # const: 0.5 to round up

add.s $f0, $£f12, $£f0 # round up

cvt.w.s $£f0, $£f0 # convert single to int (word)
mfcl $a0, $£0 # move from coprocessor 1 = FPU
1i $v0O, PRINT_INT # print radius (int)

syscall

move $a0, $si # newline still in $s1
1i $vO, PRINT_CHAR # print newline
syscall

1i $v0, EXIT

syscall

A run of this program looks like this on the Console window:

12.1
459.96060181
460

The first line is input I typed. If you check this on a calculator (with the
same number of significant digits as mine), 12.1> = 146.41 and 146.41 x T =
459.960580412081593 so the answer is right to about 7 digits, about as good as
we can expect with single-precision floats.

Let’s go through the code. Reading a float is not a new concept — we need to
know the system call number and which register the result is in, otherwise it’s the
same as any other system call. We can’t load immediates for floats, so we need
to load constants like 7 and 0.5 from the constant pool. To do that, if we load
the address of constpool into a register we can use offsets from that register to
access each constant. We could name each constant but a compiler would not do
that, and it gets tedious with a lot of constants (though easier to see what’s going
on). Here, 7 is at offset 0 and 0.5 at offset 4, since each constant is 4 bytes long.

Floating-point operations have the size after a “.” to make it stand out, hence
“mul . s” for single-precision multiply and “1.s” to load a single-precision float.
Another giveaway of a floating-point instruction is the “$£” register operands.

Heads up: Double-precision floating point uses the same registers as
single precision in pairs. For double-precision operations, remember that
each register includes the next register in numeric order. So a double-
precision operation on F0 also uses F1 for the double-width number.

76 CHAPTER 3. ASSEMBLY BY EXAMPLE

Once we have multiplied by 7 (with the answer in $f£12 where it needs to be
for a PRINT_FLOAT system call), we can print it. To separate lines of output, I
also print a newline character. This time around, since I only want one character,
I don’t need a null-terminated string. I can load the address at the location in
the data segment labeled newline:, and use that address to load the byte at that
location into a saved temporary register so I can be sure it will be available later:
$s0. Then I copy it to $a0 to pass it into another system call, PRINT_CHAR. That
completes the floating-point result and output, so now we need to convert the
answer to an integer. I add 0.5 to round to the nearest whole number before
converting contents of register $£0 to an integer using cvt.w.s. We can’t use
the value like this since it’s not in an integer register. I use mfcl $a0, $£O,
which copies a value (“moves”) from coprocessor 1 (the FPU), register $£0, to
the main CPU, register $a0. We can now print the contents of $a0 (the parameter
register needed for the system call) as an integer, followed by another newline.

This is a lot to take in. Load the program into SPIM, and check which of the
instructions are pseudoinstructions. Single-step it to see what it does, noting you
can switch the register view to decimal to make it easier to see what a floating-
point value is (remember the trick on page 347).

The take home message? Floating point requires getting a lot of detail
straight. Aim to understand this example as a starting point for anything
more complex you may need to tackle.

Exercises

1. The SPIM assembler includes a pseudoinstruction lw Rn, address, which
gets converted to a lui instruction, followed by a proper Iw instruction using
a register containing the address to copy from RAM to destination register
Rn. When would you use this pseudoinstruction? Can you think of cases
when you wouldn’t use it?

2. How many times can you successively multiply 16-bit integers (assuming
you don’t know how big the numbers are) before you need to check the HI
register?

3. Redraw figure 3.13 for an example where there has been an overflow into
the high halfword (at least one bit will be different from the sign bit of the

Exercises 71

low halfword). Show that the left shift and arithmetic shift right by 16 no
longer produce the same result as the original register contents.

4. The MIPS instruction set has two instructions that can respectively count the
number of zeros or ones starting at the high end of the word: clz rd, rs
and clo rd, rs. Since the high word sign bit should be the same all the
way through at least to the low word sign bit, any word where there has
been no halfword overflow should have at least 17 leading Os or 17 leading
Is.

(a) Explain how you could use these instructions to test for halfword
overflow.

(b) Is there any advantage — or not — in this method over that given on
page 677 Explain.

5. Write MIPS code for the following, and check that you get expected results
in SPIM. In each case, document your register assignments. For variety, do
each example first purely in registers, and then using variables in memory.
Where initial values are not given, read them in using the method on page
71.

(a) First, a for loop:

// add the numbers from 1 to 10

sum = O;
for (i = 0; i < 10; i++)
sum += i+1;

(b) Now, a while loop:

// calculate sum of i-squared up to a max of 100
sum = O;
i=1;
while (ixi < 100)
sum += i*i;

(c¢) Now, an if statement:

// if size > max indicate error: set to -1
if (size > max)
size = -1;

78 CHAPTER 3. ASSEMBLY BY EXAMPLE

(d) Finally, an if statement with an else:

// if score < 0 error, else update total score
if (score < 0)

errors++
else

totalscore += score;

6. Do you have any ideas on how you could implement a switch statement?

7. In the if example on page 71, we copy register $v0 over to $t0 straight after
the system call.
(a) Is this step necessary?
(b) Why do you think I did it that way?

(c) Rewrite this example to remove the nop instruction.
8. For the floating-point example of page 74:

(a) Why can we not keep the pointer to newline in register $a0?

(b) In my example output, what difference would it make if I didn’t add
0.5 before converting to integer?

(c) How many digits of 7 are actually represented on the machine?
(d) Rewrite the example using doubles instead of floats.

1. How does the convention of using paired floating-point registers
simplify or complicate conversion to doubles?
ii. What difference does using doubles make?

iii. Can you justify the extra overheads of doubles in this case?

9. Implement the switch example on page 73 using an if-else template (figure
3.15b). How do you have to adapt the template to deal with multiple uses in
one program?

4 Memory and Functions

E NOW TURN TO HOW MEMORY is organised in real programs, which

s}s/ also presents an opportunity to talk about functions since memory has to

be organised so separate program components can work independently

of each other and share information in a controlled way. Some of that sharing, as
we have seen briefly, is through registers.

Remember how a system call is set up? You put a value into a register to
identify which system call you want and if the system call returns a value, you
get it back in another register. Remember how we have two categories of register
we can use to hold temporary values, unsaved ($t) and saved ($s) temporaries?
When we write a function, if we change a “saved” register, we need to save its
previous value and restore it before returning from the function.

All of this just relates to registers; we also need to have ways of handling
passing parameters that for whatever reason don’t fit the limited set of registers
allowed for this purpose, ways of storing variables that are local to the function in
memory if they don’t all fit in registers, and ways of accessing variables that are
global to the current function.

When a compiler allocates registers, the usual way is to take a conservative
view of the possibility for registers to be reused in other parts of code and copy
them more often than necessary. A compiler generally has several levels of
optimisation where among other things, it reduces unnecessary register copying.

A significant part of the organisation of memory to permit function calls is
maintaining a region of memory that grows as we call functions and shrinks back
as we return from a function. A data structure that works in this way is a stack. You
add to the top of the stack, and remove items only from the top of the stack. Figure
4.1 is an example of a stack containing arbitrary items. The common operations
on a stack are

* accessing the topmost item

79

80 CHAPTER 4. MEMORY AND FUNCTIONS

top| 0x84
top| 0 0
0 0
0x10010000 0x10010000 |top[0x10010000
0 0 0
0 0 0
0x42 0x42 0x42
0 0 0
0 0 0

push 1 item onto stack pop 3 items off stack

Figure 4.1: Abstract stack example

* accessing an item an offset from the top within the stack

* adding to the depth of the stack by a push operation that adds an element
above the top of the stack

* a pop operation that removes the topmost item and reduces the size of the
stack accordingly

A stack is good for organising memory added when a function is called, because
function calls and returns happen in reverse order. In any chain of function calls,
you cannot return from a function called earlier in the chain until you have
returned from the functions that are called later. A variant on this behaviour
occurs with threads, which can execute in parallel and finish at times that don’t
necessarily relate to the order they started. Managing memory for threads is
outside the model we look at here. If you understand how functions work,
extending your knowledge to understanding threads is not a major extension.

In a typical machine-level memory setup, the stack and the rest of your
program’s address space start from opposite ends of available memory and grow
towards each other. This arrangement means that it is not necessary to decide
up front what fraction or memory to allocate to the stack versus other data
requirements. Consequently, the machine-level stack is a little different than a
stack as a conventional data structure. For one thing, the stack grows the opposite
way you would expect: it starts at the high end of its allocated memory space and
grows towards lower addresses. The reason for this is that global data for a simple

Memory and Functions 81

global to whole program

global to compiled file 1

global to compiled file 2

constant pool

dynamically allocated data

7
/\

stack

Figure 4.2: Conceptual memory layout

program without function calls can easily be placed in low memory with no need
for a stack. Having the stack grown from the opposite end of memory makes it
easy to expand global memory space without having to change where the stack
starts.

Heads up: 7o change stack size, we adjust addresses the opposite way to
that you would expect because the stack grows down from high memory.
Adding to the stack means reducing the address of the top of the stack.
Shrinking the stack means increasing the top of stack address. Despite
this, data structures on the stack within which we calculate offsets work
the usual way: addresses increase as we move along the data structure.

Something that complicates real programs is that there are different kinds
of global data that need to be around for the whole lifetime of the program.
In a language like C where you can compile parts of your program separately
then combine them before running (usually using a linker — see page 168), each
separately compiled file may have its own set of global variables that needs to be
kept separate from those of other separately compiled files. In addition, there may
be variables that are global to the whole program. Figure 4.2 illustrates a possible
layout of memory for a program compiled from two C source files, each with its
own global variables (known only to code in that file), as well as variables global
to the whole program. In addition, the compiler needs a place to store constant
values that may be needed to initialise variables, or possibly are never stored in a
variable (e.g., a string of characters used directly in output).

82 CHAPTER 4. MEMORY AND FUNCTIONS

We will not explore the full range of complexity of memory layout, but will
examine how to manage global variables, constant values we keep in memory and
use of the stack for function calls — including providing space for variables local
to the function, and passing parameters that we can’t fit into available registers.

We also need space on the stack for storing registers we may have to save. We
also need to understand how machine code supports calling and returning from
functions.

I start with a simplified view of function calls where we don’t need the stack,
then return to function calls once we have all the machinery for local variables.
To put it all together, I end with an example of recursion: a function defined in
terms of itself.

4.1 Calling functions

When you call a function, the code in the function (the callee) has to be able to run
independently of the place it is called (the caller). This is because a function can
be called from more than one place. For this reason, we have to have conventions
that allow for register use independently in caller and callee. Our division of
registers as temporary holding places for data into unsaved registers numbered as
$t0-$t9 and saved registers numbered $s0-$s7 helps to manage this problem.
From now on, I refer to these two categories of register as t and s registers — but
remember these are just conventions, and these names are just helpful labels for a
subset of the 30 truly general-purpose MIPS integer registers.
Figure 4.3 illustrates 3 cases we need to deal with:

* aroot function — in our world, only main has this property — does not have to
worry about anything that preceded it, because it never returns. It only has to
save its own t registers that contain values it needs to keep before any calls
it makes, and restore them afterwards. The easiest way to allocate registers
in a root function is to use only s registers, though you can obviously use
t registers if you run out of s registers, and then preferably for values you
don’t need again after a call.

e an interior function — a function that is itself called, and that calls at least
one other function. An interior function has to save any s registers it uses
and restore them before it returns to its caller. It can use t registers, but
is responsible for saving and restoring them around calls. A good strategy
here is to use t registers for anything that is not going to be needed after

Calling functions
function call tree root
function [register responsibility
. save and restore t registers at

main calls
function call tree leaf function call tree interior node
max nothing if only uses t registers sort save and restore s registers if

9 Y 9 necessary; t registers at calls

function call tree leaf

swap nothing if only uses t registers

Figure 4.3: Function call tree and register saving

83

another level of call, and s registers otherwise. Why? Because if any callee
does not use an s register that you use, the overhead of saving and restoring
is avoided for that call. You do of course have to save and restore any s
register before you use it and before returning.

* a leaf function — calls no other functions. In this case, it is best to use only
t registers, since there is no need to save or restore them.

A compiler (or you, if writing in assembly language) knows whether a function
is a leaf function, because it contains no call instructions (including system calls,
which may be an issue in a real system). It is less clear whether a function is a
root or interior function. If we take the view that only a function called main is a
root function, anything that is not a leaf function should be treated as an interior
function when we allocate registers.

Heads up: Following these rules for writing functions allows us to code
a function that can be called from anywhere, without knowing in advance
where or how it will be called. Make sure you understand how this is
possible.

When we develop a few concepts about passing parameters, you will see that
our understanding of the main function is not totally correct, and even main could
be seen as an interior function, but as long as the way we exit main is by an EXIT
system call, our current understanding is good enough.

84 CHAPTER 4. MEMORY AND FUNCTIONS

Let us move on now to a simple example of call and return, where we do not
need to set up the stack or pass parameters, and add details a few at a time.

Call and return

The most elementary requirement for being able to call a function is being able
to return to the next instruction after the call. For this reason, instruction sets
usually have a single instruction that can both jump to a new location and record
the address of its successor instruction. In the MIPS instruction set, the simplest
option is the jump and link instruction, which has a 26-bit immediate address built
into the opcode, and stores the return address in register $31, also called $ra (for
“return address”). Here is an example of this instruction:

jal max

where max is a label known to the assembler. The instruction has 26 bits available
for the address but, as with a branch offset, the designers took advantage of the
fact that an instruction has to be on a whole-word boundary, so the low 2 bits are
not actually stored in the instruction, meaning the address actually represents 28
bits, short of the full range of addresses on a 32-bit machine.

The MIPS instruction set also includes an instruction that can jump to a
register (jump and link register) and save the return address in another register.
You need this instruction if the target address falls outside the range addressable
with 28 bits (from 0 to 228 — 1 = 268435455, or 0OxFFFFFFF). Not many programs
have code space this big. Here is an example, assuming the destination address is
in $t0:

jalr $t0, $ra

Note that you can use any free register in this case for the return address, though
you need a very good reason to do so since using any other register for the return
address breaks a standard and makes for code that is hard to maintain. The SPIM
assembler in fact allows you to leave out the second register and if you do that,
assumes you mean the $ra register (so jalr $tO0 is a pseudoinstruction that has
the same effect as the above example).

Let’s illustrate the concept with a simple example. Assume we want to display
a prompt that looks like this when we want user input from the Console window:

input 7>

Calling functions 85

so the user can see they should type something.

That gives us the opportunity to introduce a new kind of data value we can set
up in the assembler, a string, as well as a new system call to print one of these
(remember the table of system calls in appendix C). Let us use a previous lesson
and define the system call code as a macro.

First, here is C-like code for our example:

void prPrompt () {
printf ("input ?>");

return;

// in the main program
prPrompt Q) ;

Don’t worry too much about the extra details of C syntax — we will get to
those later. The main thing is we have a function named prPrompt that has
no parameters and we can call it to display the desired text. The return
in the function is not strictly necessary as a C function that returns no value
automatically returns when it hits the last line of the function. But this little
addition makes it easier to see how to translate to MIPS assembly language:

// call function to display a prompt
PRINT_STRING = 4

EXIT = 10
.data
prompt: .asciiz "input 7>"
.text
main: jal prPrompt # prPrompt ();

usual exit to 0S
1i $v0, EXIT # set up exit system call
syscall # call OS

prPrompt function: no parameters, no return value

uses global constant: prompt

prPrompt: la $a0, prompt
1i $v0, PRINT_STRING # printf ("input 7>");
syscall
jr $ra # return

86 CHAPTER 4. MEMORY AND FUNCTIONS

Since there are several lessons in this example, 1 again include all the code
including the standard details like exiting to the OS.

First, there is the PRINT_STRING system call. I define its numeric code up at
the top. It takes an address passed in through register $a0 (a standard parameter-
passing register), and is invoked the usual way, by putting its code into $v0 and
doing a syscall instruction.

Next, there is the way I set up a string constant using the .asciiz directive.
This directive places what follows in double-quote symbols into memory and
the label with the directive can be used to find that data. The “z” at the end
means zero-terminate the string. This is a standard convention in C. The character
represented in ASCII by the numeric value zero is a non-printable character called
“nul”. Since this character cannot be displayed and has no other common use, it
is used to mark the end of a string. So what is stored is the quoted characters plus
one more character: this special end of string marker. In general, when creating
strings or string constants, we will use this convention. Another way of storing
a string is to include a number representing its length but the drawback of that
approach is you need to decide how long that number should be. If you make it 1
byte to keep the overhead the same as the C approach, you are limited to strings
of length 255. If you make it bigger, very short strings may have an unacceptable
overhead. The drawback of the C representation is calculating string length takes
n steps for a string of length n, since you have to search for the end of string
marker.

What if you leave out the trailing “z” in the .asciiz directive? You could be
lucky and the very next byte in memory is a zero, but don’t count on that. You can
get interesting and subtle bugs from errors like this.

Now look at the main program. It contains only one thing besides the usual
exit to OS code: a jal instruction to transfer control to the prPrompt function.
Since the function does not use any information from the caller or any temporary
registers (saved or otherwise), it does not need to do any saves or restores.
Likewise, the main program needs no saves or restores.

Finally, look at the code for prPrompt. Here, we use a constant value set up
in the user data segment and a system call to display it. The major new feature is
using the saved return address in $ra. Note that nothing in the code explicitly sets
this register: the value is created by the jal instruction, which always saves the
return address in $ra.

Calling functions 87

[00400024] 0cl10000c jal |0x00400030| [prPrompt]; 7: jal prPrompt # prPrompt ();

[00400028]| 3402000a3—06F1 $2, $0, 10 ; 9: 1i Sv0, EXIT # set up exit system call
[0040002cgo8000000c syscall ; 10: syscall # call OS

[00400030]| $c041001 1lui $4, 4097 [prompt] ; 14: la $a0, prompt

[00400034] 3¢020004 ori $2, $0, 4 ; 15: 1i $v0, PRINT STRING # printf ("input 2?>");
[00400038] 0000000c syscall ; 16: syscall

[0040003c] 03400008 jr $31 ; 17: jr S$ra # return

400028

R31 [ra] =

Figure 4.4: Saving the return address

Heads up: We now see the proper use of the data segment. From now on,
we switch to using it to store constants and put variables in the correct
place, working out what that correct place should be in stages.

Load this program into SPIM, and step through it, watching the register values
as you go. Another register to watch is the PC at the top of the register panel. This
is the program counter and contains the address of the next instruction to execute.
The effect of a return from a function should be to reset the PC to where it should
have been had the call (jal instruction in this case) not actually transferred control
elsewhere. Make sure you understand how the hardware knows where to go back
to when it returns from a function.

Take a look at figure 4.4. When the jal instruction executes, it saves the return
address in $ra. If you single-step the program until it reaches the jal instruction
at address 0x00400024, the return address in $ra will change when you take one
more step. You should verify that the return address is now that of the instruction
right after the jal. The next instruction executed should be the one whose address
is built into the jal instruction at address 0x00400024. Take a close look at that
line: the jal is translated to machine code as 0c10000c. A jal is a J-format
instruction so the low 26 bits should be the target address, so why does it not end
in “30”? Remember, the low 2 bits of the target address are not actually stored
in the instruction. Write the target address 0x00400030 in binary and remove
the low 2 bits. First, write the hex number with 4 spaces between each digit and
expand each hex digit to 4 binary digits, then shift the number to the right 2 bits,
and convert back to hex:

0 0 4 0 0 0 3 0
0000 0000 0100 0000 0000 0000 0011 0000
00 0000 0001 0000 0000 0000 0000 1100
0 0 1 0 0 0 0 C

Take a look now at the instruction word for our jal in figure 4.4: 0c10000c. Does

88 CHAPTER 4. MEMORY AND FUNCTIONS

it look more like the target address now we have dropped the low 2 bits?

The take home message? A function call requires that control revert to
the place where it was called, which means saving the return address. In
the MIPS world, the convention for this (built in to the jal instruction) is
to use the $ra register, which is real machine register $31.

Passing parameters

I now turn to an elementary example of passing parameters. We have already
seen this from the point of view of a function caller, since we use some of this
machinery for system calls. Recall that registers $a0-$a3 (real registers $4—$7)
are used for passing parameters'. Things can get complicated if we need more
than 4 parameters or values that don’t fit an integer register, but we start as usual
with the simple case.

Assume we are calling a leaf function (one that calls no others), we do not need
more than 4 parameters and our called function only uses unsaved temporaries
(t registers). If the main program only uses saved temporaries (s registers) for
arithmetic and logic, we can do everything in registers without saving anything to
memory.

Here is a simple example, with a few more parts to it (again, take it that the
C-like code for reading in values with scanf and printing with printf work — we
explain C constructs in the second part of the book starting on page 191):

void prMax (int a, int b) {
int biggest;

if (a > b)
biggest = a;
else
biggest = b;

printf ("%d\n", biggest);

// in the main program
int myscore, yourscore;

@9,

'Tn case you are wondering why “a”: in C and related languages, values passed into functions are
called arguments. 1 stick to “parameters” here because it is the more widely used term.

Calling functions 89

prPrompt () ;

scanf ("%d", &myscore);
prPrompt () ;

scanf ("%d", &yourscore);
prMax (myscore, yourscore);

Let’s build this up a step at a time. First, we have our prPrompt example from
before that we can recycle. Second, we can look up our template for an if
statement with an else, and use that. Finally, we need to handle passing parameters
in to our new function. This time around I leave out the return statement, since it
1s not necessary — we have to return from a function when we reach the end.

First, let’s put in the main program, which prints the prompt twice, each time
also waiting for an integer to be typed, then calls our new function:

registers: $s0: a, $sl: b
int main () {
1int myscore, yourscore;

main: jal prPrompt # prPrompt ();
1i $vO, READ_INT # scanf("%d", &myscore);
syscall
move $s0, $vO
jal prPrompt # prPrompt ();
1i $vO, READ_INT # scanf("%d", &yourscore);
syscall

move $s1, $vO

prMax(myscore, yourscore);

move $a0, $sO

move $al, $si

jal prMax

usual exit to 0S

1i $v0, EXIT # set up exit system call
syscall # call 0S # }

Now to do the prMax function, we need to use the values passed in using $a0
(representing a) and $al (representing b) in an if statement. We could copy these
values over to another register and we would do this if the function was longer, or
if we needed to call another function and therefore recycle the parameter registers,
but that is not necessary here. To keep things simple I leave a and b in their

90 CHAPTER 4. MEMORY AND FUNCTIONS

respective parameter registers. What we need for the rest of the function logic is
an if statement template from figure 3.15. Which variant do we need? In this case,
we have the else branch, so we need

b__ R1, R2, else # invert condition
true branch
j done
else:
false branch

done: nop # or next instruction
If we put our logic into this template the simplest possible way, it looks like this:

ble $a0, $al, else # invert condition

move $t0, $a0 # true branch
j done
else:
move $t0, $al # false branch
done: nop # or next instruction

However, it is easier to read if we put our C-like code in as comments. We can
also complete the example by replacing the nop by the actual next instruction.
Here for completeness is the entire function:

prMax function: pass in int a, int b, no return value
register use: $t0 biggest; keep a, b in $a0, $al

prMax: # void prMax (int a, int b) {
1int biggest;
ble $a0, $al, else # if (a > b)
move $t0, $al # biggest = a;
j done
else: # else
move $t0, $al # biggest = b;
done:
move $a0, $tO # printf ("%d\n", biggest);
1i $vO, PRINT_INT
syscall

jr $ra #}

Calling functions 91

There are a few things to note.

First, you can put a label on a line of its own. The assembler will treat the
label as belonging to the next line, so do that if it aids readability.

Second, note that we are relying on the value of the return address staying valid
in $ra across a syscall instruction. We can do that because a system call does not
use the conventional return address mechanism (and a SPIM system call does not
actually use simulated registers except to define the call type, pass values and
return results). If, however, we were to call another function within our function,
we would need to save the return address before doing another jump and link or
similar instruction that clobbers the $ra register. The easiest strategy for that is to
save the return address as one of the first things that happens in the function and
restore it just before the function returns (which may be at more than one place).

Heads up: SPIM system calls are faked — they go to code outside the
simulation. On a real machine, you may need to worry more about a
system call clobbering registers.

Third, the parameter registers can actually be used for arithmetic and logic
— copying into t or s registers 1s only necessary if you may do another level
of call and lose the values in the parameter registers. Also, you can safely do
calculations using the return value registers $v0 and $v1 ahead of where you are
going to return, as long as you do not do a system call that uses them or another
call.

Another important detail is that we have so far had at most one example of one
of our standard templates in a program. If we have more than one if or loop, we
need to rename the labels since there is no concept of local names in an assembler
program file.

Remember these points as we develop more complex examples. Try to think
through now how you could handle these details ahead of where I get to them.

The take home message? Passing parameters in simple examples is just
a matter of putting the values you want the function to use into as many
of the $a0-$a3 registers as you need. Once in the function you need to
decide whether to copy these into other registers or keep the values where
they are.

92 CHAPTER 4. MEMORY AND FUNCTIONS

4.2 Global Variables

Let’s use a small example again to illustrate how global variables can be managed.
Here is a whole C program that reads in integers in a loop and counts how many
are positive and how many are negative, stopping after processing a value of -1.
Note how even for very simple functions I summarise the purpose as a comment
to aid the reader:

#include <stdio.h>

int plus = O;
int minus = 0;

// print a prompt when requesting input
void prPrompt () {

printf ("input 7>");
}

// print how many positives and negatives counted
void printSummary () {
printf ("%d positives, ’%d negatives\n", plus, minus);

// read numbers until -1, counting positives and negatives
// including the final -1
int main () {
int next = 0;
while (next !'= -1) {
prPrompt () ;
scanf ("%d", &next);
if (next < 0)
minus ++;
else
plus++;
+

printSummary () ;

Global Variables 93

As before we will not worry too much about the detail of how C does things like
input and output but rather focus on what’s new about the example. Just one detail
I will mention: the printf prints the two given values using a format string that
has two placeholders, %d, that mean the given values will be printed in decimal
format, and ends with a special “\n” character that represents a line break.

We need a way of accessing global variables. The locations where plus and
minus are stored need to be independent of any changes in memory layout as we
call functions. The convention in MIPS code is to use a register $gp (the global
pointer) to keep track of where these variables are stored. A compiler will know
the relative offsets of each global variable from the start of the global variable
area. We can fake this effect by defining a macro representing this offset for each
variable:

0
4

GL_plus
GL_minus

I prefix these names with “GL_" so you can easily tell them apart from other
names in the program. We can now use these names as offsets in a load or store
instruction. Let’s see how this all translates into an assembly language version
of printSummary. This time around I use more extensive comments on how the
function is defined and used, since our programs are getting more complex, and
we need to make sure they are adequately documented. Note that I not only say
how the function is called, but what it does.

Heads up: The $gp register is set for you before your program is loaded.
It defines the global address space for the whole program. It is up to
the programmer (or in the HLL world, compiler and linker) to split it up
between separately compiled source files and variables within each file.

A
####print how many positives and negatives counted####
printSummary function: no parameters, no return value
mno need to restore globals to memory: not modified
printf (")d positives, %d negatives\n", plus, minus);
printSummary: lw $a0, GL_plus($gp) # plus value replaces %d
1i $vO, PRINT_INT
syscall
la $a0, formatil # " positives, "
1i $v0, PRINT_STRING
syscall

94 CHAPTER 4. MEMORY AND FUNCTIONS

lw $a0, GL_minus($gp) # minus value replaces %d
1i $v0, PRINT_INT

syscall

la $a0, format2 # " negatives\n"
1i $v0, PRINT_STRING

syscall

jr $ra # 3

In this example, we only read values of global variables. That means we need to
know where they are, but we do not need to write modified values back to memory.
Since this is a leaf function (if we don’t count syscall as a function, as discussed
earlier), we don’t need to worry about other functions clobbering globals either.
So we can just load them once into registers and use them in registers from there
on.

The main program is a different matter. Here, we first of all need to initialise
the globals and, if any function is called, store them back to memory. If another
part of the code needs to see what a variable contains or change it, it should be in
memory where it can be found in a standard way. Saving a register to memory like
this is an example of register spilling. This term also applies to the case where
you run out of registers and need to copy some to memory; we will not run into
that issue with simple examples.

The main program is a little more complex than examples we’ve seen before,
so let’s take it in stages. Here it is, separate from the rest of the code:

int main () {
int next = 0;
while (next != -1) {
prPrompt () ;
scanf ("%d", &next);
if (next < 0)
minus ++;
else
plus++;
}
printSummary Q) ;

3

First, we need to initialise the globals. Although they are not part of the main
program, this code has to go somewhere and so we insert it at the start of the main
program:

Global Variables 95

main: 1i $t0, O # minus = 0
1i $t1, O # plus =0

Note at this point we can safely put these in registers, since we aren’t transferring
control to some other part of the program that needs to see them. However, to
emphasise the point that these need to go to memory before any other function is
called, I put them in t rather than s registersz. After that, we need to initialise the
local variable next:

1i $s1, O # int next = 0;

This one can be in a saved temporary (an s register) since no other part of the code
needs to see it.

Now we have a while loop containing first a call to our old friend prPrompt
and after that, an integer read followed by if with an else. Finally, outside the
loop, there is a call to printSummary. Most of these, we have seen individually,
so it is a matter of putting the pieces together and not garbling anything. For the
loop and the if-else, we can use our templates (figures 3.14 and 3.15). We need
however to add in a strategy to avoid reusing the same label if we use the same
template twice. Here, that is not an issue, but it will be as our programs get more
complex.

First, I rename any of the labels I had in the earlier templates to make sure
they differ for different constructs. For example for a for and while loop, I used
the label body for both. Where there is any possibility for confusion, I prefix a
label with a letter indicating what construct it represents:

* “F” —for loop
* “W’ — while loop
° ‘GI?’ _ if

Figure 4.5 updates our previous templates. Every time you create a new loop or if
statement, you need to replace the XXX by something that uniquely identifies that
construct. The simple thing is to use a number you increment each time you add
another one of these constructs. A compiler might create less readable names, but
would also use a strategy like numbering each name to keep them unique to each
specific usage.

20n the whole it is easier to use s registers in the main program, since you need not worry about
saving or restoring them in a root function.

96 CHAPTER 4. MEMORY AND FUNCTIONS

initialise loop counter

j FtestXXX # test before lst iteration
FbodyXXX: # body of loop here j WnextXXX # test before 1lst iteration
rest of body WbodyXXX: # body of loop here
FnextXXX: # increment loop counter # rest of body

FtestXXX: b__ R1,R2, FbodyXXX # not done? Go again WnextXXX: b__ R1,R2, WbodyXXX # not done? Go again
(a) for template (b) while template
b__ R1, R2, elseXXX # invert condition

true branch
j IdoneXXX

b__ R1, R2, IdoneXXX # invert condition elseXXX:
true branch # false branch
IdoneXXX: nop # or next instruction IdoneXXX: nop # or next instruction
(c) if template (d) if-else template

Figure 4.5: More general loop and if templates

Heads up: We now see the weakness of the simplified template strategy
and the degree of care demanded of the assembly language programmer
to use templates properly. If you are not very careful and systematic
about naming your labels, you code could do completely the wrong thing,
resulting in a bug that is very hard to track down.

Here is the main program using the new templates. Make sure you can
translate the individual constructs. Note also the points where register spills
happen. Since our plus and minus variables are global, other functions in our file
are allowed to see their values and manipulate them. If we kept these variables
in registers, it would be much harder to coordinate use between different uses
in different functions. This sort of register management is not impossible: a
good compiler can handle this: it is called inter-procedural register optimisation®.
Nonetheless we will generally spill registers conservatively, since that makes
programming simpler — except when we do exercises that require you to minimise
wasted instructions.

B e e e S e e R S
main entry point

registers: $s0 = next, $t0 = minus, $t1 = plus

initialize globals first

main: 1i $t0, O # minus = 0

1i $t1, O # plus = 0
now locals initialized

1i $s1, O # 1int next = 0;
while (next '= -1) {

3“Procedure” is another name for a function, common in the family of languages that includes
Pascal.

Local Variables and the Call Stack

Jj Wnextl

#

test before 1st iteration

spill globals before jal calls a function; restore after

Wbodyl: sw $t0, GL_minus($gp)
sw $t1, GL_plus($gp)
jal prPrompt
1w $t0, GL_minus($gp)
1w $t1, GL_plus($gp)
1i $v0, READ_INT
syscall
move $s1, $vO

if (next < 0)

bge $s1, $0, elsel
addi $t0, 1
j Idomnel

else

elsel: addi $t1, 1

Idonel: nop

Wnextl: bne $s1,-1,Wbodyl

} // while

sw $t0, GL_minus($gp)
sw $t1, GL_plus($gp)

printSummary Q) ;

jal printSummary

#
#
#
#
#
#

#

---spill---
---spill---
prPrompt (O}
+++restoret+++
+++restore+++
scanf ("%d", &next);

invert condition
minus+t++;

plus++;
or next instruction
not done? Go again

-—-spill---
-—-spill---

no need to restore globals to registers, all done

1li $vO, EXIT
syscall

The take home message? The global pointer kept in register $gp, real

register $28, makes it possible to access global variables anywhere in a

program — provided you know the offset from the start of the global area

at which to address a given variable.

4.3 Local Variables and the Call Stack

97

One major detail we have left out is local variables. We need a way to represent
space for them that grows as function calls that create local variables occur, and

we also need a way to create space to spill registers that do not represent global

values. The region of memory we want for this should grow and shrink in the

opposite order — as we return from a function, it should cut back to the size it was

before.

98

$gp 10008000
$gp+4 10008004

CHAPTER 4. MEMORY AND FUNCTIONS

% = not yet covered

prompt

10010000
format1 :~

global to whole program

global to compiled file 1

format2

94 *avava

global to compiled file 2

\ MMegatives\n\O constant pool

dynamically allocated data

Vv

free space

N\

[10000000]..[10007£££]
[10008000] 00000003
[100080107]..[1000£££f]
[10010000] 75706€69
[10010010] 2c736576
[10010020] 00000a73
[10010030]..[1003f££ff]

[7££££d50] 00000002

(a) schematic layout

stack

User data segment [10000000]..[10040000]

00000000
00000002
00000000
3e3£2074
20002020
00000000
00000000

00000000

6£702000
6167656e
00000000

00000000

69746973
65766974
00000000

input ?2 > . positi
ves, . negative
s .

User Stack [7fff£d50]..[80000000]

7ffffdcb

7ffffda2

00000000

(b) SPIM layout

Figure 4.6: Data segment used so far: compare the schematic and SPIM
layouts, and make sure you can identify which bits match in the two views. Not

shown in the schematic view: memory contents for variables plus and minus

though their locations are shown (respectively, $gp and $gp+4).

Local Variables and the Call Stack 99

Take a look at figure 4.2, where I illustrate conceptual memory layout —
updated in figure 4.6, where I illustrate what we have used in the last example
(parts of the data segment not covered are shown hatched out). Also shown: the
part of the data segment as viewed in SPIM that we have used. So far, we have
covered an approximate approach to global variables, where we only have one
global area. We also have a constant pool (the names and values we set up in the
assembler, like strings used in prompts). We have not yet touched on dynamic
allocation — you can look forward to chapter 5 for that.

What we are going to add in now is the stack. If you recall the discussion back
at the start of the chapter, the stack grows upside down: it starts at the high end of
our code space, and grows downwards. Up to now, we have managed to fudge the
need for the stack because we have had no local variables and also have not had
many levels of call.

When you call a function, you need not only to be able to return to where it
was called from (the caller), but also to all levels back to the outer level if calls are
several layers deep. For this to work, you need a consistent strategy for storing
the return address — you can’t leave it in the $ra register, because it would be
clobbered the next time you did a jal or similar Instruction. The obvious place to
store the return address is on the stack, since this provides a standard place to find
it, as well a number of locations for saving return addresses that naturally scales
with the depth of calls.

Heads up: It is very important to have a picture in your head of the stack
growing as levels of call increase and shrinking as functions return.

That leaves us with another problem: how do we know how big the stack
region is for a given function? We need to know how much to cut it back when
we return, and we need to preserve that information so we can cut the stack back
correctly even if we do several more layers of call.

As before we will resolve these various mysteries by working through an
example.

Up to now I have been fudging the details of how the main program is started.
Take a look at the code SPIM sets up to do that (the comments on the right hand
side):

lw $a0 0($sp) # argc
addiu $al $sp 4 # argv
addiu $a2 $al 4 # envp

100 CHAPTER 4. MEMORY AND FUNCTIONS

sl1ll $v0 $al0 2
addu $a2 $a2 $vO
jal main

Ignore most of it for now: focus on the last line. Where have we seen a jal
instruction before?

Reload a program — any one will do — and single step it up to this jal main
instruction. Look at the register panel. What we are interested in is the 3 registers
below. The PC is the address of the next instruction. Here, we have paused at the
location where the jal is the next instruction, and is is at location 0x400014, so
we expect the PC to reflect this.

PC = 400014
R29 [sp] = 7££f££d50
R31 [ra] =0

Now step through the jal instruction. How do the registers change? The $31
or $ra register should now contain a number that is the same as the address of
the instruction after the jal, and the PC should have skipped to the target of the
jal main. Here is the resulting snapshot of these registers:

PC = 400024
R29 [sp] = 7££ff£d50
R31 [ra] = 400018

Note that the stack pointer ($sp or $29) is unchanged. Remember how you return
from a function? You do this:

jr $ra

If you did that at some point in the main program, assuming you have not
meantime clobbered the return address by calling another function, where would
you go back to? Let’s see what address 0x400018 corresponds to in the code
segment:

[00400018] 00000000 nop ; 189: nop
[0040001c] 3402000a ori $2, $0, 10 ; 191: 1i $vO 10
[00400020] 0000000c syscall ; 192: syscall # syscall 10 (exit)

Local Variables and the Call Stack 101

The nop instruction does nothing*. What follows loads the value 10 into register
$vO0 then does a syscall —an exit. So it looks as if the setup code is intended to
invoke our main program is if it was a function, and we should return from main
rather than do an exit system call, because the startup code already has an exit
system call set up for us.

Is it wrong for our own code to do an exit system call, rather than to use a
function return to get back to the startup code? Not really. As a C programmer
can tell you, doing an exit system call is a legitimate way to terminate a program,
and you can do that from anywhere, not just the main program. Nonetheless, this
standard startup code gives us a simple example to illustrate use of the stack for
calls as well as for local variables and spilling registers that do not correspond to
HLL variables.

The absolute minimal program you need that treats the main program as a
function and returns looks like this:

minimal main program that returns to startup

environment rather than invoke EXIT syscall
.text

main: jr $ra # return to startup code

So, you will be wondering, why I didn’t do it this way all along? Why do that
complicated 2-step syscall setup, when 1 instruction will do it? The problem
is, if you call another function (using jal or similar), the return address in $ra
would be overwritten, and we need the concepts we are getting to now to have a
consistent way to save it from this fate.

On now to more detail of how we can manage a more complex situation of
saving state from one call to the next. So far we have taken the most optimistic
case, where we don’t need to save anything on the stack. We have 1 level
of call, and can keep all data in registers, except globals, for which space is
already allocated. This is not an unrealistic scenario because a compiler that does
interprocedural register allocation could generate code like this in some cases.
But let’s back off from the most optimistic case, and explore the opposite end of
the spectrum: the case where we need to store pretty much everything in memory

4 Why a nop? The original MIPS architecture always executed the instruction after a branch or
jump instruction before jumping to the target address to simplify hardware implementation. This
feature is called a delayed branch and the instruction after the jump or branch is in the branch
delay slot. SPIM does not do delayed branches unless you ask for that feature but to keep the
program startup simple, it always has this nop. For more on delayed branches, see page 177.

102 CHAPTER 4. MEMORY AND FUNCTIONS

(for example, because the function we are calling is not known in detail to the
compiler at compile time). What might we need to store that we currently only
put in registers?

An important principle guiding the design of what we put on the stack and
who does it is that detail of the called function (callee) may not be known to the
caller at compile time. This can be because your language has security features
that hide details from parts of the program that call a function (or method: this
sort of information hiding is common in object-oriented languages). Another
possibility is that the caller and callee are separately compiled and only later
brought together by a linker (see page 168). Either way, the caller and callee
have limited information about each other. They should both know the number
and type of parameters and whether a value is returned; you cannot rely on them
knowing internal details of each other like local variables.

First, when you call a function, the previously-stored return address can’t be
kept in the $ra register. So that’s the first thing we need to save in memory. Then,
because we are adjusting the top of the stack, we need to remember the previous
top of the stack, so we need to save the stack pointer. Next we need space for local
variables (if any) and finally space to spill registers. One additional thing we may
need is space to store parameters if the 4 registers usually used for this purpose
are insufficient. And anyway, we may want to spill these registers to memory, so
in the pessimistic case we need to make space for them.

This is not quite everything you could ever need to put on the stack, but is
enough for our examples.

Heads up: Since the return address is always stored in the same register
by a jal instruction, we need to have a way of saving the return address
somewhere more permanent before we do another jal.

We call the information placed on a stack to represent the state of a function
a stack frame; it is also sometimes called the function’s activation record. In
addition to the stack pointer (register $sp or $29 in the MIPS universe), we will
also keep the previous top of the stack in another register that we call the frame
pointer, which makes it convenient to find start of the stack frame. The frame
pointer, register $p, by convention in MIPS code, is register $30°. When we add
to the stack (push another stack frame), we have to save the previous stack pointer.
The stack pointer is copied to the frame pointer, and the stack pointer is advanced

3 Although you can use $£p in SPIM, the register is listed as “s8” rather than “fp” in the SPIM
register panel. Using $£p in SPIM correctly translates in machine code to $30.

Local Variables and the Call Stack 103

to the end of the new frame. To pop a frame off the stack, we have to restore the
stack pointer to the saved value, and adjust the frame pointer back to the start of
the previous frame.

The strategy I develop here differs a bit from that used by MIPS compilers,
since the goal is to help you understand how HLLs can be implemented. My
approach is designed to be easy to program, which is less of a concern for compiler
writers. For more detail on standard approaches, see appendix E.

The frame pointer is not strictly necessary — we can actually find anything we
need in the current stack frame as an offset from $sp, though the frame pointer
makes it a little easier to understand what is going on, and reduces complication
if we need to expand the stack frame (e.g., if we find we need to spill registers).

Heads up: Many details of machine coding, such as the layout of the stack
frame, are totally up to the programmer. However so you code works with
other code, conventions must be adopted. I show that these conventions
can be changed by making up my own variant on stack organisation. This
is perfectly fine as long as I always do it the same way, and make any
necessary adaptation when interfacing with anyone else’s code.

In HLL programming, we usually implement a stack with a pointer or
reference to the topmost element. Because element sizes are not an inherent
property of machine code, in machine code it is easier to make the stack pointer
point at the next free space after the top of the stack®. Since MIPS prefers word-
aligned accesses, even if the top element of the stack is smaller than a word, we
make the $sp point to the next word boundary after the top of the stack. This
convention makes it very easy as well to restore $sp when we pop a stack frame
off the stack: all you need do is copy the $fp register to $sp. That leaves only

$£p that strictly needs to be preserved across a call, since the previous value of
$sp is actually saved in $£p.

The next question is who is responsible for creating space on the stack. Is it
the caller or the callee? Once we decide that, that will help us work out the order
information must go on the stack. Information only known to or provided by the
caller should logically go first, while information only known by the callee should
go onto the stack afterwards, as it can only be pushed onto the stack once the
callee takes control. We need a strategy for saving the return address. The easiest
way to do this is for each function (including the main program, now we know it

SMIPS compilers point the stack pointer at the word at the top of the stack.

104 CHAPTER 4. MEMORY AND FUNCTIONS

is a function) to save the contents of $ra on entry and to restore it immediately
before returning.

The callee has to save $ra since this value is only known after the jal
instruction completes, taking control into the function.

At this point it is worth reminding you that the stack grows from high memory
down, so pushing onto the stack results in a new value of the stack pointer that is
smaller than the previous value. If the frame requires 20 bytes, the value of the
frame pointer is $sp+20 after $sp is adjusted. Since the new value of $£p is just
the old stack pointer in my scheme, this means that we have to adjust $sp by -20.

Heads up: Stop and read the last paragraph again. It is very important
to understand how a new stack frame is made by decreasing the stack
pointer.

The caller has some of the necessary information and in particular knows what
parameters are to be passed. The callee on the other hand should know how much
space it needs for local variables and spilling registers. So the roles can be split as
follows:

e caller responsibility:
— spill any registers that need to be preserved that are not the callee’s

responsibility (usually t registers; it should have saved $ra on entry)

— copy up to 4 words of values to be passed in into parameter registers
$a0-%$a3

— copy any parameters that don’t fit into 4 registers into start of new
stack frame that starts at the address in $sp

— call the function using jal

* callee responsibility; each item is copied into the next location in the stack
frame, which needs N bytes in total:

copy the return address from $ra into the stack frame

save the frame pointer from $£p into the stack frame

initialise the frame pointer as $sp

adjust the stack pointer to $sp-N

Local Variables and the Call Stack 105

$sp . .
register spill space | Increasing
local variables addresses
saved registers
return address
parameters

$sp > - - $fp : -
register spill space register spill space
local variables local variables
saved registers saved registers
return address return address
parameters parameters
stack stack v

Figure 4.7: More detail of stack storage scheme

Figure 4.7 is a schematic view of the stack before and after pushing a new frame,
with the frame contents reflecting the order of events listed above.

All of this of course presumes we need a stack frame — a leaf function doesn’t
need one unless it has too many variables to keep in registers.

Returning from a function requires unwinding the stack to its previous state, as
well as restoring registers. Caller and callee responsibilities reflect the call setup.
The stack and saved registers should look the same after the return as they did
before the call (and the PC will point to the instruction after the call). The callee
should restore the $sp and $fp registers, and any $s (saved temporary) registers it
modified. The callee on the other hand does not need to worry about $t (unsaved
temporary) registers. Any local data created in the stack after the return may linger
in memory for a while until it is overwritten, but its value should be considered
invalid. That also applies to any parameters the caller put on the stack — they have
the status of local variables in the sense that their lifetime begins and ends with
the lifetime of the callee.

So the complete sequence of events for the return is:

* callee responsibility:

— restore any spilled or saved registers including $fp, $sp and any $s
registers used in the function
— return using a jump to the return address: jr $ra (restored from the

stack, if this function called any others)

* caller responsibility:

106 CHAPTER 4. MEMORY AND FUNCTIONS

sw $ra, 0($sp) # save return address
sw $fp, -4($sp) # save frame pointer
COPY $ai, VAL; # reg params i=0..3 move $fp, $sp # fp = old sp
jal functionname addi $sp, $sp, -8 # move SP past frame
(a) minimal call (b) minimal function start
move $sp, $fp # restore SP
1w $fp, -4($sp) # restore FP
1w $ra, 0($sp) # restore return address
jr S$ra # return to caller

(c) mimimal return

Figure 4.8: Minimal function call templates. The COPY pseudoinstruction
should be replaced by a move or a load instruction, depending on whether the
source is respectively a register or a memory location. Remember that a store
instruction in MIPS assembler language reverses the order of the operands: the
source is first then the destination — we will need this in later versions of COPY.

— restore any temporary registers spilled before the call

If the function returns a value, there is one more detail to take care of. At some
point before the function returns, that value should be put in registers used for
returning values ($v0-$v1, real registers $2-$3 — the number of registers depends
on the size of the value returned, which should be known to the caller and callee).

Finally, what registers should you spill? If your function does not use the
whole set of saved temporaries (s registers), it need not save those it doesn’t use.
Any other function earlier in the call chain that does use them will have to save
them and restore them, so they will not get lost.

Figure 4.8 illustrates templates for a function call that doesn’t need to allocate
space on the stack for parameters in addition to those that can be passed in registers
or space on the stack for local variables or spilling registers.

Heads up: Call templates get more complicated when we add in more
detail. Make sure you understand the simpler case before you go on.

Let’s construct a simple example to put this all into context. We want
a minimal function that has parameters and returns a value, so we can see
how to construct the stack frame. Once we have done that, we can adapt the
same template to more complex examples. Let’s redo our previous maximum
calculation, this time using our rules for setting up the stack frame and returning
a value. This time we will be conservative about allocating space for variables on
the stack, rather than maximising use of registers. Here is the core of the code

Local Variables and the Call Stack 107

(leaving out details like printing prompts to keep it simple):

// show use of local variable
int max (int a, int b) {
int biggest;

if (a > b)
biggest = a;
else
biggest = b;

return biggest;

int main () {
int myscore, yourscore;
scanf ("%d", &myscore);
scanf ("%d", &yourscore);
printf ("%d\n", max (myscore, yourscore));

}

First, let’s redo the main program on the basis that it has been called from
elsewhere, and needs a stack frame. The code that calls our main program passes
in three parameters (read the comments in the code SPIM provides): argc in $a0,
argv in $al and env in $a2. We will ignore these — since parameter values are
discarded at function return, if we don’t use them, we need not save them. What
we do need to save is the stack pointer and return address. We also need space for
local variables and any other registers we may need to spill. The way to work all
this out is to write out the main program, then see whether we need space to spill
registers. main return
To start with, we need to create the stack frame at the main entry point:

addi $sp, $sp, -4 # move sp off last item (SPIM fix)

sw $ra, 0($sp) # save the return address

sw $fp, -4($sp) # save the frame pointer

move $fp, $sp # frame pointer = old stack pointer
need space for two local variables, each 4 bytes

addi $sp, $sp, -16 # move stack pointer past frame

Heads up: We now see the one place where my decision to be different
requires a fix-up. The fix we need to make the stack correct for entering
and returning from the main program only applies in this situation, not in
any calls or returns for other functions we write.

108 CHAPTER 4. MEMORY AND FUNCTIONS

$Ssp»0x7f£££d58
0x7ffffd5c|0x...... (v2)
0x7ffffd60 |0X...... (vl)
Ox7ffffd64 |0x...... ($£p)
$spP»O0x7ffffd68 $fp»Ox7f£££d68|0x400018 ($ra)
0x7ffffdéc
0x7ffffdéc stack stack
address memory contents address memory contents

Figure 4.9: Stack frame: minimal example with two words for variables

The first line is to fix the fact that SPIM leaves the stack pointer pointing at
the top word on the stack, which is not the way we are using the stack for calls.
We need to remember to reverse this correction before returning from the main
program(see the last line). From there on, the only difference from the template
in figure 4.8b is adding space on the stack for local variables (see figure 4.10 for
a more general template).

Note we use negative offsets and increments because the stack is growing
downwards to find each item within the stack. If you need an offset within a
variable on the stack, that offset is still positive because once we have found a
variable on the stack, the address of that variable starts from the same place as if
the variable was anywhere else in memory.

I have allowed no space for passing parameters into main because they have
been passed in registers and we don’t use them (so we need not spill them if main
is not a leaf a function). I have not yet allowed for register spill space. If I need
this, I will have to up the -16 by which I change $sp. How do I get to that amount?
I need space for $sp and $£p, each 4 bytes, as well as for two variables, each 4
bytes. That totals 4 x 4 = 16 bytes. Let’s make a minimal main program that only
does this and step it through SPIM.

Heads up: It’s worth repeating once more: offsets that represent where
a given variable or saved register is on the stack are generally negative
because the stack grows from high memory down. Offsets within a data
structure are positive, no different than when the data structure is stored
anywhere else in memory.

Figure 4.9 illustrates the stack before and after we create the new stack frame,
with the values of $sp and $fp set. To save space in the picture, I call the two

Local Variables and the Call Stack 109

variables v1 and v2 (of course the labels in parentheses like “(v2)” don’t actually
exist in memory). Since SPIM does not use $£p, it is zero at start up but we should
save and restore it anyway, since SPIM treats it as saved temporary called $s8.
Run this minimal example and single-step it to make sure you know what is going
on.

Next, let’s extend our main program to read in two integers using system calls.
We don’t need to mess with stack frames to do that. However, I will copy the
results to local variable space to illustrate how to do that:

1i $v0, READ_INT # scanf(")d", &myscore);
syscall

sw $v0, -8($fp) # --copy result to myscore
1i $vO, READ_INT # scanf("%d", &yourscore);
syscall

sw $v0, -12($fp) # --copy result to yourscore

Why do we have negative offsets from the frame pointer for these? Because the
stack grows downwards, and the frame pointer points to the start of the frame.
These offsets reflect how far into the frame we have put our variables. Since the
$fp register is the old $sp value, our first variable is at offset -8 to clear the first
two words (4-byte quantities) we put on the stack before setting up the frame
pointer. Check figure 4.9 to make sure I have this right.

Next, I need to get a value out of the max function, and print it. Let’s forget
printing for now, which is just another system call, and focus on how to set up the
call to max.

Go back to our template: we need the call set up in figure 4.8a.

lw $a0, -8($fp) # myscore into 1st parameter register
lw $al, -12($fp) # yourscore into 2nd parameter register
jal max

Note how I translate the COPY $a;, VAL; “pseudoinstruction” (not strictly a
pseudoinstruction, because I, rather than the assembler, convert it to code) into a
couple of 1load instructions, because the source of the data is a memory location.
In this case, I am passing in local variables, hence finding them at an offset from
$fp.

Heads up: Following the template systematically takes concentration and
even more so with more complex calls. It is worth doing this; coding the
stack frame from scratch is easy to get wrong.

110 CHAPTER 4. MEMORY AND FUNCTIONS

Now I can start coding the max function. I need to catch the parameters passed
in, do the calculation, unwind the stack and return. Going back to my template, I
need the start of function code first. Here it is:

max: sw $ra, 0($sp) # save the return address
sw $fp, -4($sp) # save the frame pointer
move $fp, $sp # frame pointer = old stack pointer
need space for 1 local variable of 4 bytes#######
addi $sp, $sp, -12 # move stack pointer past frame

Note that I start with a label for the entry point of the function, and I have again
had to adjust the stack frame for space for local variables. This time there is only
one local variable, so the adjustment is smaller than for the main program, which
has two local variables. Otherwise the code is straight from the template in figure
4.8b. Check it and make sure you could have produced this code yourself.

Next, I need the code to do the actual work (remember the parameters are
already in registers, since the main program

passed them in that way: $a0 and $a0). Here we can invoke our if-else
template (figure 3.15b):

ble $a0, $al, else # if (a > b)
sw $a0, -8($£fp) # biggest = a;
j done
else: # else
sw $al, -8($fp) # biggest = a;
done:
lw $v0, -8($fp) # return biggest;

In this case, since we have a small program with only one if, we do not need our
more general template of figure 4.5d, where we allow for modifying the branch

target labels.
We can now apply the template of figure 4.8c to handle the return:

move $sp, $fp # restore stack pointer
lw $fp, -4($sp) # restore frame pointer
w $ra, 0($sp) # restore return address
jr $ra # } return to caller

We do not need to make any adjustment for the presence of local variables since
we can restore the stack pointer directly from the frame pointer, and use the offsets
from $sp that are not altered by the presence of optional extra items on the stack.

Bigger Parameters 111

The last instruction in the max function should take us back to the main program
at the instruction past where we called max, with the stack restored to its previous
state, and a value returned in $v0. The main program can now use this value and
when it has done all its work, return to the code that called it:

get out return result from $vO

move $a0, $vO # printf ("%d\n", biggest);
1i $v0, PRINT_INT
syscall
restore stack frame L s s e e s e
move $sp, $fp # restore stack pointer
lw $fp, -4($sp) # restore frame pointer
lw $ra, 0($sp) # restore return address
addi $sp, $sp, 4 # move sp back to last item (SPIM fix)
jr $ra # } return to caller

Note the last line before our code returns that fixes up the stack to take into account
the fact that SPIM wants the stack pointer to point at the topmost word instead of
the first free space above the top of the stack.

The take home message? Creating a stack frame requires systematic
application of a standard set of rules given here as a template that allows
caller and callee to communicate, and caller to continue where it left off
after the callee returns.

4.4 Bigger Parameters

To complete the picture, let’s look at how to pass parameters that do not fit
into 4 registers. To do so is an extension of the way we set up space for local
variables, except the caller has to initialise their values. Figure 4.10 contains more
general function templates that include this case, as well as the details the previous
example added that aren’t in our earlier simpler function templates. I will not go
through a detailed example to illustrate how to set up bigger parameters since
there are no new principles involved.

Take a look at the more general template, and see how it applies to our max
function. The main thing added is the ability to make the stack frame bigger
to accommodate both extra parameters and local variables. Our max function
includes local variables. When using the simpler templates, I fudged the extra

112 CHAPTER 4. MEMORY AND FUNCTIONS

sw $ra, -4XJmax($Sp) # save return address

COPY $ai, VAL: # reg params 1=0..3 5w $fp, -4X(jmaxt1) ($5P) # save frame pointer
COPY -4X(j-1)($sp), VALinax+; # more params j=l.. move $fp, $sp # fp = old sp
jal functionname addi $sp, $sp, -4X(jmaxt2+vars) # move SP past frame
(a) call (b) function start

move $sp, $fp # restore SP

1w $fp, -4X(Jmaxtl)(Ssp) # restore FP

1w $ra, -4XJjmax($sp) # restore return address

jr S$ra # return to caller

(c) return

Figure 4.10: More general function templates

space. It is worth your time to redo the example using the templates of figure
4.10. There are a few things to note about the more general templates, including
some details not explained about the simpler templates:

* i counts parameters that fit in registers, numbered from 0 to iy, ipax < 4

* j counts extra parameters, numbered from O to jyqx, With jy0c = 0 if no
extra parameters

* vars is bytes for local variables and spilling registers

* once you set up $fp, you address relative to $£p carrying on from the way
you addressed relative to $sp before advancing $sp. For example:

— if you have one parameter on the stack you would have pushed it
onto the stack with COPY -4x (j-1) ($sp), VAL ;j; to make this
concrete

% assume the value we want to pass is in $t5 (it is the ig+1st
parameter to be passed, hence VAL;qy 1 j With imax =3, j=1)

% then our COPY is (remembering we have to reverse the order of
operands for a 1load):
1w $t5, 0($sp)

There are two important rules in managing larger values on the stack:

1. be consistent in your approach — the caller and callee in a compiled HLL
may be in separate files and compiled at different times, so the approach to
setting up parameters — whether in registers or the stack — has to follow a
consistent set of rules to that both at call and in the function the strategy
matches

Recursion 113

% = not yet covered

< XK KKK IR SIS ISICIIS ISR KKK
030000909 09909 09 009 00 0000009
G000 929.0.0.9:9.0.0.0.0.0.0.9:0.0.909. 0 0909

S global to whole program

global to compiled file 1

QRRRRR global to compiled file 2

constant pool

<
o
<

<>

%%
58

0588

ETIILILLILS
5% :“‘::::::::::?:‘0’0’0‘0‘0
SSIRKS oooooo.%

<
55

3

X2

dynamically allocated data

Vv

free space

/\

stack

<

R
0‘0::‘
CRIRLL
35

X
%

R
&L

XX

1200
%
%)

!

s

Figure 4.11: Data segment used so far: stack added

2. keep the top of the stack word-aligned — it is common (as with MIPS) that
instructions fetching words prefer that the data be at a word-aligned address
so if you have a parameter (or for that matter local variable) on the stack that
is not a whole number of words, adjust the stack pointer to a word boundary
(a multiple of 4 bytes).

We have filled in a lot of the picture first illustrated in figure 4.2. In figure 4.11 we
can now remove cross-hatching from the stack region of the data segment.

The take home message? Passing bigger parameters or more than 4
parameters is much the same as setting up local variables except the
caller has to initialise them; once in the function you access them exactly
like local variables.

4.5 Recursion

I would now like to switch to something that really illustrates how function call
works — but still with a small example. Recursion is a definition of a function
in terms of itself. This works if you have one or more base cases that can be

114 CHAPTER 4. MEMORY AND FUNCTIONS

calculated directly, and each time the function calls itself, it reduces the problem
size so that it eventually reaches a base case.

Here is a very simple example (one that can easily be computed in a loop, but
we have to start somewhere). The Fibonacci function is defined as

fib(n) = fib(n—1)+fib(n—2),n>2
fib(1) = 1
fib(2) = 1 @.1)

We have two base cases, for n = 1 and n = 2. The function is only defined for
positive integers. Let’s take an example where n = 4. We can expand the function
as follows:

fib(4) = fib(3) + fib(2) = (fib(2) + fib(1))+1=1+1+1=3

This formula generates a sequence of numbers for fib(1),...”:

1,1, 2, 3, 5, 8, 13,
Here is how we can express the Fibonacci function if C:

int fib (int N) {
if (N > 2)
return fib(N-1) + fib(N-2);
else
return 1;

b

Translating this function to MIPS assembly language is a simple (relatively)
matter of applying our minimal template. Since there is no local variable, and
we can pass the parameter in a register, all we need to consider is whether this is a
leaf function. Since it calls a function (in this case, itself not another function), it
is not a leaf function, so we need to spill any registers that should be stored across
a call. Let’s write out the code first, then look at what we need to spill and how
much space we need.

Let’s make a trivial main program that calls this after reading in a value
for N, and prints out the result. We should check that any integer passed in is
non-negative, but I leave this out to keep the example simple. Here is the main
program:

"You can also start the sequence at 0, if you you define fib(0) = 0. But that complicates
programming the example slightly.

Recursion 115

main
readin =3
K
@) 2
fib(3) V¥ |
N=3

returns
fib(N-1) + fib(N-2) = 1+1

2)//' \:}1

(1
fib(2) / fibﬁxx

N = 2 N = 1
returns 1 returns 1

Figure 4.12: Call tree for running a Fibonacci example

int main () {
int readin;
scanf ("%d", &readin);
printf ("fib(%d) = %d\n", readin, fib(readin));

A little more about C-style input and output: the first thing in a printf or scanf
is a format string. Words in the string that start with “%” are placeholders for
values. In our case, “%d” is a placeholder for a number expressed as decimal
(hence “d”) digits. A proper implementation of printf is a lot more complicated,
but we can implement this by splitting the format string into the parts that
only stand for themselves, and separately print out each fragment and print the
numbers in between. Another little detail: in C notation, a backslash “\” is an
escape character that makes what follows signify something other than the direct
interpretation of that character (or characters). Here “\n” signifies a line-break
character.

Figure 4.12 illustrates the order of calls for a small example, with parameters
passed (in parentheses) on downward arrows, and returned values on upward
arrows. It is important that recursion return to the right place because we need to
pick up where we left off. In this example, after the first recursive call £ib(n-1)
you need to get back to the place it was invoked not only to pass its result back
but also to invoke the second recursive call £ib(n-2).

116

rather tiny main program

CHAPTER 4. MEMORY AND FUNCTIONS

Heads up: Write out a call tree for a bigger example (not a lot bigger; it
grows fast). Make sure you understand what has to be saved at each call

so the function can get back and carry on from where it left off.

Let’s do the obvious

READ_INT =
PRINT_STRING =
PRINT_INT =
EXIT =
.data
prompt: .asciiz "input
formatl: .asciiz "fib("
format2: .asciiz ") ="
format3: .asciiz "\n"

parts first, then fill in the fib function. As usual our
expands out a lot.

5
4
1
10

?>|l

We need no main program variable space because we read in the value to

pass to fib(N) and print it before the call, and never use it again;

to be safe use an s register so we know it will be saved across
calls if we rewrite the code so we do need the register later

move sp off last item (SPIM fix)
save the return address

save the frame pointer

frame pointer = old stack pointer
move stack pointer past frame

do stuff that could trash registers etc.

scanf ("%d", &readin);

prPrompt (O}
scanf ("%d", &myscore);

.text
#
#
#
#
registers: readin in $s0
int main O {
main: addi $sp, $sp, -4
sw $ra, 0($sp)
sw $fp, -4($sp)
move $fp, $sp
addi $sp, $sp, -8
H#HHHH
int readin;
#
jal prPrompt
1i $vO, READ_INT #
syscall
move $s0, $vO
#

printf ("fib(%d)

la $a0, formatil
1i $vO0, PRINT_STRING

syscall

%d\n", readin, fib(readin));
print first part out format

Recursion 117

move $a0, $s0 # print given int value readin
1i $v0, PRINT_INT

syscall

la $a0, format?2 # print second part of format
1i $vO, PRINT_STRING

syscall

call fib here ######H#

move $a0, $vO # function result to print parameter
1i $v0, PRINT_INT
syscall

la $a0, format3 # print final part of format
1i $vO, PRINT_STRING
syscall

prepare to return from main

move $sp, $fp # restore stack pointer
lw $fp, -4($sp) # restore frame pointer
lw $ra, 0($sp) # restore return address
addi $sp, $sp, 4 # move sp back to item (SPIM fix)
jr $ra
3
#

So far this is all standard stuff (if with a bit more prettified output). Check the
main program through and make sure you understand how the output works. If
you run this program (with the prPrompt function we had before — see page 85)
it will give the same output for every number you enter. Read the program and
work out what that number signifies.

Now, let’s look at how to call the fib function from the main program, and
how we need to set it up so it can call itself. As before, I start from standard
templates, and work out what I need to change after applying the formula. Before
getting into the call setup, let’s do the basic logic of the function, an if statement.
Here it is without the call, using our generalised template (figure 4.5d):

if (N > 2)
1i $t0, 2 # invert condition
ble $a0, $t0, elseOl # true branch:
now we use $a0 to set up another call
knowing we can recover it from the frame
return fib(N-1) + fib(N-2);

118 CHAPTER 4. MEMORY AND FUNCTIONS

#H##d###E11] this in next##H#H#H####HH##

j IdoneO1
else01:
else
return 1; # false branch
IdoneO1l: nop # or next instruction

Before we go any further, note that the last thing done in either branch of the if
statement is a return, so the jump out of the if to label Idone01 will never happen,
so we can eliminate the last nop as well as the jump out if the true branch:

if (N > 2)
1i $t0, 2 # invert condition
ble $a0, $t0, else01 # true branch:
now we use $a0 to set up another call
knowing we can recover it from the frame
return fib(N-1) + fib(N-2);
#HA###A#L11]1 this in next#####H##H##HH#
else01:
else
return 1; # false branch

Now to do the function call and setup, note that £ib has one parameter that
will need to be preserved between calls because it is not a leaf function. After
fib(N-1) there is another call to £ib(N-2), and we will need to know what N
was after the first call. For the same reason we need to preserve the return address.
That puts us into the case of our more general function template of figure 4.10.

The start of the function then looks like this (. = O since there are no
parameters passed in via the stack, but we need to add 4 bytes to store the
parameter between calls, which is spill space, making vars = 4):

sw $ra, 0($sp) # save return address
sw $fp, -4($sp) # save frame pointer
move $fp, $sp # fp = old sp

addi $sp, $sp, -12 # move SP past frame

Let’s look now at how we will handle the recursive calls. After the first call, we
need a place to store the result, so we need space to spill the register containing
this intermediate result. I therefore need to make the stack frame 4 bytes bigger

Recursion 119

(correcting vars to 8), so let’s fix the last line above and add in saving the
parameter, since we should do that while we remember:

addi $sp, $sp, -16 # move SP past frame
sw $a0, -8($fp) # save parameter

Why is the parameter at an offset of -8 from the address in $£p? We have already
used up 8 bytes for the return address and saved frame pointer.

Now we have our function set up for entry, we need to look at how to call
it, since we have to do that in the function itself. There is one parameter so we
pass that in $a0. That means we need to spill $a0 into the space already allowed
before calculating the value to pass in to the call. The first call is easy: we have
the parameter in the right register, so we just decrement it, and do a call:

addi $a0, $a0, -1
jal fib

At this point, the call can go a few layers deep but we need not worry about that
here, as the stack will eventually be cut back to where it is now, and any registers
that we need should be restored to their former values. Once the function returns,
we need to spill the value it returns to the stack, since we are going to call the
function again with N — 2. Then we can pick up the value of N from the stack
where we saved it, and call again with N —2:

sw $v0, -12($fp) # spill result of fib(N-1)
lw $a0, -8($fp) # retrieve saved N

addi $a0, $a0, -2

jal fib

Now we have our two results, so we can do the addition into the return value
register $vO0, cut the stack back to where it was on entry and return (using the
saved return address).

lw $t0 -12($fp) # previously saved fib(N-1)
add $v0, $v0, $t0 # add the two results

set up return

move $sp, $fp # restore SP

lw $fp, -4($sp) # restore FP

lw $ra, 0($sp) # restore return address

jr $ra # return to caller

120 CHAPTER 4. MEMORY AND FUNCTIONS

7EE££d582S]

7ffffd5c XXXXXXXX
7££££d460 XXXXXXXX
7ffffde4d T7££££d470
7ffffd68ﬁg XXXXXXXX 7f££££d6 3 004000ec
7ffffdéc 0 7ffffdé6c 0
7ffffd70£g 00400018 7££££d470 00400018
7ff££d74 7f£££d74
7TEE££AT8 stack TEE££dT78 stack
7£££fd7c ' 7££££d7c
(a) main program (b) top-level call

Figure 4.13: Stack frame at two stages of the Fibonacci program. xxxxxxxx
represents memory not yet initialised.

The final part of the function is returning 1 for the base case. This is pretty
easy if we can do the recursive case. All you need is to put the value 1 into
the $vO register, then reuse the set up return steps from the last sequence of code
above. Complete the function, including the main program, and run it in SPIM.
Completing the main program should be easy because you have an example of
calling £ib where the recursive call occurs. Check that the results are as you
expect, and single-step it to see how the recursive calls work.

Figure 4.13 illustrates the state of the stack frame when it is first set up in the
main program and when it is first set up in the top-level call of fib. Make sure
you understand how the stack frame is set up and ended up looking like this.

The take home message? Once you have the function call mechanism
right, recursion comes naturally. Each call adds to the stack to remember
how to get back to where you were. Calling the same function again works
exactly the same way as calling a different function.

Exercises

1. In our simple examples with just a main program and no calls, did we ever
need to use s registers rather than t registers? Explain.

2. A jal instruction is encoded with a 6-bit opcode containing the number
3, and a 26-bit offset. Work out the bit pattern for jal 0x00400024,

Exercises 121

remembering that the low 2 bits of the address are not actually stored. Does
your answer match the hex representation of the instruction in figure 4.4?

3. Put together the various pieces of the prMax example of page 88, picking
up values for system call codes from Appendix C, then:
(a) Run it in SPIM. Single-step it to check the register values.

(b) Rewrite it so that you copy parameter values into temporary registers
(saved or unsaved, as appropriate) and explain your strategy.

(c) Save the return address as the first step of each function, and restore it
just before returning. Explain where you save it and why.

4. For the prMax function of page 90:

(a) Rewrite it to use the minimum number of registers.
(b) How much shorter is your code?

(c) Is the gain worth the potential difficulty of understanding nonstandard
use of registers?

5. Rewrite the main program of page 96 to minimise wasted instructions, such
as register spills or restores. How far can you take this, if you are able to
manage register use across functions?

6. In figure 4.6b:

(a) Based on the SPIM data contents, what values do you think should be
stored at the locations pointed at by $gp and $gp+4? Explain.

(b) How many positive and how many negative numbers were read in to
have produced the numbers seen in the SPIM data segment? Why?

(c) The rightmost part of the panel shows the ASCII representation of
memory. Why is there a “.” at the end of each string stored in the
constant pool? Can you remember what an .asciiz directive does?

(d) What value would you expect to find if you look in the register panel
for R29 [sp]?

7. You have a programming language where functions compiled in separate
files each have their own global variables accessed via a different base
address using the $gp register. How would you have to change our rules

122 CHAPTER 4. MEMORY AND FUNCTIONS

for setting up a stack frame if you the caller and caller were compiled from
different files?

8. For the entire program of pages 107-111:
(a) Using SPIM check in detail that it works, using single-step mode and
checking registers and memory contents as you go.
(b) Redo the example using the templates of figure 4.10, making sure you

apply the formulae for calculating offsets and the stack frame size.

9. In the code on page 109, what would happen if I mis-counted the offsets of
my main program local variables and put my variables at offsets of -4 and
-8 instead of -6 and -12?

10. For the Fibonacci example:

(a) Draw the call tree for fib(4). This time, each time you create another
tree branch, write on the branch either “call N — 1" or “call N —2” so
you know where to return.

(b) Redo the code with base cases fib(0) =0, fib(1) = 1.

(c) Add in a check in the main program for an invalid value of N before
calling the function.

(d) Rewrite the main program to use a while loop that reads a value for N
and terminates if negative N is read in but otherwise calls your function
and reports the result for each new value.

11. Complete the Fibonacci program of pages 114-120.

(a) Test the program and observe it in SPIM in single-step mode.

(b) Write out the $sp and $£p values as you step through a single instance
of £ib up to the point where it does a recursive call. Make sure you
understand how it gets back correctly to do the second recursive call.

(c) Are there any situations where we did not need to save the return
address? Is it worth trying to fix this sort of unnecessary overhead?

5 Data Structures

ATA STRUCTURES ARE ONE OF THE FUNDAMENTAL differentiators of dif-
D ferent levels of language. A lower-level HLL has data structures you
have to manage in detail including allocating and deallocating memory.

A managed-memory language hides all this from you. At machine code level,

there are no data structures.

Heads up: Read that again. At machine code level, there are no data
structures.

Remember | told you a few times earlier, at machine code level everything
is just bit patterns, and you can interpret those bit patterns as you like. You can
of course construct data structures, just as an HLL compiler constructs them out
of machine code, but there is nothing at machine code level (or assembly level,
which is just a slightly more convenient notation for the same thing) that enforces
any of this.

Already, we have seen that bits can stand for characters, integers, floating
point numbers, instructions and address. We now need to see how these things
can be packaged up into more complicated data structures. Since programming
complexity scales up a lot faster than data data complexity at assembly language
level, I limit the scope to examples that illustrate principles.

5.1 Machine-Level Data

Let’s start with the kinds of data that have direct representation in the machine.
Using C for examples helps here, as C was designed from the start as a language
close to the machine. C was designed in 1970 when writing operating systems
in assembly language was proving too hard. C was originally designed to make
systems code efficient on what were then small computers and today would be
extremely tiny computers [Ritchie et al. 1978; Kernighan and Ritchie 1988].

123

124 CHAPTER 5. DATA STRUCTURES

Table 5.1: Sizes of standard C basic types. Alternative names given where that
applies.

bytes || type name ‘ examples | type name ‘ examples
integer types floating point types

1 char 'c', '\n'

2 short, short int | 42

4 int 42 float 42 .0F, -1E56F

8 long, long int 421 double 42.0, -1E56

16 long double | 42.0L, -1E56L

Let’s look at a few of C’s built-in elementary types and see how they relate to
machine data representation.

First, integer values. On our MIPS machine, these are represented in machine
words of 32 bits using 2’s complement. When C was originally designed, a
standard integer (type int) was 16 bits; today most compilers implement type
int using 32 bits. When we write down values in our programs as a constant
number (or literal), how do we distinguish values that may look similar but could
be stored in a different number of bits? Table 5.1 gives some examples. C defines
suffixes you can write at the end of a numeric literal to tell the compiler exactly
what you mean. In examples in the table where there is no suffix, that means the
specific type is the default for values written like that.

Generally speaking, C is quite permissive about converting between variants
on a type. Floating point numbers are by default represented as type double, but
if you put a double in a context where a float is expected, the compiler will
convert the value (if possible: it may be out of range of the allowed values). The
“long” suffix (“L” or “1” — not a one, so better to use uppercase to avoid confusion)
may be necessary because you may want to write down a value that is too big for
an int or float. Mostly though we just write down numbers without the suffix
and get away with it.

There is no way to label an integer value specifically as a short but the compiler
can detect if such a value has too many bits if it needs it to be short. With floating
point, it is more useful to be precise about how many bits you want because you
can lose precision especially with numbers that do not convert to an exact fraction
in binary.

In addition to suffixes for long (“L” or “1”) or float (“f” or “F”), you can

specify an integer is unsigned by adding a “U” or “u” suffix. An unsigned value
can be a bigger positive integer than if it is unsigned because of the extra bit.

Machine-Level Data 125

original word

F a S t
4 6 6 1 7 3 7 4

01000110/01100001j01110011401110100

shift right 16 bits

00000000{00000000[01000110[01100001
4 6 6 1\,
s A

a
mask
0000000000000000000O0OOOOO11111111
F F
final word
00000000000000000000000001100001
6 1
a

Figure 5.1: Extracting a character by shifting and masking

Even if a compiler can work out the actual type from a constant value, there is
documentation value in making these things explicit.

Heads up: We will shortly be looking at C in more detail, hence this
foray into more about how C does things. There is a lot of variation in
how machine data types are handled in HLLs.

Let’s relate all this now to what we can do on a MIPS machine. We have
already seen arithmetic and logic operations on words that correspond to the C int
type. We have also looked at halfwords that correspond to the C short type (also
called short int). On page 67 we looked at techniques for detecting overflow in
halfword arithmetic. We have not explored unsigned arithmetic, though chapter
2 explains the concept. We have not looked at floating point in detail. MIPS
(in models that support floating point: embedded devices often don’t) has single-
precision floating point operations, corresponding to C’s float type, as well as
double-precision, corresponding to C’s double type.

Although the MIPS instruction set does not have character-specific operations,
it can operate on byte-sized quantities including loading and storing a byte.
Usually, when dealing with characters, you would use a load byte unsigned
instruction (1bu) meaning that the high bits in the register are left zero, rather than
sign-extending. Operations to manipulate byte-sized units packed into a word can
be put together using shifts to put the byte of interest into a particular part of the
word and masking, the use of logical operations to make selected parts of a word

126 CHAPTER 5. DATA STRUCTURES

zero. For example, if we have a word containing 4 bytes and we are only interested
in the byte second from the high end of the word, we can shift the word right by 16
bit positions, then apply a logical and to the word and a mask containing 1s only
in the low 8 positions. Figure 5.1 illustrates the general idea, with numeric values
for each character in hex as well as binary (see appendix A for ASCII codes). That
sounds easy enough to code so let’s make a minimal program that loads a preset
string of 4 characters into a register, does all this and stores it back:

.data

word: .asciiz "Fast"
.text

main: la $t0, word
1w $t1, 0($t0)

address of word

#
srl $t1, $t1, 16 # 2nd-highest byte to low end

#

#

fetch our word

andi $t1, $t1, OxFF mask all but low byte
sw $t1, 0($t0) store back to memory
jr $ra # back to caller

Run this and what would you expect the value in memory to be? No, not “a” —
unless you are on a machine with big-endian byte ordering. The second byte from
the high end of the word in a little-endian machine (like an Intel family processor)
is actually “s” (for more on endianness see page 64).

Heads up: Endianness is a nasty concept particularly as it is not
consistent across machines. You sometimes need to understand this stuff,
like when you unpack data sent over a network from a machine with
different endianness. Mostly, fortunately, it is hidden behind the scenes.

We really want a more orderly way of accessing bytes one at a time that does
not rely on how they are stored within a word. That brings me to the first example
of a more complex data structure.

5.2 Arrays

An array is a data structure of individual elements, each accessible through an
integer index. There are variations on array indexing but to keep it simple, we will
always start our index values from zero. We will also insist that every element of
the array be the same size. Languages that relax these assumptions generally do
so at the cost of a few extra instructions, which is good if someone else wrote the
compiler and performance is not absolutely critical.

Arrays 127
Using an array breaks down into three essential operations:
1. initialise — create storage for the array and put in initial values
2. access — retrieve a value from a location in an array, e.g., value = al[i]
3. update — change a value in a location in an array, e.g., a[i] = value

In some languages you may be responsible for disposing of resources an array
uses when you finish with it but this is enough for us to get started. Let’s redo
our simple example of accessing the second character from the start of a string
treating the string as an array. Our array indexing operation is:

1. base address — obtain the address of the first element
2. calculate offset — multiply the array index by element size
3. element address — add the offset to the base address

Once we have the element address, we can either access the element by using a
load instruction to place it in a register for whatever operation we have planned
for the contents, or use the address to store a new value into the element. All this
assumes a value in the array that fits into a register: working with larger values
is a little more complex but the same operations apply up to the point where we
have to find some other option than fitting the entire element into a register.

You may recall that our memory addressing operations generally include an
offset, e.g., the “~12” in 1w $t0 -12($fp). However, we can’t use that offset
for array indexing because it is built into the instruction, hence having to calculate
the element address by adding to the base address as a separate step. If you think
back to the way we calculated offsets from the stack and frame pointers, they
went in steps of 4 because we were using word-sized items (addresses or integers
in most examples). So the notion of increasing an offset by the size of the element
should be familiar.

Heads up: Address offsets cannot be used for array indexing, because an
array index is a value that may only be known at run time. An offset in a
machine instruction has to be known when the instruction is created.

128 CHAPTER 5. DATA STRUCTURES

Strings

C has a particular definition for strings that we encountered before without much
explanation (the “.asciiz” MIPS assembler directive we use in SPIM defines a
value in this format). A string in C is an array of char with an extra character at
the end to mark the end of the string. That extra character has an ASCII code of
zero, and is written as '\0' (a backslash — the escape character — followed by a
zero). Because this character is called an ASCII NUL for “null character”, so this
string convention is called a null-terminated string, and ASCIIZ implies a string
of ASCII characters ending in a zero.

Heads up: A character written with a backslash such as an ASCII NUL
is stored in a single byte: the backslash is an escape character, signalling
that what follows must be specially interpreted, and is not stored.

Let’s implement a a standard C function for finding the length of a string that
assumes the string ends with a null character. In C notation this is:

int mystrlen (char string [1) {
long i;
for (i = 0; ; i++)
if (string[i] == 0)
return i;

A for loop in C can leave out the stopping condition, which then in effect means
the loop will not terminate except if you break out of it (in this case, using return).
Let’s convert this to a MIPS assembler program with a simple test main program.

The first question is how do we pass an array as a parameter? If we think of
the array as being represented as the location of its first element, it’s easy: we just
pass the address of the start of the array. If you think about our array indexing
operation, this is what we need. Also, strlen is a leaf function, so we do not
need to save anything on the stack as long as we only use unsaved temporary (t)
registers. The parameter registers (a) also need not be saved. Since this is a single-
parameter function, we expect the value to be passed in through $a0 so we can do
as much of the calculation as possible in this register to save copying. To put this
all together then we need a minimal function and templates for for and if (without
else). This is a reasonably straightforward implementation of the templates, with
a few unnecessary details left out.

Arrays 129

#int strlen (char string []1) {
1int long i;
strlen: # initialise loop counter
1i $t0, O
for (i = 0; ; i++)
FbodyO1: add $t3, $a0, $tO # set up element address

lbu $t4, 0($t3) # $t4 = stringli]
if (stringl[i]l == 0)
bne $t4, $0, IdoneO1 # invert condition
return i;
move $v0, $tO # true branch -- return i
jr $ra
Idone0O1: addi $t0,$t0,1 # increment loop counter
j FbodyO1 # not done? Go again

#}

Refer back to figure 4.5 (page 96) to make sure you understand how I derived
these from the templates. The important details here are the parts that access the
array. Note how I have a loop counter that I also use to index the array. This time,
indexing is easy because each element is a byte and hence the next element is just
1 addressable location in memory away. If I have an array with larger elements, I
have to scale the index before adding it.

To drive home the point that accessing an array is just about adjusting a base
address by an index, let’s see how a machine-oriented language allows you to
access an array using addressing. In C, a pointer represents a machine address,
and we can do arithmetic on pointers. Here is another version of our strlen
function using pointer arithmetic:

int strlen (char *string) {

char *pos = string;

while (true) {

if (*pos == 0)
return pos-string;
pos++;

}

b

To make it clearer as to what’s going on, I changed the type of the parameter from
an array type to a pointer type, though in C the two are closely related — an array
in C is represented as a pointer to its first element. In C, a “*x” after a type name
means you want a pointer to an item of that type, rather than the item itself. In

other words, our parameter string and variable pos hold a memory address that

130 CHAPTER 5. DATA STRUCTURES

contains an item of type char, a single-byte unsigned integer at machine level.
When you want to access the value that the pointer refers to, you use a “*x” before
a variable name — not quite the same usage as when naming a pointer type.

Incrementing a C pointer means moving it on as far as the size of the thing it
points to. In the case of a byte-sized element, that means moving 1 every time we
increment, so applying the increment operation “pos++” means take the address
in variable pos on to the next byte in memory. What does “pos-string” do? If
you subtract one pointer from another, you get how many elements of the pointer
type they are apart. In this case, since I am subtracting the start position of the
array from the place where the null terminator is stored, that tells me how many
elements there are in the array not including the null terminator.

Heads up: In C, as we will see later, an array is always treated as a
pointer to its first element. This concept makes a lot more sense if you
understand array implementation in machine code. C pointer arithmetic
is an arcane mystery unless you understand machine code. So pay close
attention: you will need this material to understand C arrays.

The take home message? Strings are a convenient representation of
characters, with many variations in different langauages. The C approach
has the benefit of mapping simply to machine code, and hence is fast to
implement even though finding the length of the string requires visiting
every element.

More General Arrays

Strings are interesting and useful but do not illustrate the full complexities of array
access because the index advances the memory location (address) of elements at
the same rate as the index changes because the element size is 1.

Still keeping things simple, let’s search through an array of integers for the
largest element, and return the index of that value. In the main program, we will
use the index to access this element and print it. Let’s look at whole C program
for a change, with some details I didn’t mention before:

#include <stdio.h>

// find biggest element in array size N and return its index
// if duplicates, the first biggest item is found

Arrays 131

int arraymax (int data [], int N) {
int i; // loop counter
int imax = 0; // biggest element index so far
int max = datal[0]; // biggest element so far
for (i = 1; i < N; i++) {
if (datali] > max) {
max = datal[il]; // update biggest
imax = i; // update biggest’s index
}
}

return imax;

int main () {
int testdatal[] = {23, 42, 57, -1, 12};
int N = sizeof(testdata)/sizeof (int);
int imax = arraymax (testdata, N);
printf("max at %d = %d\n", imax, testdatalimax]);

First, what is “#include <stdio.h>"? Thisis a preprocessor directive (of which
more later in the C part of the book) that tells the C compiler to include the declar-
ations in a header file (again, more later) that declares standard input and output
operations. Then I define a function, int arraymax (int data [], int N),
which means it returns a value of type int, has a name arraymax and has two
parameters. The first parameter is an array (indicated by “[]”) of int values, and
the second is its size (number of elements, not bytes).

In the body of arraymax I declare some variables: a loop counter i, a variable
to hold the maximum index imax and a variable to hold the maximum value max.
I initialise max as the first element of the array and imax as its index, 0. That
means I can start the for loop at 1 instead of 0.

Note also that I put a top-level comment above the function (C comments
are anything from // to the end of the line — for now, more later) describing its
purpose. That is more important than comments that reword the C statements into
English, since a good programmer does not need to be told that kind of detail.

The main program declares an array to use to test the function, and initialises
it. The variable N can be initialised using a C idiom, as illustrated. If you are in a
place where an array has just been declared and the compiler knows its size, you
can use sizeof to find out how many bytes it takes up. To find how many elements
it has, which is what we want, you divide the number of bytes by the bytes per

132 CHAPTER 5. DATA STRUCTURES

element, sizeof (int). Unfortunately, you can only use this trick where the array
declaration occurs, which is why we have to pass the value of N as a parameter.

Heads up: You can use sizeof on any variable, value or data type, and
it tells you how many bytes it takes up, even if it doesn’t exist in memory
at the time.

Given all that we can call our function and use the returned value, as well
as look up the location in the array that it indexes and find the value stored
there (testdatal[imax]). You should have some idea of what printf does from
previous examples: the main new thing I add here is that printf is declared in
the header file stdio.h.

One final point: I put the function before the main program so that when the
compiler reaches the place where the function is called, it already knows what the
function looks like. This is necessary because the compiler needs to know what
machine resources any name represents before you use it in a way that requires
knowledge of those resources. For a function, the critical thing the compiler
needs to know is the parameter types. Assemblers are less fussy, because you
explicitly code things like parameter passing, so it doesn’t actually matter what
order the main program or any functions occur in your assembly language file. In
some examples where I show use of the stack, numbers may differ, e.g., return
addresses, from your own version of these examples if you put the functions in
the file in a different order.

On now to MIPS code for all this. First, registers and the stack. I will leave
out the stack setup and teardown code you need for the main program. We are
only calling a leaf function, so we can get away with putting all our variables in
saved temporaries (“‘s” registers) in the main program, unless they are values we
don’t need to preserve across a call, and unsaved temporaries (‘“t” registers) in
the function. We’ll think about whether we need a stack frame for the arraymax
function when we look at how to implement it. First, let’s set up output formats
and our test data in the data segment:

.data
formatl: .asciiz "max at "
format2: .asciiz " ="
format3: .asciiz "\n"
testdata: .word 23, 42, 57, -1, 12

Note that I can put a name (in this case, testdata) next to a list of values. That
label is the address of the first of these values, exactly what we want for the name

Arrays

of an array.

Heads up: [am cheating again, using the data segment for a variable,
testdata. What I should really do is use this space to contain the initial
values for the array and copy them into a data structure in the appropriate
part of memory.

Now the main program:

registers -- only one leaf call so we can use s registers here
and t registers in the function

testdata : $sO (address of int array)

N : $s1 (int)

imax : $s2 (int)

#int main () {

######stack setupH###Hi#

main: addi $sp, $sp, -4 # move sp off last item (SPIM fix)

sw $ra, 0($sp) # save the return address
sw $fp, -4($sp) # save the frame pointer
move $fp, $sp # frame pointer = old stack pointer

addi $sp, $sp, -8 # move stack pointer past frame

int testdatal[] = {23, 42, 57, -1, 12};
la $s0, testdata
int N = sizeof (testdata)/sizeof(int);
1i $s1, 20 # we are the compiler and can count bytes

int imax = arraymax (testdata, N);
set up the call: leaf function so no stack needed
need address of array in $a0, length in $al
move $a0, $s0
move $al, $si1
jal arraymax ##### call our function
move $s2, $vO

printf("max at %d = %d\n", imax, testdatalimax]);
la $a0, formatil
1i $vO, PRINT_STRING

syscall

move $a0, $s2 # imax from return value
1i $vO, PRINT_INT

syscall

la $a0, format2
1i $vO0, PRINT_STRING

133

134 CHAPTER 5. DATA STRUCTURES

syscall

mulo $t0, $s2, 4 # scale index imax

add $t0, $s0, $t0 # address of testdata[imax]
1w $a0, 0($t0)

1i $vO, PRINT_INT

syscall

la $a0, format3 # finish off printf
1i $v0, PRINT_STRING

syscall
#iHHHH#undo stack setup#######
move $sp, $fp # restore stack pointer
lw $fp, -4($sp) # restore frame pointer
lw $ra, 0($sp) # restore return address
addi $sp, $sp, 4 # move sp back to item (SPIM fix)

jr $ra

#}

Note how I do occasionally use t registers in the main program — I only do this
where the value will not be needed later so I don’t need to spill them. I should
really document these too at the top of the main function but left this out to keep
the example short.

Let’s focus on how we deal with the array, since the rest should be familiar.
First, initialisation: we rely on setting up a named value in the data segment,
testdata. A compiler at the point where you initialise an array can find its size
as in our use of sizeof, but there is no simple and consistent way to get this
right in assembly language so rather than explain a complex way, I assume, like
a compiler, we can count and put the value 20 into the code as a compiler would
when setting the size of N. We can now access elements as an offset from the
location the testdata name signifies, just as we did with the string example.
Here is how we access testadata[imax]:

mulo $t0, $s2, 4 # scale index imax
add $t0, $s0, $t0 # address of testdatal[imax]
lw $a0, 0($t0)

Figure 5.2 illustrates how an index of 2 turns into an offset of 8 from the start of
an array with elements of size 4 byes. If you load this main program into SPIM
(without function arraymax defined), it will load but get upset when it reaches
the jal arraymax function since that is not there, but you should be able to find

Arrays 135

testdata[imax]
10010000 | 23 = 0x17

imax = é\\}0010004j$ 42 = 0x2a
10010008 57 = 0x39

offset =2x4= 1001000C -1 = OXffffffff

8 bytes 10010010 12 = 0xc
address contents

Figure 5.2: Indexing elements of 4 bytes

the data in memory — I provide hex versions in the figure so you can find them
easily without changing the display to decimal mode.

The indexing code is actually quite expensive. Remember the mulo pseudoin-
struction? That expands to quite a long sequence of code. In this case, because
we are multiplying by 4 and all values are positive integers there should be no
overflow issue (there can’t be if we are within the range of addresses allowed by
the hardware), so we don’t need all this machinery. Here is the sequence of code
SPIM puts in the place of the mulo pseudoinstruction:

ori $1, $0, 4
mult $18, $1
mfhi $1

mflo $8

sra $8, $8, 31
beq $1, $8, 8
break $0

mflo $8

€69

The thing that generates much of the extra work is that pesky “o” on the end of
the pseudoinstruction, telling the assembler we want it to check for overflow. If
we take the view that checking for overflow is an unnecessary expense, we can
remove the “o”:

mul $t0, $s2, 4 # scale index imax

For this pseudoinstruction we get only two real instructions':

ori $1, $0, 4
mul $8, $18, $1

UIf you use three registers in mul it is a real instruction; the SPIM assembler has to generate an
extra instruction to set up the constant value 4 in a register, since there is no multiply-immediate
instruction. Note the register used for this: $1, which is the assembler temporary register.

136 CHAPTER 5. DATA STRUCTURES

Even this is more than we need — multiplying by 4 is a matter of shifting a binary
number 2 places left. If we are confident that our index won’t overflow, we can
reduce this to 1 instruction:

sll $t0, $s2, 2 # scale index

This is a trick we can apply whenever the element size is a power of 2, otherwise
we must multiply.

Heads up: Whenever we calculate offsets in a data structure, we need
to remember to multiply by the number of bytes of any elements we are
skipping. Unless we use the next trick, keeping a separate counter for
array indexing that goes up in steps of element size.

On now to the function. Now we have the trick for array indexing, it is fairly
straightforward. Since it is a simple leaf function, we only use unsaved temporary
registers aside from the parameter and return value registers, and do not need a
stack frame. You should check the loop and if against the standard templates.
Also note how I document register use at the top of the function. As I find need
for more registers I add to this so I can keep track.

#// find biggest element in array size N and return its index
#// if duplicates, the first biggest item is found

leaf function with minmal variables we can keep in t registers
so no need for a stack frame; keep parameters in $a0, $al

other registers:

1 $to

imax $t1

max $t2

temps $t3, $t4

#int arraymax (int data [], int N) {

int i; // loop counter

int imax = 0; // biggest element index so far

arraymax: 1i $t1, O

int max = datal0]; // biggest element so far
1w $t2, 0($a0) # $a0 is address of 1st element

for (4 =1; i < N; i++) {

1i $t0, 1 # initialise loop counter
j FtestO1 # test before 1st iteration
FbodyO01: # body of loop here

if (datal[i] > max) {

Arrays 137

s11 $t3, $t0, 2 # scale index
add $t4, $a0, $t3 # find ith item

1w $t3, 0($t4) # $t3 = datalil
ble $t3, $t2, IdoneO1 # invert condition
max = datalil; // update biggest
move $t2, $t3
imax = i; // update biggest’s index
move $t1, $t0
}
IdoneO1: add $t0, $t0, 1 # increment loop counter
FtestO1l: blt $t0,$al, FbodyOl # not done? Go again

}

return imax;
move $v0, $ti1
jr $ra

#}

In this case, we actually need the loop counter, since we return that value (imax).
Often when we iterate through an array, we don’t, in which case we can scale the
index up. If we have a value that starts on zero and goes up in steps of 4, we can
use it directly as an offset into the array. Even better, if we initialise a register as
the start address of the array and increment it by 4 each iteration, we can use that
value directly to access the next item, rather than adding an offset. Here are a few
snippets from the revised code illustrating how this can work:

move $t3, $al # $t3 points to current element
bits left out
1w $t4, 0($t3) # $t4 = datali]

ble $t4, $t2, IdoneOl # invert condition
bits left out ##H###
IdoneO1: add $t0, $to, 1 # increment loop counter
add $t3, $t3, 4

Finally, here is how you could implement the arraymax function in C, using
pointer arithmetic:

int arraymax (int data [], int N) {
int *current = data; // pointer to current item
int imax = 0; // biggest element index so far
int max = datal[0]; // biggest element so far
for (; (current - data) < N; current++) {
if (xcurrent > max) {
max = *current; // update biggest

138 CHAPTER 5. DATA STRUCTURES

imax = (current-data); // update biggest’s index
}
}

return imax;

}

If you have really understood the concept of offsets all you need for this to make
perfect sense is to understand that pointer arithmetic in C is automatically scaled
by the size of the element pointed to, here 4. Note also that you can leave out the
initialisation of a for loop, which translates to nothing in that part of our standard
MIPS code template for a for loop. Finally, remember that if you subtract a pointer
from another, the result is the distance between the two pointers scaled to the
element size. So in our example, current-data will in effect return the index of
the element current is pointing to.

The take home message? Arrays with bigger elements add a com-
plication: scaling the index to the element size can be computationally
expensive, though good compilers can find short cuts, like using an
separate counter that increments by element size instead of by 1.

Back to switch

Way back on page 73, we had an example that looks like this:

switch (value) {
case O:
zeroes+t;
break;
case l:case 2:
onesAndTwos++;
break;
default:
others++;
break;

}

At the time, I skipped explaining how to implement it. Let’s think about that now.
What we want is a way of using the value given to jump to a specific location in
the code. Figure 5.3 illustrates the concept, ignoring for now the role of the break

Arrays 139

value|entry point _
switch (value) {
case 0O:
0 [zeroes++;
break;
case l:case 2:
1 onesAndTwos++;
O break;
2 default:
others++;
eak;
other }

Figure 5.3: Conceptual view of a switch

statements. That looks mighty like an array, wouldn’t you say? We have a value
we use to find an offset into a table to look up something. The only things a little
different are that what we look up in the table is where to go next in the code, and
generally aren’t interested in changing the table once it’s set up.

An array that contains entries that are used as targets for changing flow of
control is called a dispatch table, Sometimes a table like this is called a jump
table — 1 prefer to use this term for a table that actually contains jump instructions
rather than jump target addresses (see page 185 for an example where a jump table
is useful). The values in the table at machine code level are addresses — this time
addresses of locations in our code, not of data.

Looking up switch targets in an array will obviously only work if the range of
labels is reasonably small (e.g., if the biggest label is 2-billion and the smallest
close to 0, the table would be ridiculously large). If the range is too big for
an array to be practical, a different strategy has to be used. Since we have
just covered arrays, we will stick with that approach, bearing in mind that a
compiler will need other options. Anything much more complex would be hard
to understand in assembly language but if you know about more advanced data
structures, extending a dispatch table to other look-up structures is not too hard.

The other little detail we need to take care of is the break statement. This not
only takes us out of a switch but also allows us to get out of a loop immediately.

Let us focus on break for loops, since that is the more common case, and a
break in a switch is much the same. For completeness, let’s add one more C-style

140 CHAPTER 5. DATA STRUCTURES

j YdoneXXX # exit the loop now j YnextXXX # start next iteration

(a) break template (b) continue template

blt Rval, Rmin, SdefaultXXX

bgt Rval, Rmax, SdefaultXXX

la R1,SlabelsXXX # get base address

sub R2,Rval,Rmin # subtract min label

sll R2,R2,2 # scale index to word size

add R3,R1,R2 # add offset

lw R3,0(R3) # get jump target

jr R3 # go to target
SlabelXXXvall: # code for this case

SlabelXXXvalN: # code for this case

SdefaultXXX: # code for this case
.data
SlabelsXXX: .word SlabelXXXval0, .., SlabelXXXvalN SdoneXXX: nop # or next instruction
(c) switch data template (d) switch code template

Figure 5.4: More templates: switch, break and continue

flow of control construct, continue. A continue skips the rest of a loop body and
goes straight to the increment of a for loop; other loops go straight to testing the
stopping condition. Using continue and break takes a little care because they
apply to the innermost loop, so they can be confusing with nested constructs. We
can summarise break and continue using our template notation (figures 5.4a-
5.4b). In these templates, “Y” translates to the letter that matches the prefix used
in labels for the loop (or for break, possibly a switch) the statement applies to.

Let’s also develop a general template for a switch. What figure 5.4c illustrates
is that you can use the data segment constant pool to set up the dispatch table. A
label you use whether in your text (that’s the code, in case you forgot) segment or
data segment is a symbolic name for the next item in memory. Thus, if we have
labels in our code and put those same labels into a position where you expect a
value to be placed in the data segment, those labels get translated by the assembler
into the address of the instruction with that label. If you have more than one label
before the next location (whether labelling in the data or text segment), they all
stand for the same address.

Let’s now look at the code part of the template (figure 5.4d), a large part of
which is setup. As in other templates, I use symbolic names that must you translate
to actual registers in your code:

* R1 — base address of the dispatch table

* R2 —index, subsequently scaled to an offset into the table

Arrays 141

* R3 — jump target

* Rval — the value in the switch used to make the choice
* Rmin — the lowest value of any case label

* Rmax — the highest value of any case label

The end result of the initialisation code is we have an array of addresses that, if
indexed using the switch value, scaled to start from 0 and go up in steps of 4 rather
than 1, gives us the address of the code we want for that case. Check through the
template and make sure you understand why it works, and why it is not a great
approach if there is a big difference between the minimum and maximum case
value.

Heads up: The switch template illustrates how complex some HLL
constructs can be to implement — and we have not explored this one in full
generality. Try to understand this one: if this is the only control construct
that bewilders you, you are not doing too badly.

Once you have all that straight, the rest of it is not that complicated. You look
up an address in an array, and jump to it. Here is code that implements the given
example. First, the data segment:

.data
SlabelsO1: .word SlabelO1valO, SlabelOlvall, SlabelOlval2

We need a single label for our constant array SlabelsO1, and it is the starting
point of a several word-sized items, and we define them using the labels from the
code below. Now the code segment:

switch (readin) {
######set up dispatch table and jump
blt $s4, 0, SdefaultO1
bgt $s4, 2, SdefaultO1l
la $s6,SlabelsOl # get base address
sub $s3,$s4,$s56 # subtract min label
sll $s3,$s3,2 # scale index to word addr
add $s6,$s6,$s3 # add offset
1w $s7,0($s6) #
jr $s7 #
case O:

get jump target
go to target

zeroes++;

142 CHAPTER 5. DATA STRUCTURES

[10010040] 0040008c 00400094 00400094
(a) data segment

[00400088] 02e00008 jr $23 ; 80: jr $s7 # go to target
[0040008c] 22100001 addi $16, $16, 1 ; 82: addi $s0, $s0, 1 # code for this case
[00400090] 08100029 j 0x004000a4 [SdoneOl] ; 83: j Sdone01
[00400094] 22310001 addi $17, $17, 1 ; 85: addi $s1, $sl, 1 # code for this case
[00400098] 08100029 j 0x004000a4 [SdoneOl] ; 86: j Sdone01
[0040009¢c] 22520001 addi $18, $18, 1 ; 87: addi $s2, $s2, 1 # code for this case
[004000a0] 08100029 j 0x004000a4 [SdoneOl] ; 88: j Sdone0l
[004000a4] 00000000 nop ; 89: nop # or next instruction

(b) code segment

Figure 5.5: Switch as seen in SPIM

break;

SlabelO1valO: addi $s0, $s0, 1 # code for this case
j Sdone0O1

case l:case 2:

onesAndTwos++;

break;

SlabelOlvall:

SlabelOlval2: addi $s1, $s1, 1 # code for this case
j SdoneO1

default:

others++;

break;

SdefaultO1: addi $s2, $s2, 1 # code for this case
j Sdone0O1

¥

SdoneOl: nop # or next instruction

Relate this to the template and make sure you understand why it works. If you
make a minimal example using this code (you will need a main entry point, but
need not make a full working example) and load it into SPIM, you should be able
to see that the data segment contains the addresses of the individual cases. Note
how labels “SlabelO1vall” and “SlabelO1val2” have nothing between them
and so represent the same address in the code.

Figure 5.5 relates what the data segment looks like in the area where I asked it
to store the dispatch table to the code. The start location, 0x10010040, reflects the
fact that I have a few other things in the data segment in my example. Relate the
addresses in figure 5.5a to those down the side of the code. The first instruction
listed in figure 5.5b is the jump that uses the dispatch table entry. The instruction
after that at 0x00400088 is the first case, and is at the address that is the first entry

Dynamic Data 143

42 12

Y
(o]

\ 4

—

Figure 5.6: Linked list

in the dispatch table. Each subsequent jump implements a break. Take some
time to understand this example — it captures a lot of concepts including the use
of addresses both as instruction targets and as ways of accessing data in memory.

The take home message? A switch statement is deceptively complex to
implement. Knowing how it works internally could save you from writing
unnecessarily inefficient code. If labels are not close together, consider
using an if instead — though a clever compiler may work this out for you.

5.3 Dynamic Data

To implement more complex data structures mostly requires the ability to allocate
memory on demand. I start by showing how we can construct a compound data
structure a bit like an object without the concept of methods. In C, we call such a
type a struct. We can then use these structured types as a basis for creating data
structures that grow on demand. Remember, as with arrays and our fundamental
types, none of this exists at machine level — we impose structure and meaning on
the raw bits”.

A difficulty with programming at assembly level is that even a low-level
language like C has built-in support for dynamic memory management. Managing
memory that can be allocated an deallocated on demand requires ways of keeping
track of free memory, reclaiming memory no longer in use and allocating new
chunks efficiently. All that is too complex for a quick introduction, so I fake the
effect with a small example to show how it can be done. When we switch to C
programming, we can revisit this in more detail.

To keep this as simple as possible, I work towards implementing a simple
structured data type for a linked list in which each element has two things: an
integer value and a pointer to the next item. Figure 5.6 illustrates an example
of my minimal list structure. I use arrows to illustrated pointers, and a special
symbol to indicate a null pointer that marks the end of the list.

21f you like sushi, will be a fan of raw bits.

144 CHAPTER 5. DATA STRUCTURES

| |
first next next | Lo ..., next | ‘

free free free free

(a) nothing allocated

I I [|
first . next next
size o —o...... —> ||

free free free

var

(b) one block allocated

next next
.......... —> L||

free free

first
free

K
30K
‘.0‘0
0‘0‘0
K
255
$9%93%
Casateds
5%,
X X
oo,
53
koo,
oose!
0K

X
KX
o
bo3s!
KBK
X2
&S

3
SRS
5

X
5
.‘

%
S
X

QRS
3K
3

55,
5

‘0
KBRS
S
K
’.
2
%5 S,
55
X
%
%
O,
&

>

0
o2

2%

XX
%
o
%

%%

%
o
o

var

(c) one block allocated (no header)

Figure 5.7: Minimal malloc implementation: before and after var =
malloc(N)

What do pointers actually mean at machine code level? Addresses, as we’ve
seen before. A null pointer is a special value that cannot point to real memory,
and we use an address with a zero value to represent a null pointer.

Introducing malloc and free

Let’s look now at how a very minimal dynamic memory allocator could be
implemented. Taking our cue from C, we have two functions:

* malloc(N) —allocate N bytes of memory, and return the address of the first
byte of the newly allocated memory (usually to be stored as a pointer value)

* free(addr) — deallocate the memory at the address addr (usually stored
in a pointer variable).

Figure 5.7 illustrates how a very simple memory allocator could work. In
addition to the memory seen by your program, each allocated block has a
header containing among other things a pointer to the next free block. In a real

Dynamic Data 145

implementation, malloc has to record the size of the block as well so that free
knows how much is being handed back to it. As illustrated in figure 5.7b, the next
pointer is replaced by the size of the allocated block when malloc provides that
block, and the next free item becomes whatever was previously pointed to by the
header (next pointer) of the newly allocated block. We can get away with this
minimal scheme if malloc always allocates blocks in a fixed size and fakes the
effect of bigger chunks of memory by coalescing adjacent blocks.

Making all that work would be far too complicated for purposes of illustrating
the concept — a real implementation of malloc would in any case be written in
a HLL such as C. To be able to do simple examples, I restrict my malloc to
allocating the same sized block every time. This way we do not need to keep a
header as illustrated in figure 5.7c. Consistently with the C implementation, if
you try to allocate a bigger chunk of memory than is available (in this case, bigger
than the fixed block size, as well as really running out of free memory), it returns
0 instead of a pointer to the new memory. If you ask for less, good — you just get
a bigger chunk of memory than you really need.

Heads up: The header of an allocated block is an important feature of
dynamic memory allocation. In C, common implementations of malloc
use a strategy like this. But in C, a pointer can point to any location in
memory not just a block created by malloc, so calling free on a pointer
not pointing to malloc-created block is an error. Many implementations
of malloc do extra checks to catch this sort of error at run time.

Where does malloc find memory to allocate? In the space between global
variables and the constant pool in low memory and the stack, which grows down
from high memory, space is available to use for other purposes. Data that is
dynamically allocated and whose lifetime is under direct programmer control lives
in a space called the heap®. Here is a summary of lifetimes of space for variables
in RAM:

* globals — space allocated at program launch and never lost, even if in a part
of the program where the variable is not visible

* stack — space allocated at call time and lost at return

* heap — space allocated at programmer request and released at programmer
request

3 A heap is also the name of an interesting data structure, a kind of tree that can be implemented in
an array.

146 CHAPTER 5. DATA STRUCTURES

In a managed-memory language, lifetime of data on the heap is taken care of for
you. Even if you have to ask for something to be allocated, you do not need
to deallocate it. When the system is low on memory, it automatically searches
for items that are no longer reachable from any code and reclaims them. This is
called garbage collection. In a lower-level language like C, you have to deallocate
explicitly, otherwise memory will fill up — a situation called a memory leak.

Let’s implement our really minimal malloc. First, I define some macros to
get started. To test the program, I will make a very small number of blocks in the
heap (3 blocks of 32 bytes). I also create a name for the SBRK system call, used to
expand available data space.

SBRK = 9
HEAPCHUNK 3 # MALLOCCHUNKs by which to expand heap
MALLOCCHUNK 32 # bytes for each malloc

Initializing is the biggest chunk of code; you need to do this just once before doing
anything with dynamic memory. I want to set up a free list in memory so provided
there is at least one unallocated block, I can take it, and move the start of the free
list on to its successor (if any). The rest, once you have your head around the
mallocinit function, is surprisingly simple.

Heads up: Remembering to initialize is something that some modern
HLLs take care of for you by mechanisms like constructors. I avoid the
issue here of how we could enforce the calling of mallocinit because
different languages do that different ways.

In case you forgot, the global pointer $gp, register 28 ($28), is used as a base
address for global variables. We are going to use two global variables: one to
represent the start of our heap, and the other to represent the first item in the free
list (initially the same, but the free list can change).

uses no registers that need to be preserved
uses 2 words at the $gp: the start of the heap (will not change)
and the address of the first free block (will change)

mallocinit: # initialise our malloc heap
1i $t0, HEAPCHUNK # units to allocate
convert to bytes -- no overflow test: we know the numbers

mul $a0, $t0, MALLOCCHUNK # mul, not mulo

1li $vO0, SBRK

syscall

sw $v0, 0($gp) # save start address in a global

Dynamic Data 147

User data segment [10000000]..[10040000]
[10000000]..[1000££££] 00000000
[10010000] 75706e69 3e3f£2074 00000000 00000000 input 2> 00 e e e e e
[10010010]..[1003ffff] 00000000

User data segment [10000000]..[10040060]
[10000000]..[1000££££] 00000000
[10010000] 75706e69 3e3£2074 00000000 00000000 input 2> 0 e e e e e
[10010010]..[1004005f] 00000000

Figure 5.8: Before and after SBRK called with 96 (0x60)

sw $v0, 4($gp) # save first free block as a global

1i $t1, O # initialise loop counter

addi $t0, $t0, -1 # 1 less iteration: last gets null pointer
j FtestO1l # test before 1st iteration

FbodyO1: addi $t3, $vO, MALLOCCHUNK # body of loop here

sw $t3, 0($v0) # rest of body

move $v0, $t3 # advance pointer
FnextO1: addi $ti1, 1 # increment loop counter
FtestO1l: blt $t1,$t0, FbodyO1l #

sw $zero, 0($v0) #

jr $ra

not done? Go again
null pointer at end

Figure 5.8 illustrates the effect of the SBRK system call (historically, the top of
allowed memory was called the “break” and this system call extends that limit,
hence the name). Here, I have invoked it for my toy example. You may notice I
also have a string constant in memory. The difference between the top and bottom
part of the figure is the range of allowed addresses in the user data segment, where
the upper limit went from 0x10040000 to 0x10040060.

Figure 5.9 illustrates what the user data segment looks like once we have
initialised the heap with our toy example of 3 blocks available to allocated. You
should relate the symbolic view of the heap contents (5.9a) to how the same region
of memory looks in SPIM (5.9b). Each of our allocation blocks is just a range of
memory locations, the first word of which contains a pointer to the next block.
You should be able to trace the chain of pointers by starting at 0x10040000, the
value stored in the first free block global variable (at $gp+4). Look for the first
value, 0x10040000, down the side where the addresses of memory locations are
listed. at the “[10040000]” row, the first listed stored is 10040020, the address of
the second block. Note that a null pointer is represented in memory as zero, so the
value at memory location 0x10040040 where the null pointer is stored disappears
into the range of addresses [10040030] .. [1004005£] that all contain nothing
but zeroes.

148 CHAPTER 5. DATA STRUCTURES

first free | | |

10040000 10040020 3110040040 > 0 —q|

(a) symbolic view

heap start address first free block
User data segpefht [10000000]..[10040060]

[10000000 [1000

$gp10008000] 10040000

00000000 00000000 . & & & & & o 4 4 e e e e ...

[10008010]..[000
[10010000] 75706e69 3e3£2074 00000000 00000000 input ?>
[10010010]..[1003£f£££] 00000000
[10040000] 10040020 00000000 00000000 00000000 & « « o & o 4 o 4 e o4 4. . .
[10040010]..[1004001£] 00000000
[10040020] 10040040 00000000 00000000 00000000 @ v e e e e e e e e e e e

[10040030]..[1004005£f] 00000000

(b) SPIM view

Figure 5.9: Initialized heap: nothing allocated

After all that you may be fearing that malloc and free will be complicated
but all this setup is to make them simple. First, malloc:

leaf function -- only uses $a, $v and $t registers, no stack

if memory requested > default block size return O otherwise

address of allocated block, which is removed from the free list

a real implementation would call SBRK if out of free memory

and only return O if SBRK failed.

malloc: 1i $vO, O

bgt $a0, MALLOCCHUNK, done # cowardly retreat if request too big

H OH H OHF

lu $v0, 4($gp) # first free block address
beq $v0, $zero, done # if free block addr = 0, return that
1w $t0, 0($v0) # get the next pointer of this block
sw $t0, 4($gp) # first free block = next

done: jr $ra

The implementation is pretty simple — grab the block at the head of the free list
and make the free list point to that block’s successor (that will automatically turn
it into a null pointer if this is the last item on the list). The only complication is
we must return O if the block requested is too big or there is no free memory.
Finally, here is the implementation of free, which is even simpler. In the
block header, we make the next pointer (the first word of the newly disposed
block) whatever value is currently set as the first free location, then set the first
free location to point to this newly disposed block. We don’t worry about null
pointers because the existing free list head will be a null pointer if the list is empty.

Dynamic Data 149

leaf function -- only uses $a, $v and $t registers, no stack
add freed block to front of free list
free: 1w $t0, 4($gp) # first free address
this->next = firstfree
sw $t0, 0($a0)
firstfree = this
sw $a0, 4($gp)
jr $ra

Convince yourself that the code for malloc and free is correct. Work through
a small example and check that it does what you expect. Make sure the
code implements the picture shown in figure 5.7. As I said before, a real
implementation of these functions is much more complicated — among other
things, it needs to be able to handle many different-sized requests, and (ideally)
check that you didn’t call free on a value that isn’t a pointer allocated by malloc.
We will use this now to construct a simple linked list example — though if you were
paying close attention, you would have noticed that we already did that. Our free
list is exactly such a data structure. Still, it is more concrete if we have something
that looks a bit closer to a problem we may want to solve. For purposes of a toy
example to test everything, leave the number of available blocks at 3; remember
to adjust this to something more practical if you recycle the malloc code for a
bigger example.

Earlier I mentioned that you can think of arrays as being a pointer to their first
element. In C, arrays can be dynamically allocated, and a pointer variable can be
indexed in exactly the same way as an array variable. We will see more of this
when we look at C in more detail in the second part of the book. Meanwhile here
is a small taste of what you can do:

#include <stdio.h>
#include <stdlib.h>

int main) {

int i, N;

int *squares;

printf ("Enter array size: ");

scanf ("%d", &N);

if (W >=1) {
squares = malloc (Nxsizeof(int));
for (4 = 0; i < N; i++)

squares[i] = ix*i;

for (i = N-1; i >= 0; i--)

150 CHAPTER 5. DATA STRUCTURES

printf("%d~2 = %d\n",i, squares[i]);

Other than allocating the array through a pointer, there should not be much here
that isn’t familiar. Here’s an example of usage:

Enter array size: 4

372 =9
272 =4
172 =1
02 =0

The take home message? An efficient implementation of malloc and
free presents a lot of interesting challenges. Your focus here should be
understanding dynamic data, which is why I have kept things as simple as
possible.

5.4 Structured types

Back to our linked list example. We want a type that can contain two values,
a pointer and an integer. In C, the notation for this kind of structured type is a
struct. At this stage, our main concern is seeing how these things look on the
machine, so I will explain the type concept in more detail later.

Here is an example of the use of a list like that of figure 5.6. This program
reads in numbers until the number read in is negative and adds them to the end of
a list, discarding the last (negative) value from the list. It then prints the list. The
biggest difference between this example and use of an array is I need not fix the
size of the list at the start (which you have to do for an array, even if you create
it with malloc). In a real program, I could stop on a more interesting condition,
like the keystroke representing “end of file”. Let’s start with defining a type and
some functions that use it.

#include <stdlib.h> // declares malloc

// name the type so there is less typing
typedef struct numberElement NumberElementT;

// elements of the list: number plus next item

Structured types 151

struct numberElement {
int number;
NumberElementT * next;

};

NumberElementT * readnext () {
NumberElementT *newElement = malloc (sizeof (NumberElementT));
if (newElement) { // NULL same as false
scanf ("%d", &newElement->number);
newElement->next = NULL;

}

return newElement;

3

Again, I will not go through all the details of the C code, just a few essentials.
First, I add another header, stdlib.h, that declares malloc. I need to tell
the compiler ahead of defining the structured type to expect something like
that because the struct contains a pointer to itself, hence the line begin-
ning with “typedef”. Then I define the type whose full name is “struct
numberElement”, but you can call it NumberElementT because of the typedef
that appeared previously. The function readnext returns a NULL pointer (NULL
is a predefined constant in C) if malloc fails to allocate the required memory.
Notice how we have to be very explicit and tell malloc the exact number of bytes
to allocate. The builtin sizeof operation can tell us how big a variable or a type
name is, even though a type is something that only exists at compile to in C.

You refer to elements of a structured type variable using a notation like
“variable.element”. Here though I have pointers to variables of this type, so I
need a different notation in C to indicate that I am accessing a value in a structured
type via a pointer, for which the symbol is “~>”. This symbol says follow a pointer
from the named pointer variable to the place in memory it represents, then find
the component on the right of the “->”. So, for example, “nextElement->next”
means, for variable nextElement of a pointer type (to a struct), find the place
in memory it refers to then get the value of next.

Another C detail: in C, anything that can be thought of as representing zero
can be used to represent a false value and anything that isn’t zero or something
similar means true, so I can test for a null pointer by using this fact. So something
like

if (newElement)

means the same thing as

152 CHAPTER 5. DATA STRUCTURES

if (newElement != NULL)

This emphasises C’s machine-oriented roots. At machine level, the bit pattern
consisting of all zeroes represents the boolean or logical value false, and C uses
the same convention, extending it to mean that anything non-zero means true.

Here is an example of a function that accesses data of our structured type
allocated through a pointer:

void printall (NumberElementT *1ist) {
while (list) { // NULL same as false
printf ("%d\n", list->number);
list = list->next;

We can advance the list pointer like this because the parameter is a copy of the
original pointer, so it does not mess up the original data structure. Note there
return type of the function, void. This is a type that has no values, which means
we must call this function in a way that does not require a value (e.g., it can’t be
in the middle of a piece of arithmetic).

If we create one of these lists by calling readnext (), it will be allocated in
the heap as big as we need it (unless malloc runs out of memory), and we have
to explicitly dispose of it when done, to avoid a memory leak*. Here is a function
that disposes of an entire list:

// deallocate the list recursively: stop
// when at NULL end of list
void disposeall (NumberElementT *1list) {
if (list) { // NULL same as false
disposeall(list->next);
free (list);

Why did I use recursion here? To dispose of the entire list, we need to find our
way to the end. We could to that iteratively by storing a pointer to the next item,
deleting the current item, and continuing until the next pointer was NULL. The
recursive approach is actually simpler — trying working through a loop to do this
and see for yourself.

4That is not a concern with a toy programme like the example here, since we exit the program
right after using the list.

Structured types 153

Heads up: When disposing of a complex data structure, make sure you
free up memory in the correct order — starting with parts that contain no
pointers to other data, and working your way to the top level of the data
structure. That way, you never access data after it is deallocated.

To complete the example, here is the main program:

// read in items and add to list until ome < O,
// remove first item then print rest of list
int main () {
NumberElementT *first = readnext(),
*nextElement = NULL,
*previous = first;
while (previous) {
nextElement = readnext ();
// malloc failed if nextElement is NULL
if (nextElement && nextElement->number < 0) {
free (nextElement);
nextElement = NULL;
}

previous->next = nextElement;
previous = nextElement;

+;

printall (first);

disposeall (first);

If you run this program with the following input:

42
34
-12

this is the output:

42
34

On now to how to implement all this in MIPS assembly language. We already
have our own versions of malloc and free. We can recycle those without change
(even keeping the available memory very small at 3 available chunks to check that
it all works as expected). There are two new concepts we need to get straight:
accessing via a pointer, and accessing individual elements of a structured type.
Let’s take these one at a time.

154 CHAPTER 5. DATA STRUCTURES

The simplest thing is to start with the original C program, insert a comment
character “#” in front of every line, and convert to assembly language systematic-
ally as if you were a compiler. As we go through my code, you will see comments
you can relate back to the C code. You need to take a lot of care doing this — for
example, if you forget a return from a function, you code will just carry on into
the next instruction. For this reason, it’s a good strategy to code small segments
at a time and test as you go in single-step mode in SPIM.

Accessing via a pointer means loading a memory address into a register, then
using either a load or a store instruction, deepening whether we are fetching a
value into a register, or updating the location the pointer refers to.

Accessing an element within a structured type means using an offset from the
location where it starts. To make this concrete, let’s look at one instance of our
NumberElementT structured type, and how it is laid out in memory, using a really
simple example, a list with two elements. The first element points to the second,
and the second element’s next pointer is NULL, as illustrated in figure 5.10a. How
big is each element? The first item in the list, the number element, is of type int,
which is 4 bytes or a word. The second item, the next pointer, is the same size.
So to access the first element, the number, we can access it via the start address of
the entire data structure, whereas to access the next pointer, we need an offset of
4 from the start.

Heads up: Pointer-based data structures are a difficult concept so
take time to understand this example. It will help you a lot later with
understanding HLL data structures.

You can see the memory layout more explicitly in figure 5.10b. Relate the
SPIM data segment view to the more symbolic view of the data structure; you
should be able to find all the elements of the symbolic view in the SPIM view.

So, for example, if register $s0 contains the address of one of these data
structures — a variable unimaginatively called “data” — we can load the number
into register $t1 and the next pointer into register $t2 as follows:

1w $t1, 0($t0) # $t1
1w $t2, 4($t0) # $t2

data.number

data.next

To put this all together, let’s look at how our C code for this example looks in
SPIM assembly language. First, in the main program, we need initialise then
create some data. Although this is not part of the main program we need to
initialise our malloc data structures somewhere so I do this first:

Structured types 155

42
9 (0x9) 7| (0x2a) 4

(a) symbolic view

[10040010)£.[1004001f] 00000000

(10040020 00000022 (00000000) 00000000 00000000 e e e e e e e e e e e e
(b) SPIM data segment

[10040000] / 00000009 10040020)00000000 00000000 e e e e e e e e e e e e e e

Figure 5.10: Simple list example

jal mallocinit

The best way to do this to ensure that it isn’t forgotten is to set up a
Now we give our data structures initial values, starting with calling a simple
input function to create a list element:

NumberElementT *first = readnext(),
*nextElement = NULL,
*previous = first;

jal readnext
move $s0, $vO
move $s1, $zero
move $s2, $s0

Once that’s done, we can go into a loop that continues until either we type in a
negative value, ormalloc can’t allocate any more data, and build a list of our read
in values, discarding the last value if it was negative. The loops starts a familiar
way:

while (previous) {
Jj Wnext02 # test before 1st iteration
Wbody02: # body of loop here

Then we call the input function again:

nextElement = readnext ();
jal readnext
move $s1, $vO

156 CHAPTER 5. DATA STRUCTURES

Let’s assume for now readnext () works, and we now have a pointer to our first
element of the list in register $s1 (copied from the return result register $v0). If
we ran out of available memory, malloc would have returned a null pointer, so
we need to check for that. Remember, we can treat a null pointer as a false value
and any other pointer value as true:

// malloc failed if nextElement is NULL
if (nextElement && nextElement->number < 0) {

Before we use our standard if template, we need to think through how to handle
a more complex condition. In C, “&&” is a logical and. C uses short circuit
evaluation, meaning it stops as soon as the answer is known, so we must make a
decision on branching as soon as we know the outcome. With a logical and, as
soon as we know one of the values is false, we know the whole expression is false
(see the truth table 2.2 on page 22). So we can split our condition in two, and
jump past the true branch immediately if we know the first part is false. This is
what we want, since a “false” value for a pointer is a null pointer, and going on to
the second part of the if condition with a null pointer will break (since we would
be asking for an offset with a non-existent data item).

Here is the rest of the if statement. Make sure you see how to derive this from
the standard template:

beq $s1, $zero, Idone03 # invert condition
lw $t0, numberOffset($s1)
bge $t0, $zero, Idone03 # invert condition
true branch
free (nextElement);
move $a0, $si

jal free
nextElement = NULL;
move $s1, $zero
+
Idone03: nop # or next instruction

A few details. I need to fetch (load) from memory the particular component of my
structured type I need to deal with. Here, I want to check if the number stored is
negative, so I need the number component, not the next component. I defined a
macro somewhere further up with the name numberOffset representing how far

Structured types 157

into the variable the number component is. Where do I put this? Working from
my comment-ed out C program, here is where I did it, up near the top of the code:

#// forward declaration so we can make pointers
#typedef struct numberElement NumberElementT;
#

#// elements of the list: number plus next item
#struct numberElement {

int number;

NumberElementT * next;

#};

size of our data type in bytes -- update if changes
NumberElementTSIZE = 8

layout of our data type -- update if changes
numberOffset = 0 # bytes from start
nextOffset = 4 # bytes from start

You can put macro definitions wherever you like in your assembly language file.
A good general practice is to put general ones at the top, and those specific to
a particular feature of the code at a place where they are easy to find. What’s
the value of defining macros rather than just putting the numbers for offsets in
directly? You are less likely to make a mistake this way, and mistakes you do
make are easier to find. The assembler replaces the macro name by the number
just as you typed it after the “=".

That all out of the way, the if statement will deallocate the new item if it’s
negative and change its pointer value to a null pointer. Make sure you can see
work out how that is done.

Now back to the loop. We are out of the if with one of two conditions: either
the next element is a new data item representing the next item read, or a null
pointer (the read in value was negative, or malloc gave up). To understand this,
check back to figure 5.10. The previous pointer refers to a location in memory,
and we have that location stored in register $s1. To update that item’s next
pointer, we need to store into the memory location pointed at by $s1 with an
offset reflecting how far into it the next pointer is stored:

previous->next = nextElement;

158 CHAPTER 5. DATA STRUCTURES

sw $s1, nextOffset($s2)
previous = nextElement;

move $s2, $s1
Wnext02: bne $s2,$zero, WbodyO02 # not done? Go again
+;

We end up with the previous pointer updated to point to the latest data created,
and give up if it’s a null pointer. Satisty yourself that the loop will end correctly
for both termination cases: malloc ran out of memory, or the last value read in
was negative.

Finally, with the loop completed, we need to print out the loop contents and
deallocate the data:

printall (first);
move $al0, $s0
jal printall

disposeall (first);
move $al0, $s0
jal disposeall

Here are a few more functions with a few details left out to reduce clutter:

HEFHHEH R pr I nt al Vi H# R R
calls prlinelnt so must save $ra and spill register
with local copy of list
registers:
$a0: passed in, used to pass to prlinelnt
$t0: local copy of list
HEHHHHEHE AR R pr AInt a1 L RS R S
#void printall (NumberElementT *list) {
printall: sw $ra, 0($sp) # save the return address

sw $fp, -4($sp) # save the frame pointer

move $fp, $sp # frame pointer = old stack pointer

need space for 1 local variable ($t0) of 4 bytes#######

addi $sp, $sp, -12 # move stack pointer past frame
done: set up stack frame #####HHHHHHHHHHHHHHHHH BRI

move $t0, $a0
while (list) { // NULL same as false
Jj WnextO1 # test before 1st iteration

printf ("%d\n", list->number);
Wbody0O1: 1w $a0, numberOffset($t0) # number element

sw $t0, -8($fp) # spill $tO

Structured types 159

jal prlinelnt # does it actually use $t07
lw $t0, -8($fp) # restore $t0
list = list->next;
lw $t0, nextOffset($t0) # restore $t0
WnextOl: bne $t0,$zero, WbodyOl # not done? Go again

}
restore stack frame L s s s e e s
move $sp, $fp # restore stack pointer
lw $fp, -4($sp) # restore frame pointer
lw $ra, 0($sp) # restore return address
jr $ra # return to caller
#}

I put a fairly lengthy comment at the start of the printall function to make
clear how to call it. To implement prlinelInt is straightforward, so I leave that
out. The main details you need to focus on are those relating to accessing the
structured data passed in to the function. The actual value passed in (the usual
way, using $a0) is a pointer to the data, i.e., its address in memory. When I want
to do something with the number stored in an item, I access it by

1w $a0, numberOffset($t0)
When I want the pointer to the next item on the list, I do it like this:
lw $t0, nextOffset($t0)

Find the places in the above code where I do this, and make sure it’s clear to you
what is going on. As before, relate this code back to figure 5.10 (page 155).
Finally, here is the code to implement the disposeall function:

HEHHH A R A D sposeal V##H#HHHHHHHHHHHHHH R
#// deallocate the list recursively: stop
#// when at NULL end of list
recursion so we need a stack frame (and we call free as well) so spill register
with local copy of list
registers:
$a0: passed in, used to pass to free
$t0: local copy of list
HESHH R R A D sposeal L#### I
#void disposeall (NumberElementT *1ist) {
disposeall: sw $ra, 0($sp) # save the return address
sw $fp, -4($sp) # save the frame pointer
move $fp, $sp # frame pointer = old stack pointer

160 CHAPTER 5. DATA STRUCTURES

need space for 1 local variable ($v0) of 4 bytes#######
addi $sp, $sp, -12 # move stack pointer past frame
done: set up stack frame ##H#H##HHHHHIHSHHHIHHIHBHHHIHHHE
move $t0, $a0l
if (1ist) { // NULL same as false
beq $t0, $zero, Idone02 # invert condition
disposeall(list->next);
sw $t0, -8($fp) # spill $tO
lw $a0, nextOffset($t0)
jal disposeall
lw $a0, -8($fp) # skip restore $t0 - would spill again
free (list);

jal free
true branch
}
Idone02: # or next instruction
restore stack frame B s s s e
move $sp, $fp # restore stack pointer
lw $fp, -4($sp) # restore frame pointer
lw $ra, 0($sp) # restore return address
jr $ra # return to caller
#}

Other than the use of recursion, it uses pretty similar concepts to printall.

The take home message? Working with pointers requires a clear
understanding of memory address and how you use an address to find
specific data. Offsets are a critical part of accessing elements with a
variable of structured data type.

5.5 Objects

Finally, I take a look quick at how you (or a compiler) can represent objects at
machine code level. There are many ways this can be done; what I illustrate here is
one of the simpler approaches that can be used to implement the more elementary
object-oriented features in a language close to C, like C++. Many object-oriented
languages store a lot more information than in this example to allow programmers
to recover other information about an object at run time. Let’s keep it simple so
we can focus on principles.

Here are some classes — not in any particular language. Ignore class Shape — it
just gives us a placeholder topmost class. We want to implement classes Circle

Objects 161

and Rectangle, and illustrate how we can find the correct version of their area ()
function at run time without having to know what type (class) of object we are
dealing with.

abstract class Shape {
abstract int area (); // no code, never called
abstract char* get name (); // no code, never called
}
class Circle : Shape {
Circle (float newradius) {
radius = newradius;
name = "circle";
}
int area () {
return radius * radius * 3.141592653589793;
}
char * getname () {
return name;
}
private:
float radius;
char * name;
}s
class Rectangle : Shape {
Rectangle (float newsideA, float newsideB) {
sidel = newsidel;
side2 = newsideB;
name = "rectangle";
}
int area () {
return side * side;
¥
char * getname () {
return name;
}
private:
float sidel, side2;
char * name;

};

In addition to our usual function machinery, each method needs to know what
object invoked it. To do this, we add in another parameter automatically that points
to the current object. In most object-oriented languages, this extra parameter is
taken care of for you, with varying degrees of accessibility to the programmer

162 CHAPTER 5. DATA STRUCTURES

(in C++, for example, it has a name, “this”). To find the correct version of a
method, we add in a table of pointers to methods. For each class, that table only
has to exist once, and each object of the class has a pointer to the table. Finding
the right method is a matter of following the pointer to the method table and then
going to the right offset in the table — much as we did with our implementation of
a dispatch table for a switch statement (page 141).

Heads up: If you understood the switch statement, good. If not, you are
going to get lost here. Either give up on understanding dynamic dispatch
or go back to page 138.

Let’s see how this works with a simple main program that initialises two
objects, a circle and a square, then prints out their areas. To add a little interest,
this time I use floating point. For passing floating point numbers as parameters, the
MIPS convention is to pair registers for passing doubles. For our single-precision
example, the standard is to use registers $£12 and $£14 (for doubles, $£12 pairs
with $£13 and $£14 with $£15). In general, when talking about MIPS floating
point registers, you can assume that a single-precision register is even numbered,
and a double-precision register with the same number also uses the following
odd-numbered register. Another convention: values are returned from functions
in registers $£0 and $£2. You can find floating-point register conventions in table
B.1. We will need to convert between floating point and integer: see page 34 for
some background.

Assume for classes, we have a cleverer concept than malloc called new
that we can use not only to allocate memory for an object, but also invoke its
constructor, a method with the same name as the class. Unlike other methods in
our example, a constructor is called directly rather than going via the method table
since it is called before the object is set up (and we know the class because we are
creating the object explicitly as a given class). Naturally, in MIPS assembler code,
we have no such features and have to build them up from lower-level constructs.

Our main program will include something like this (again, noting this is not
something that corresponds exactly to any existing language):

Shape * disc = new Circle (12.1),

* box = new Rectangle (42.0, 1.3);
printf ("area of %s = %d\n", disc->name(), disc->area());
printf ("area of %s = %d\n", box->name(), box->area());
free (disc);
free (box);

Objects 163

SPIM data segment extract

[10010000] 61657261 20666£f20 203d2000 63000a00 area o f
[10010010] 6c637269 65720065 6e617463 00656c67 ircle r .
[10010020] 40490fdbr 4141999a_ 42280000 3fa66666 .. Ie ?

[10010030] 3£000000(00400044

[10010040] 00400154 00000000 -
10010050]..[1003ffff 00000000

10040000] 10010034 41419993 01000£f l

00400100+ 0040012¢ .
[CCC000" 00000000

Circle

pP0000000 4ARA. ...

s
disc method table radius name SPIM FP register $f12
. hex decimal
SPIM code for Circle::area FG12 = 4141999a FG12 = 12.100000

[004000d4] c48c0004 1lwcl $£f12, 4($4) ; 137: 1.s $f12, Circle RadiusOffset($a0)
[004000d8] 460c6302 mul.s $£12, $£12, $£12 ; 138: mul.s $f12,$f12,$f12

[004000dc] 3c011001 1lui $1, 4097 [consts] ; 139: la $t0, consts # no FP immediates
[004000e0] 34280020 ori $8, $1, 32 [consts]
[004000e4] c5000000 1lwcl $£0, 0($8)
[004000e8] 46006302 mul.s $£12, $£f12, $f0
[004000ec] 5000010 1lwel $£0, 16($8)
[004000f0] 46006300 add.s $£12, $£12, $£0
[004000f4] 46006024 cvt.w.s $£0, $£f12
[004000£8] 44020000 mfcl $2, $£0
[004000fc] 03e00008 jr $31

140: 1.s $f0, 0(st0) # const: pi value

141: mul.s $f12, $f12, S$f0

142: 1.s $f0, 16(st0) # const: 0.5 to round up

143: add.s $f12, $f12, $f0 # round up

144: cvt.w.s $f0, $f12 # convert single to int (word)
145: mfcl $v0, $f0 # move from coprocessor 1 = FPU
146: jr Sra

(a) SPIM view

class Circle : Shape {
Circle (float newradius)
radius = newradius;
name = "circle";

: }
e —T——int area O {

return radius * radius * 3.141592653589793;
}
char * getname () {
return name;
}
private:
float radius;
char * name;

-~

Circle object Circle method table

method table =

radius 12.1

name "circle"

i
(b) Symbolic view

Figure 5.11: Implementation of an object

164 CHAPTER 5. DATA STRUCTURES

This should be enough to see how everything works. I've added in a new C
formatting placeholder, “%s”, a placeholder for a string (a null-terminated array
of characters). This output allows us to test all our methods, including a simple
one with no parameters or floating-point numbers.

Before we dive into the details take a look at figure 5.11. Note how we can
use SPIM’s data segment view to see where everything is, if we can find where
we stored an object. How? After allocating memory for the object in the main
program, single-step to see how the object is constructed. Finding floating-point
values in memory can be challenging because there is no data segment option
that views them in a readable format, though you can (as illustrated) see what a
floating point register contains in decimal view.

Take a look at the top part of figure 5.11a illustrating the data segment with
an object of class Circle starting at location 0x10040000, outlined at the bottom
of the data segment extract. The first item in the object is a pointer to its method
table (with value 0x10010034). We can follow that pointer to the location it refers
to (highlighted a couple of rows above with an arrow to it) and find the value
stored in memory there is 0x004000d4. That value is an address in the code
segment. The actual location in the code segment depends on the order I wrote
my program; the extract in the bottom half of figure 5.11a is the code for the area
method of class Circle. Why is all this machinery necessary? So a program
can find the correct version of a method that relates to the class of the current
object. We will see shortly how we use all this. For now, let’s extract a few more
details from this example. The second item in the object represents the value
of radius, a floating-point number. Unfortunately SPIM does not have a data
segment view that displays a floating-point number in a readable format but once
the program is running and you’ve loaded a value into a floating-point register,
you can check if it is what it should be by putting the registers into decimal view
mode. You can cheat by changing the value in an unused floating point register to
check what a particular bit pattern represented in hex means interpreted as floating
point (remember the hint on page 347). What I have stored in the second word
of my object is 0x4141999a, which at some point of a run landed up in floating
point register $£12, and I copied out for your benefit, revealing that this bit pattern
represents 12.1. The final item in the object is another pointer with the value
0x1001000£, which points to the first letter of the string "circle".

Check back to the class definitions on page 161 and the main program
extract on page 162 to see where all this comes from. Now relate the symbolic
representation of an object in figure 5.11b to the SPIM memory and code (or text

Objects 165

segment) contents. Make sure you understand how the two representations relate
to each other.

Now, on to implementing methods. A look at how the method table is
implemented is a good start, since we need that to call our methods, and we
need to initialise the method table when we create an object. Let’s use a standard
convention for naming methods: Classname_method. Then this is the label at
the entry point of the method, and we can reuse that label to name its address in
the data segment. Let’s make method table for class Circle:

.data
CircleMethods: .word Circle_area
.word Circle_name

That looks simple enough. Assuming we actually define these methods, when
we refer to the names Circle_area and Circle_name refer to the address you
need to jump to to invoke each one. The above two lines create two words
in the data segment at the location labeled CircleMethods and the next word
after that containing these addresses. So we will need to store the value that
CircleMethods represents in each object of class Circle so it can find its
methods. We need to do this because the methods could be overridden in a derived
class, so the methods that apply to each class need to be known to its objects.

Let’s construct an object to show how all this works. Here is a the constructor
for Circle, which is invoked whenever an object of this class is created:

Circle (float newradius) {
values passed in are

$a0 : current object pointer
$£12: new radius value

radius = newradius;
Circle_Circle: la $t0, CircleMethods # set up method table
sw $t0, methodsOffset($a0)
s.s $f12, Circle_RadiusOffset($a0l)
name = "circle";
la $t0, CircleName
sw $t0, Circle_NameOffset ($a0)
jr $ra

Ignoring the comments for now (read them later), the first line of the constructor
loads the address of the methods table into $t0 and the next instruction stores this

166 CHAPTER 5. DATA STRUCTURES

address in the offset we have defined somewhere as a macro for how far into an
object we store the pointer to the method table. Why $a0? Because that is the first
parameter passed and in a method, the first parameter is always the current object.

What offset should we use to store the method table? Since the size of an
object can vary depending on the class definition, details inherited and so on, it’s
easiest to put the method table first. Once you are in a method belonging to a
specific class, that method should know what offset from the start of the object it
needs to find any data in the object. So here are some macros that defined offsets
for class Circle:

first, pointer to the method table for any overridden classes

methodsOffset = 0
#it### offsets for data in classes
Circle_RadiusOffset = 4 # bytes from start
Circle_NameOffset = 8 # bytes from start
4 bytes for method table pointer plus data
CircleCSIZE = 12

I also include here the size in bytes of the class. A compiler would store this
internally as it was working through the code; since we are not as good at trivia as
compilers, we can save ourselves a lot of effort by naming values like this.

On to the rest of the class. The area calculation is a little complicated because
of the use of flowing point. Because floating point values need so many bits, we
have to load constants from memory, so my data segment includes this:

consts: .float 3.141592653589793

And here is the code:

int area () {
return (int) (radius * radius * 3.141592653589793);
Circle_area: 1.s $f12, Circle_RadiusOffset($a0)

mul.s $£12,$£12,$f12

la $t0, consts # no FP immediates

1.s $£f0, 0($t0) # const: pi value

mul.s $£f12, $£f12, $£f0

l.s $£0, 16(3t0) # const: 0.5 to round up

add.s $f12, $£f12, $£f0 # round up

cvt.w.s $£0, $f12 # convert single to int (word)
mfcl $v0, $£0 # move from coprocessor 1 = FPU
jr $ra

Objects 167

char * name () {
Circle_name:

return name;
lw $v0, Circle_NameOffset($a0)
jr $ra

)

If the floating point aspect looks a little familiar, that’s because we have a similar
example on page 74 — go back to that example and compare with this code. You
should be able to relate the explanation there to this new version. What I want to
focus on here is calling a method via the method table. Here is an example:

printf ("area of %s = %d\n", disc->name (), disc->area());

move $a0, $s0 # set up call to Circle::name
lw $t0, methodsOffset($a0) # method table address
1w $t0, 4($t0) # get second method address
jalr $tO

now use the result returned in $vO to print the name
then go on to do likewise for the area

Assume to start with that an object of class Circle exists, and a pointer to it is
stored in $s0. Why do we copy that to $a0? Because a pointer to the current
object is always passed as the first parameter. What follows next requires a bit of
thought so pay close attention. First, we fetch the value stored in the object that
points to the method table. Then, we load the second item in the method table
(offset of 4), which is also an address. Finally, we use that address in the register
version of the jump and link instruction. What we have done is followed three
layers of pointer:

1. object pointer — takes us to where the object is stored, including its method
table pointer

2. method table pointer — takes us to where the method table is stored

3. method entry point — the correct item in the method table contains the
address where we need to start executing the function

This is a good moment to go back to figure 5.11 (page 163) to make sure you
understand both the big picture and the detail.

Completing the rest of the program including allocating the objects with my
simplified malloc is a good exercise.

168 CHAPTER 5. DATA STRUCTURES

% = not yet covered

IR IR IELLES
QERELLRIIIIREIIREIIIREKIR
3RERIILIIRRIRAIKIKS w m
RRIRKLRILRLRRLAKRLRLRES global to whole progra

global to compiled file 1

CRIIIHXITIXIICICARAIH IR K lobal to compiled file 2
SIS & P

constant pool

dynamically allocated data

Vv

free space

/\

stack

Figure 5.12: Data segment used so far: heap added

The take home message? Objects are an extension of structured
types, adding an implicit parameter that points to the current object
and a method table. Only the method table is a significantly harder
concept than we’ve seen before. Real object-oriented languages add more
complications; we have here a starting point for understanding the basics.

5.6 Putting it all Together

Compare figures 5.12 and 4.2 (page 81). All that we have not covered of the data
segment is regions that come into play if you combine more than one separately
compiled file. When we switch to C programming, it will become clearer why
we need that concept. If we have pieces of code compiled separately that have
different global variable regions, we have to have a protocol for adjusting the
global pointer ($gp register that works consistently — including saving it across
calls).

A program that puts such separately compiled files together is called a linker.
In addition to our own code, we often need to combine library code with our
program e.g. to do standard things like input and output. Libraries can be

Exercises 169

statically linked or dynamically linked. Statically-linked libraries become part
of the executable file, while dynamically linked libraries remain as separate files,
and are only linked as your program starts to run, with varying details on when
and how that happens. The main benefits of dynamic linking are:

* code file size — executable files can be a lot smaller if libraries are not linked
into them

* updates and bug fixes — provided changes to libraries do not change
interfaces to other code, they can be updated without changing executable
files

* shared runtime resources — an operating system can allow multiple pro-
grams to share the code of the same library (though the data used in an
invocation of the library for each program will be different)

Another complication with combining separately compiled code is that absolute
addresses may break if we have to shift code from the location where it was
originally designed to run. Addresses via registers that can be set up before hitting
your code (e.g., $gp and $sp) or relative addresses as in branch instructions are no
problem. For absolute addresses, as in jump instructions, it is necessary to have
a way to adjust them to relocate code. One tactic is to add additional information
to a code file that can be linked with others containing:

* external symbols — a list of names available to the rest of the program and
their relative location, including global variables and functions

* relocatable addresses — a list of locations that need to be adjusted when the
base address of the code changes

A code file that has to be linked before it can be run is an object file; a file that is
ready to run is an executable.

An object file may also contain information for a debugger, such as enough
information to reconstruct line numbers and relate machine instructions to the
HLL source code, names of variables and functions, their type, and where they
are located.

Exercises

1. For the MIPS assembler implementation of strlen on page 128:

170

CHAPTER 5. DATA STRUCTURES

(a) Add in a main program that calls the function and check that it returns
the expected value when you pass in a string (to keep it simple, create
one with the .asciiz directive).

(b) Instead of keeping a separate loop counter, you could just increment
a copy of the base address, and calculate the number of bytes before
returning with a subtraction. Recode to do this and check against my
version for a string of 10 characters (not counting the null terminator):

1. Is the static instruction count significantly different?

i1. Is the dynamic instruction count significantly different?

. For the MIPS assembler implementation of arraymax:

(a) change the main program (page 133) so that it allocates enough space
on the main program’s stack frame for the array, and copies the initial
values from the data segment to this array

(b) adjust the function call in the main program to use the variable you

created for the array.

Implement a minimal main program that reads in an integer value to test the
switch code of page 141, with these variations:
(a) Make the smallest case label -1 and check that the indexing still works.
(b) Put a loop around the code terminating on a value of -10 to check that

it works repeatedly.

In figure 5.5a, why does the same value appear in two locations in the
dispatch table?

. Implement my minimal malloc and free on pages 146-148, and test them

in a simple main program. Single-step in SPIM to make sure you understand
how they work.

. Rewrite the diposeall function on page 152 using a loop instead of

recursion. Don’t worry if some of your C is a bit inexact — the point is
to get a feel for whether the recursive function really is simpler.

. You have read in a value representing an array size N > 1 and this value is

in register $s0. You have also read in a value representing a position in the
array, 0 <i < N into register $s1. For each of the following, write C code
(approximate syntax) and the MIPS assembly language to implement it:

Exercises 171

8.

10.

1.

12.

13.

(a) allocate space for N integers using malloc and save the pointer
returned by malloc in register $s2

(b) put the number 42 into the ith location (remember, i is stored in $s1)

(c) write a for loop that goes through each element of the array (assuming
it has been initialised) and prints every non-zero element followed by a
line break using the PRINT_INT and the PRINT_STRING system calls.

In figure 5.10b, why is there a region labelled with addresses 0x10040010
to 0x1004001f all containing only zeroes? Hint: think what my minimal

malloc does when you ask for an amount smaller than its default allocation
block of 32 bytes.

. Fill in the missing details of the list test program of pages 150-160. Include

the given minimal malloc from pages 146-148.

You have a data structure that looks like this:

struct {
int age;
char * name;

+s

If name is initialised to point to a null-terminated array of characters (string),
and a variable of the given structured type is stored in the memory location
given in register $t0, write MIPS code to find the length of the string name.

Complete the program of section 5.5, including the missing classes and
main program.

Implement an array of objects of the classes used in section 5.5. The array
should contain pointers to objects, and the pointers should be either Circle
or Rectangle classes. Use a simple test program with a for loop that prints
out the name and area of each object.

Does a debugger need a table relating every machine instruction to a source
code line? Explain.

6 Performance

OMPUTER PERFORMANCE DEPENDS LARGELY ON SOFTWARE. Nonethe-

C less understanding the hardware is an important aspect of overall system

performance. In this chapter, I look at some of the lower-level issues in

system design, then step back from detail and look at how the system as a whole

fits together and how the various components contribute to performance — not only
speed, but other factors that users care about like cost and energy footprint.

The focus here is on hardware-related performance but that does not mean the
software layer is unimportant. Understanding the hardware layer may give you
a 10-15% improvement and occasionally much more. Understanding algorithm
analysis can make a difference between a practical solution and a program that
takes too long to run to be useful. In algorithm analysis, we are interested in what
governs the rate of growth of run time as problem size n grows. If a particular
program takes time proportional to 10 and another solution to the same problem
takes time proportional to 1000nlog, n, the first solution will look good for small

4.50E+07
4.00E+07
3.50E+07
3.00E+07
2.50E+07

time

2.00E+07 8

o
1.50E+07 o\
1.00E+07

5.00E+06 /

0.00E+00
0 500 1000 1500 2000 2500
n

Figure 6.1: The benefits of a better algorithm

172

More at once 173

n but the second will look a lot better for larger values of n. Figure 6.1 illustrates
how the nlogn algorithm wins for big enough n.

We divide algorithms into complexity classes, based on the biggest term in the
formula describing the growth in execution time as problem size, N, increases.
We mostly look at time complexity; if a problem requires extra memory that grows
as a function of N, we also consider space complexity.

It may be the case that a more complicated algorithm’s run time grows slower
as n increases, at the cost of not being as fast as a simple algorithm for small data.
The example of figure 6.1 illustrates that point, with the nlog,n example less
competitive for small n. This situation arises because a more complex algorithm
may have bigger overheads such as setting up complicated data structures or
recursion. Even with much bigger overheads, the more efficient algorithm comes
out ahead for large enough sizes of n.

Algorithm analysis then is an important tool in performance efficiency — so
though I don’t treat the subject here, you should not take the kind of efficiency I
address as the whole story. A good algorithms and data structures background is
an essential companion to this material.

To start with I look at the way basic instruction processing can be sped up with
a pipeline, and why a simple instruction set design like that of MIPS simplifies
pipeline implementation. I explain how speed can be gained more generally by
doing more in parallel, and different modes of parallelism hardware and software
can support. I also cover some limits on performance improvement from doing
more in parallel. I take a closer look at how the memory hierarchy affects
performance. Finally, I take a brief look at energy efficiency.

6.1 More at once

Pipelines

A car factory takes 20 hours to make one car. Assuming the factory works night
shifts with minimal downtime, the absolute best it can do in a (non-leap) year of
8760 hours is build 438 cars. So how do car factories churn out cars in hundreds
of thousands, even millions? The answer is by dividing the task into small parts,
and having cars at many stages of construction through the plant. If, for example,
you break the task of building the car into 1000 separate jobs, each taking the
same time, your factory can build over 400,000 cars per year. One car still takes
20 hours, but every ﬁ of an hour (3.6s), another car pops off the production

174 CHAPTER 6. PERFORMANCE

time
clock

ah]
s [
sp L. |
s [
5 Ydone
6]

(a) 4 stages with timing

Instruction Decode Execute

Instruction Fetch Register Fetch Address Calc. Memory Access Write Back
IF ID EX MEM WB
— — ___ Next PC —
z Next SEQ PC Next SEQ PC
§
RS1
—
RS2 Branch
Register taken
__,] File
—
=
i S 2 g
5] o < =
PC Ll = E 2 5
A il @ Imm E N

WB Data

(b) more detail: 5 stages

Figure 6.2: The pipeline concept

line.

The same basic principle applies to speeding up processing computer instruc-
tions. Instead of the hardware processing each instruction to completion before
starting the next one, instruction processing is divided into stages, much like the
way a car factory divides the job down into small equal-sized parts. Processing
instructions in stages is called a pipeline. If you have an N-stage pipeline, the
biggest speedup you can achieve is N (divide execution time by N) though in
practice you lose time to passing information between stages and, as we will see
shortly, instructions that change the order of execution.

Speedup is a measure of an improvement and is defined as
t
speedup = “before (6.1)
lq fter

where fp, fore 18 the time taken before the improvement and 7,7, is the time taken

More at once 175

after the improvement. So a big number is good, and a speedup < 1 means your
“improvement” made things worse.

Assuming we have the ideal case (so we need only take into account the
dynamic instruction count), what is the speedup if an instruction takes 5 time
units, the overheads between stages take 0.2 time units, and we have 4 stages?
For this sort of calculation, we do not take into account the first few and last few
instructions when the pipeline is not full, since that is a tiny correction for any
nontrivial program run. Each stage, if we assume they divide evenly, takes 1.25
time units. We need to add the overhead between each stage, which happens 3
times for 4 stages, so one instruction takes 1.25 x4 4 0.2 x 3 = 5.6 time units to
run to completion. Since there are 4 stages, the average time per instruction is
5.6 +4 = 1.4 time units. So the speedup is 1% ~ 3.6.

Splitting an instruction into exactly equal stages is not always possible. The
final choice of stage length has to be long enough to fit the longest logic path of
any one stage, since all stages have to fit into the same amount of time to achieve
simultaneous execution of different instructions at different stages. For example,
if one of the stages needs 20% more time than the others after we do our best
effort at splitting evenly, we have to adjust our calculation by adding 20% to the
time for every stage. Keeping with the same example: 1.25 x 1.2 = 1.5 time units
per stage. That changes our calculation to 1.5 x 44 0.2 X 3 = 6.6 time units for
an instruction to clear the pipeline, with an average of 6.6/4 = 1.65 time units per
instruction for a speedup of 1% ~ 3.0.

Timing of a pipeline is illustrated in figure 6.2a. In a simple design, at each
clock tick, an instruction advances to another stage and another instruction starts.
The illustrated pipeline has 4 stages. As marked in the illustration, instruction
5 starts just as instruction 1 completes (“1 done”). Earlier ARM designs had
3 stages, and more recent designs 13 stages. Intel’s Pentium 4 had a 31-stage
pipeline though more recent designs have fewer stages. Figure 6.2b illustrates a
bit more detail of what can happen at each stage of a 5-stage pipeline', with an
architecture like MIPS.

It is instructive to relate the 5-stage pipeline diagram to the three MIPS integer
instruction formats:

1. The instruction fetch (IF) stage is the same for all instructions. The PC
register is incremented by 4 (the word length) and the next instruction
fetched. The diagram shows the increment happening after the address is

'Image souce http://en.wikipedia.org/wiki/MIPS_architecture

http://en.wikipedia.org/wiki/MIPS_architecture

176 CHAPTER 6. PERFORMANCE

used, but it can happen in either order, as long as the address in the PC is
correct at the time memory is addressed.

2. The next stage, instruction decode and register fetch (ID), is more interest-
ing because it shows a range of different operations. One option is setting
up access to two registers, the source operands for an R-format instruction.
Another is sign-extending an immediate operand. If you go back to page 50
(figure 3.1), you will see that there is no problem with this as the two source
registers (rs and rt) are encoded using different bits than the immediate
operand. Nonetheless, the immediate operand uses bits that could be used
for a shift or for function bits in some R instructions. A J-format instruction
needs to use the same bits in a very different way, to set up an absolute
address. All these competing uses of the same bits can be processed at
once, and the unwanted variants discarded once the decode is complete.

3. Next is the execute (EX) stage including calculating addresses for instruc-
tions using offsets and deciding if a branch is taken. Not all logic paths are
active at this stage since the instruction decode will inform the next stage
which variations actually apply.

4. The memory access (MEM) stage is only used in a load instruction, to access
memory contents.

5. The write back (WB) stage returns any result to the destination register
(including an ALU operation or the result of a load).

Entering the execute stage allocates resources that are hard to deallocate as well
as creating results that need to be stored, so that is the point where the CPU has
really committed to an instruction. That transition is called instruction issue.
Branch instructions present a special problem because the pipeline as illus-
trated only knows if a branch is taken by the end of the third stage. That means
two more instructions will be in the pipeline and the time put into them is wasted
if the branch condition is true. You can reduce that penalty by pushing the check
for the branch condition earlier, into the ID stage (by extra logic that fetches the
relevant register contents ahead of knowing it’s needed), as illustrated in figure
6.3. But you can’t actually make a decision until you have decoded the opcode,
so you cannot improve the situation beyond one potential wasted instruction.
Remember the MIPS branch delay slot (page 101)? This is one of the reasons
the MIPS designers implemented that. A reminder: the instruction immediately

More at once 177

time > time >
clock clock

m wasted
| next; |

suononJsul
suononJsul

] 2]

(a) outcome in EX (b) outcome known in ID

Figure 6.3: Timing of determining branch outcome

after a branch is always executed. If you can’t find an instruction that you want
executed whatever the branch outcome, you put a nop in the delay slot. SPIM
does not (by default; you can turn this feature on) implement delayed branching,
so we don’t need to do this in our programs. Remember how MIPS has very few
real (not pseudo) branch instructions? A desire to decide the branch outcome
early by keeping branch conditions simple is behind that design choice. An
extra instruction is not a huge penalty compared with having to decide the branch
outcome later.

Another way of limiting speed lost to branching is to add hardware support
for predicting branches, including predicting whether the branch will be taken or
not, and predicting the branch target (the address it jumps to if taken). Branch
prediction becomes a more serious design concern with more aggressive pipelines
than the 5-stage pipeline illustrated here.

Aside from branching and delays in passing information between stages, this
5-stage pipeline also has the inefficiency of a stage (MEM) that is not used for
most instructions, so we should expect a speedup of significantly less than 5 over
a non-pipelined machine.

There are various other factors that can stall a pipeline, including waiting
for memory accesses (particularly the lower levels of the hierarchy), and an
instruction needing a result from a previous instruction that isn’t ready in time.

More aggressive pipelines include variations like much deeper pipelines (more
stages), the ability to issue more than one instruction and the ability to reorder
instructions. A deeper pipeline increases the theoretical speedup at the cost of
many more instructions wasted with a mis-predicted branch. Issuing more than
one instruction increases parallelism by allowing more than one instruction to start

178 CHAPTER 6. PERFORMANCE

(and hence complete) per clock cycle. The gain here is limited by dependences
between instructions. If an instruction needs a result from a previous instruction,
it cannot be executed simultaneously — or even until the other instruction result is
available. Dynamic instruction reordering by the hardware partially addresses this
problem. Amazingly, most of these ideas go back to the 1960s, when Seymour
Cray, at the time working for a small computer company called Control Data, was
able to design a computer that was faster than the best the industry giants like IBM
could build [Thornton 1980, 2000]. Cray’s CDC 6600 design was eventually to
inspire the RISC movement when it became possible to implement his ideas on a
single chip.

Pipelining in all its forms attempts to exploit instruction-level parallelism
(ILP), opportunities to make instructions in a single stream go through the system
faster by finding instructions that can execute simultaneously.

Heads up: Understanding instruction-level parallelism in all its
complexity requires an advanced architecture course. Among other
things, executing instructions out of order presents interesting challenges.

More in Parallel

There are other ways of achieving parallel execution. Multicore designs replicate
the entire CPU. You can either use this feature by having separate programs run-
ning on each core, or by splitting a program into parts that can run independently,
at least for a while. Splitting a program up like this can be done in two different
ways:

* multiple processes — a process is the name we give to a program while it
is running. If you split a program into multiple processes, each one runs
independently in its own memory space, though the can share data in various
ways

* multiple threads — more like functions that can run in parallel. Threads share
the memory space of the program that launched them and can communicate
through global variables

Some CPUs have hardware support for threads, in the form of simultaneous
multithreading (SMT), known as hyperthreading on Intel designs. The idea starts
from the observation that a pipeline is not kept continuously busy. Aside from
delays for branches, there are much bigger delays arising from some causes like

More at once 179

10

5
9 031 2
: 5=
T
@5
Q
8. S=0.125
3
2 /
1
0
0 5 10 15 20

N

Figure 6.4: Amdahl's Law: lower sequential fraction S — more speedup

waiting for a slower part of memory. A machine with SMT support has a spare
set of registers for each extra hardware thread and whenever the CPU would
otherwise be idle, it switches to a new thread.

Graphics processing units (GPUs) have their own idiosyncratic models of
parallelism based on requirements of high-speed graphics, such as applying a
single operation to a large amount of data simultaneously. Some people use GPUs
for high-speed computation but they are hard to program for several reasons. GPU
use in this form is called General-purpose computing on graphics processing
units (GPGPU). A GPU’s model of parallelism is very different from standard
algorithmic thinking, they need their data in a special memory and they usually
need extensions to programming languages or specialist libraries to program.
GPGPU programmers sometimes learn the hard way of a variant of the speedup
formula (equation 6.1) that emphasises the sequential fraction, S, only after
putting a lot of effort into an impressive speedup of a portion of their code. This
variant is called Amdahl’s Law. Here is one formulation, given N X total available
parallelism:

N

speedup = SxN) +(1=3) (6.2)

The fraction S represents the fraction of the code that cannot be parallelised. If
S =0, you have ideal speedup of N. If § = 1, you have no speedup.

Figure 6.4 illustrates how a lower sequential fraction permits more speedup. A
GPU can have a theoretical speed gain for some calculations of 100x or more. But
you need to apply Amdahl’s Law to know what fraction of this gain will actually

180 CHAPTER 6. PERFORMANCE

translate to speedup. Let’s look at an example. You have a problem that takes
120s to run (2 minutes), and a portion of the code taking 100s to run can be sped
up by a factor of 200. The sequential faction S is % = é. What is the achieved
speedup? Apply Amdahl’s Law:

200

(3 x200)+(1—¢)
200

(2)+(2)

200

205

6
1200

205
6

speedup =

Q

If you do not do not understand Amdahl’s Law, you are liable to be disappointed
if you get into parallel programming, especially with devices like GPUs that have
high-speed modes that only apply in limited situations. In this example, even
though we can speed up most of the code — % of it — we only see a tiny fraction of
the speedup the GPU achieves.

Amdahl’s Law does not always apply. If the “sequential fraction” is in fact
a relatively fixed overhead that does not scale as problem size increases, a larger
version of the problem may be open to more parallelism. Also, there are situations
where finishing a task by a deadline is important, as with real-time systems, and
meeting the deadline is more important than overall speedup. Finally, there are
scenarios like graphics editors where the speed of a very specific computation is
important. If the program cannot complete a special effect with a delay tolerable
to the user, the feature may not be worth implementing.

In the past there were many weird and wonderful models of parallelism
support in hardware. Today, the mainstream is multicore designs and, for the
more adventurous, trying to make a GPU do something it wasn’t designed for.

Heads up: Amdahl’s Law is one of the most important things to
understand when you try to improve speed. Get it wrong, and you will
achieve a very impressive speedup of part of a system or part of your
code that will have little impact on overall speed.

Memory Hierarchy and Performance 181

6.2 Memory Hierarchy and Performance

Back on page 14, we talked about caches. How big are speed differences between
levels of the hierarchy? The top-level or L1 cache keeps up with the CPU.
In a simple 5-stage pipeline as depicted in figure 6.2b, accessing the L1 cache
takes one clock cycle at most, otherwise the pipeline would keep stalling for
cache accesses. Delays in accessing the L2 cache can vary from around 5 lost
clock cycles to 10 or more. The L3 cache takes even more time to access,
and accessing DRAM can cost hundreds of lost instructions, especially in an
aggressively pipelined machine with a high clock speed and the ability to have
multiple instructions simultaneously executing.

How then can we achieve reasonable performance? Why not run the CPU at
a lower clock speed if DRAM is so slow? We get reasonably close to the ideal
case of a memory as fast as the most expensive and as big as the least expensive
through the principle of locality. Programs do not access a wide range of memory
locations in a short time. Code tends to spend a lot of time in loops, and data
accesses tend to be to a small part of a data structure, before moving on to another
phase of computation. Locality divides into two kinds:

* temporal locality — if a location is accessed, it is likely to be accessed again
soon after

* spatial locality — if alocation is accessed, others near it in memory are likely
to be accessed soon after

These two concepts (illustrated in figure 6.5) allow a relatively small portion of the
memory to be fast, without slowing the whole system down too much. Temporal
locality means once we have a portion of memory in the top-level fastest part of
the hierarchy, we don’t incur the cost of fetching it again when we use it again,
usually soon after. Spatial locality implies that when we bring an item into faster
memory, we should bring in surrounding bytes because there is a high chance they
will be needed soon.

The way spatial locality is supported in caches is by organising a cache into
blocks, sometimes called lines, that are several words wide. A common size for a
cache block is 64 bytes, though there is some variation. Memory accesses that are
relatively close together get the best use of a cache; accesses randomly scattered
over memory could cause a significant loss of speed.

182 CHAPTER 6. PERFORMANCE

temporal locality spatial locality
same location again nearby locations accessed

|@4 | é | | |64
relatively random accesses
poor locality

Figure 6.5: Locality variations

Heads up: If you do not understand locality you can write code with
terrible performance. Any program that makes frequent trips to slower
parts of the memory hierarchy gets nowhere near the ideal of close to the
speed of the fastest level.

The final layer of the memory hierarchy is the paging device, in the past
usually a disk, though increasingly often solid-state drives (SSDs) are replacing
disks especially in portable devices. An SSD is usually made of flash, a kind
of RAM that does not lose its contents when power goes off, unlike DRAM,
which needs continual refreshing to stop its capacitors from losing their charge.
Although an SSD is faster than a disk, it only reduces the speed gap from millions
to thousands. So, in general, minimising use of the paging device is a good idea.
To give you ballpark figures, to do a transaction that in DRAM would take about
20ns (2 x 10~ 8s), a flash-based SSD would take 25us (2.5 x 1073s) and a disk
about 10ms (1x1072s) — with a lot of variation depending on how much you
are willing to spend. Compare this against a CPU with multiple cores and a
clock speed of 2.5GHz. That equates to a clock tick every 0.4ns. If you have
an aggressive pipeline and you on average execute 2 instructions per clock tick,
that means an average of one instruction per 0.2ns (2x 10719s) for each core. So
the speed gap between one core and the disk is a factor of about 5-million. If
multiple cores need the disk simultaneously, tens of million of instructions worth
of time could be lost.

How does knowing this help with programming for performance?

If you have a design choice in your program of how you organise data
accesses, doing as much as possible in one region of a large data structure before
moving on can make a big difference to performance. If you have very big data
structures that don’t fit in main memory, it is worth restructuring your problem so

Memory Hierarchy and Performance 183

you can work on a piece of it at a time.

Let’s quantify some of these effects. When a memory access is found in a
particularly layer of the hierarchy, it is called a hit; if its not, it is called a miss.
To keep it simple, let’s work with 2 layers of cache and ignore other causes of
slowdown like branch instructions. Here is a simple formula for the case where
we can estimate the total time as a multiple of clock cycles on the assumption that
the only cause of slowdown is cache misses. For each layer, there is a fraction of
hits (which are misses from the layer above that don’t go down to the next level),
and a time in clock cycles that includes handling the miss as well as completing
the instruction:

taverage = Jhits X TL1 + fr2hits X 112 + fDRAM X IDRAM (6.3)

Heads up: A real machine gets a lot more complicated than this because
it may allow other instructions to continue while waiting for a miss to a
lower level. This basic formula gives you a ballpark figure that is a useful
indication of how often you need hits in faster memory to get close to the
speed of that memory as opposed to the slower lower levels.

Let’s put in numbers to make this concrete. I take the fractions in all cases
as a fraction of all instructions, not taking into account whether the instruction
is accessing data or not. Assume we need one clock cycle (the average with
pipelining with no stalls from branches etc.) to complete an instruction in the
absence of misses from the L1 cache. If we have a miss from L1 but a hit in L2,
the instruction takes 10 cycles. If we miss from L2 and go to DRAM, it takes 200
cycles. We run a program and 1% of the instructions miss from L1 to L2, 0.1%
miss from L2 resulting in a DRAM access. What is the average time to execute
an instruction? We can work it out by multiplying the fraction of instructions for
each case by the time each case takes:

taverage = Jhits X 1+ fronits X 10+ fpram X 200
0.989 x 14+0.01 x 10+ 0.001 x 200
0.989+0.140.2

= 1.289

So it takes nearly 30% longer to execute a program under these conditions than
without misses.

184 CHAPTER 6. PERFORMANCE

There is a lot more to memory hierarchy than this, including the way the
operating system manages paging and hardware support for that. The operating
system also takes care of the long delays for disk access by finding other
work to fill the gap. A comprehensive understanding of memory hierarchy
and performance requires a study of both computer architecture and operating
systems. What I present here is only a start.

The take home message? The average memory speed formula is quite
obvious if you think about it. Try to recreate it with the book closed to
check if you understood.

6.3 Input and Output

Input and output (IO) is a large complex subject. It is important to performance
because it is the slowest part of the system (unless you count the human as part of
the system — but that’s about as fair as entering a battle of wits with an unarmed
opponent). Aside from disks and SSDs, which are relatively fast peripherals, there
are much slower devices like printers, keyboards and networks. Much of the
problem of bridging these large speed gaps is handled by the operating system.
At the hardware level, what is most interesting is how they interface.
Here are a few variations on how IO devices communicate with the CPU.

* direct memory access (DMA) — devices map to a range of addresses and
you write to them or read from them using that region of memory. Devices
using DMA access memory independently of the CPU and signal to the
CPU when they are done, relieving the CPU of managing memory accesses

» memory-mapped 10 — the CPU controls devices specifically by accessing
memory; unlike with DMA, the CPU is actively involved at all stages

* interrupt-driven 10 — 1O devices signal to the CPU that something has
happened, and an interrupt forces the CPU to handle the IO event

* polling — code has to check the status of IO devices periodically

All of these approaches have advantages and disadvantages. DMA allows a fast
device to dump a lot of information to RAM without CPU intervention, though
it may require special hardware support to do this. Memory-mapped 10 requires

Input and Output 185

more CPU intervention, but also allows the CPU more control, which may be
important if the operating system needs to manage contention for a resource. An
example of memory-mapped IO is the ability to map a disk file onto a range of
memory addresses. You can then access the file as if it was a data structure in
RAM, until you tell the operating system to flush it to disk. Interrupts allow the
CPU to ignore 10 devices completely until they demand attention at the cost of
complexity in handling IO, since an interrupt can happen at any time, and can
cause an arbitrary instruction to be stopped. Polling is a software approach that
requires periodic checking if a device needs attention and is only suitable for
devices that do not require a rapid response, otherwise the system would have to
spend too much time checking if the device needed attention (or make the device
wait longer than desirable).

Interrupts are the hardest to implement at the level of the CPU, since an
instruction that is interrupted has to be restarted, and aggressive pipelines further
complicate this since many instructions may be at various stages of completion
when an interrupt arrives. An interrupt generally stops the current instruction at
a well-defined point, then transfers control to the operating system at an entry
point defined for the interrupt type. An interrupt handler is often launched via a
Jjump table stored in a region called the interrupt vector, and must ideally execute
quickly then return control to the stalled program or operating system, depending
on the type of interrupt, and restore any registers it altered. Interrupt handlers
must execute fast to avoid problems arising from multiple interrupts of the same
type piling up. A jump table is very similar to a dispatch table (see page 139),
except it stores actual jump instructions, rather than addresses to use in a jump
instruction. Some machines are set up with gaps between jump table entries. This
allows greater flexibility: if the interrupt can be handled in a small number of
instructions, it can be handled directly in the jump table.

Since a deeper understanding of the issues requires going into operating
systems, I will not go much further into performance issues relating to 10. The
important thing to understand is the huge differences in scale of times operations
take, making IO important to overall system performance — remember Amdahl’s
Law — that IO be handled effectively. If it is not, speeding up the CPU or memory
may not have the effect you expect.

186 CHAPTER 6. PERFORMANCE

The take home message? The OS plays a major role in hiding the latency
of slower parts of the system, but you do need to understand just how
much speed varies between the CPU and 10 devices so you do not create
software with poor performance.

6.4 Energy and mobility

A growing fraction of conventional computers are mobile — notebooks, ultrabooks,
tablets running a desktop OS, for example. In addition to this, there is a growing
market for smart phones and tablets designed from scratch as tablets, smart MP3
players and gadgets offering single services like GPS. What all of these have in
common is that minimal energy use is a first-class performance goal, rather than a
secondary factor. In a desktop computer, using less energy aids in cutting the cost
of the power supply, reducing heat to dissipate and making compact enclosures
possible. Nonetheless, there is still a market for hot fast machines for those for
whom speed is more important than style.

In larger-scale systems, energy use is also a concern. Warehouse-scale
computing is implemented by companies like Google, Amazon, Apple, Microsoft
and others who offer or internally use large-scale services spread out over many
computers. Hundreds of conventional computers are usually mounted in racks in
a warehouse-sized building [Barroso and Holzle 2009], and removing heat from
the building is a significant cost, as is maintaining reliable power.

For all of these reasons, emphasis on raw speed in recent years has to some
extent been tempered by design for low energy footprint. Some of the factors in
design for low energy include:

* less emphasis on higher clock speed
* more cores rather than more aggressive ILP

There are other factors as well driving these trends, for example, limits to how
much ILP exists in common programs. More cores that can theoretically deliver
the same peak throughput as an aggressive pipeline provide a more flexible
platform for energy management. A battery-powered device in power-save mode
can shut down cores not absolutely needed; the same is true of a warehouse of
computers. Higher clock speed to some extent has become a less significant goal
because DRAM speeds have not kept up.

Wrap-up 187

Intel’s designs, with their relatively complex instructions, are harder to design
for low energy use. As with everything else, Intel addresses this problem with
sophisticated engineering — but highly mobile and very low-cost devices on the
whole do better with RISC architectures. ARM was an early player in this market
and hence is in wide use in mobile devices — phones from entry-level to high
end, as well as the majority of tablet devices (both Apple and Samsung use ARM
designs). MIPS processors are more widely used in embedded applications such
as network switches, but also have some following in the phone market.

One of the reasons that SSDs are starting to gain traction, despite being almost
10 times the price of equivalent disk space, is their low energy footprint. To some
extent, their lower capacity is offset by the development of cloud-based storage
services, where you keep your information synchronised between your various
devices and a server. The total data you have need not all be on one device.

The one terrain where the hot and fast battle is still being fought is with GPUs,
where gaming drives pressures to make GPUs faster. Even in that area, mobile and
lower-cost desktop systems have lower-energy options available. At some point,
GPUs will hit the performance level where improvements are not perceptible to
humans and, at that stage, energy concerns will become an increasing driver.

The take home message? Energy is a first-class design concern, not
a secondary issue. For mobile devices, it makes the difference between
acceptable performance for a given battery life and a device that is no
useful. For larger-scaled devices, energy use and heat dissipation are
major issues.

6.5 Wrap-up

Performance is a huge area, a small fraction of which I touch on here. There are
many other dimensions to performance: anything where you can weigh up cost
versus outcomes. The desired outcome can be time to complete a task, reliability,
energy use, even fashion (ask yourself what kind of smart engineering makes it
possible for Apple to make such skinny sleek boxes).

Raw speed was the major concern in the early years of computing, because
there wasn’t a lot of it. Today, with commodity computers running several cores
at clock speeds of several GHz, an increasing fraction of tasks we are interested

188 CHAPTER 6. PERFORMANCE

in do not actually need a faster computer’. Consequently, performance concerns
are swinging increasingly away from pure speed concerns. Even so, there remain
many areas where speed is an issue. Highly scalable computing of the kind offered
by warehouse-scale service providers (the name is a bit misleading: many of these
operations span multiple warehouses) still has speed as a major concern — not only
for processing but also for networking, an area too large and complex to cover
here.

Understanding the hardware underneath is a useful step in understanding how
to program for performance — but does not absolve you of the need to understand
the software side of performance as well, hence the brief foray into algorithms at
the start of the chapter. If you can learn about operating systems and networks as
well, you will have a good start in understanding performance.

Exercises

1. Assume it takes 0.1 time units to pass information from one pipeline stage
to another, and that the pipeline never stalls. Also assume an instruction
with no pipelining takes 10 time units, and can be evenly divided between
stages for each part of this question.

(a) For a 5-stage pipeline, what is the ideal speedup taking into account
delays between each stage?

(b) For a 10-stage pipeline, what is the ideal speedup taking into account
delays between each stage?

(c) Would you make the pipeline much deeper? Explain.

2. Redo the previous question now assuming that one of the pipeline stages
takes twice as long as the ideal case before adding overheads.

3. A new GPU has a computation mode that speeds up 1000x compared with
the same operations on a conventional CPU. Use Amdahl’s Law (equation
6.2) where calculations are required:

(a) You can speed up 10% of the code. What is the total speedup?

(b) You can in another case speed up 20% of the code. What is the total
speedup now?

%It remains to be seen how big and fast a computer is needed to run a word processor.

Exercises 189

(¢) You try the experiment on an older model that only speeds up 100 x
compared with a conventional CPU. What is the total speedup in this
case?

(d) Comment in general on how Amdahl’s Law is useful in avoiding
disappointments.

4. You are working on a graphics editor and are implementing a deblurring
function that has to finish within 0.5s otherwise users will find it annoying
and not use it. Switching some of the calculations to a GPU will reduce the
run time from 1s to 0.4s. The GPU has a theoretical maximum speedup of
100x.

(a) What is the observed speedup?

(b) How could you work out the sequential fraction given the observed
speedup (hint: a little algebra. ..)?

(c) Does Amdahl’s Law apply to deciding whether to go with this
improvement? Explain.

5. Use the memory hierarchy average time formula in equation 6.3. Assume
the CPU on average completes 2 instructions per clock cycle, misses to L2
0.2% of the time, and misses to DRAM 0.05% of the time. Time to access
L1 is 0.5 cycles (averaged over 2 instructions simultaneously executing);
L2: 10 cycles, DRAM: 200.

(a) What is the average time in clock cycles per instruction?
(b) How much slower is this than the ideal case with no memory stalls?

(c) What does this example tell you about the sensitivity of aggressive
pipelines to memory hierarchy performance?

6. You need to implement interrupt handling in a new operating system. All
you know to start with is that each interrupt results in a jump to a different
machine word address in sequential order, i.e., interrupt O causes control
to go to address A, interrupt 1 jumps to address A +4 and so on. These
sequential locations are the interrupt vector.

(a) What instruction would you place at each location in the interrupt
vector?

190 CHAPTER 6. PERFORMANCE

(b) What information do you need to go back to the instruction that should
restart after the interrupt?

(c) Which registers are you free to use without restoring them in your

interrupt handler? Why?

7. You are designing a new smart phone and have complete freedom on the
hardware and software platform.
(a) Would you choose an Intel processor or a RISC design? Why?

(b) Would you use an aggressive GPU such as on a gaming machine?
Why?

(c) Would you use a disk or an SSD for local storage? Why?

(d) Now, reconsider your answers if you are shifted to a new project to

design a warehouse-scale system.

8. You are called on to design the specification for a desktop computer to be
used in remote villages without reliable electricity. You can use a battery
to power the computing as a backup, but the cost of the battery is a major
concern.

(a) What factors would you consider in the design?

(b) Would you just use a standard desktop design? Justify your answer.

..to C

191

7 Structure of a C Program

E HAVE ALREADY SEEN a fair amount of C as “pseudocode’ for illustrat-

s)s/ ing how to create assembly language programs. We turn now to treating

C as a real language, and using assembly language as pseudocode to

explain how C features work. We have already covered a good fraction of the

major language features. What is left is to fill in the missing parts, look at how a

program fits together out of parts, programming tools we can use and techniques
for programming in a language like C.

As with the first part of the book, the goal here is to provide a bridge between
the low-level machine and higher-level languages. C is a popular language, but
only one of many languages you may need to use. Should you ever need to use C
intensively, the material here will be a good start.

Since C was originally designed to implement the UNIX operating system,
development tools for C have a long history on UNIX and related platforms.
Today, the UNIX world has split many different ways with alternative kernels,
many of which are free. The Linux project is one example, as is FreeBSD. Solaris
is one of the more widely used commercial versions, and the Mac OS is built on
top of a free UNIX-derived kernel. Again in the spirit of showing how things
work at a relatively low level, I introduce programming tools that go with UNIX-
style development. An integrated development environment (IDE) does much of
this automatically, at the cost of reducing your deeper understanding of what it is
doing. Once you understand lower-level tools, you will be less likely to run into
misconceptions about what an IDE is doing, and you will also be in a position to
design your own programming tools. UNIX-style development is still in wide use
despite the proliferation of IDEs because it offers more control and makes it easy
(once you understand the concepts) to integrate new tools and languages,

In this chapter, I fill some of the gaps, but not all, since it’s easier to take in
detail while working through examples. I go through a minimal example in some
detail, then itemise types of program files and what goes into them. I then look at

192

Minimal C Program 193

some of the most useful program constructs in C, most of which we have already
seen as “pseudocode”. For those program constructs previously covered, our
assembly language templates define what they do; all that remains is formalising
their syntax — the rules about how you write them in C. Finally, I fill in one of the
remaining gaps of the SPIM world: what is passed in to the main program when
it is called as a function from SPIM startup code and how that relates to running a
program on a real machine.

Although this chapter is mostly theoretical — presenting material without many
examples — you should relate it to what you know about assembly language
programming. That should help to put the new facts into context.

7.1 Minimal C Program

To start with, let’s look at a simple program that only does some minimal output.
The tradition for such programs is to display “hello world” then exit. That’s
kind of boring, so I will translate the message to isiZulu, the language I grew up
with: “sanibonani”. That is a plural version of hello, as you would address a group
of people.

#include <stdio.h>

// minimal main program that says hello all in isiZulu

int main O {

printf("sanibonani\n");

3

Let’s take this a line at a time. First, we bring in declarations of standard input and
output functions like printf. I will explain shortly what #include actually does.
Then there’s a comment explaining what the program does. C has another notation
for comments, in which everything enclosed in “/*” and “*/” is a comment. This
latter comment format is useful for multiline comments since you do not need a
comment symbol on every line. We will see an example when we develop longer
programs.

Then we start the main program which, as you have seen from the way SPIM
invokes it, is a function. What I didn’t mention yet is that function main is meant
to return a value of type int. That is useful if you run a program off the command
line, meaning something that looks like a plain-text terminal. In operating systems
that have that option, you can find out what value a program returned. We will not
use that feature, but you may need to know about it. You can safely ignore this
and not return a value from main.

194 CHAPTER 7. STRUCTURE OF A C PROGRAM

Next is the symbols “{” and “}” that enclose the body of the function — the
statements that are executed if it is called. There is no language-defined layout.
If you are used to programming in Python where layout is strictly enforced, you
need to be a little careful in C, as layout is purely for the human reader. You have
to use “{” and “}” in some situations where in Python layout alone would convey
meaning.

A statement in C is a command that ends with a ““;”. There are many different
kinds of statement, and we have encountered a significant fraction already. The
example we have here is a call of “printf”, in other words the actual statement
type is a function call. When we call a function as a statement, we do not use any
value it returns. If you do need to use the value a function returns, you call it as
part of an expression. An expression in C is anything that produces a value. It can
be a function call or a piece of arithmetic, as well as few other variations. We will
see more expression types later.

Here, the only expression (something producing a value) is a constant value,
the string passed to printf. That string is in the format we called “ASCIIZ”
before: it is an array of characters each a byte long, with an extra byte containing
a null character (stored as a zero). The final character in the quotes is typed as
a two-character sequence, ‘“\n” but is actually only one character, a line break
character. You can find more special ASCII characters in table A.2 (page 289).

The take home message? Statements are actions; expression produce
results.

7.2 Program Files

A detail of our picture of memory usage we haven’t covered yet is global variables
from multiple files. As we will see as we get into bigger examples, C programs
can be built up out of multiple files to form a single executable file or executable
— the code we can actually run. These files are in several categories:

* source files — files containing code that can compile to an object file

* header files — files that have to be combined with source files to produce an
object file

* object files — files that contain machine code that needs to be linked with
other machine code to be executable

Program Files 195

stdio.h

// printf function type
w printf(..)

// other IO-related types

hello.c
C preprocessor #include <stdio.h> .
int main () {

printf("sanibonani\n");

}

C compiler

// printf function type

w printf(..)

// other IO-related types

int main () {
printf("sanibonani\n");

}

Figure 7.1: C preprocessor and compiler

* libraries — a specialised form of object file designed for ease of linking,
which may include tricks like sharing the same library code (a shared
library) with other executables

All of this is to create an executable file, the program you actually run.

As a general rule, a header file should not contain anything that exists at run
time. It can contain things that specify types, but not things like function bodies
or variables. The reason for this is the very primitive mechanism by which header
files are used: they are treated as if their contents was typed into the file that
includes them. We will see in more detail why this will be a problem when we
look at how names are visible across different files.

In our minimal C program, the include line brings in a system header,
stdio.h. For that reason, we write the include line with angle brackets:

#include <stdio.h>

That means the file “stdio.h” will be looked for in a standard system-defined
location. Figure 7.1 illustrates how these separate components are stitched
together. A program called the C preprocessor combines all of the contents of
the header file and the source file into a single file and the C compiler sees all
this as if it was typed in as a single file. The preprocessor does a range of text
substitution tasks, not only bringing in header files. We will see later that it has
a macro mechanism similar to that of the SPIM assembler, though with more
advanced features.

196 CHAPTER 7. STRUCTURE OF A C PROGRAM

When I explain creating a program that is split into several files, you will
encounter another notation for including a header file. In that situation, you put the
header file name in double-quotes instead of angle brackets to tell the preprocessor
to look in your part of the file system, not where the system header files are stored.

The take home message? Header files are substituted directly into
source files as if copied and pasted in by an editor. File names surrounded
by “<” and “>” are found by the preprocessor in a system-defined

wy»

location. File names surrounded by are found by the preprocessor

relative to your source file.

7.3 Program File Contents

What goes into one program file? Let’s start with source files, then go to headers.
There are two kinds of C construct at the top level of a program:

* declarations — a declaration tells the compiler about type information: how
big something is, what it can be used for, and so on, but does not create
anything that exists at run time

* definitions — a definition tells the compiler to create something that will exist
at run time

The main function, for example, will exist at run time, so it is a definition. If you
create any variables, you are defining them. On the other hand, if you name a type
using typedef as in the example on page 150, we are only telling the compiler
what something would look like, not actually creating one, so that is a declaration.
Even if you do not use the word typedef, by writing out a struct as we did with
the same example, we are only saying what one looks like, not creating one that
will exist at run time, so that is also a declaration.

This “declare” vs. “define” distinction is important because, as a general rule,
we should not put definitions in a header file for reasons we will see later.

Heads up: Remember the “declare” vs. “define” distinction as
something to understand — if you get it wrong you can make major
mistakes. Think back to assembly language: anything you define will exist
in memory at run time: code or a variable. In assembly language, we do
not have things like type names, so most things in our assembly code does
exist at run time.

Program File Contents 197

In addition to functions, the other thing you can define is variables. We have
seen examples so far of programs with variables declared in a function, and the
assembly-language techniques for finding global variables (using the $gp register
on a MIPS machine). How do we define global variables in a C program? Simple.
Put the type name followed by one or more variable names separated by commas
outside any function. For example:

int maxN = 10000;

int main () {
int N;
// do something to read in N
if (N > maxN)
printf ("N = %d > maximum %d\n", N, maxN);
}

In this example, N is a variable local to the main function, and cannot be seen
anywhere else in the program, while maxN is a global variable, and can be used
anywhere in the program (unless it is obscured by a more local name). Note also
that you can initialise a variable where you define it, though the rules for this are
limiting. You can only use a value that the compiler can calculate. You cannot,
for example initialise a variable in its definition with a function call, such as:

int maxN = setMax (); // COMPILE ERROR

Curly brackets (also called braces) have several purposes in C. In the examples
here, they group statements in a function. We have also seen them in structured
types (struct types: §5.3). They also are used to group statements in a context
where one statement is required. For example, an if statement has one statement
in its true branch and one statement in its false branch. We can group several
statements to form a compound statement by enclosing them in curly brackets
like this:

if (a < max) {
max = a;
maxIndex = 1i;

}

In this example, the two statements updating variables max and maxI are grouped
as a single compound statement. We have had this notation before without
explanation, since I was using C as pseudocode.

198 CHAPTER 7. STRUCTURE OF A C PROGRAM

$gp | 42 (a) $gp | 42 (a) $gp =P 21 (a)
21 (b 21 (b) 42 (b
$sp >
$sp > 42 (temp) ssp > 42
stack stack stack
if (a > b) { int temp = a; a =b; b = temp; }

Figure 7.2: Stack and local variable

Another use of curly brackets is to introduce local variables that cease to exist
as soon as you exit the closing bracket. For example, if we want ensure that a <
b, and swap them if this is not the case:

if (a > b) {
int temp = a;
a = b;
b = temp;

}

In this example, the variable temp only exists between the pair of curly brackets.
If there is another name temp defined elsewhere, while we are in this code, that
name temporarily disappears from view.

How would we implement this in machine code?

A local variable like this one is no different than a local variable in a function
except its lifetime is shorter than that of the function. So the obvious solution here
is to create space for it on the top of the stack, and cut the stack back once the
variable’s lifetime ends. Figure 7.2 illustrates how the stack changes as we cross
into the part of code containing the local variable. After the opening {, space on
the stack is created for the variable temp. While we are still in the compound
statement, the variable continues to exist. As soon as we cross the closing },
the stack is cut back. I illustrate the example with all the variables in memory.
With a small example, you (or the compiler) would keep everything in registers.
However, if you called another function while the local variable was still live, you
would have to spill it to the stack as illustrated. I assume the variables a and b are
global, and hence are accessed via an offset from the $gp register. Also note that
the value of the variable is still on the stack until something overwrites it; you just
cannot reach it any more via the variable temp.

Major Constructs

199

function-definition

—simple-type function-name @parameters@)
G compound-statement—s

parameters

{ type param—nam?-.
M
UJ

compound-statement

——({}4>state-def-dec ;)

state-def-dec Staf?f_T?ent
definition
statement declaration
expression

function-call
if-statement
switch-statement

loop-statement
break-statement
continue-statement
return-statement

Figure 7.3: Syntax of major C features

The take home message? Header files generally can only contain

declarations, not definitions. Make sure you have these concepts straight.

7.4 Major Constructs

We have seen a lot of features of C informally as a kind of pseudocode to describe

how to program in MIPS assembly language. It’s time we formalised this a bit
more. A programming language is defined by two types or rules: syntax and

semantics. Syntax rules you can think of as the grammar rules of the language;
semantics rules tell you what constructs do and sometimes whether a particular

code combination that obeys the syntax rules is legal.

Rules

Syntax rules can be written many different ways. You can write them like rules in
a grammar. For example, in English, a sentence can have various forms including

200 CHAPTER 7. STRUCTURE OF A C PROGRAM

subject, verb, object. A notation to describe this is

sentence — sub ject verb ob ject
subject — mnoun|adjective noun

object — mnoun|adjective noun (7.1)

This notation distinguishes symbols that are further expanded (nonterminals) and
have to have rules to do so from those that aren’t (terminals). Parts of speech like
“noun” represent a word in a dictionary not a grammar rule. A rule such as the
first one above says to create a sentence, you need a subject followed by a verb
followed by an object. In this rule, “subject” and “object” are names of further
rules (nonterminals) you have to expand to get a sentence. Rules of this kind are
called a grammar. Each rule is called a production, and a grammar is a collection
of productions with a starting point (in this example the starting point is sentence).

The main difference between rules for languages we speak (natural languages)
and artificial languages created for programming computers (formal languages) is
that natural languages can have much less precise rules because computers are not
capable of guessing meaning as humans do.

Here, I use diagrams that illustrate allowed combinations of symbols. These
diagrams express the same information as a grammar, but are easier to read. Figure
7.3 illustrates the notation for the major features of a C program. Any text in a box
should appear in the code; names not in a box need to be expanded further. For
example, a compound statement (“compound-statement”) starts with { and ends
with }, but the items inside must be defined further. If you follow the arrows, the
simplest compound statement is:

{
}

which is rather boring — so it will usually contain one or more of the other items,
each ending with a semicolon. What are those items? In the syntax diagram, the
item not in a box is “state-def-dec”. If you go down to where that is defined,
the diagram branches three ways into a statement, a definition or a declaration.
We have some further detail of what a statement is, but nothing that takes us to
anything in boxes, so we don’t yet have anything fully defined.

Figure 7.4 contains top-level definitions of major C statement types. It does
not include expressions, though an expression can appear wherever a statement is

Major Constructs 201

function-call

(

if-statement

— (i) ((Jexpression())statement tatement

switch-statement

—>(switch)((Jint-expression () @@—»
loop-statement for-loop

while-loop

do-while

break-statement

—orea)—

continue-statement

return-statement
expression

Figure 7.4: Top-level syntax of C statements — expressions are also possible to
use as statements though the result they produce in that case is thrown away;
an assignment is also an expression, since it has the value assigned.

required. An expression is anything that computes a value. Meaningful examples
of using expressions as statements include function calls and assignments.
However, most expression types are not useful to use as a statement. When an
expression is evaluated as a statement, its result is not used, so it only really makes
sense to use an expression in that way if it changes something like the value of a
variable external to the statement or does input or output.

In my definition of statement, I include function calls though a function call
can be an expression. However a function call can return void in which case it
cannot be used as an expression. An assignment is more clearly an expression,
even if you normally throw its final value away (not a waste, since this is the value
stored in the variable). Making an assignment an expression makes it possible to
write:

where the variable i gets the value assigned to j without a special syntax rule
allowing cascaded assignments.

Figure 7.3 includes expression for completeness — note that the definition of
expression includes function-call though we should really specify that a void
function is not an expression.

Most of the statement types are still not fully defined. For example, a switch
consists of the text “switch”, then “(” followed by an int-expression, which is

202 CHAPTER 7. STRUCTURE OF A C PROGRAM

expression arithmetic-
AE function-c@—»
assignment

arithmetic expression OP2 expression
AEOH expression
conditional
conditional
—expression (2] expression E] expression -
Figure 7.5: Common forms of C expressions: OP; means a unary operation,
OP, means a binary operation

yet to be defined, and a “)”, then zero or more switchcases that are also not yet
defined, enclosed in “{” and “}”.

In case you find this a tad frustrating, break and continue statements are both
fully defined. A return statement is almost completely defined: it consist of the
word return followed optionally by an expression (also not defined yet).

The take home message? Syntax rules define allowed strings in a
language, but not what they mean. Syntax diagrams are an easier notation
to read but express the same rules as a grammar.

Expressions

Figure 7.5 partially defines expressions — it leaves out some details like paren-
theses, which work the same way as in ordinary arithmetic. We could also write
out syntax rules that define precedence (multiply before add and so on), but it
is easier to list those rules in a table, since we also need a way of describing
what each operation does — and we can use one table for both purposes. Another
detail missing is postfix operations, where the operator is at the end, like a++.
Most operators are written in infix notation, with two operands surrounding the
operator. An operator is really a special case of a function that is built into the
language and is written with a special symbol. Unlike regular functions, operators
are built in to the syntax of the language.

C has one operation that may be a bit unfamiliar: a conditional. This is a bit
like an if with an else, except you can use it in an expression.

A conditional is a rare example of a ternary operation.

A unary operation acts on one value so, for example, the “-”" in “-~a” is a unary
in “b-a” is a binary

[T

minus. A binary operation operates on two values so the
minus.

Major Constructs

203

Table 7.1: C operators: highest precedence at the top of the table; if more

than one in a row, descriptions apply in the order given (left to right)

operator ‘ example ‘ description
unary operators — all prefix except the first row
++, - at++, a-- use a’s value then a=a+1, a=a-1
++, —- ++a, --a a=a+1, a=a-1 then use a’s value
+, - -a, +a negate, leave a unchanged
[la, "a logical not, invert bits of a
(type) (int)a cast a to type int
* *nameptr follow pointer to value
& &name create pointer to value
sizeof sizeof (int), sizeof 5 | size in bytes of (type), value
binary operators
*, /% b*a,s/a,a % b axb, s+a, remainder of a+b
+, - b-a, s+a b-a, st+a
<<, >> b<<2, s>>4 shift b 2 bits left, shift s 4 bits right
<, >, <=, >= b<2, s>=a relational operations
== 1= b==2, sl=a equality, inequality
& |, " b&a, s|b, a~2 bitwise and, or, exclusive or
ternary operator
7 b==271:0 if b==2, value after “?” (here, 1)
otherwise value after “:” (here, 0)
assignment operators — all the same precedence
= a=>b replace value in a by value in b
+=, o=, %=, /= a+=b a=aopb,op € {+,-,%,/,
%=, &=, ~=,<<=,>>= | a >>= 16 T, ™, <<, >>)

204 CHAPTER 7. STRUCTURE OF A C PROGRAM

The C ternary conditional operation is spelt with two symbols, a “?” after a
:” separating the true and false outcomes. So instead of

13

condition, and a

if (a < b)
min = a;
else
min = b;

you can write:

min = a <b 7?7 a : b;

Read this as “assign to min the value a if a < b, b otherwise”.

A conditional can be hard to read, so I only use them when the alternative is
even more obscure code. For more detail of available operators, see table 7.1 —
there are a few I don’t list, but these should cover all the examples we need.

Heads up: A conditional expression can be confusing to read, so make
liberal use of parentheses — or better still, avoid it if you can use an if
statement.

Another pair of operations need explanation: unary * and &. The * operator
dereferences a pointer, which means it uses the pointer value to find a location in
memory, then give you the value at that location in memory. The exact type of
value depends on the pointer type. For example, if we have something like this:

char *namePtr, initial;

// do something to initialise namePtr
initial = *namePtr;

Here we have two meanings of “x”. In the first usage, it denotes a pointer type
(as used to define a variable or declare a type). In the second usage, the “*” is a
dereference operator, meaning it results in the value pointed at by a pointer, rather
than the memory address contained in the pointer.

The effect is to copy the first item in the region of memory that namePtr
points to into the variable initial. If we think about this in machine-code
terms, namePtr contains an address. We use that address to load a value at
the location it refers to (dereference the pointer), and store that value into the
location represented by initial. We can make an assembly-language template
that represents a pointer dereference, as well as a store to a variable.

If you want to see what the initial is, you can print it out. We have previously
seen format specifiers for printf. This example shows how to print a string using
a “%s” format specifier and a “%,c” for a single character:

Major Constructs 205

printf ("name is %s, initial is %c\n", namePtr, initial);

Do you remember how an array is represented as a pointer to its first element? If
we initialise a variable of a char array type using a string, we can refer to its first
element by dereferencing the array name.

For example:

char name [] = "Fred";
char initial = *name;

Note here we do not need to say how big the string is because the compiler can
pick its size up from the initialisation. If you are used to strings in more managed-
memory languages, you need to be careful of using this sort of initialiser for
anything but a constant string since you can’t resize a variable defined like this.

Heads up: In C, a string is usually stored in a fixed-size array, so you
cannot do cool things like string concatenation or appending to a string
without a significant pain. Note also that the size of memory as string
needs is one more byte than the characters stored, because the string
ends with a null-terminator character.

In machine code terms, dereferencing a pointer means loading the address
stored there, then using that address to find another memory location. The
opposite operation, the “&” operator, creates a pointer. At machine code level
it is the address at which a variable is stored.

Because assignment is an expression (though we usually use it as if it’s a
statement), it is easy to make mistakes where you use assignment when you mean
to check for equality. This is made even worse by the C convention that any value
can be used when a logical (boolean) value is needed. If the result is zero (or
anything similar, like a null pointer), it is treated as false. All other values are
treated as true. So if you write something like this:

if (a = b)
b = a;

the chances are it won’t do what you wanted.

It is generally a good idea when writing an expression not to rely on
precedence rules if it gets at all complicated, but to bracket subexpressions to
ensure they are calculated in the order you expect.

Another problematic detail of the language is pre-increment and post-increment
operations spelt with “++”, and their decrement (“--") relatives. The pre-
increment version, as in “++a”, means add one to a before using the value of

206 CHAPTER 7. STRUCTURE OF A C PROGRAM

a. The post-increment (example: sum++) means add 1 to the given variable only
after using it. So in something like this:

a = 42;
t = at+ - 3;

printf("a = %d, t = %d\n", a, t);

you would expect t to have the value 3 less than the value a had before that line
of code, and a would increase its value by 1. So the output would be

a =43, t =39

But do you need to put yourself through so much pain? The following code does
the same thing

a = 42;
t =a- 3;
at++;

>

printf("a = %d, t = %d\n", a, t);

and is much easier to understand.

Heads up: Abuse of pre- or post-increment (or similar) operators is a
recipe for unreadable code. A smart compiler will produce much the same
machine code if your write things out in a more understandable format,
so don’t make things hard for yourself — or anyone else reading you code.

Also note the combined assignment operations such as “a += b”. These can
save a bit of typing and are easy to understand provided you do not embed them
in something else complex.

Finally, bitwise operations make sense if you understand how numbers are
represented at machine code level. For example, you can truncate a number to
the nearest even number by removing the low-order 1. To do that, you can do a
logical and of the number with a string of bits that is all 1s except in the low-
order position. How do you get a number that looks like that? You can use the
notation for writing a number in hex where you start with “0x”. A bit pattern of
7 ones with a 0 in the low-order bit in binary is 11111110. If we convert that to
hex, it becomes 0xFE. If we know how long the number is that we are planning to
truncate to even, we can construct the bit pattern of that length that is all 1s except
the low-order bit. Even easier, think what number that bit pattern represents in 2’s

Major Constructs 207

complement'. Let’s continue with our 8-bit example. To negate it (in this case,
convert it to a positive number), we flip all the bits and add 1. What is the result?
Flip the bits: 00000001. Add 1: 00000010. So the bit pattern we want is that of
-2. Here is the code we want, assuming the number is initially in a and we want
the answer in b:

b=ak& -2;

This style of coding is not particularly obvious, so don’t use tricks like this without
good reason, and always include a comment explaining what you are doing. What
if we use the logical and version of the operation, “&&”? In C, any non-zero value
is treated as true so provided there is at least 1 bit set in a, the result of a && -2
will be 1 (the value that represents true more precisely).

The take home message? Beware of common C traps and pitfalls
like confusing assignment with equality testing, and using pre- or post-
increment in potentially confusing ways. Beware of muddling bitwise and
logical operations.

Loops

Let us take a look now at C’s loop constructs. We have already seen the first two,
the for and while loops. A do-while loop has the same logic as a while loop,
except the test is done at the end, and this means the loop always goes at least
once. Figure 7.6 contains general syntax for all C loop constructs, and adds an
assembly language template for the do-while, since that is not covered in the first
part of the book. Note that a do-while, though enclosing the loop body between
two parts, the word “do” and the word “while”, can only take one statement.
Fortunately that one statement can be a compound statement, so as long as you
enclose them in “{” and “}”, you can effectively have multiple statements in any
loop body.

If you are used to programming in Python where layout is the way a program is
structured, you need to be particularly careful when programming in C. Something
like this, for example:

for (i = 0; i < N; i++)
a=>b+ i;
total = total + a;

INot entirely safe; though 2’s complement is almost always used to represent signed integers in
hardware, there is no rule that says other representations can’t be used.

208 CHAPTER 7. STRUCTURE OF A C PROGRAM

for-loop

—(for_(Jinitialize ;) test(;) increment()) statement —

while-loop

—while (Jtest()) statement — do-while

do-while WbodyXXX: # body of loop here
. # rest of body

—> statementtest[i]—» WnextXXX: b__ R1,R2, WbodyXXX # not done? Go again
(a) loop syntax (b) do-while template

Figure 7.6: C loops: one more template added

may not give you the result expected. Since the for only expects one statement in
its body, only the first statement after it is repeated. The indentation putting the
assignment to total right under the assignment to a has no effect on the program
structure. If we rewrite the program like this:

for (4 = 0; i < N; i++)
a="b+ i
total = total + a;

it does exactly the same calculation.

To avoid this sort of confusion, some C programmers always enclose a loop
body in “{” and “}”. A do-while literally can only have one statement in its body;
if you have more than one between the do and the while, the compiler should
complain. You can of course use a compound statement there too, and many C
programmers use “{” and “}” for every do-while even if they do not bother with
this for other loops.

The take home message? Layout is your friend. Use it wisely even if
C does not demand it the way Python does. Use bracketing whenever it
makes things clearer even if it is not necessary.

7.5 Main Program Parameters

It is instructive at this point to launch SPIM and take a look at how it launches
a program. Here are the comments on the lines where main is called and after it
returns. Notice how the returned value, which should be in $vO0, is ignored. In a
real system, that value could be returned to the environment that launched your
program (e.g., as a way of signalling why your program terminated).

; 188: jal main

Main Program Parameters 209

; 189: nop
; 191: 1i $v0 10
; 192: syscall # syscall 10 (exit)

Now go up to the top of the SPIM startup code. Here are the first two comment
lines:

; 183: 1w $a0 0($sp) # argc
; 184: addiu $al $sp 4 # argv

This looks like setting up parameters to pass in through registers $a0 and $al.
That is exactly what a standard C program that runs on the command line expects.
The first parameter passed is the number of words on the command line (anything
separated by spaces) including the command to run the program and the second
is an array of strings, each of which is one of the “words” on the command line.
More later on how it works. What follows is a small program that uses the ability
to report how it was launched on the command line, to give you a foretaste of this
style of program.

#include <stdio.h>
// minimal main program dumps its command line
int main (int argc, char x*argv[]) {
int i;
for (i = 0; i < argc; i++)
printf ("%s ", argv([il);
printf ("\n");

Why do the variables contain “arg” in their name? In C, a parameter passed in
to a function is called an argument, and these parameters represent command line
arguments.

What’s different about this example? We have parameters now in the main
function definition. Each of these is a type followed by a name and if we have
more than one they are separated by commas. Take a look back to figure 7.3 (page
199). See how a function-definition is defined. Match that to the main program.

The take home message? The main program is in effect a function called
by the operating system when you launch the program. You can pass
values in if you run it on the command line, and return an int value to
report how it exited (0 means no errors).

210 CHAPTER 7. STRUCTURE OF A C PROGRAM

functions.h
int negate (int a) {
return -1l*a;

}

mathfunctions.c
#include "functions.h"
int abs (int a) {
main.c return a < 0 ? a : negate(a);

#include "functions.h"|[}
int main () {
// etc.

¥

(a) as seen by preprocessor

main.c mathfunctions.c
int negate (int a) { int negate (int a) {
return -1*a; return -1*a;
} }
int main () { int abs (int a) {

// etc. return a < 0 ? a : negate(a);

} }
(b) as seen by compiler

main.o mathfunctions.o
global names: global names:

clash
.. plus others.. .. plus others..

(c) as seen by linker

Figure 7.7: Definition in a header file

7.6 Multifile Programs

In C, you have complete freedom in splitting your code into multiple files. Unlike
some languages like Java where file names are related to the contents, C programs
do not care about the name of the source or header file. If you split your program
into multiple sources files, you can compile and link everything at once, or you
can compile source files individually and link them later.

In SPIM, you can experiment with this concept by loading additional MIPS
code files (without reinitialising the simulator). SPIM requires that you declare
a name as “.globl” to be visible in other separately loaded files; C by default
makes all names outside a function global as seen by the linker.

The defined versus declare distinction is important with multi-file programs.
If you include the same header in two or more source files, that will result in the
same header being seen by the compiler when it creates more than one object file.
Creating each object file is a separate event — even if they are compiled in the same
command, the compiler runs again from scratch when you start a new source file.
If the header does not contain anything that results in something existing at run
time, that is no problem. If, on the other hand, the header defines a function or

Multifile Programs 211

variable, the linker will have two versions of the same thing and complain.

In UNIX-type systems, there is generally a single program called cc (for “C
compiler”, with a few other variations on the name) that does all the steps of
running the preprocessor, compiler and linker. Generally, it is able to work out by
the type of file you present it which of these steps to perform, though you can also
fine-tune its behaviour (e.g., tell it to produce a linkable object file rather than a
fully linked executable).

Figure 7.7 illustrates the effect of a function definition in a header file. All is
fine when the preprocessor hits the #include lines in both files. It just substitutes
functions.h in at the point where it sees the #include directive. When the
compiler sees the two resulting source files after the preprocessor has finished,
it too is happy because as far as the compiler is concerned, it’s as if you had
typed the two files main.c and mathfunctions.c the way they look after the
preprocessor finished its work. The problem is at the next stage when the compiler
has converted your two source files to two object files and the linker tries to put
them together. At that stage, it find two function names spelt the same — “negate”
— and doesn’t know which to use.

What is going on here? Unless we tell it otherwise, any name at the top level
of a C source file is accessible to any other C source file and the compiler creates
information in the object file so the linker can resolve names from other object
files. Since the name negate is at the top level of both source files (after the
preprocessor has completed handling the #include directives), the linker has to
treat it as a name available to any other object file. So when the linker tries to
combine all the object files, it has two functions with the same name and cannot
assume that one is correct, and hence gives up and complains.

Since C is close to the machine, it does not include much of the checking found
in a more managed language. That includes checking types of functions at link
time. A header file to some extent reduces the risk of type mismatches because
you should use the same header file to declare the type of a function before you
define it as you use to tell parts of the program that use the function what to
expect. There is nothing in the language to enforce this. There is a popular tool
called make that you use to express rules about dependences between the various
files that make up your program. If used correctly, make will force any object files
that are out of date with respect to a header file to recompile. Using make gets
quite complex. I only explain its use as for simple examples here (for more detail,
see pages 270-275).

212

CHAPTER 7. STRUCTURE OF A C PROGRAM

The take home message? C programs can be built up out of multiple
source files. Because the header file concept and linking are relatively

primitive, it is necessary to take other steps to ensure your separately

compiled files are consistent.

7.7 Further Reading

Parlante [2003] is a useful brief summary of the C language. You can find an early

version of the language summarised by some of its designers Ritchie et al. [1978],
and Kernighan and Ritchie [1988] is the classic C book.

Exercises

1.

2.

Why is it not a good idea to include a function definition in a header file?

What would happen if a header file contained a #include directive that
included another header file that included the first header file? E.g., file
types.h contains a line

#include "consts.h"

and file consts.h contains a line

#include "types.h"

. What action has to be performed to convert a collection of object files and

libraries into a runnable executable file?

In a program you are writing, you separate out type declarations into a file
called declarations.h. What is wrong with the following line of code in
your source file?

#include <declarations.h>

. What is wrong with this variable initialisation?

float pi = calc_pi(Q);

Match each of the following up to syntax diagrams in figure 7.4 (page 201).
Are any of the examples incorrect (as far as you can tell, with the given
detail)? Explain each answer.

(a) if x < 42
x = 42;

Exercises 213

(b) a = if (x < 42)
42
else x;

(¢) printmax (a, b);
7. Write out the result of the following expressions (taking into account
precedence; assume initial values of int a=42 and float b=3.14):
(a) 12 << 2
(b) 12 >> 2

(c) ~a (hint: inverting bits is 1s complement, so you can calculate the
int value by taking into account how a negative is calculated in 2’s
complement)

(d b *x 3.0

(e) 12 +a % 5

) a<07?7-a:a
(g) a/all

(h) a/al0

(1) a/(all)

() ++a

(k) a--

(1) a <<= 4

8. What does the following code do? Explain.

char name [] = "Fred";

char initial *name ;

printf ("name is %s, initial is %c\n", name, initial);
9. If the initial value of a is 2 and b is 4 in this example:

if (a < b)
if (b < 0)
a=0;
else
a =b;

214 CHAPTER 7. STRUCTURE OF A C PROGRAM

(a) what is the final value of a? Explain.

(b) how could you make the intent of the code clearer?

10. You want to write a loop that reads a value into int variable score and
if the value is less than O, terminates. Otherwise, it adds the value to the

variable total.
(a) which loop construct fits this situation best? Explain

(b) write out code for the loop (approximate details of reading in, if you
forgot how this looks from Part 1)

8 The UNIX Command Line

style command line works. From here on, if I refer to UNIX, I mean

any system with this sort of command line, including Mac OS X, Linux,

FreeBSD — as well as commercial UNIX variants like Solaris. Any popular

UNIX-flavoured OS should work the same way, and that includes all the Linux
distributions and the Terminal program in Mac OS X.

We need to know how to work with files in different locations while

B BEFORE WE GET TO MORE INTERESTING C,we need to know how a UNIX-

programming, and a few elementary commands used in scripts. I add in a few
slightly more advanced features, sufficient to put together interesting examples.
There is a lot more to scripting than this, but the aim is to do enough to get by
rather than to make you an expert, since the focus here is on C and how it relates
to the machine.

8.1 Command Line

Most Linux systems include a graphical file system interface similar to that on
Windows or a Mac. For example, figure 8.1 illustrates a graphical interface used
in a version of the Ubuntu Linux distribution. However, continuing with the spirit
of understanding what happens underneath a pretty interface, we will work with
the command line.

In a UNIX-style system, a terminal session runs in a a shell, a command
interpreter that has a scripting language. In its simplest form, you use it to do the
things you would do in a windowing interface but less conveniently, like manage
files and launch programs. The scripting language though allows you to do much
more than this, including features to create variables, loops and conditional code.
We will not explore much of this functionality, but you need to know it exists to
understand the system properly at this level. Windowing environments also have
scripting of various kinds, but a plain-text interface to scripting works better for

215

216 CHAPTER 8. THE UNIX COMMAND LINE

Computer « [PHome [Desktop

& Desktop E

‘ i wd "B
Il Documents

Bioinformatics Desktop dev Documents
i3 Downloads
;:::Jcres ﬂ d J h‘ﬂ
. Downloads meme Music Pictures

i@ Videos
Z_ File System
& Trash ‘i -] 1 ﬂ d

Public Templates Videos Examples
Network
Wount

isi Browse Net... to ma
sudo

README

Figure 8.1: One flavour of Linux graphical file browser

stitching together complicated combinations of programs.

There are many shell scripting languages; the most popular currently is called
bash. Bash stands for “Bourne-again shell”, a play on the fact that it is a free
replacement for an older shell called the Bourne shell.

A key concept in the shell is the working directory. The working directory
allows you to refer to positions in the file system relative to where you are now.
That relieves you of having to make code dependent on knowing where in the file
system a program is running. In the UNIX world, the directories from the top
level (root) of the file system to a particular location form a path, and a path is
written as the directories from the root to the location you are specifying using
a slash as a separator. If you are familiar with the Windows world, you need
to orientate yourself to slashes in the regular direction, not backwards. Another
difference from Windows conventions is the root of the file system is written as
“/” and there is no concept of drive letters.

The take home message? On the command line you are running (usually
elementary) scripts, and a key concept is the current working directory.

Directories and Permissions

Log on to a Linux (or Mac) system and open a terminal. At the command line,
type the following:

pwd

The system responds with the path to your home directory. The “pwd” command
means “print working directory”. Now type this:

Command Line 217

1s

You will see a few names listed. Depending on your system setup they will vary.
If you haven’t used the system before it may contain some default directories in
your home directory, and their names will be listed, something like this:

Desktop Documents Downloads Music Pictures

You may also note that the command line starts with the name of the current
directory (depending how the system is configured, it may be the entire path to
the current directory) and ends with a “$”. In examples that follow, I use this “$”
on lines where I type in a command, so you can tell those apart from output'.
Here’s a variant on 1s that provides more information (“1” for “long”, not a one;
options to commands often but not always start with a “-”’):

$ 1s -1

total 32

drwxr-xr-x 2 philip philip 68 Feb 11 19:48 Desktop
drwxr-xr-x 2 philip philip 68 Feb 11 19:48 Documents
drwxr-xr-x 2 philip philip 68 Feb 11 19:48 Downloads
drwxr-xr-x 2 philip philip 68 Feb 11 19:48 Music
drwxr-xr-x 2 philip philip 68 Feb 11 19:48 Pictures

The size reported as “total” has a meaning dependent on the underlying file
system. More interesting is the first item on each line, a string representing
permissions. The first letter ,“d” in each example, means the named item is a
directory (a folder if you are used to graphical interfaces). The next three letters
tell me what the owner of the item is allowed to do. The “x” for an ordinary file

(IS

means permission to execute (run it as if it’s a program); for a directory, an “x
means permission to list its contents. An “r” says the owner can read, i.e., see
what is there. A “w” means the owner can write, i.e., modify the item (including
deleting, renaming or moving it).

Now we know what the “owner” can do, what of the next 6 characters? They
represent, respectively, permissions of the group and others. Every user in a
UNIX system has a user id and is in a group. A group is a way of assigning
collective rights. For example, in a project, everyone on the team may be put in the
same group so they can share information without making it visible to everyone.

Generally speaking, if you are security conscious, you make as little as possible

'Do not confuse this use of $ with the same symbol used to expand a shell variable.

218 CHAPTER 8. THE UNIX COMMAND LINE

visible to anyone but yourself (the owner), and only those things the group needs
to access visible to them; write permissions should be even less freely given.

After the permissions is the username of the owner, followed by the group
name. In a simple setup, each user has their own group with the same name as
their username, hence repetition of my name. Next is the size of the file (here, the
space taken by a directory entry), the date and time the file or directory was last
modified and finally its name.

You can change permissions using the chmod program. For example, if you
have a file containing a script and want to make it executable, you can do this:

$ chmod +x myscript

Then, if you try to run myscript as if it was a program, the shell will try to
work out what sort of script it is and run it. The usual convention for scripts is
to start them with a line that indicates where their interpreter is to be found. For
example, if your script uses the bash scripting language and the bash interpreter is
/bin/bash, your script should start with

#!/bin/bash

In most scripting languages, a “#” marks the rest of the line as a comment, and the
special comment “#!” says “I am a script, run the interpreter whose name follows
to make me perform”.

The take home message? Permissions on files and directories allow
you to control who can see, modify, navigate the directory hierarchy and
execute programs.

Getting Around

One of the key features of the command line is relative paths. An absolute path
is a complete description of the directories from the top level of the file system
to a particular directory or file within a directory. A relative path is based on the
current position, the working directory. The pwd command tells you where you
are. When you first log in, you are in your home directory. The actual location
of that in the file system varies between flavorus of UNIX, but you can refer to
the home directory by various short cuts. The simplest of these is the name spelt
with the tilde symbol, “7”. You can change the working directory with the cd
command. For example:

Command Line 219

$ cd Documents

$ pwd
/home/philip/Documents
$ cd ~

$ pwd

/home/philip

“/home/philip/Documents” is an example of an absolute path: it starts with a
“/”, signifying it starts at the top level or root of the file system. If there is no
“/” at the start of a path, it is a relative path, and starts relative to the working
directory.

Heads up: Be sure you are clear on what the working directory means.
It is a key concept in understanding relative paths.

As a short cut, you can also type cd on its own to return to your home directory.
Notice in this example, “cd Documents” uses a relative path that relies on the
named directory existing in the current location. Another couple of useful short

cuts: a full stop “.” means the current directory, and “. .
one above the current directory in the hierarchy. So:

2

means the directory

$ cd ./Documents

$ pwd
/home/philip/Documents
$ cd ..

$ pwd

/home/philip

has the same effect as the previous example, and you could replace the last “cd
..” by

$ cd

with no change in the effect of these steps.

You can use “..” anywhere in a path, though it is wasteful anywhere but in
the first position. For example, the path “~/Documents/..” is a roundabout way
of specifying your home directory. While this specific example is not useful, this
kind of generality makes it possible to construct paths in programs and scripts in
pieces, without worrying too much what else is in the path that may have been

constructed elsewhere.

220 CHAPTER 8. THE UNIX COMMAND LINE

The take home message? Your home directory is where you start;
shortcuts for names like your home directory and one step back up the
hierarchy are a big time and typing saver. Understand relative and
absolute paths: each has different uses.

Building a directory hierarchy

In a window-based file browser, you would have a menu command to create a new
folder. On a UNIX command line, there is a command for that: mkdir for make
directory. In its simplest form, mkdir requires that the path exist up to the point
where you add a directory, though there is an option (-p for “path”) to create any
missing intermediate directories.

For running our examples, let’s create a directory called “Pracs” and put each
example in its own directory within that one. To make this concrete, within Pracs
I create a directory Example-Ch8-Test:

$ mkdir Pracs
$ mkdir Pracs/Example-Ch8-Test

We can now change our working directory to this new location, and start
programming:

$ cd Pracs/Example-Ch8-Test

Note how I have a system to my directory names. Things that are practical
examples are in “Pracs”, and each new program has a directory name that helps
me remember what it is: in this case, a test example in chapter 8.

The take home message? A directory hierarchy allows you to organise
your work. Use it well.

8.2 Programming

To keep things simple I describe a dead simple plain-test editor called nano that
can run in a terminal — either a local terminal program if you are logged in to a
UNIX-type system or if you log in via another system, it can run in a terminal

Programming 221

File Edit View Search Terminal Help

GNU nano 2.0.9 New Buffer

K¢ Get Help QY WriteOut @i Read File @ Prev Page @i Cut Text Q§ Cur Pos
B Exit @ Justify | Where Is @Y Next Page gl UnCut Textgy] To Spell

Figure 8.2: After launching nano

session on remote machine. The nano editor has a pretty elementary interface.
All commands are a letter typed while holding the control key (often labelled
“Ctrl”), indicated by a “~” (caret symbol) before the character. So, for example,
to exit the editor, type “~X” (hold down the control key and hit “x”). Figure 8.2
illustrates nano right after launch. Note that it lists the common commands at the
bottom of the screen and has a rudimentary help feature.

There are many other editors in the UNIX world, including some of extreme
complexity. Another editor similar to nano is pico. At the more complex end
of the scale is emacs and not quite as complex, vi. If you want an editor with
a prettier interface, kate is a good option. If you use kate, you need to be in a
windowing environment. The other editors I mention can all run in a plain-text
terminal.

Let’s warm up with a small example, with a main program and a single
function. We will calculate the average of a bunch of numbers read in, stopping
when we read in a negative. The program should accumulate the total into a
variable, count how many numbers are read, and discard the last (negative) value.
We will use a function to print the result — though the program is simple enough
that we could do it all in the main program.

Here is the code:

#include <stdio.h>

void report_average (int total, int count) {
if (count)

222 CHAPTER 8. THE UNIX COMMAND LINE

printf ("average = %d\n", total / count);
else
printf("no average, zero items\n");

int main () {
int total = 0, count = O;
int readin;
do {
scanf ("%d", &readin);
if (readin >= 0) {
total += readin;
count ++;

}
} while (readin >= 0);
report_average (total, count);

A few details to note:

* the function returns a type void — this is a type with no values, signifying a
function we should never call in an expression, but only as a statement

* we test the value of count in the if — we rely on anything that evaluates to
zero as being equivalent to false

* variable readin can’t be defined locally to the loop body — we test its value
in the stopping condition

We could fix the last point by taking the termination test out of the loop and using
a break inside the loop. Here is the revised loop:

while (true) {
int readin; // local variable
scanf ("%d", &readin);
if (readin <= 0)
break;
total += readin;
count ++;

by

For this to work, we need another header at the top:

Programming 223

#include <stdbool.h>

to declare the constant value true. As an exercise, type in both of these variants
(average.c for the first and average-break.c for the second) and compile
them. Check they produce the expected results.

It’s a good idea when running a simple editor like nano to have two terminal
sessions — one with the editor, the other for running commands like compiling.
Remember to save your work whenever you make changes (using the “~W”
command to write out the file — annoyingly requiring you hit enter each time
to confirm). Also make sure you are in the right directory — you don’t for example
want to be in a directory with an old version of your program when you compile.
It can be a tad frustrating when you change something in the editor, then compile
and run and the change has no effect.

To compile the first example, assuming you are in the correct directory:

$ cc -o average average.c

What does this do? The C compiler is wrapped in a script called cc, which is
clever enough to know if you give it a file with a name ending in ““. c” thatitis a C
source file. There are two things you can do with a source file when you compile
it:

* create an object file and link with anything else needed to make an
executable in one step

» compile it to an object file but don’t link it

For now we will stick with the first option, in which case we need a “-0” option
to tell the compiler what the output, the resulting executable, should be called?.
In this case we call it “average”. To run your program, since it is in the current
directory, you need to add ““. /” in front of its name:

$./average
24

35

14

-1

average = 24

2If you don’t specify the file name using -o, it defaults to a.out. This name originally stood for
“assembler output” though that name no longer makes sense [Ritchie 1993].

224 CHAPTER 8. THE UNIX COMMAND LINE

Why do we need to put the path in front of the program name? After all, we run
things like cc and 1s without having to do that. We can define a collection of
paths the system will search for an executable program. This set of paths includes
standard places the system stores programs and scripts as well as any places you
want to store your own executable examples. You can in fact add “./” to this
standard list of paths, but that is considered a security risk.

Heads up: If you want to run a program that is not installed in the system
path, you need to provide the path to the file name.

To see what paths are set on your system type this in on the command line
(printenv prints the value of an environment variable):

$ printenv PATH
/usr/local/bin:/usr/bin:/bin:/usr/local/sbin

The actual list of paths will very likely differ on your system. What will be the

same is the use of colons (“:”) to separate paths in the path list. If you want to see
where the system actually finds a particular program, use the which command:

$ which 1s
/bin/1s

$ which cc
/usr/bin/cc

Again, results may vary on your system.
Although the path list is clearly a list of different paths, it is often referred to
as the “system path”.

The take home message? If a program is not installed in a path known
to the command interpreter, you have to provide a path to it to run it. That
path can be absolute or relative.

8.3 More Complex Commands

An important part of the UNIX ecosystem is three standard “files’:

* stdin— standard input: the source of input if you don’t specify a file name
in your program; defaults to the keyboard

More Complex Commands 225

* stdout — standard ouput: the target of output if you don’t specify a file
name in your program; defaults to the screen

* stderr — standard error output: you have to specify stderr as an output
file name in your program; defaults to the screen but allows you to separate
messages from regular output

These standard input and output sources and targets are useful in stringing
programs together. Using a pipe you can tie the stdout from one program to
the stdin of another, making it possible to create bigger units out of smaller
programs. Another useful option is redirecting: you can tell the command
interpreter to take stdin from a file or send stdout to a file, instead of using
the keyboard and screen. You can also redirect stderr, but we will not use that
feature.

A pipe is written using a vertical bar: “|”. For example, there is a standard
utility sort. You can ask it to sort the output of another program or command like
this:

$ 1s -1 | sort

What do you think that does? Think what is first on the line of file information
produced an 1s -1 command: the permissions string. This will sort each line into
alphabetic order, so all files with the same permissions will be grouped together.
Here are outputs of plain 1s -1 and the sorted version in a program directory
where I tested examples for this chapter:

$ 1s -1

total 64

-rwxr-xr-x 1 philip philip 8592 Feb 16 19:51 average
-rwxr-xr-x 1 philip philip 8592 Feb 16 19:59 average-break
-rw-r--r-- 1 philip philip 420 Feb 16 19:59 average-break.c
-rw-r--r-- 1 philip philip 407 Feb 16 19:52 average.c

$ 1s -1 | sort

-rw-r--r-- 1 philip philip 407 Feb 16 19:52 average.c
-rw-r--r-- 1 philip philip 420 Feb 16 19:59 average-break.c
-rwxr-xr-x 1 philip philip 8592 Feb 16 19:51 average
-rwxr-xr-x 1 philip philip 8592 Feb 16 19:59 average-break
total 64

What of redirects? Let’s say I want to keep one of the above command outputs. I
can do this:

226 CHAPTER 8. THE UNIX COMMAND LINE

$ 1s -1 | sort > sorted.ls

Now the output is in a file called sorted.1s, which I can examine in a text editor
or further process later.

Heads up: A pipe connects output and input of two programs (or scripts).
A redirect changes the default for input or output goes: usually a file
instead of the keyboard or screen. Make sure you have the difference
between redirects and pipes clear.

How about input redirect? If for example we want to run a bigger example
in our averaging program and repeat it to test variations, typing numbers on the
keyboard get tedious, and is error-prone. So we can make an input file in a plain-
text editor (such as nano) then send that file to stdin using a redirect. Assume
we have a directory data containing a file test.dat:

$./average < data/test.dat
average = 22

Let’s combine a few things. We have a file sorted.1ls. Let’s sort it in reverse
order (put in an option -r on sort), then view the first two lines. We have a
command head that can be given a parameter - ¥ that specifies how many lines
from the top of the file to display. So what do you think the following does>? Try
it yourself:

$ sort -r < sorted.ls | head -2

There is also a command tail that displays the last few lines of a file (also with a
- N option). How would you combine these two commands using a pipe to display
exactly one line of a file?

If you want to inspect the data file, you can dump it to the screen using cat
(short for concatenate because you can give it multiple files and it produces one
stream of output combining them in the order they appear on the command line):

$ cat data/test.dat
24
34
15
17
-1

3The sort command can also be written with one or more input files on the command line so the
input redirect is not essential in this example.

Summary 227

If the file is very big, you may instead want to use a program called less®, which

displays a file a screenful at a time, then erases the output after you type “q” for
quit.

$ less data/test.dat

You now see the first screenful of your file, and can hit the space bar to see the
next screenful.

One final detail we will need is script variables. In bash, a script variable
looks like a programming language variable, but you have to put a “$” in front of
its name to make it evaluate. Here is a simple example:

$ testdata=data/test.dat
$./average < $testdata
average = 22

Note that when you give a variable its value, the notation is very exacting: you
cannot leave any spaces around the equals sign.

Most of these details apply to any UNIX shell scripting language; the only
thing we’ve seen so far that is not the same in other shell scripting languages is
the notation for defining a variable, which differs in some shells. Some other
things that differ between shell scripting languages are the notation for redirecting
stderr and the notation for various control constructs like loops and ifs.

The take home message? Redirects and pipes are powerful tools for
converting a program from simple terminal-based input and output to
working in conjunction with other programs.

8.4 Summary

The UNIX-style command line is a powerful environment with capabilities like
redirecting input and output and concatenating programs using pipes. Make sure
you understand the file hierarchy, commands for navigating the hierarchy and
permissions.

While this book is not primarily about UNIX (or its offspring like Linux and
Mac OS X), a C programmer may be called on to program at this level. Because

“The name less is another of those wordplays. It replaced an older program called more that
asked “more?” each time you viewed a screenful.

228 CHAPTER 8. THE UNIX COMMAND LINE

of the power and flexibility of command-line tools, despite more than 30 years of
competition by IDEs, they remain popular in large-scale projects and in research.

As with everything else in this book, the UNIX command line is something
you may or may not need — but the skills involved in using it help you understand
what higher-level tools like graphical IDEs actually do behind the scenes.

8.5 Further Reading

You will find more than you will ever want to know about bash scripting in Cooper
[2012].

UNIX systems have a built-in program called man (not sexist language; it’s
short for “manual”) that you can use to get more information about a good fraction
of installed programs and commands. Try a few examples, like

$ man sort

You can hit the space bar for another screenful, “q” to quit viewing a man page or
“b” to go back a page. It uses the same interface as the less program. Try

$ man man
and
$ man less

You will also find a lot of material at the Linux Documentation Project (http:
//www.tldp.org/).

Exercises

(IS

1. In a directory listing, what does an “x” mean in the permissions string?

(a) if the item listed is a file
(b) if the item listed is a directory
2. Why do you think having “.” in the system path is a security risk? Hint:

think what could happen if someone put a malicious program into one of
your directories, and it had the same name as a system command.

http://www.tldp.org/
http://www.tldp.org/

Exercises 229

10.

. Type in the entire program for the average-break.c variant (page 222)

and check that it works as expected.

. You want to run a program average in your current working directory and

check what the last line of the program output contains. Assume you have
a data file data/test.dat that you can use as input.

(a) How would you use command-line tools to run the program and
display only the last line of output?

(b) Now the problem changes and you want to inspect the second-last
line of output. How would you do that without displaying any other
output?

. You want to sort a file into alphabetic order and view the output a screenful

at a time. What commands would you use and how would you combine
them?

Use the man program to discover how to sort a file of numbers into numeric
order and try it with a test example.

. Why does the bash command interpreter whinge here? What is its problem?

$ testdata = data/test.dat
-bash: testdata: command not found

. You edit a program then switch to the terminal where you are compiling and

testing, and your edits have had no effect. What could have gone wrong?

. Use the which command to find out where all the commands we have dealt

with in this chapter are stored in the file system. How much variation do
you see?

Add the working directory to the system path as follows:

$ PATH=. :$PATH

(a) Explain exactly what this command does.

(b) Create a file in your current directory called 1s, using your favourite
plain text editor, with the following contents

230 CHAPTER 8. THE UNIX COMMAND LINE

#!/bin/bash
cat 1s

make this file executable using chmod +x 1s, then try to view the
current directory by

$ 1s

What happens? Why?

(c) Go back to question 2. Would you change your answer?

9 Simple C Examples

now. In this chapter, I mostly stick to programs that can fit in a single

main program file, and build on the basics of working on a UNIX-style
command line of chapter 8. I also expand a bit on previous details introduced in
sketchy style like the way printf and scanf work.

ENOUGH OF THEORETICAL EXPLANATIONS. Let’s do some real examples

I take us back to some examples used to develop MIPS code, as well as adding
in a few new ones. The focus here is on getting familiar with C across a range of
different basic constructs. By the end of this chapter you should have a clearer
idea of basic input and output, as well as how to do simple memory allocation in
the heap to create a dynamically-sized array.

9.1 Simple functions and 10

First let’s take a look at the kind of example we have used extensively in the
MIPS section of the book, one that calls a simple function and does basic input
and output:

#include <stdio.h>

// return the maximum of two integers
int max (int a, int b) {
// show use of local variable

int biggest;

if (a > b)
biggest = a;
else
biggest = b;

return biggest;

231

232 CHAPTER 9. SIMPLE C EXAMPLES

// ask the user to enter data
void prPrompt () {

printf ("input 7>");
}

// demonstrate input and output
// and test max function
int main () {
int myscore, yourscore;
prPrompt () ;
scanf ("%d", &myscore);
prPrompt () ;
scanf ("}d", &yourscore);
printf ("%d\n", max (myscore, yourscore));

This program prints a rather uninformative prompt and waits for a an integer to be
typed. It does this again, and compares the two numbers and prints the larger of
them. Let’s focus on just two lines, towards the end of the code:

scanf ("%d", &yourscore);
printf ("%d\n", max (myscore, yourscore))

When you call scanf, you pass it a format string that specifies what kind of data
you expect to read in. This is necessary because the same sequence of characters
can mean different things. For example, if you type in 12 as input to a program, is
that the number 12, the two ASCII characters representing the string "12", or the
hex number 0x12 (which is 1819)? The format string contains format specifiers,
which use a “Y%” to separate them from surrounding text.

What about the & symbols? This is a C operator that creates the address of a
variable. Recall how we do function calls in MIPS code. We pass in a value by
copying it into a register. That is fine when we want to send a value to a function,
but not so great when we want the function to modify a variable for us. What the
& operator allows us to do is to pass the address representing where the variable is
in memory to a function, so it can store a value back at that location.

Heads up: If the value you pass in to scanf is not actually a pointer, the
bit pattern will still be interpreted as a machine address, with interesting
results. Sometimes you are lucky and the compiler catches things like this.
Not always.

Simple functions and 10 233

Doing input using scanf presents a number of pitfalls, and is best done only
with simple examples when it is unlikely that bad input will cause major problems,
such as when you are testing code.

Let’s assume we have a global variable yourscore that is at offset 12 from the
start of the global variables area. Here is how MIPS code would look for a call to
scanf to read an integer into that variable (remembering that we use the $a0-$a3
registers to pass parameters):

scanf ("%d", &yourscore);
la $a0, formatil # address of formatl
addi $al, $gp, 12 # address of variable: &yourscore
jal scanf # call scanf

What if the variable was a local variable, at offset 16 from the start of the stack
frame (remember, the stack grows in the reverse direction to the rest of our use
of memory, so an offset from the start of the stack frame is negative)? The MIPS
code would change as follows:

scanf ("%d", &yourscore);
la $a0, formatil # address of formatl
addi $al, $fp, -16 # address of variable: &yourscore
jal scanf # call scanf

Note you would load the address of the format string (assuming it is stored at
the location labeled format1 since a string in C is represented as a pointer to
its first element) and you would also need to pass a pointer to the variable. I
will expand on these concepts shortly. For now, let’s continue with a taste of the
language without going into detail. At this stage, it suffices to know that the & is
essential for variables that are not already represented as a pointer type because
scanf needs to know where to store the result, not the value already in the given
variable.

Here is an approximation to the scanf code, where I fake the effect of reading
an int using a SPIM syscall. I should really read in a line of text as characters
and process it using the given format; what I want to illustrate here is how the
address of the variable passed in to scanf is used to modify its value in memory.

scanf: sw $ra, 0($sp) # save return address
sw $fp, -4($sp) # save frame pointer
move $fp, $sp # fp = old sp

addi $sp, $sp, -4 # move SP past frame

234 CHAPTER 9. SIMPLE C EXAMPLES

$
10008000288 s 10008000% 0000002a 42
sal
10010000 00006425 "gd" constant pool 10010000 00006425 "sd" constant pool
$ao/
T7f£££d58 T7E££££d458
7ffffd5c XXXXXXXX 7ffffd5c sS XXXXXXXX
T7f£££d460 XXXXXXXX T7ff££d6 '—g XXXXXXXX
7ffffd64 s XXXXXXXX Tffffd64 TE££££d470 old $fp
7££££d6 XRXXXXXX TEE££A682-9 004000ec saved $ra
7ffffdéc 0 old $fp 7ffffdéc 0
55,
7ffffd70_g 00400018 saved $ra 7££££470 00400018
Tf£££d74 TEf£££d474 tack
7££££d478 S‘a_Ck T7££££d478 SBIC
7££££d7c) 7£fffd7c)
(a) stack before scanf (b) stack during scanf

Figure 9.1: How scanf updates a variable in memory

now able to refer to format through addr in $a0

and value to put input result into through addr in $al
read in a value: ignore scanf format, faking it here
1i $vO, READ_INT

syscall # assume syscall doesn’t trash $al

put read in int from $vO into the given variable:

sw $v0, 0($al)

move $sp, $fp # restore SP

lw $fp, -4($sp) # restore FP

lw $ra, 0($sp) # restore return address
j $ra # return to caller

Heads up: Using the & operator in C is the same thing as using the
address of a variable in machine code.

Take a look at figure 9.1. In 9.1a we are in the main program about to call
scanf, and want to pass it a pointer to a global variable that we want scanf to
modify. In 9.1b, we are inside scanf and it has modified the global variable,
which it finds via the value passed in to it as its second parameter (using registrar
$a1, if we are following MIPS conventions). The “value” passed in through $a1
is the address in memory where the variable is stored, not the value contained in
the variable. Assuming the user typed in the number 42 when scanf was waiting
for input, scanf would put the result in the location given to it in the call, hence
updating the global variable as shown. Register $a0 in this case also contains a
memory address, the start of the format string.

Up to now functions we saw in the MIPS section of the book did not have to
provide a new value to the caller through changing a parameter. The notation we
use to tell scanf where to find the variable in memory applies to functions we

More IO 235

define ourselves. We can tell the C compiler to pass the address of a variable
instead of its value by using the & operator, which provides the address of a
variable. The type of the value produced by & is a pointer. We will see more
about pointer types shortly.

The take home message? You need to be clear on the difference between
the address of a variable, which we express as a pointer in C, and the value
of a variable. The address is where it is in memory. The value is what is
stored in that memory location. We can copy the value to a register to do
arithmetic on it, but it has to be stored back into memory so we can find
the value again, and passing a pointer to that memory location allows us
to change the value in memory.

9.2 MorelO

Using scanf to do complicated input is a bit risky, since you really need to check
the values read. It is common in robust production code to read everything as
characters then check the result before converting to the actual type you want.
Producing output with printf can be quite complicated with features to specify
the field width (how many characters to use to display the value), whether an
integer value is a nonstandard length, whether a value is signed or not and how
many positions after the point to print for an floating-point value.

We will stick to the basics here; should you need more complicated features
you can easily look them up in a C reference. Table 9.1 lists commonly used
formats. Notice how some formats have the option to be a capital or lowercase
letter. For example, if you use format character “x” any letters forming part of a
hex number are in lower case, whereas is you use a capital “X”, letters forming
part of the hex representation are in capitals. For floating-point numbers, the “G”
options choose automatically, based on the size of the number, whether to use
scientific notation (in which n.mEp means n.m x 107) or regular decimal notation.
If you do not want scientific notation, use £ format. If you specifically want
scientific notation, use the E format. What difference do you think it makes in
floating point examples whether you use a lowercase or capital “E” or “G”?

If you output a number in hex it is common to add “0x” in front of the number,
which is the same notation as you use to write a hex number as a constant in your
code. For example:

236 CHAPTER 9. SIMPLE C EXAMPLES

Table 9.1: Common formats for printf.

value format | example of printf (...)

type char format, value output

int d "value = %d", 42 value = 42

unsigned u "value = %u", 42 value = 42

hex X "value = %x", 42 value = 2a

hex X "value = %X", 42 value = 2A

double e "value = %e", 4.2 value = 4.200000e+00
double E "value = %E", 4.2 value = 4.200000E+00
double f "value = %f", 4.2 value = 4.200000
double g "value = %g", 0.000042 | value = 4.2e-05
double G "value = %g", 0.000042 | value = 4.2E-05

char c "value = %c", 'a' value = a

char* or char[] | s "value = %s", "Jim" value = Jim

printf ("value = Ox%x\n", 42);
Note here I added a line break ("\n') into the format. This will print as
value = 0x2a

If you want to print multiple things at the same time, you need to make sure you
have enough format placeholders in the format string, for example:

printf ("value = 0x%x and in decimal, %d\n", 42, 42);
will print as
value = 0x2a and in decimal, 42

Another detail: we have so far only looked at input and output using the keyboard
and screen. In C, these devices are treated as special cases of files. The screen is a
write-only file, stdout: you can send output there, but you can’t get input from it.
The keyboard is the opposite: you can source input from it (a file called stdin),
but you can’t write to the keyboard (not with a useful result, anyway).

On a UNIX-type command line (see page 224), you can change the source and
destination of stdin and stdout, either from or to another file using a redirect or
from or to another program, using a pipe.

There is one more standard file, stderr, which is useful if you want to
separate out messages (not only errors) from regular output.

If you want to specify the file for input our output, you need variants on scanf
and printf that add a file name before the format. For example, the non-file

More IO 237

versions can be written as follows, using the file versions (note the initial “f” in
the function names):

fscanf (stdin, "%d", &age);
fprintf (stdout, "age = %d\n", age);

with the same effect as

scanf ("%d", &age);
printf ("age = %d\n", age);

To print to stderr, you use fprintf as in this example:

fprintf (stderr, "enter a number (< O to end) : ");
scanf ("%d", &age);
printf ("age = %d\n", age);

Assume program readage, compiled from a C file containing the above, is in the
current working directory. You can run it like this on the command line:

$./readage
enter a number (< 0 to end) : 42
age = 42

The advantage of using stderr like this is you can redirect output to a file (or
pipe it to another program) without messages getting mixed up into the output.
Assume you have a file test.dat in directory data and you want to send the
answer to results/output.dat, you can run the program as follows:

$./readage < data/test.dat > results/output.dat
enter a number (< 0 to end) : $

In this run, only the input prompt appears, and if you check the contents of the
output file, it should contain only the output to stdout:

$ cat results/output.dat
age = 42

Note how in this example, the command line prompt (“$”) appears right after the
last output when you redirect the output because the program prints no line break
to stderr. That is untidy, and you should avoid doing this in your own programs.

238 CHAPTER 9. SIMPLE C EXAMPLES

We can also use files other than these standard examples; we will look at
that later. In general, the internal representation of an open file in C is stored
in a variable of type FILE* — details differ from system to system, and use use
standard functions like fprintf to manipulate files, so you do not need to know
what a variable of the FILE type looks like internally.

Finally, in our MIPS examples, we generally ended input on some arbitrary
value (like less than 0). A tidier way to end is to end when the input file ends. That
is obvious if we are reading from a file, but what about input from the command
line? The CONTROL-D keystroke (written also as ~D) results in and end-of-file
(EOF) character. Typing one of these on the command line is a tad risky because
an EOF when you are not running a program ends your terminal session.

Heads up: The shell interprets an EOF as the end of the commands it
should process, consistent with how it would behave if you asked it to run
a file containing commands. Ending your terminal session unexpectedly
is something you may want to avoid. If checking for EOF, it is safer to
read from a file than from the keyboard.

If you are using scanf for input, you can check the result it returns against a
predefined constant, EQF, as in this example (a whole program for a change):

#include <stdio.h>
int main () {
int val;
int total = 0, count = 0;
fprintf (stderr, "enter numbers, ~D to stop: ");
while (scanf ("%d", &val) !'= EOF) {
fprintf (stderr, "read %d, another ?", val);
count ++ ;
total += val;
}
fprintf (stderr, "\nlast read %d\n", val);
if (count > 0)
printf ("\naverage = %g\n", (float)total / count);

A run of this program looks like this:

$./simpleMeanToEQF
enter numbers, "D to stop: 42
read 42, another 733

More IO 239

read 33, another 7°D
last read 33

average = 37.5
A few things need explanation here:

* when you call scanf, in addition to modifying the variables you pass in
through pointers to their memory location, it returns a value telling you
how many values it has successfully read; EOF is a special value (often -1)
that indicates you have not read anything by virtue of hitting the end of the
input file (in this case stdin)

* since both variables are integer types, if we calculate total / count the
result is integer division, and throws away any fraction in the answer. Using
(float) in front of the first variable is a cast, which converts the value to
floating-point. From there on, all integer values are converted to floating-
point, which is why we can print the answer using a ’%g format, which
applies to floating-point types

Remember from the MIPS section that floating-point values are represented
completely differently than integer types, so a cast forces conversion of the bits to
the floating-point representation. The cast does not change the way the variable is
stored; the effect of the conversion to float is only for this piece of arithmetic.
Casts are a risky feature as they can also be used to tell the compiler to treat a
piece of data as if it’s another type with no conversion (e.g., treat an integer value
as if it’s a pointer). For this reason you should use casts with care. In this example,
a safer approach is

printf ("\naverage = %g\n", 1.0 * total / count);

Multiplying an integer by a floating point value automatically promotes the whole
expression to a floating-point type. In general, any arithmetic containing a number
with a fraction defaults to type double.

You can truncate a floating-point number by casting to an integer type, e.g.

printf ("\naverage = %g\n", (int) (1.0 * total / count));

will have the same effect as if you did the integer divide without promoting the
expression to a floating-point type.

240 CHAPTER 9. SIMPLE C EXAMPLES

The take home message? You can do basic 10 with printf, scanf and
the file variants with a fair number of formatting options. You can read
to EOF, signalled on the command line by ~D. These are not however
particularly robust ways of handling 10. Casts provide a mechanism to
do quick and dirty type conversions but should be used with care, as they
allow conversions that don’t always make sense.

9.3 Bigger Examples

Let us now work towards bigger examples to further develop our ability to write
correct C rather — taking us further from treating C as some sort of pseudocode.
First, let’s tidy up the function example from the start of the chapter. It uses a
local variable and an if with an else. The function returns a value, using a return
statement. A return can be used anywhere in a function to exit and return to the
place it was called. If the function does not return a value, you need not use a
return statement unless you need to return before the function reaches the end.

int max (int a, int b) {
// show use of local variable
int biggest;

if (a > b)
biggest = a;
else
biggest = b;

return biggest;

In this example, we don’t really need the local variable. We could return a value
as soon as we determine we have found the bigger value. For example:

int max (int a, int b) {
if (a > b)
return a;
else
return b;

b

This is quicker and simpler; now we have the concept of a local variable, we
can save it for examples where it is really useful. In C, a local variable can be

Bigger Examples 241

introduced in a function (including main) or in any group of statements inclosed
in curly brackets (also called braces: { ...}).

A group of statements inside curly brackets is a compound statement and is
logically like a single statement in the sense that it can go wherever a single
statement is allowed. Examples include the true or else branch of an if, or the
body of a loop.

A compound statement can introduce its own local variables. Think back to
how we handle local variables in MIPS code. If we have enough registers and are
in a leaf function, they can all go into registers. Otherwise, we have to allocate
space on the stack for them. Entering a compound statement with its own local
variables is a bit like entering a function, except we don’t need to set up a whole
new stack frame including a return address. We do however need to expand the
stack frame for the time we are in the compound statement and cut it back again
once we are out of the compound statement.

One weakness of C compared with later languages of the same family is it
does not allow you to define a loop count variable in a for loop. This weakness
was addressed in the C99 update of the language and an increasing number of
compilers now support this feature (though sometimes as an option to set; for
example, some Linux compilers require the option -std=c99). We will assume
from here on that we can create a loop control variable in a for loop heading.

Here is another example that introduces several features. It initialises two
arrays with fixed values, then calls a function arrayconcat that grabs some extra
memory from the heap and creates a new array containing the contents of both
original arrays, one after the other. It returns a pointer to this new concatenated
array.

#include <stdio.h>
#include <stdlib.h>

int * arrayconcat (int *a, int N_a, int *b, int N_b) {
int * result = malloc (sizeof(int) * (N_a + N_b));
for (int i = 0; i < N_a; i++) {
result[i] = alil;
}
for (int i = 0; i < N_b; i++) {
result[i+N_a] = b[i];
}

return result;

242 CHAPTER 9. SIMPLE C EXAMPLES

int main () {
int first [] = {3, 5, 4},
second [] = {7, -1, 12, 42},
N_first, N_second, *combined = NULL;
// compiler knows how big array is if initialized like this
N_first = sizeof(first)/sizeof(int);
N_second = sizeof(second)/sizeof (int);
combined = arrayconcat (first, N_first, second, N_second);
for (int 1 = 0; i < N_first + N_second; i++) {
printf ("%d ", combined[i]);
}
printf ("\n");
free (combined); // deallocate
combined = NULL; // make safe

First, note the header, stdlib.h, which we need to use a memory allocator
(malloc) and deallocator (free). We use malloc to allocate memory on demand
on the heap, and give it back using free (described in the MIPS part of the book
on page 144). In this example, to keep things simple, rather than do 10, I initialise
a couple of arrays using an array initialiser, which you write using curly brackets
and constant values separated by commas:

first [] = {3, 5, 4}

In the immediate vicinity where you define an array like this, the C compiler
knows how big it is and you can determine its size in bytes using sizeof. What
we really want is its size in number of elements, so a line like

N_first = sizeof(first)/sizeof (int);

allows us to determine the number of elements in array first. Unfortunately, if
we pass the array as a parameter, we can no longer rely on the compiler knowing
how big it is, so we need to store the size in a separate variable and pass the size
as well. Recall how a string is terminated with a null character so you can find the
end of it? That is needed in part because of this limitation of C where the size of
an array is not easy to determine.

Bigger Examples 243

Heads up: At the place where an array is defined (as an array variable,
not through a pointer) the compiler knows how big it is and you can use
sizeof to get its size in bytes. You then need to rescale the size in bytes
by dividing by the size of each element, again using sizeof. This trick
will not work with arrays that are dynamically allocated or in a function
where they are passed in as parameters.

In C, there are three ways of creating an array. You can:

* define one as in this main program, where you initialise it and write it as the
type of its element, with empty square brackets following the name of the
array variable, for example, int first [] = {3, 5, 4};

* define one in which you specify the type and size but not necessarily initial
values for each element as in int another [10]; — the size has to be
known to the compiler, so it cannot be a variable

* create space for an array on the heap using malloc

Only the malloc approach can create an array whose size is not known at compile
time.

Take a look at the arrayconcat function. It has four parameters: two
representing arrays (a and b), and two representing their sizes (N_a and N_b).
Notice how the arrays are defined as type “int *”. This means a pointer to an
integer. In C, all arrays are represented by a pointer to their first element. You
may recall this from working with strings in MIPS code, as well as more general
array examples. In machine code terms, a C array is represented as the address of
its starting point in memory.

Note that this also implies all pointers are not equal in status. If an array
is defined as a variable whose size is known at compile time, either as a global
variable (outside any function) or as a local variable (inside a function or even
more locally, inside a compound statement), even though it is accessible through
a pointer, it is not allocated on the heap. That means you cannot dispose of its
storage using free. It is also true (as we will see later) that you can make a
pointer that points into a specific place in an array, not just the start — deallocating
using free in that case is wrong even if the array was originally allocated on the
heap.

A pointer that has a value that is not created through dynamic allocation is a
constant pointer: you can set the value of elements and access the place it refers

244 CHAPTER 9. SIMPLE C EXAMPLES

to, but the storage it refers to is not possible to control using the pointer. The array
variable itself, though it is a pointer value referring to the first element, cannot be
changed. If you want more control over storage, you have to create an array as an
explicit pointer type, then allocate space for it with malloc.

Heads up: If you are lucky, free will pick up an attempt at deallocating
memory accessed through a pointer not created using malloc. If you are
unlucky, your program may crash in a weird way, or give strangely wrong
answers.

Once in the function, the first thing that happens is invoking malloc to create
a new array big enough for the contents of both of the original arrays. Notice how
close to the machine malloc is. It has to be told the size of the data in bytes, not
in elements, and returns a non-type-specific pointer, so the result can be assigned
to any type as long as it is a pointer type. No fancy stuff like constructors, which
you may have encountered if you’ve done object-oriented programming. Since
malloc needs the size in bytes, we need to multiply the array size (in elements)
by element size, hence sizeof (int) * (N_a + N_b). Once we have our result
array allocated, we can copy over the two original arrays. Finally, after a pair of
for loops to do that, we can return the pointer that malloc gave us, which is the
address of the new array.

Back in the main program, we can use the pointer returned by arrayconcat
to access the array elements, as I do to print out the elements of the combined
array. This new array is a totally fresh copy in different memory than the original
arrays.

Anything I allocate using malloc should ultimately be returned for reuse using
free. In this example, that is not strictly necessary because there program ends
immediately after I call free. When your program exits, it gives up all memory
anyway, but it is good to get used to deallocating anything you allocate, since this
does not happen automatically in C.

The effect of calling free is to tell the memory manager system that the space
pointed to by the pointer you gave to free can be reused for another purpose.
Using a pointer after deallocating its memory can cause bugs that are very hard to
track down because the memory allocator may not immediately reuse the memory.
In such a case, an error may only surface a long time after the point where you
made your mistake. For this reason, it is a good idea whenever you use free
to assign the NULL value to the pointer so you cannot accidentally access the
deallocated memory.

Exercises

The take home message? If you have a machine-code view of what is
going on, things like the interchangeability of arrays and pointers makes
perfect sense — even if it means you tend to think of programming at the
machine level when you may want to look at the problem in a higher-level
way.

Exercises

1.

What would happen if you left out the “&” in the following?
scanf ("%d", &yourscore);
variable values?

int N = 42;
float age = 21.2;

(a) printf ("N = %d\n", N);

(b) printf ("N = %f\n", age);
(¢) printf ("N = %g\n", age);
(d) printf ("N = %e\n", age);
(e) printf ("N = %E\n", age);

3. You want to write out the integer part of a floating-point value in f1

variable average, and round up rather than truncate. How would
do this? Write out a printf that produces the right result (including
arithmetic or casts needed).

[IF%4]

4. In the following, explain what each use of “*” means:

(a) int * ageptr;
(b) * ageptr = 42;

(c) dog_years += *ageptr * 7;

5. In the following, explain what each use of “&” means (you may want to r

to table 7.1 for inspiration):

245

For each of the following, what output would you expect, given these

oat
you
any

efer

246 CHAPTER 9. SIMPLE C EXAMPLES

(a) scanf ("%d", &age);
(b) int a = b & c;

(c) bool test = b && c;

6. A local variable is a new variable even if it has the same name as a variable
defined at another level.

(a) Draw the MIPS stack frame representing space needed for global
variables as this function executes, allowing for changes in space
needed for local variables (assume you need stack space for each
variable even though this is leaf function, and each new local variable
needs extra space):

int max (int a, int b, int c) {
int maxsofar = a;
if (b > a) {
int maxsofar = b;
if (maxsofar > c)
return maxsofar;
else
return c;
+
if (maxsofar > c)
return maxsofar;
else
return c;

(b) Does this code correctly calculate the maximum of three values?
Explain. Hint: make sure you have straight which version of
maxsofar applies where.

7. You want to read in numbers, ending with the user typing an EOF character.
Why is it hard to store numbers read in like this in an array? Hint: when
will you know how big the array needs to be?

8. Base answers here on function arrayconcat on page 241.

Exercises 247

(a) In function arrayconcat, why is it possible for the main program to
access elements of the array created in the function, despite the fact
that the result variable used in the function is local to the function?

(b) Write a function stringconcat that concatenates two strings and
returns a new string containing the characters of the two given strings.
Your function should take into account the fact that a string is
terminated by a null character ('\0"'), both in processing the given
strings and in creating the result string that the function returns.

(c) Explain how stringconcat differs from arrayconcat (aside from

the type of the values).

9. We can treat an array as a pointer to its first element. Does that mean we
can always treat an array as a pointer? Consider the following example:

int main () {
char name[] = "Fred";
free (fred);

Is the use of free correct here?

10. When we work out the size of an array in the place where it is defined, using
the sizeof method:
(a) Do we always have to divide by the size of the element type? Why?

(b) What if the array contains char elements? Would that change your
answer?

10 More Interesting Problems

E HAVE A START. We can now tackle some more interesting examples

\)s/ that need more complex data structures and algorithms. I will add more

features as we go, though most should be familiar from the MIPS part of

the book. Some examples will motivate a low-level view of the world, so C will

not be just a tool to understand how high-level languages relate to machine code,

but a useful language for things that are not so easy in higher-level languages like
C# or Java.

We will start with a pointer-based data structure, a tree. I use this example not
only to expand on dynamic data but to illustrate how code can generalise. This
is another example of using malloc and free from the standard C library. Refer
back to the toy versions I use in the MIPS part of the book to illustrate concepts,

if you are unclear on what they do (page 144).

10.1 More Types

First, before we get into examples, we need to know how to define a structured
type, one that can contain more than one type of data. We did this by example
in §5.4; let us now describe properly what a C structured type looks like. A
structured type has a name that is always preceded by the word struct. If you
find this annoying, you can use a typedef to give it a simple one-word name.

A C structured type or struct for short can contain elements of any type.

Here is our list example again from page 150, this time without naming the
type using a typedef:

struct numberElement {
int number;
struct numberElement * next;

};

248

More Types 249

This works just as well, but typing struct numberElement can get tedious,
which is why I prefer to create a type name for each struct. A typedef looks
exactly like a variable definition for a given type except you start with the word
typedef, and the word in the place where the variable would be becomes a new
name for the type. So, to rewrite our example the way we had it before:

// name for the type to save tedious repetition
typedef struct numberElement NumberElementT;

// elements of the list: number plus next item
struct numberElement {

int number;

NumberElementT * next;

};

This in effect makes “NumberElementT” a synonym for “struct numberElement”.
You can even do this:

typedef struct numberElement numberElement;

— which makes “numberElement” a synonym for “struct numberElement”.
Some C programmers like doing this, though for me having a name with two
purposes is potentially confusing.

If we want to create instances of a list with a size that can vary at run time, we
can create new nodes or elements using malloc. If you use malloc, you need to
include the standard header file stdlib.h. Recall that standard header files are
included using angle brackets:

#include <stdlib.h>

If you use malloc, you generally also need to use free to deallocate dynamic
data.

Another kind of type that is useful in C and a lot less so in object-oriented
languages is a pointer to a function. In object-oriented languages you can vary
methods available by mechanisms like inheritance or passing an object as a
parameter. Since C has no classes or objects, neither of these options would work.

A pointer to a function has a type that is the same as the type of the function
— a return value, and a type for each parameter. To give the type a name, you put
the type name (or variable name, if you aren’t using a typedef) in parentheses
between the return type and the parameter types. Since the type is a pointer type,

250 CHAPTER 10. MORE INTERESTING PROBLEMS
you also need to include a “*” in the type. Here is a simple example in which I
create a variable fn of type int (%) (int, int), and initialise it as NULL. I then
assign to it different functions and call it through the variable name. The type of
fn is a pointer to a function that returns an int value, and takes two parameters,
each of type int.

Heads up: Let’s take this slowly. In “int (x) (int, int)”, the first
“int” is the type of value returned by the function. The “(*)” says that
this is a function pointer type. The two repetitions of “int” in the second
parentheses are the types of the parameters of a function of this type. If
we have a variable (or name the type in a typedef) of this type, it goes
in the first parentheses right after the “x”.

#include <stdio.h>

int max (int a, int b) {
if (a > b) return a; else return b;

}

int min (int a, int b) {
if (a < b) return a; else return b;

}

int main () {
int (*fn) (int, int) = NULL;

fn = max;
printf ("%d\n", fn(4,2));
fn = min;
printf ("%d\n", fn(4,2));

What do you think this example does?

You can also pass a function pointer as a parameter and as we will see later
that is useful for creating general code like a general-purpose sorting algorithm
that can sort any type of data.

The take home message? Structured types are a basic building block
for complex data structures, and are the idea on which objects in later
languages are built. Function pointers provide some of the generality that
a class hierarchy provides, though with less control over type correctness.

More on C File Layout 251

10.2 More on C File Layout

Before we get into bigger examples, we need to know how to structure a multi-
file example. First, anything that needs to be known in other parts of the program
should be declared in a header file. That however does not mean any name defined
in a C file is not known to the rest of the program. Even if a name is not in a header
file, a duplicate of that name could cause a linker clash. So it’s useful to introduce
another feature: the ability to make names only known in one compiled file. To
do that, we add to the front of the variable or function definition the word static.
For example:

static int N_calls = 0;

If this line is at the top level of a compilable C file (not in a function), the name
N_calls is global within that file, but cannot be accessed in any other file. In
MIPS assembly notation, a name like that is not declared as *“. globl”.

As a general rule, if a name does not appear in a header file, it is a good idea to
make it static in the compilable file, otherwise you could run into an unexpected
name clash — or possible a hard-to-track down error (e.g., two names you think
are local are similar in spelling and you use the wrong one).

Heads up: All global names are known to the linker, even if the compiler
does not allow you to access a global name from another file, unless you
declare it (usually in a header). Using static is important to avoid linker
name clashes.

Since header files are essentially pasted in to the compilable file, it is possible
for a header file to be included twice. To ensure that does not have negative
consequences, a trick using preprocessor macros is popular. A preprocessor macro
in its simplest form defines a name to stand for something — or even simpler, says a
name is defined without saying what value is associated with it. You can check if a
preprocessor name is defined. That leads to the a trick to avoid multiple inclusions
of the same header in the same compile step. If our header file is called fname.h,
we wrap its contents in the following:

#ifndef FNAME_H
#define FNAME_H

// header file normal contents here

#endif // FNAME_H

252 CHAPTER 10. MORE INTERESTING PROBLEMS

The last comment on the #endif line is not necessary, but useful to the human
reader. What is the effect of all this?

The first line starting #ifndef checks if the preprocessor symbol FNAME_H
has previously been defined. If it hasn’t (“ifndef” stands for “if the name
is not defined”), the preprocessor continues to the next line, which defines the
preprocessor symbol so any subsequent time the file is seen, the condition will be
false (meaning the name is defined). Failing a test in a preprocessor condition like
this makes the preprocessor skip to the #endif, meaning that the compiler will
not see the text in between. As a general rule, we will put these guards as they are
sometimes called in all our headers.

Heads up: It is important to understand that the preprocessor changes
what the compiler sees: parts of your code can be modified or left out
before the compiler sees it.

An important advantage of using guards is we don’t have to worry about where
we put a #include for a particular header. If that header contains declarations
used in several files that happen to use declarations from each other, proper use
of ifdef guards will ensure that we don’t see the same declaration twice (usually
not a problem, if inefficient) — or worse, put the preprocessor in a loop if a pair of
header files included each other.

Since a header file tells the rest of the world what a compilable file offers
to make usable for the rest of the code, a header file is the obvious place to put
detailed comments on how anything declared there should be used. A compilable
file should have comments on how the code works and tricks that are not obvious
to the reader.

The take home message? Header files are an elementary way of keeping
types consistent across separately compiled parts of a program. Using
ifdef guards is a standard way of avoiding problems if the same header
is included twice in one compile.

10.3 Examples

Let’s look at a more interesting data structure now, and move on to non-trivial
algorithms. We look at a few sorting strategies as well as reading data from a
file, useful for testing on a larger scale. Also, reading from a file is useful as an
exercise in understanding how to convert data between formats. I also take a brief

Examples 253

20

N

15 42
/ ’ \\

10 17

Figure 10.1: Binary tree example

look at interpreting the command line, so you can write a program that picks up
information like the name of a file to use for input.

The aim as before is to understand how low-level concepts relate to higher-
level languages, so we will not dwell on details of the examples but rather focus
on the programming techniques required for each.

Trees

A binary tree has a root, and each node in the tree holds a value as well as a
pointer to a left and a pointer to a right node. Nodes with no descendants are
called leaves. Figure 10.1 illustrates a binary tree containing integer values. Trees
can have more branches, but a binary tree (2 branches) has many uses so I focus
on that to illustrate more programming concepts.

A type that represents each node looks like this:

typedef struct Tree TreeT;
struct Tree {

int data;

TreeT * left, * right;
};

To start at the root, we need a pointer to one of these items, so the tree could be
represented as follows:

TreeT *data;

and it would be necessary to create each node and link them to the tree.
A binary tree is a useful data structure if it is kept ordered and balanced, i.e.,
the maximum path in each direction (from the root to a leaf) does not vary much.

254 CHAPTER 10. MORE INTERESTING PROBLEMS

Ordering a tree by convention places smaller items to the left and larger to the
right. This means searching for a value if it is correctly inserted into the tree is
efficient, and roughly the same as a binary search, which divides the data in half
each time. A binary search works on a sorted array; the main advantage of a tree
over a sorted array is its size can easily change.

Here is how you could search for an item in a tree, assuming it is correctly
constructed:

bool search (TreeT * root, int key) {
if (key == root->data)
return true;
if (key < root->data) {
if (root->left)
return search (root->left, key);
else
return false;

if (root->right)
return search (root->right, key);
else
return false;

Note we rely on the fact that a NULL pointer is stored as zeros, and hence is
the same thing as false. This way we can write concise code to test for a NULL
pointer instead of root->1eft==NULL we can simply write root->1left. Also,
the notation -> applies specifically if our struct is accessed through a pointer. If
the struct is not accessed through a pointer, we access its elements instead using
a “.”. The “->” notation means dereference the pointer, then access the struct
element, and we could instead write this:

(*root) .left

From this perhaps you can see why the -> notation was developed.

Heads up: When accessing a struct element where the variable is not
. When using a pointer to a struct, use “->" to

«

a pointer type, use
access an element.
Let’s look now at how to create a tree. If there is no root, we simply allocate a

new node, initialise its left and right pointers to NULL and put in its data value. If
there is a root, we need to decide whether to place the new item to the left or the

Examples 255

right, and keep on doing so until we hit a leaf, where we can add our new node.
Here are two functions we need. First, we need to be able to make a new node,
which requires use of malloc. Then we need to be able to insert into the tree if
it’s nonempty:

TreeT * makenode (int data) {
TreeT * newnode = malloc (sizeof(TreeT));
newnode->data = data;
newnode->left = newnode->right = NULL;
return newnode;

void insert (TreeT * root, int data) {
if (data < root->data) {
if (root->left)
insert (root->left, data);
else
root->left = makenode (data);
} else {
if (root->right)
insert (root->right, data);
else
root->right = makenode (data);

Here is how we go about disposing of the whole tree once we no longer need it:

void deallocate (TreeT * root) {
if (root->left)
deallocate (root->left);
if (root->right)
deallocate (root->right);
free (root);

Note how we can only call free once we are sure the current node is not needed
any more.

Heads up: If you forgot how recursion works in machine code, this is a
good time to review it in §4.5.

Here is a main program that uses all these features:

256 CHAPTER 10. MORE INTERESTING PROBLEMS

int main () {
TreeT *data = NULL;
printf ("\nEnter numbers, < O to stop\n");

while (true) {
int newdata;
scanf ("%d", &newdata);
if (newdata < 0)

break;
if (data) {

insert (data, newdata);
} else {

data = makenode (newdata);

}
printf ("\nEnter numbers to search for, < 0 to stop\n");
while (true) {
int searchkey;
scanf ("%d", &searchkey);
if (searchkey < 0)
break;
if (!search (data, searchkey))
printf ("not ");
printf ("found\n");
}
deallocate (data);
}

You can traverse the tree using an approach called in order traversal that extracts
the data in time proportional to N, the number of elements. It takes time
proportional to NlogN to construct a tree, similar to time for a good method of
sorting N items, but once the data is in the tree, you need not sort it again, and
adding a new item while keeping it sorted takes about log, N steps. All this good
behaviour requires the tree to be balanced; a red-black tree, for example, is one
that is kept balanced as items are added or removed ensuring best-case behaviour
at the cost of considerable code complexity [?]. Here is code for inorder traversal:

void inorder (TreeT * root) {
if (root->left)
inorder (root->left);
printf ("Jd ", root->data);
if (root->right)
inorder (root->right);

Examples 257

Make sure you understand why this algorithm retrieves the tree contents in sorted
order, provided the data is in the tree in the correct order.

Finally, a complete implementation of a tree should include a way of removing
an individual node. Code for this is a little more complex, and understanding this
is better left to a data structures and algorithms text.

As the code stands, it is not very general: we can only put integers in the
tree, and have no flexibility in ordering. What if we want, for example, to sort on
absolute value rather than strict ordering? To address the problem of more general
data, we can store a pointer in the tree rather than the actual value. Since C does
not do strong type checking, we can create a typeless pointer and use pointers to
functions we pass in as parameters to do comparisons in arbitrary fashion and to
to access the data.

How do pointers to functions work? That should not be a huge surprise from
knowing how things work at machine level. A function call is just a jump and link
instruction to a particular address (in MIPS terms, but most machine instruction
sets do this a similar way). Why should that address not be stored in variable, just
like an address that represents where data is stored (a pointer to a data type)?

This is all however difficult to debug and get right, so I will return to
the concept of function pointers when we use prebuilt library functions where
someone else has had to get the details right.

The take home message? A tree can be a very efficient way of storing
information; retrieval if the tree is balanced takes approximately log, N
steps for a tree containing N items. The data can also be retrieved in
sorted order in time proportional to N, though it takes time proportional
to N1ogN to set up. Algorithms that keep a tree balanced are complex, but
worth studying if you ever need to build general-purpose data structures.

Sorting

There are many sorting algorithms. The simpler ones tend to scale up badly,
i.e., they are very fast on small data, but quickly get overtaken by more complex
approaches as the data size grows. Generally, simple sorting algorithms scale
proportional to N2, while the good ones scale proportional to Nlog N, where N is
the size of the data.

Here, I am going to introduce one of the simpler NlogN algorithms, merge-
sort, which is relatively easy to understand, though it needs more memory than

258 CHAPTER 10. MORE INTERESTING PROBLEMS

20 15 10 3 3
}done,
15 10 3 10 10 |Jretm
10 17 15
17 16

42 3 16 17

changes
here on

} no further

55 20 20 20
16 42 42
3 55 55

Figure 10.2: Quicksort recursion

some others, and is not as fast in most cases as quicksort, which also takes time
NlogN and needs less memory. Mergesort on the other hand is guaranteed to need
no more time than NlogN in the worst case, whereas quicksort can sometimes
take N2 time.

Quicksort is well-studied algorithm and provided its worst case can be avoided
(with some tricks, this is usually the case), it is very fast, so let’s take a quick look
at how it works before going on to detail of mergesort.

Quicksort uses the following strategy:

1. choose a data item called the pivot

2. split the data between items less than the pivot and items greater than or
equal to the pivot

3. recursively sort the data either side of the pivot (two partitions of the data
each time) and end the recursion when you are down to 1 item

Quicksort has its worst behaviour when the data is unevenly split. For example,
if the pivot is always the smallest or biggest item in the current partition of the
data, it takes time proportional to N2, and a lot of work has gone into creating
variants that avoid this behaviour.

Figure 10.2 illustrates the steps quicksort takes on a small example. Shaded
areas are not under consideration in the current step. I leave out steps where the
partition size is very small.

Since it is a little easier to see what is going on with mergesort, I present
that in a little more detail. We will later show how to use a general version of
quicksort provided in the standard C library, using function pointers to implement
comparisons.

Mergesort works as follows:

Examples 259

1. divide the data at the midpoint
2. apply mergesort to each half recursively, until you are down to one item

3. merge the two partitions you just sorted recursively (where merging means
combining two sorted lists or arrays keeping them sorted)

Mergesort has a few advantages over quicksort. For very big data that doesn’t fit
into memory, you can implement it using slower but bigger storage like a disk,
and as mentioned before, it never takes time proportional to N2. The recursive
mergesort algorithm is very easy':

void my_mergesort (int datal], int N) {
int midway = N/2;
if (W <= 1)
return;
my_mergesort (data, midway); // lower half
my_mergesort (&data[midway], N-midway); // upper half
merge (data, midway, N);

Note the notation &data[midway]. That means take the data item at array index
midway and create a pointer to that location using the & operator. Each recursive
call gets a smaller slice of the array, and it divides in halves exactly each time
(£1 if the size isn’t a multiple of 2). This very even division is why the algorithm
doesn’t have a bad case that takes time N?.

Heads up: The notation &data[midway] is an example of creating a
pointer partway into an array. Think of it in machine code terms. We
construct a machine address representing a different starting point in the
array so we can temporarily forget that the rest of the array exists. This
newly constructed machine address behaves just like an array since an
array is represented as the address of its starting point.

Merging is rather more complex. My code here is not designed to be super-
efficient — there are versions that do the merge in less memory, for example. Note
how I allocate space for merging each time and deallocate it after copying the
merged partition of the array back to its original data structure. This is not strictly

'T don’t call my version mergesort because there is a library function of that name on some
systems.

260 CHAPTER 10. MORE INTERESTING PROBLEMS

N=8 N=4 N=2 15 10
midpoint=4 midpoint=2 midpoint=1
20 20 20 [P 20 20 15 15
- ; merge
15 15 Pt 15 and 10 20 17
- copy -
10 10 back 17 10 20
’ merge merge
17 [spPlit| 17 and and

copy
back

copy
back

2nd
half still
to sort
and
merge

Figure 10.3: Mergesort recursion and merges

necessary as the merge space is never bigger than the original array, so I could
allocate the merge space once at the start of the mergesort algorithm.

Relate the code to figure 10.3. Each time a level of recursion completes, the
two partitions of the array known at that level are sorted and can be merged with
each other. Merging starts when you are down to 1 item per partition, then, as you
return, the partitions get bigger and bigger, until you are at the top level and have
two partitions. The figure illustrates the steps up to the point where the first half
of the data is sorted.

static void merge (int data[], int midway, int N) {
int * placeholder = malloc (sizeof (int) * N);
int lower = 0, upper = midway;
for (dnt i = 0; 1 < N; i++) {
// if either lower or upper exhausted copy the rest of the
// other over to placeholder array
if (lower >= midway) {
for (int j = i; j < N; j++) {
placeholder[j] = datal[upper];
upper++;
}
break;
} else if (upper >= N) {
for (int j = 1i; j < N; j++) {
placeholder[j] = datal[lower];
lower++;
}
break;
}
if (data[lower] < datalupper]) {

Examples 261

placeholder[i] = data[lower];
lower++;

} else {
placeholder[i] = datal[upper];

upper++;
}
}
for (int i = 0; i < N; i++) {
data[i] = placeholder[i];
}
free (placeholder);

3

A more efficient version of mergesort would stop recursion significantly before
N reaches 1 because a simpler sort without recursion would be faster for small
values of N.

The take home message? Mergesort is a relatively simple recursive
example, though the merging code is a little more complex. It is worth
understanding because it can be adapted to sorting very large data that
doesn’t fit into memory, and is yet another example to help you understand

recursion.

Reading Files

To test our code on non-trivial examples, it is useful to be able to read files.
Although you can read from the keyboard and use a redirect to obtain data from a
file, that doesn’t help you with the problem of needing to know how big the data
is before you allocate an array using malloc. There are ways you can do this (for
example, you could allocate the data using a more flexible structure, then allocate
the array once the size is known and copy the data over), but none that are as
efficient as reading a whole file into memory.

There is more than one way of storing the same information in a file. You
can store the raw data (binary data), much as it is represented in memory or
registers, or you can convert the data to character format (textual data). There
are advantages and disadvantages to both approaches:

* binary data can be read and written efficiently without conversion

* textual data can be read easily without a special program (e.g., in a plain
text editor, or by dumping to the screen)

262 CHAPTER 10. MORE INTERESTING PROBLEMS

* binary data may need conversion between computers

* some types of binary data like pointers cannot safely be saved and restored
without further processing

To keep our examples simple and to make it possible to inspect the data, I will
stick with textual data, though this requires some translation. In the simplest case,
we can use scanf with appropriate formatting but I will illustrate here how we
can do our own interpretation of character data to extract integer values.

The steps we need are:

1. open the named file: that includes converting the human-readable repres-
entation of its name (including path) to a value of type FILE* that we can
use in file operations

2. find out how big the file is
3. allocate a buffer into which to read it

4. read the file as chars into this buffer and null-terminate it to make it into a
single large string

5. break the chars in the buffer down into pieces corresponding to the data
type we want and work out how big an array we need for them

6. allocate an array of our final data type
7. translate the chars in the buffer into data values in the array

The coding for reading a whole file in is a little complex; I see little point in
memorising it. I either recycle an old example or do a search for free code that
does it. Assume that we have a function like this:

char* readfile (char filepath[]) {
// read entire file as chars into a buffer and return pointer to
// newly allocated memory containing its contents, ’\0’ terminated

How do we go about splitting something like this up into (for example) integers,
ignoring all the whitespace between? By whitespace I mean TAB characters,
spaces and line breaks. What we want is a function that looks something like
this:

Examples 263

int* str2ints (char buffer[], int *N) {
// given a char buffer, find everything that looks like an
// int separated by whitespace, and return the value of each
// int in an array, allocated by the function

Luckily, there are few useful functions we can use if we include standard header
ctype.h. The function isspace takes a single char parameter and returns true
if it’s anything you might call whitespace. The function isdigit will tell you
if a single char is a digit in similar style. Let’s put all this together and work
on a header file for processing a text buffer previously read in. We will assume
that the last character in the buffer is a null terminator, and there is only one null
terminator in the buffer. We will not assume that the contents are all correct. We
expect whitespace and digits, nothing else, and so must report an error if we hit
anything else before the null terminator.

Here is the header file declaring this function, with detailed comments to
document it for anyone wanting to use it:

/*

* str2ints.h -- function for converting string buffer to integers
* author Philip Machanick

* original version 4 April 2014

*/

#ifndef STR2INTS_H
#define STR2INTS_H

// str2ints takes a string buffer and assumes any white space including
// line breaks, tabs or spaces is a separator and anything else is an
// integer represented as chars, and extracts all the integers to an
// array; provides the number of integers via a reference paramter

// parameters:

// char buffer[] -- given string

// int *N -- number of integers, calculated from buffer

// returns pointer to and array allocated in the function

// error: if string malformed, terminates with error message

// memory allocated: up to caller to free the buffer

int* str2ints (char buffer[], int *N);

#endif // STR2INTS_H

Note how I use comments enclosed in “/*” and “*/” in a top-level description of
the header contents. This is an older-style comment than using a “//” to make

264 CHAPTER 10. MORE INTERESTING PROBLEMS

the rest of the line a comment. I use the older-style comments for top-level file
descriptions to make them stand out from other comments. This is another of
those conventions that is not built into the language.

Note also the ifdef guard to stop the header being included more than once
in one compile. Otherwise, all there is in the file (the only thing the compiler cares
about) is a function declaration. In C, a function declaration (which specifies the
name and types but not the body is called a prototype). A function prototype does
not strictly need names for parameters, but it is easier to read if you put the names
in.

Let’s see now what the compilable C file (containing the function definition)
looks like. Note the use of static to prevent functions only meant to be seen
in this file from being used elsewhere or conflicting with other similar names in
other files.

/*
* str2ints.c -- function for converting buffer of strings to integers

*/

#include "str2ints.h"

#include "errorhandler.h"

#include <stdio.h>
#include <stdlib.h> // for malloc
#include <ctype.h> // for isspace, isdigit

// preliminary: functions to find out how many ints are represented
// in char array; kills the program if the data is not purely digits
// and whitespace (tab, newline, space -- std library function checks
// this for us)

/[Fkskskskskskskskskoskokokokokokkokkkkkk1ocal FUunctionskskskskskskskskskskskskskokokokkkkkkkok /

// skip white space characters, stop at string null terminator
// returns pointer to either next non-whitespace or ’\0’
static char * skipblanks (char *str) {
while (*str != >\0’ && isspace(*str)) {
str++;
¥

return str;

// skip digit characters, stop at string null terminator

Examples 265

// returns pointer to either next non-digit or ’\0’
static char * skipdigits (char * str) {
while (kstr != >\0’ && isdigit (*str))
str++;

return str;

// count sequences of digits that we expect will represent
// int values, stopping on a ’\0’
// returns the count
static int count_ints (char buffer[]) {
int count = 0;

while (*¥buffer != °\0’) {
buffer = skipblanks (buffer);
if (*buffer == ’\0’)

return count;
if (lisdigit (xbuffer)) {
fprintf (stderr,"‘Yc’ ",xbuffer);
handlerror ("nondigit char in input", true);
}
count ++;
buffer = skipdigits (buffer);
}

return count;

[FxF R KRRk Rk Rk global Functiomkkkskkskkkkkkkrkkkkkkkkrk /

// str2ints takes a string buffer with white space including
// line breaks, tabs or spaces as separators of integers as
// chars, and extracts the ints to an array it allocates
int* str2ints (char buffer[], int *N) {
*N = count_ints (buffer);
char * currentpos = buffer;
// by now, we know after each skipblanks, we get a digit
int * data = malloc (sizeof (int) * (*N));
for (int i = 0; i < *N; i++) {
currentpos = skipblanks (currentpos);
sscanf (currentpos, "%d", &datalil);
currentpos = skipdigits (currentpos);
}

return data;

It’s worth working through this in detail. The library functions for identifying

266 CHAPTER 10. MORE INTERESTING PROBLEMS

whitespace and digits take a lot of pain out of programming the example; look
for things like this when you do your own programming. The main new feature
I need to explain is sscanf. This is a variant of scanf that instead of reading
from a file, interprets characters in a string (hence the extra “s” at the start of
the function name). In this case, we are asking sscanf to look for an integer
in decimal format (%d in the format string) in the string starting at the address
currentpos and puts the result into the address where data[i] is stored. Since
currentpos is a pointer to the place in the buffer where the next digit is found
after skipping blanks, we should pick up each number in the file this way. We can
use a for loop because we have previously found the number of integers in the
buffer when we called count_ints. We could just use sscanf directly without
all the prior checking, but this code is much more robust, and should reject any
file that contains anything but whitespace (as defined by isspace) or digits (as
defined by isdigit).

Heads up: We have to do a lot of low-level coding to do safe input in C. It
is worth going through the pain of this, and reusing techniques once you
have it straight.

Another detail we need for completeness is handling errors. C, unlike many
more recent languages does not have exceptions, so handling errors requires
detailed program logic. You will see some examples in the code. Here is the error
handler function called from the rest of the code. The header is straightforward
so I leave that as an exercise (note you will need to include stdbool.h for type
bool to be defined). Also note the need in the error handler to include stdlib.h
so as to be able to call exit, which does much the same as the similarly-named
system call in SPIM. You can check the returned value of a program in a script,
which is why the error handler returns a code.

#include "errorhandler.h"

#include <stdio.h>
#include <stdlib.h>

// print a message and terminate the program if requested (terminate==true)
void handlerror (char message[], bool terminate) {
fprintf (stderr, "Error: %s", message);
if (terminate) {
fprintf (stderr, " -- terminating\n");

Examples 267

exit (EXIT_FAILURE); // standard value indicating arbitrary failure
}
fprintf (stderr, "\n");

The take home message? Reading files is a useful thing to understand
and we have only touched on the details here. Writing files covers similar
issues. You need to be aware of the difference between converting from
plain text to internal machine-represented values and back as well as the
issues involved in reading and writing machine-level binary data.

Main program parameters

Finally, let’s look at how we can pass information into a program from the
command line. The standard main program type signature returns a value of
type int. Optionally, you can also include parameters to accept values from the
command line. Do you recall those mysterious things argc and argv that SPIM
passes into a MIPS program? Those are based on the C convention for passing in
command-line information.

A more complete main program declaration looks like this:

int main (int argc, char *argv([]);

The first parameter tells you how many values were passed in from the command
line — anything not in quotes is whitespace-separated so if your command line
contains multiple items separated by spaces, each is passed in as a separate string.
The second parameter is an array of strings. Why? The type before the [] is
char*, which means pointer to char. As we’ve seen before, this type is either
a pointer to a single char or the start of an array of char. In this case it is an
array of char, in null-terminated string format. The additional [] indicates the
parameter passed is an array of these.

If I have a command line that looks like this (remember, the lending “$” is the
command prompt, not part of the command):

$./mergesorttest data/test.data

then argc will be 2 and the array argv will contain two strings, " . /mergesorttest"
and “data/test.data”.

268 CHAPTER 10. MORE INTERESTING PROBLEMS

registers memory

7££££d470 7ffffde3 7ffffdf3

$a0 2

sal 7££££d470

01000800 ./mergesorttest\0data/test.data\0

Figure 10.4: How argc and argv are passed in and represented in memory

Figure 10.4 illustrates how values of argc and argv are represented, assuming
the MIPS convention of passing parameters in registers $a0 and $al. The value
of argc and argv are in the two registers. The first contains 2, because that is the
number of command-line “words”; the second contains an address that points to a
location in memory that starts an array of pointers. Each of those pointers points
to the start of a string representing each of the “words” on the command line.

So let’s assume we want to run our program with the name of its input file on
the command line. Our program then should check that argc is 2 (the name of the
program, and the name of the input file). The convention on UNIX command-line
programs and tools is you display a usage message if the command line is wrong.
Here is a main program that does the minimum to check all this, and print a usage
message. Note a new header required here, string.h, for a standard function,
strlen, which tells you how long a string is. The implementation of strlen
relies on a string terminating with a null character (ASCIIZ format that we saw in
the MIPS section, page 86).

/*
* argc and argv test main program
* checks that exactly two command line args supplied
* if not, prints a usage message

*/

#include <stdio.h>
#include <string.h>

#include "errorhandler.h"

const char pathsep = ’/’;

// if we split a C string over several lines, it’s as if we typed one
// string without breaks -- we need to add in \n for line breaks

const char usagestr[] =
"filepath\n"

Examples 269

. FIXME: fill in once does something useful\n";

static char* fileOfPath (char * path) {

int N = strlen (path);
if (N < 1 || path[N-2] == pathsep)

handlerror("bogus path in exectuable’s name", true);
for (int i = N-2; i >= 0; i--)

if (path[i] == pathsep)

return &(path[i+1]);

return path; // only get here if no path separator

static void usage (char executablename[]) {
fprintf (stderr, "usage: %s %s", fileOfPath(executablename), usagestr);
handlerror ("incorrect command line", true);

}

int main (int argc, char *argv[]) {
if (argc !'= 2)
usage (argv[0]);

Here’s a new feature. If you write C strings next to each other with only
whitespace (including any line breaks) between them they are treated as if they
are a single string with no break. So for example, where I set up usagestr it is
actually one big string:

"filepath\n... FIXME: fill in once does something useful\n"

Note I still have to put in line-break characters — the breaks between the end and
start of the string components do not change what is actually stored; only the
chars in the quote marks count.

Once we have this straight, we can split off the command line test to another
file with a header to keep things tidy.

The take home message? Passing information in from the command line
can get a lot more complex than this — what you can do depends on how
much you are willing to interpret complex options. Examine a few UNIX-
type utilities like 1s and think through how you would process a command
line as allowed by one of those.

270 CHAPTER 10. MORE INTERESTING PROBLEMS

10.4 Putting a program together

We have a lot of pieces so far. How do we stitch these together to create
a program? In its simplest form, we can put all the functions we want into
compilable files, with headers declaring common types and functions, and
compile them all in one line. For example, if the named C files comprise the
entire program, we can do this:

$ cc -o testMS testMS.c errorhandler.c str2ints.c readfile.c mergesort.c

In this example, the main program is in testMS. c and the final executable given
with the -o option is testMS. For a small example, this is fine. However, for a
longer program, it is useful to create a Makefile that describes rules to build each
component so we don’t have to compile every file each time but also do not forget
to compile something if another file it depends on changes. A program called
make processes the Makefile, resolving any unmet dependencies.

A Makefile contains rules that show dependences and how to resolve them.
A typical rule looks like this:

testMS: testMS.o errorhandler.o str2ints.o readfile.o mergesort.o
cc -0 testMS testMS.o errorhandler.o str2ints.o readfile.o mergesort.o

The general notation is a target followed by a colon, and a list of files on which
the target depends. A target is usually a file that has to be built, though it can also
be a phoney target like test, which is never actually created, so trying to make
that target forces something to run every time. On the next line is the thing to do
to resolve the dependency. That next line must start with a TAB, otherwise it is
not recognised by the make program as a command.

Heads up: Make sure your editor actually stores TAB characters
otherwise make will sulk and not do as you expect.

What this rule says is that if any of the named “.o0” files is newer than the
testMS file the command on the next line must be run. That line says run the cc,
which in this case means link the given object files.

A Makefile should start with a rule for making the main executable file — so
the rule just discussed should be the first in the file.

Heads up: The order of rules in the Makefile does not matter except the
first rule should say what the main executable file depends on. All other
rules can be in any order you like.

Putting a program together 271

How would an object file like testMS. o be created? You use the -c option
on the compiler command to tell the compiler not to try to link, but to stop after
creating an object file. You need not specify the name of the object file since there
is a sensible default, the original name with the . c replaced by .o. For example:

$ cc -c testMS.c

So how would you make a rule for this in a Makefile? Start with the output file
as the target, then list everything that could change and thereby invalidate the last
compile. That includes the C file and all its headers (though usually we don’t
bother with dependences on system headers, since they cannot change without
breaking a lot of programs). If this covers all the dependences, the rule here
would be:

testMS.o: testMS.c errorhandler.h
cc -c testMS.c

If you have a test you can run, e.g., comparing output with a known correct result,
a phoney target test is a common trick for running such a test, e.g.,

test: testMS
./testMS data/test.dat | diff -q - data/test.sorted

You can use diff, a standard command, to compare two files. In this case, the
two files are the output of your program piped to diff (a file name spelt with a
dash for many programs means read stdin), with a second file containing correct
output. Running diff like this gives no output if both files it compares are the
same. The “-q” option makes diff only report that the files differ, rather than
details of the differences.

If you want to run the test, type on the command line:

$ make test

If the executable is out of date, because the target test depends on it, it will be
rebuilt. If any of the object files is missing or out of date, they will be rebuilt to.
The rules work recursively, so if anything depends on something else, the chain
of dependences has to be resolved all the way.

Another popular rule is one to clean up derived files (in this case, the object
files), which can easily be recreated and clutter the directory. A clean rule need
not depend on anything. It can be as simple as

272 CHAPTER 10. MORE INTERESTING PROBLEMS

clean:
rm testMS.o errorhandler.o str2ints.o readfile.o mergesort.o

This is getting repetitious; we can make variables to represent strings we reuse (or
for ease of reading). For example, if we write

0OBJS = testMS.o errorhandler.o str2ints.o readfile.o mergesort.o
we can rewrite our rules that name all these as follows:

testMS: $(0BJS)

cc -o testMS $(0BJS)
clean:

rm $(0BJS)

In general, we expand a variable name by putting a “$” in front of it; the extra
parentheses around the name are required but can be replaced by braces (“{ }”).
In summary, your Makefile should contain a rule to make the executable
(here, testMS), and a rule for each object file, listing the C file that must be
compiled and all its headers, with a recipe for compiling the object file, as with
the rule for testMS. o. You can optionally add a test rule and also a clean rule.
Let us now put all this together by working through an example from scratch.
Figure 10.5 contains an example of a collection of source files making up a
simple program. There is a main program contained in test sort.c. The main
program calls functions defined in sort.c and dataIO.C, and hence includes
their respective headers. The main program does not have its own header file.

Heads up: A main program file usually does not need its own header file
because it uses functions and types declared in other headers but does
not provide declarations for use in the rest of the program. The main
program is the root of the call tree and it would be an odd design if the
main program file included functions needed in other parts of the code.

Each source file depends on the headers it includes, because a change in any
of those headers could change the implementation of a function it calls or defines,
or a type shared with another file. For example, once we start coding, we notice
that we are not passing the size of the data array into sort.c, nor is the code
in dataIO.c informing its caller how big an array it creates. So we have to
update the headers, definitions and calls of these functions. Assuming we made
the changes in the headers and in the implementations but forgot to change the

Putting a program together 273

sort.c

#include "sort.h"

void sort (int data[]) {

// do something to sort data
}

datalO.c testsort.c

#include "dataIO.h"
#include <stdio.h>

#include "sort.h"
#include "dataIO.h"

int* readData () { int main () {

// do something to read data int * data = readData ();

} sort (data);
printData (data);

void printData (int data[]) { }

// do something to print data
}

Figure 10.5: Source files for make example

sort.c

#include "sort.h"

void sort (int data[], int N) {

// do something to sort data
}

datalO.c testsort.c

#include "dataIO.h"
#include <stdio.h>

#include "sort.h"
#include "dataIO.h"

int* readData (int &N) {

int main () {
// do something to read data

int * data = readData ();
} sort (data);

printData (data);
void printData (int data[], int N) { }

// do something to print data

}

Figure 10.6: Source files for make example: incorrect main program

274 CHAPTER 10. MORE INTERESTING PROBLEMS

sort.h
sort.c|:>sort.o&
T datalo.h
testsort.o sort.o datalO.o
datalO.cE>datal0.o
cc -c dataIO.c
testsort.oE>testsort.o estsor
cc -c testsort.c cc -0 testsort.o sort.o dataIO.o
(a) object file dependences (b) executable file dependences

Figure 10.7: Dependences of object files and executable for make example

main program, we have the situation in figure 10.6. If we do not force the main
program to recompile in this situation, its existing compiled object file will still
link, but the calls will not match the code in the function definitions, and strange
things could happen at run time as the functions attempt to access values either
passed in registers or on the stack that are not set up.

If, on the other hand, we have set up dependences correctly in the Makefile,
when we type make on the command line, the main program will be forced to
recompile and types will mismatch with the revised headers. This is why the main
program object file has to depend on the headers declaring any functions it calls.

Heads up: The C linker does not check types or numbers of parameters
so it is vital to ensure that each object file depends on all the headers its
compilable file includes to be sure that make will force a correct rebuild.

Figure 10.7a illustrates dependences that apply to creating the object files for
this example. Recall that an object file is machine code that is not ready to run,
and must still be linked with other object files and libraries before it can run.
Each object file (.0) in our example is created from a single source (.c) file.
Because of the way headers are included, a dependence on a C source file is
also a dependence on every header it includes (though for practical purposes, we
leave out system header files since we do not expect their contents to change).
Figure 10.7b illustrates dependences for building the final executable by linking
the object files. Dependences for the executable do not include the headers and
source files, since make can infer these from the rules for building the object files.

More complex examples 275

The take home message? The make utility is a powerful tool and I only
touch on a small fraction of its capabilities here. An IDE has similar
concepts built into it, though less obviously to the user. For big complex
programs with a variety of different tools, a UNIX-style make provides
flexibility hard to match in an IDE.

10.5 More complex examples

Let’s now look at some even more interesting examples, in which we exploit
built-in general functions for sorting, and use our machine-code knowledge to
implement a super-efficient sort.

Using general library functions

UNIX-type systems generally have a built-in quicksort function, and often also
a built-in mergesort. I will explain here how quicksort works; other sorting
methods will work in a similar way, if available. The library version of quicksort
is designed to work on arbitrary sort keys (the portion of the data element you
compare to order the data), by virtue of requiring that you provide a comparison
function. You also need to tell the algorithm how big each element in the array is,
as well as where the array starts and how many elements it has.
Here is the function prototype for sort, as installed on one of my systems:

void gsort(void #*base, size_t nel, size_t width,
int (*compar) (const void *, const void *));

Let’s take this a step at a time.

* base is of type void*, meaning a generic pointer to no specific type — it is
the start address of an array

* nel is number of elements; size_t is a type used for sizes of data, usually
an unsigned integer type

* width is the size in bytes of each element in the array

* compare is a function pointer to a comparison function that takes two
elements passed in by the sort, and returns -1 representing a less than
outcome, 0 for equal or 1 for greater than

276 CHAPTER 10. MORE INTERESTING PROBLEMS

To use sort is not as hard as it looks. Provided you have your data in an array
and know how big it is, all you need is a comparison function. Assuming our data
is in an array called data with N elements, and our comparison function is called
compare, a call looks like this:

gsort (data, N, sizeof(xdata), compare);

Despite the void* pointers required in the comparison function, C’s lax type
checking allows you to get away with a function defined like this, rather than
one defined to work on void* pointers:

int compare (int *a, int *b) {
if (*¥a < *b) return -1;
if (xa > *b) return 1;
return O;

Of course the downside of this permissiveness is that it is totally up to you to get
the types right — if you use this compare it had better be for the right types. My
compiler whinges a bit about the type incompatibilities. You can get rid of that
warning by using a type cast, at the cost of making your code look ugly:

gsort (values, N, sizeof(*values),
(int (%) (const void *, const void *)) compare);

The cast here turns the type of my compare function to one that takes two void
pointers instead of two int pointers. Since this is looking ugly, let’s bring in the
big guns of typedef to the rescue:

// somewhere before we need this
typedef int (*compareT) (const void *, const void *);

// now call sort with less cruft
gsort (values, N, sizeof(*values), (compareT) compare);

C provides very powerful tools for writing general code — but without much of a
safety net. More recently-designed languages add a lot more protection though
usually at the cost of extra layers of software. Often, we do not need the extreme
efficiency that C provides, but it is useful when we need do.

More complex examples 277

12 |01100 12 (0100

24 |11000 8 (0000
----- F=—=>split

16 (10000 16 (10000

8 |0L000<swar 24 (11000 <=tar

22 (10110<«st 22 |10110

Figure 10.8: Bitsort first pass

The take home message? Lbrary utilities like quicksort take a lot of
pain out of programming, even if C’s mechanisms for generality like void
pointers and function pointers are a bit tricky to master and hard to debug
when things go wrong.

Sorting by bits

Quicksort is pretty fast; the library version is tuned to avoid bad cases and fine-
tuned for speed. Can we do better? Consider how an integer is stored in memory.
If you sort on bits from high to low, you should be able to sort using very fast
operations close to the machine.

The basic idea (so far only considering unsigned numbers) is you start with the
high bit, and partition the data between those with the bit set and those where the
bit is not set. Those with the high bit set are higher values. Figure 10.8 illustrates
the first pass through the data. We start with one pointer or index to the first
element, and scan up until it hits a 1 in its current bit position. We then scan the
opposite way until we hit a 0. As long as the high and low pointers do not meet,
whenever the lower hits a 1 and the higher hits a 0, the numbers are in the wrong
order, and so we can swap them.

Once we have sorted on one bit, we can partition the data where that bit
switches from O to 1, and sort recursively on the next bit, until we run out of
bits to sort.

How fast is this approach? If we are sorting N numbers represented using b
bits, we need time proportional to bN, which looks like linear time (or time O(N)),
and hence faster than NlogN if N is big enough. Before you get too excited, this
approach is not very general as it relies on knowing how the data is represented,

278

CHAPTER 10. MORE INTERESTING PROBLEMS

and we can’t sort more complex data structures without adding complication that
may lose some of the speed advantage. Also, we need to think about what b

represents. You need log, N bits to represent N different values so, unless there is
a lot of repetition in the data, b > log, N.

Nonetheless, for cases where you are sorting integers, it is pretty fast because
it cuts a lot of the overhead of a more complex algorithm. I timed it as up to
1.5 faster than the library quicksort for 100-million random numbers — the actual

speed difference will vary depending on your machine and C compiler.

// general idea: if we have swap candidates in both lower and higher

// partitions, swap them. If only 1 swap candidate, remember it and

// if we never swap, the high and low pointers will eventually cross

// so it need not move

void sortbit (int data [], int N, unsigned bit) {
if (N < 2) return;
int start = 0, end = N-1;
while (start < end) {

}

// lower partition high order bit 07 not a candidate for swap
// so move on
if (! (datal[start] & bit)) {
start++;
continue;
¥
// get here if we have swap candidate in lower partition; don’t move
// on from there until we can pass next condition as well because of
// the continue in both if bodies

// opposite logic: if high partition high bit 1, not swap candidate
if (datalend] & bit) {
end--;
continue;
}
// here if we have swap candidates in both partitions
SWAP (int,data[start] ,datalend])
start++;

end--;

// end of a pass through the partition

// the following only true if last iteration was a swap and we swapped

// indices past each other -- don’t need this check because the next

// test covers this case
if (datal[start] & bit) start--;
bit >>= 1;

More complex examples 279

if (bit) { // still bits to sort
if (start > 0 && start < N)
sortbit(data, start+1l, bit);
if (start < N-1)
sortbit(&data[start+1], N-start-1, bit);

Study this code and make sure you understand it. Note the use of continue,
which jumps past the rest of the loop body and starts a new iteration. It is a
good example of both recursion and bit manipulation. The code is mostly self-
contained, except the SWAP. You may be wondering why I spelt it in all capitals.
That’s because, despite appearances, it is not a function, but a macro. Take a
closer look: the first thing “passed” is int, which is a type, not something you can
actually pass to a function as a parameter. Remember how we defined very simple
macros for things like guards for avoiding including a header more often than once
in a compile? The C preprocessor also allows a macro to have parameters.
Here is how I define SWAP:

#define SWAP(t,a,b) {t temp = a; a = b; b = temp;}

When I use SWAP, I am not calling a function, but asking the preprocessor to
expand the macro, meaning replace it by the text it stands for before the compiler
sees there code. So in a place where I use

SWAP(int,datal[start] ,datalend])

the compiler sees

{int temp = datal[start]; datal[start] = datalend]; datalend] = temp;}

This is very different from a function call not only because there is no jump
to another part of the code but because parameters are substituted literally as
they are written before they are compiled. Had 1 used a function and passed
in data[start], the value stored in that element of the array would have been
passed, and doing the swap would have changed the value in the parameters not
in the variables used in the call. If I wanted to write a swap function, I would have
had to pass pointers to the memory locations involved, which would be uglier. A
swap function like this

280 CHAPTER 10. MORE INTERESTING PROBLEMS

void swap (int *first, int *second) {
int temp = *first;
*first = *second;
*second = temp;

by

would work, and could be called like this:
swap (&datal[start],&datalend]);

In this case, a macro is easier to read with the advantage that we can use it for any
type for which assignment makes sense.

Heads up: A preprocessor macro provides a rule for changing text of
your C code before the compiler sees it so, to visualise what a macro does,
think about what happens if you completely replace the macro invocation
by the definition, rewriting it with any parameters passed in.

In general macros make for code that is difficult to understand, so use them
sparingly. Here is a main program that uses the sort, and illustrates a few more
uses of macros. If I was writing a complete example, I would put the macros in a
header.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// sign bit assuming 2s complement
#define SIGNBIT ((((unsigned)-1)>>1 -~ (unsigned)-1))
// most significant bit of a signed number -- assumes 2s complement arithmetic
#define MAXBIT (SIGNBIT>>1)
int main (int argc, char *argv[]) {
int N;
unsigned currentbit = MAXBIT;
int *testdata;
fprintf (stderr, "enter N: ");
scanf ("%d", &N);
testdata = malloc(sizeof (int)*N);
for (int i = 0; i < N; i++)
testdata[i]l = random ();
sortbit (testdata, N, currentbit);
if (argc > 1) { // quick and dirty way to signal data dump
int i; for (i = 0; i < N; i++)

More complex examples 281

printf ("%d\n", testdatalil);

This test program creates random data (it should test that N is valid but I left that
out to keep the example short). The macros here are used to initialise the sort.
The SIGNBIT macro converts the value of -1 into an unsigned value using a cast.
The effect of this is to create the maximal bit string of all 1s. I shift that right
one place. Since I am shifting a value that is supposed to be unsigned, the shift is
treated as a logical shift, leaving the sign bit a 0°. If we now do an exclusive or
with this word that is all 1s except the sign bit with a new instance of -1 cast to
unsigned, we should get only the sign bit.

If you have that straight, what the MAXBIT macro does should be clear. It shifts
the sign bit 1 to the right, to give the most significant bit of a signed number.

If you are reading closely, you will see that a macro definition that looks like
this could be read two ways: a macro with parameters, or a macro that happens to
expand to something starting with “(”. What do you think this example is?

#define SIGN (A) (A<0?7-1:1)

The general rule is that if the opening “(” has no space before it, you have a
function-like macro with parameters. If there is a space between the name and the
opening bracket, the opening bracket is part of the expansion of the macro. So in
the last example above, the macro will always expand as

(A) (A<0?7-1:1)

which may well not be what you want — i.e., the space after SIGN is a bug.

The take home message? Bit operations and macros are powerful
features, and can make for fast, compact code — but also code that is
hard to read and hence maintain. Used with care these are great features,
but should not be used to excess. Remember the first rule of program
efficiency: find a good algorithm. Once you have a good algorithm, you
can worry about fine-tuning efficiency.

2C compilers usually treat an unsigned value right shifted as a logical shift and a signed value
right shifted as an arithmetic shift and hence sign extended; you should check this for any new C
compiler since it is a convention and not written into the language specification.

282 CHAPTER 10. MORE INTERESTING PROBLEMS

10.6 Summary

We have covered a lot of ground. There is more to C than is covered in this book,
particularly a large collection of library functions. We have barely scratched the
surface of file manipulations, and there is a lot more you can do if you understand
low-level bit manipulations. I have also not spent time on pointer arithmetic,
another feature beloved of the C aficionado. If you understand machine code
representation of addresses, pointer arithmetic should be easy to understand.

C remains one of the most popular languages, and many other popular
languages including C++, Objective-C, Java and C# are based on C. Some say
when designing a language, the first attempt is best. Learn all the others and judge
for yourself. C certainly can be improved on in some areas like type checking
and making memory management easier. On the other hand, it it hard to beat for
close-to-machine efficiency.

Exercises

1. When you build a tree, what order of arrival of data would result in the worst
imbalance of a tree, i.e., one where you have all the elements down one side
of the tree, with no branches in the other direction?

2. For the error handler function on page 266, write out the header file,
including include-once (ifdef) guards and an explanatory comment on
how the function should be used.

3. Write a function that converts a sequence of digits into an integer value.
How could you use this function instead of sscanf in the strs2ints
example on pages 264-2657?

4. Convert the simple test program for checking command-line arguments
on page 268 into a separately compilable file with a header file called
(respectively) usage . c and usage . h, without the main program.

5. Build a complete program that tests my mergesort implementation on data
read in from a file. The data should be one line per integer so you can test it
on the standard command-line sort. Also feel free to test my code on other
data arrangements including erroneous data (a file containing something
other than whitespace or digits).

Exercises 283

(a) Create all the C and header files, and compile on the command line

(b) Create a test file with random integers; you can call the function
random() defined in system header std1lib.h in a program that writes
integers to stdout in a simple program, and direct the output to a test
data file (e.g. data/test.dat)

(c) sort this file using the standard sort command on the command line:

$ sort -n data/test.dat > data/sorted.dat

(d) Create aMakefile with a test target that uses the sorted data to check
your output.

6. Rewrite the compare function on page 276 so that it uses the ternary
comparison operator instead of if statements.

7. A Makefile has the following rules:

OBJS = sudoku.o readfile.o testcounts.o
sudoku: $(0BJS)

cc -o sudoku $(0BJS)
sudoku.o

cc -c sudoku.c

(a) What is the executable file name?

(b) What rules do you need to complete the example? Indicate any
missing information needed to answer.

8. Sketch out an approach for deleting a node from a tree. Would this be easier
if you had a back-pointer to the parent node in each node?

(a) What other rules are needed for a minimal Makefile that will build
the other . o files, if the related . c file changes?

(b) Assume each .c file includes a header with the same name (e.g.,
readfile.c has a header readfile.h, except sudoku.c, which
includes all the headers. Adjust the rules that force each of the .o
files to recompile, taking into account this new information.

284 CHAPTER 10. MORE INTERESTING PROBLEMS

(c) Assume you can read in an example from stdin and the program has
output you can check against a known output that’s in a file. Write a
rule for make test, explaining how it will work.

9. For the bitsort of pages 278-281:

(a) How could you generalise it to sort negative numbers, assuming 2’s
complement representation? Hint: other than sorting the opposite way
with the first bit, 2’s complement numbers are represented in a way
that numbers closer to 0, if interpreted as a regular base 2 number, are
bigger than numbers further from zero.

(b) How could you adapt the sort so it could handle sorting data types
where only a portion of the element to be sorted had to be used as a sort
key? For example, if you have an array of structs each containing a
name and a score and want to sort on scores, how could that work?

(c) How could you adapt the algorithm so it could sort an array of pointers
to the individual data elements?

(d) Could the method work for anything but integer values as the sort key?

10. Write a test program that uses gsort (the usual name for quicksort in the C
library world), using random integers. How hard is it to use, compared with
writing your own code?

11. Write a function-like macro MY_FREE that invokes free on a pointer and
assigns NULL to the pointer. Why is this useful to do as a macro? Could
you code it as a function? Explain.

References

Amdahl, G., Blaauw, G., and Brooks Jr, F. (2000). Architecture of the IBM
System/360. In Readings in computer architecture, pages 17-31. Morgan
Kaufmann Publishers Inc.

Barroso, L. A. and Hoélzle, U. (2009). The datacenter as a computer: An
introduction to the design of warehouse-scale machines. Synthesis lectures on
computer architecture, 4(1):1-108.

Caragea, G. C., Keceli, F., Tzannes, A., and Vishkin, U. (2010). General-purpose
vs. GPU: Comparison of many-cores on irregular workloads. In Proc. USENIX
Workshop on Hot Topics in Parallelsim. https://www.usenix.org/legacy/
event/hotpar10/final_posters/Caragea.pdf.

Cooper, M. (2012). Advanced bash-scripting guide. http://www.tldp.org/
LDP/abs/html/.

Hennessy, J. and Patterson, D. (2012). Computer Architecture: A Quantitative
Approach. Morgan Kauffmann, San Francisco, CA, 5th edition.

Hitchner, L. E., Gersting, J., Henderson, P. B., Machanick, P., and Patt, Y. N.
(2001). Programming early considered harmful. In Proceedings of the

Thirty-second SIGCSE Technical Symposium on Computer Science Education,
SIGCSE ’01, pages 402403, New York, NY, USA. ACM.

IEEE (2008). IEEE standard for floating-point arithmetic. IEEE Std 754-2008.

Kernighan, B. W. and Ritchie, D. M. (1988). The C programming language.
Prentice Hall, Englewood Cliffs, NJ.

Olukotun, K., Nayfeh, B. A., Hammond, L., Wilson, K., and Chang, K.
(1996). The case for a single-chip multiprocessor. In Proc. 7th Int. Conf.

285

https://www.usenix.org/legacy/event/hotpar10/final_posters/Caragea.pdf
https://www.usenix.org/legacy/event/hotpar10/final_posters/Caragea.pdf
http://www.tldp.org/LDP/abs/html/
http://www.tldp.org/LDP/abs/html/

286 REFERENCES

on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-7), pages 2—-11, Cambridge, MA.

Parlante, N. (2003). Essential C. Technical report, Stanford University. http:
//cslibrary.stanford.edu/101/EssentialC. pdf.

Patt, Y. and Patel, S. (2013). Introduction to Computing Systems: From bits &
gates to C & beyond. McGraw-Hill, New York, NY, 3rd edition.

Patterson, D. A. and Ditzel, D. R. (1980). The case for the reduced instruction set
computer. Computer Architecture News, 8(6):25-33.

Patterson, D. A. and Hennessy, J. L. (2014). Computer organization and design:
the hardware/software interface. Morgan Kauffmann, San Francisco, CA, 5th
edition.

Ritchie, D. M. (1993). The development of the C language. ACM SIGPLAN
Notices, 28(3):201-208.

Ritchie, D. M., Johnson, S., Lesk, M., and Kernighan, B. (1978).
The C programming language. Bell Sys. Tech. J, 57:1991-2019.
http://www3.alcatel-lucent.com/bstj/vol57-1978/articles/
bstj57-6-1991.pdf.

Steenkiste, P. (1989). The impact of code density on instruction cache
performance. ACM SIGARCH Computer Architecture News, 17(3):252-259.

Thornton, J. E. (1980). The CDC 6600 project. Annals of the History of
Computing, 2(4):338 —348.

Thornton, J. E. (2000). Parallel operation in the Control Data 6600. In Hill, M. D.,
Jouppi, N. P, and Sohni, G. S., editors, Readings in computer architecture,
pages 32—-39. Academic Press, San Diego, CA.

Wulf, W. and McKee, S. (1995). Hitting the memory wall: Implications of the
obvious. Computer Architecture News, 23(1):20-24.

http://cslibrary.stanford.edu/101/EssentialC.pdf
http://cslibrary.stanford.edu/101/EssentialC.pdf
http://www3.alcatel-lucent.com/bstj/vol57-1978/articles/bstj57-6-1991.pdf
http://www3.alcatel-lucent.com/bstj/vol57-1978/articles/bstj57-6-1991.pdf

A ASCII Character Set

Here are some of the more useful printable ASCII characters in table A.1. In addition, some of
the more useful non-printing ASCII characters are in table A.2, with a common purpose for each
listed.

Table A.1: ASCII printable character encoding. The first entry is a space.

char | decimal | binary hex
32 100000 0x20

! 33 100001 0x21
" 34 100010 0x22
35 100011 0x23
$ 36 100100 0x24
h 37 100101 0x25
& 38 100110 0x26
’ 39 100111 0x27
(40 101000 0x28
) 41 101001 0x29
* 42 101010 0x2A
+ 43 101011 0x2B
, 44 101100 0x2C
- 45 101101 0x2D
. 46 101110 0x2E
/ 47 101111 0x2F
0 48 110000 0x30
1 49 110001 0x31
2 50 110010 0x32
3 51 110011 0x33
4 52 110100 0x34
5 53 110101 0x35
6 54 110110 0x36
7 55 110111 0x37
8 56 111000 0x38
9 57 111001 0x39
: 58 111010 0x3A

Continued on next page

287

288 APPENDIX A. ASCII CHARACTER SET

Table A.1- continued from previous page

char | decimal | binary hex
; 59 111011 0x3B
< 60 111100 0x3C
= 61 111101 0x3D
62 111110 0x3E

63 111111 0x3F

64 1000000 0x40
65 1000001 0x41
66 1000010 0x42
67 1000011 0x43
68 1000100 0x44
69 1000101 0x45
70 1000110 0x46
71 1000111 0x47
72 1001000 0x48
73 1001001 0x49
74 1001010 0x4A
75 1001011 0x4B
76 1001100 0x4C
77 1001101 0x4D
78 1001110 0x4E
79 1001111 0x4F
80 1010000 0x50
81 1010001 0x51
82 1010010 0x52
83 1010011 0x53
84 1010100 0x54
85 1010101 0x55
86 1010110 0x56
87 1010111 0x57
88 1011000 0x58
89 1011001 0x59
90 1011010 0x5A
91 1011011 0x5B
92 1011100 0x5C
93 1011101 0x5D
- 94 1011110 0x5SE
95 1011111 0x5F
¢ 96 1100000 0x60
97 1100001 0x61
98 1100010 0x62
99 1100011 0x63
100 1100100 0x64
Continued on next page

PN XM =<+ WnNomOov"vo=2 2" X"aoH@DoDeTMmoaQweE o6 N VvV

—

Qa0 o p

ASCII Character Set 289

Table A.1- continued from previous page
char | decimal | binary hex
101 1100101 0x65
102 1100110 0x66
103 1100111 0x67
104 1101000 0x68
105 1101001 0x69
106 1101010 0x6A
107 1101011 0x6B
108 1101100 0x6C
109 1101101 0x6D
110 1101110 0x6E
111 1101111 0x6F
112 1110000 0x70
113 1110001 0x71
114 1110010 0x72
115 1110011 0x73
116 1110100 0x74
117 1110101 0x75
118 1110110 0x76
119 1110111 0x77
120 1111000 0x78
121 1111001 0x79
122 1111010 0x7A
123 1111011 0x7B
124 1111100 0x7C
125 1111101 0x7D
126 1111110 0x7E

(0]

Y — AN X g5 9 6 dn 0T 0B B H KW@ BP0 H

Table A.2: ASCIl non-printing character encoding. “CTRL" means key to hit with
CONTROL or CTRL key to get this character.

char | decimal | binary hex | CTRL | purpose

NUL 000 0000000 | 0x00
ETX 003 0000011 | 0x03
EQOT 004 0000100 | 0x04
Bell 007 0000111 | 0x07
BS 008 0001000 | 0x08
HT 009 0001001 | 0x09

C string terminator

End of Text (in UNIX: cancel active process)
end of transmission (also called end of file, EOF)
beep

backspace (BACKSPACE key)

horizontal tab (TAB key)

LF 010 0001010 | OxOA line feed
CR 013 0001101 | 0xOD carriage return (ENTER key)
ESC 027 0011011 | Ox1B escape (ESC key)

e, R e H D QO Q6

DEL 127 1111111 | O7tF delete (DEL key)

B MIPS Register Conventions

For integer registers in table B.1, those that have a hardwired hardware purpose are labeled
“(HW)”; all the rest are strictly-speaking general-purpose registers. Floating-point registers all
have no hardwired purpose. Conventions adopted by the MIPS designers aid compiler writers in

register choices, particularly when generating code that interacts with other unknown code.

It is up to a caller to save anything with “N” in the “saved?” column before a function call; a

callee must save and restore any with a “Y” in this column. System calls save any registers they
clobber except a register used to return a value.

Table B.1: Register conventions including floating point

symbolic name register number usage saved?
integer
$zero 0 zero constant (HW) N/A
$at 1 assembler temporary N/A
$vOo-$vi 2-3 function, expression result N
$a0-%a3 4-7 function parameters N
$t0-$t7 8-15 temporary N
$s0-$s7 16-23 saved temporary Y
$t8-$t9 24-25 temporary N
$k0-$k1 26-27 reserved for OS kernel N/A
$gp 28 global pointer Y
$sp 29 stack pointer Y
$fp 30 frame pointer Y
$ra 31 return address (HW) N
floating point

$£0,$£2 0,2 function, expression result N
$£4-$£10 4-10 temporary N
$£12,$f14 12, 14 function parameters N
$£16-$£18 16-18 temporary N
$£20-$£30 20-30 saved temporary Y

Floating-point doubles use even-numbered registers paired with the next odd-numbered register
(e.g., $£12-$£13 could be used to pass a double parameter). In general, only even-numbered

registers are used if possible to avoid confusion.

290

MIPS Register Conventions 291

In addition to these registers, there are other special-purpose registers including HI and LO,
used in integer multiplies and divides. HI contains the overflow of a multiply, and L0 the answer.
For a divide, HI contains the answer and LO the remainder.

C SPIM System Calls

SPIM system calls are a bare minimum to interact with the outside world. Some are at a higher

level than true system calls, e.g., IO calls would be wrappers around lower-level OS operations in

a real machine. To set up a system call, put its code into register $v0, Set up parameters if required

then do a syscall instruction.

Table C.1: SPIM system calls

Call name No. | Passed in Returned
PRINT_INT 1 $a0
PRINT_FLOAT 2 $f12
PRINT_DOUBLE | 3 $£12
PRINT_STRING | 4 string address in $a0
READ_INT 5 return in $vO
READ_FLOAT 6 return in $£0
READ_DOUBLE | 7 return in $£0
READ_STRING 8 address $a0,
max length $al
SBRK 9 bytes to allocate $a0 start address new region $v0
new region $v0
EXIT 10 -
PRINT_CHAR 11 low byte of $a0
READ_CHAR 12 low byte in $vO0
OPEN_FILE 13 file name address $a0, | file descriptor $vO
flags $a1, mode $a2 < 0 — error
READ 14 file descriptor, $a0,
buffer address $ai, number of bytes
buffer length $a2 read $vO
WRITE 15 | file descriptor $a0,
buffer address $al, number of bytes
no. bytes to write $a2 | written $vO0
CLOSE 16 | file descriptor $a0
EXIT2 17 | exit code $a0

292

SPIM System Calls Set 293

The SBRK system call increases the size of the data segment, and is the basis for higher-level
dynamic memory allocators.

In a real machine, you would have to spill registers before a system call but SPIM system calls
only modify $v0. In normal user-level code you would not know about this kind of detail since
system calls are usually hidden in a library call that looks like a normal function.

D SPIM Call Stack

SPIM uses a different call convention than that I use in this book. You can find details of this
in the SPIM documentation (Appendix E). The major difference we have had to deal with is that
SPIM places the stack pointer ($sp) at the topmost item on the stack, whereas I place it at the first
location after the top of the stack. The SPIM approach is consistent with MIPS compilers; mine
is designed to make it easier for human programmers to create and tear down stack frames. Why
do I differ in my approach? The purpose of this book is to introduce low-level programming as a
basis for understanding what HLL programs actually do, rather than to provide a manual for MIPS
compiler writers.

There is no one right way to do this: one of the benefits of a RISC architecture is that this sort
of decision is (mostly — the return address register is one exception) is not built into the hardware
so compiler writers are not locked into decisions they don’t agree with.

The SPIM approach has the benefit that the stack pointer always points to valid data, whereas
my approach usually has the stack pointer pointing past the last valid item on the stack. Since I
only use the stack pointer to address memory when I am setting up a new stack frame, at that point
it does point to legitimate data items, so there is no risk of using the stack pointer to access invalid
data (in a correct program).

From a philosophical point of view, I do not like having the stack pointer point to the top of
the stack because that is not something with a clearly-defined meaning. If the top of the stack is a
data item of less than a word in length, should the stack pointer point at the nearest word boundary
to avoid unaligned accesses when you push something else onto the stack? If so, you have to start
delving into issues like big and little endianness to determine whether the stack pointer actually
points at legitimate data or padding. All these issues can be resolved but my approach is tidier.
The stack pointer points at the next word that can be used to add to the stack. If the actual top of
the stack is a byte or two away, there is no cause for confusion or misinterpretation.

Another difference in the SPIM approach is that the stack frame defaults to 24 bytes (6 words)
—enough for many simple functions, and hence reduces the need to think through differences. This
is larger than the small examples in the book need so using this convention makes it easy to use
an offset from the stack pointer to find variables and spilled registers. My approach on the other
hand uses an offset from the frame pointer to find items on the stack, which is simple because
the offsets do not depend on how big the stack frame is. With the SPIM approach, if you need to
enlarge the stack frame for any reason (more local variables, spilling more registers — and in some
programming languages, these things can change depending on the logic path through the code),
you have to change the offsets since the stack pointer is now a different distance from the start of
the stack frame.

294

SPIM Call Stack 295

On the plus side for the SPIM approach, doing away with the frame pointer frees up another
register for general use. Since the actual register ($30) is used as a saved temporary in the SPIM
scheme ($s8), it also has to be saved across calls, so my approach will not break any SPIM code
that invokes my code. As you can see from my examples, the glue code for crossing from a SPIM
stack to my stack is simply a matter of subtracting 4 from $sp at entry to the main program and
adding 4 before returning.

For purposes of this book, which aims at teaching programming from the bottom up rather
than providing a manual for compiler writers, it doesn’t matter a whole lot if I use an unusual
approach. Doing it my way makes the examples simpler, a useful gain when learning assembly
language involves getting a lot of detail straight. A compiler writer can live with a slightly harder
set of rules because you only need to get them right once (though there is still merit in simplicity).

What of real compilers? Do they all use the same conventions? Actually, no. The MIPS C
compiler does not use the frame pointer (consistently with the SPIM approach) whereas the GNU
C compiler for MIPS does [Patterson and Hennessy 2014]. Provided other details of calling are
consistent, this sort of difference does not matter. A long as the frame pointer is a register that is
preserved across calls, it doesn’t matter if parts of the code compiled with a different compiler use
it differently, or not at all.

Read the SPIM documentation, and understand how the SPIM approach (which is closer to
the strategy of a real compiler) differs from mine.

The take home message? There is seldom only one way of doing something.
Understanding design choices is more important than being a slave to convention.

E SPIM Background

Notes on the following paper

This SPIM paper was formerly supplied with SPIM source code documentation. Use it as a
reference for instruction formats and compare it with the body of the book to see differences
in design choices. It does not document the latest QtSPIM interface. Note that stack diagrams
show the stack upside down relative to mine: I draw the stack in order of memory addresses, with
high addresses lower than low addresses, which places the top of the stack at the top of the picture.
I have removed sections that document obsolete user interfaces to save space, and made a few
minor edits for clarity. There is a more up to date version of this documentation that forms part of
the latest edition of Patterson and Hennessy [2014].

Study the SPIM stack and calling conventions and compare with mine. While the SPIM
approach is consistent with standard MIPS compilers, mine also works, though it requires a bit of
patching to work around the difference should you ever need to mix code between the two styles. In
practice, everyone writing practical code would use the standard to avoid this sort of inconvenience
— but the aim of this material is learning how things work, and understanding alternative design
choices is part of that.

The SPIM download site http://spimsimulator.sourceforge.net/ contains the up-to-
date documentation and the latest version for your platform of choice.

296

http://spimsimulator.sourceforge.net/

SPIM 297

SPIM S20: A MIPS R2000 Simulator'

th
“% the performance at none of the cost”

James R. Larus

Computer Sciences Department
University of Wisconsin—Madison
1210 West Dayton Street
Madison, WI 53706, USA
608-262-9519

Copyright ©1990-2010 by James R. Larus (This document may be copied without royalties, so long as this copyright notice remains on it.)

E.1 SPIM

SPIM is a simulator that runs programs for the MIPS R2000/R3000 RISC computers.”
SPIM can read and immediately execute files containing assembly language. SPIM is a
self-contained system for running these programs and contains a debugger and interface
to a few operating system services.

The architecture of the MIPS computers is simple and regular, which makes it easy
to learn and understand. The processor contains 32 general-purpose 32-bit registers and
a well-designed instruction set that make it a propitious target for generating code in a
compiler.

However, the obvious question is: why use a simulator when many people have
workstations that contain a hardware, and hence significantly faster, implementation of
this computer? One reason is that these workstations are not generally available. Another
reason is that these machine will not persist for many years because of the rapid progress
leading to new and faster computers. Unfortunately, the trend is to make computers
faster by executing several instructions concurrently, which makes their architecture more
difficult to understand and program. The MIPS architecture may be the epitome of a
simple, clean RISC machine.

In addition, simulators can provide a better environment for low-level programming
than an actual machine because they can detect more errors and provide more features

11 grateful to the many students at UW who used SPIM in their courses and happily found bugs in
a professor’s code. In particular, the students in CS536, Spring 1990, painfully found the last few
bugs in an “already-debugged” simulator. I am grateful for their patience and persistence. Alan
Yuen-wui Siow wrote the X-window interface.

2For a description of the real machines, see Gerry Kane and Joe Heinrich, MIPS RISC Architecture,
Prentice Hall, 1992.

298 APPENDIX E. SPIM BACKGROUND

than an actual computer. For example, SPIM has an X-window interface that is better
than most debuggers for the actual machines.

Finally, simulators are an useful tool for studying computers and the programs that
run on them. Because they are implemented in software, not silicon, they can be easily
modified to add new instructions, build new systems such as multiprocessors, or simply
to collect data.

E.1.1 Simulation of a Virtual Machine

The MIPS architecture, like that of most RISC computers, is difficult to program directly
because of its delayed branches, delayed loads, and restricted address modes. This
difficulty is tolerable since these computers were designed to be programmed in high-
level languages and so present an interface designed for compilers, not programmers. A
good part of the complexity results from delayed instructions. A delayed branch takes two
cycles to execute. In the second cycle, the instruction immediately following the branch
executes. This instruction can perform useful work that normally would have been done
before the branch or it can be a nop (no operation). Similarly, delayed loads take two
cycles so the instruction immediately following a load cannot use the value loaded from
memory.

MIPS wisely choose to hide this complexity by implementing a virtual machine
with their assembler. This virtual computer appears to have non-delayed branches and
loads and a richer instruction set than the actual hardware. The assembler reorganizes
(rearranges) instructions to fill the delay slots. It also simulates the additional, pseudoin-
structions by generating short sequences of actual instructions.

By default, SPIM simulates the richer, virtual machine. It can also simulate the actual
hardware. We will describe the virtual machine and only mention in passing features that
do not belong to the actual hardware. In doing so, we are following the convention of
MIPS assembly language programmers (and compilers), who routinely take advantage of
the extended machine. Instructions marked with a dagger () are pseudoinstructions.

E.1.2 SPIM Interface

See online documentation and help features for the QtSPIM interface. Details are also
documented in the main text.

E.1.3 Surprising Features

Although SPIM faithfully simulates the MIPS computer, it is a simulator and certain
things are not identical to the actual computer. The most obvious differences are that

SPIM 299

instruction timing and the memory systems are not identical. SPIM does not simulate
caches or memory latency, nor does it accurate reflect the delays for floating point
operations or multiplies and divides.

Another surprise (which occurs on the real machine as well) is that a pseudoin-
struction expands into several machine instructions. When single-stepping or examining
memory, the instructions that you see are slightly different from the source program. The
correspondence between the two sets of instructions is fairly simple since SPIM does not
reorganize the instructions to fill delay slots.

E.1.4 Assembler Syntax

Comments in assembler files begin with a sharp-sign (#). Everything from the sharp-sign
to the end of the line is ignored.

Identifiers are a sequence of alphanumeric characters, underbars (_), and dots (.) that
do not begin with a number. Opcodes for instructions are reserved words that are not
valid identifiers. Labels are declared by putting them at the beginning of a line followed
by a colon, for example:

.data
item: .word 1

.text

.globl main # Must be global
main: lw $t0, item

Strings are enclosed in double-quotes ("). Special characters in strings follow the C

convention:
newline \n
tab \t
quote \"

SPIM supports a subset of the assembler directives provided by the MIPS assembler:

.align n
Align the next datum on a 2" byte boundary. For example, .align 2 aligns the
next value on a word boundary. .align O turns off automatic alignment of .half,
.word, .float, and .double directives until the next .data or .kdata directive.

.ascii str
Store the string in memory, but do not null-terminate it.

.asciiz str
Store the string in memory and null-terminate it.

300 APPENDIX E. SPIM BACKGROUND

.byte b1, ..., bn
Store the n values in successive bytes of memory.

.comm sym size
Allocate size bytes of data segment for symbol sym.

.data <addr>
The following data items should be stored in the data segment. If the optional
argument addr is present, the items are stored beginning at address addr.

.double di, ..., dn
Store the n floating point double precision numbers in successive memory loca-
tions.

.extern sym size
Declare that the datum stored at sym is size bytes large and is a global symbol.
This directive enables the assembler to store the datum in a portion of the data
segment that is efficiently accessed via register $gp.

.float f1, ..., fn
Store the n floating point single precision numbers in successive memory locations.

.globl sym
Declare that symbol sym is global and can be referenced from other files.

.half hil, ..., hn
Store the n 16-bit quantities in successive memory halfwords.

.kdata <addr>
The following data items should be stored in the kernel data segment. If the
optional argument addr is present, the items are stored beginning at address addr.

.ktext <addr>
The next items are put in the kernel text segment. In SPIM, these items may only
be instructions or words (see the .word directive below). If the optional argument
addr is present, the items are stored beginning at address addr.

.label sym
Declare that symbol sym is a label.

.lcomm sym size
Allocate size bytes for symbol sym in the portion of the data segment that can be
accessed via register $gp.

SPIM 301

.space n
Allocate n bytes of space in the current segment (which must be the data segment
in SPIM).

.set noat
Permit the program to refer to the $at register explicitly, and forbid SPIM from
generating pseudoinstructions that modify $at.

.set at
Forbid the program from referring to the $at register explicitly, and permit SPIM
to generate pseudoinstructions that modify $at (the default).

.text <addr>
The next items are put in the user text segment. In SPIM, these items may only
be instructions or words (see the .word directive below). If the optional argument
addr is present, the items are stored beginning at address addr.

.word wi, ..., wn
Store the n 32-bit quantities in successive memory words.

SPIM does not distinguish various parts of the data segment (.data, .rdata, and
.sdata).

E.1.5 System Calls

SPIM provides a small set of operating-system-like services through the system call
(syscall) instruction. To request a service, a program loads the system call code (see
Table E.1) into register $v0 and the arguments into registers $a0...$a3 (or $£12 for
floating point values). System calls that return values put their result in register $v0
(or $£0 for floating point results). For example, to print “the answer = 57, use the

commands:

.data
str: .asciiz "the answer = "

.text
1i $vO, 4 # system call code for print_str
la $a0, str # address of string to print
syscall # print the string
1i $vO, 1 # system call code for print_int
1i $a0, 5 # integer to print

syscall # print it

302 APPENDIX E. SPIM BACKGROUND

’ Service System Call Code | Arguments | Result ‘

print_int 1 $a0 = integer

print_float 2 $£12 = float

print_double 3 $£12 = double

print_string 4 $a0 = string

read_int 5 integer (in $vO0)

read_float 6 float (in $£0)

read_double 7 double (in $£0)

read_string 8 $a0 = buffer, $al = length

sbrk 9 $a0 = amount address (in $v0)

exit 10

print_character 11 $a0 = character

read_character 12 character (in $v0)

open 13 $a0 = filename, file descriptor (in $vO0)
$al = flags, $a2 = mode

read 14 $a0 = file descriptor, bytes read (in $v0)
$a1 = buffer, $a2 = count

write 15 $a0 = file descriptor, bytes written (in $v0)
$a1 = buffer, $a2 = count

close 16 $a0 = file descriptor 0 (in $v0)

exit2 17 $a0 = value

Table E.1: System services.

print_int is passed an integer and prints it on the console. print_float prints
a single floating point number. print_double prints a double precision number.
print_string is passed a pointer to a null-terminated string, which it writes to the
console. print_character prints a single ASCII character.

read_int, read_float, and read_double read an entire line of input up to and
including the newline. Characters following the number are ignored. read_string has
the same semantics as the Unix library routine fgets. It reads up to n — 1 characters
into a buffer and terminates the string with a null byte. If there are fewer characters
on the current line, it reads through the newline and again null-terminates the string.
read_character reads a single ASCII character. Warning: programs that use these
syscalls to read from the terminal should not use memory-mapped IO (see Section E.5).

sbrk returns a pointer to a block of memory containing »n additional bytes. This
pointer is word aligned. exit stops a program from running. exit2 stops the program
from running and takes an argument, which is the value that spim uses in its call on exit.

open, read, write and close behave the same as the Unix system calls of the same
name. They all return —1 on failure.

Description of the MIPS R2000 303

CPU FPU (Coprocessor 1)
Regist
egisters Registers
$0
$0
$31 | :
’7 $31
Arithmetic Multiply
Unit Divide
Arithmetic
Unit

Coprocessor 0 (Traps and Memory)

BadVAddr Cause

Status EPC

Figure E.1: MIPS R2000 CPU and FPU

E.2 Description of the MIPS R2000

A MIPS processor consists of an integer processing unit (the CPU) and a collection of
coprocessors that perform ancillary tasks or operate on other types of data such as floating
point numbers (see Figure E.1). SPIM simulates two coprocessors. Coprocessor O handles
traps, exceptions, and the virtual memory system. SPIM simulates most of the first two
and entirely omits details of the memory system. Coprocessor 1 is the floating point unit.
SPIM simulates most aspects of this unit.

E.2.1 CPU Registers

The MIPS (and SPIM) central processing unit contains 32 general purpose 32-bit registers
that are numbered 0-31. Register n is designated by $n. Register $0 always contains the
hardwired value 0. MIPS has established a set of conventions as to how registers should be
used. These suggestions are guidelines, which are not enforced by the hardware. However
a program that violates them will not work properly with other software. Table E.2 lists
the registers and describes their intended use.

Registers $at (1), $k0 (26), and $k1 (27) are reserved for use by the assembler and
operating system.

304 APPENDIX E. SPIM BACKGROUND

Register Name Number | Usage]
zero 0 Constant 0

at 1 Reserved for assembler

v0 2 Expression evaluation and

vl 3 results of a function

a0 4 Argument 1

al 5 Argument 2

a2 6 Argument 3

a3 7 Argument 4

t0 8 Temporary (not preserved across call)
tl 9 Temporary (not preserved across call)
©2 10 Temporary (not preserved across call)
3 11 Temporary (not preserved across call)
4 12 Temporary (not preserved across call)
t5 13 Temporary (not preserved across call)
t6 14 Temporary (not preserved across call)
t7 15 Temporary (not preserved across call)
s0 16 Saved temporary (preserved across call)
sl 17 Saved temporary (preserved across call)
s2 18 Saved temporary (preserved across call)
s3 19 Saved temporary (preserved across call)
s4 20 Saved temporary (preserved across call)
s5 21 Saved temporary (preserved across call)
s6 22 Saved temporary (preserved across call)
s7 23 Saved temporary (preserved across call)
8 24 Temporary (not preserved across call)
9 25 Temporary (not preserved across call)
kO 26 Reserved for OS kernel

k1 27 Reserved for OS kernel

gp 28 Pointer to global area

sp 29 Stack pointer

fp or s8 30 Frame pointer

ra 31 Return address (used by function call)

Table E.2: MIPS registers and the convention governing their use.

Registers $a0-$a3 (4-7) are used to pass the first four arguments to routines
(remaining arguments are passed on the stack). Registers $v0 and $v1 (2, 3) are used to
return values from functions. Registers $t0—$t9 (815, 24, 25) are caller-saved registers
used for temporary quantities that do not need to be preserved across calls. Registers $s0—
$s7 (16-23) are callee-saved registers that hold long-lived values that should be preserved
across calls.

Register $sp (29) is the stack pointer, which points to the last location in use on the
stack.® Register $£p (30) is the frame pointer.* Register $ra (31) is written with the return
address for a call by the jal instruction.

Register $gp (28) is a global pointer that points into the middle of a 64K block of
memory in the heap that holds constants and global variables. The objects in this heap
can be quickly accessed with a single load or store instruction.

In addition, coprocessor 0 contains registers that are useful to handle exceptions.

3In earlier version of SPIM, $sp was documented as pointing at the first free word on the stack
(not the last word of the stack frame). Recent MIPS documents have made it clear that this was
an error. Both conventions work equally well, but we choose to follow the real system.

4The MIPS compiler does not use a frame pointer, so this register is used as callee-saved register
$s8.

Description of the MIPS R2000 305

15 8 5 4 3 2 1 0

— Old — —Previous— —Current—

Interrupt
Mask &
\)

FY & & \
$° S O
> & 090 \% &

& A% (é
Fs E Fe &
+ & S e &
¥ Y NS

Figure E.2: The Status register.

Pending Exception
Interrupts Code

Figure E.3: The Cause register.

SPIM does not implement all of these registers, since they are not of much use in a
simulator or are part of the memory system, which is not implemented. However, it does
provide the following:

’ Register Name ‘ Number Usage ‘
BadVAddr 8 Memory address at which address exception occurred
Status 12 Interrupt mask and enable bits
Cause 13 Exception type and pending interrupt bits
EPC 14 Address of instruction that caused exception

These registers are part of coprocessor 0’s register set and are accessed by the 1wc0, mf cO,
mtcO, and swcO instructions.

Figure E.2 describes the bits in the Status register that are implemented by SPIM.
The interrupt mask contains a bit for each of the eight interrupt levels. If a bit is one,
interrupts at that level are allowed. If the bit is zero, interrupts at that level are disabled.
The low six bits of the Status register implement a three-level stack for the kernel /user
and interrupt enable bits. The kernel/user bit is O if the program was running in
the kernel when the interrupt occurred and 1 if it was in user mode. If the interrupt
enable bit is 1, interrupts are allowed. If it is 0, they are disabled. At an interrupt, these
six bits are shifted left by two bits, so the current bits become the previous bits and the
previous bits become the old bits. The current bits are both set to 0 (i.e., kernel mode with
interrupts disabled).

Figure E.3 describes the bits in the Cause register. The eight pending interrupt
bits correspond to the eight interrupt levels. A bit becomes 1 when an interrupt at its level
has occurred but has not been serviced. The exception code bits contain a code from
the following table describing the cause of an exception.

306 APPENDIX E. SPIM BACKGROUND

’ Number | Name Description ‘
0 INT External interrupt
4 ADDRL Address error exception (load or instruction fetch)
5 ADDRS Address error exception (store)
6 IBUS Bus error on instruction fetch
7 DBUS Bus error on data load or store
8 SYSCALL | Syscall exception
9 BKPT Breakpoint exception
10 RI Reserved instruction exception
12 OVF Arithmetic overflow exception

E.2.2 Byte Order

Processors can number the bytes within a word to make the byte with the lowest number
either the leftmost or rightmost one. The convention used by a machine is its byte order.
MIPS processors can operate with either big-endian byte order:

Byte #

or little-endian byte order:

SPIM operates with both byte orders. SPIM’s byte order is determined by the byte order
of the underlying hardware running the simulator. On a DECstation 3100, SPIM is little-
endian, while on a HP Bobcat, Sun 4 or PC/RT, SPIM is big-endian.

E.2.3 Addressing Modes

MIPS is a load/store architecture, which means that only load and store instructions access
memory. Computation instructions operate only on values in registers. The bare machine
provides only one memory addressing mode: c (rx), which uses the sum of the immediate
(integer) c and the contents of register rx as the address. The virtual machine provides
the following addressing modes for load and store instructions:

’ Format | Address Computation ‘
(register) contents of register
imm immediate
imm (register) immediate + contents of register
symbol address of symbol
symbol £ imm address of symbol 4+ or — immediate
symbol (register) address of symbol + contents of register
symbol &+ imm (register) | (address of symbol + or — immediate) + contents of register

Description of the MIPS R2000 307

Most load and store instructions operate only on aligned data. A quantity is aligned if
its memory address is a multiple of its size in bytes. Therefore, a halfword object must
be stored at even addresses and a full word object must be stored at addresses that are
a multiple of 4. However, MIPS provides some instructions for manipulating unaligned
data.

E.2.4 Arithmetic and Logical Instructions

In all instructions below, Src2 can either be a register or an immediate value (a 16
bit integer). The immediate forms of the instructions are only included for reference.
The assembler will translate the more general form of an instruction (e.g., add) into the
immediate form (e.g., addi) if the second argument is constant.

In some cases, the same instruction mnemonic may used for both a real and
a pseudoinstruction. For example, div and mul are both real instructions if all
three operands are registers. If the third operand is an immediate, they become
pseudoinstructions.

abs Rdest, Rsrc Absolute Value t
Put the absolute value of the integer from register Rsrc in register Rdest.

add Rdest, Rsrcil, Src2 Addition (with overflow)
addi Rdest, Rsrcl, Imm Addition Immediate (with overflow)
addu Rdest, Rsrcl, Src2 Addition (without overflow)
addiu Rdest, Rsrcil, Imm Addition Immediate (without overflow)

Put the sum of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

and Rdest, Rsrcl, Src2 AND
andi Rdest, Rsrcl, Imm AND Immediate
Put the logical AND of the integers from register Rsrcl and Src2 (or Imm) into register
Rdest.

div Rsrcl, Rsrc2 Divide (signed)
divu Rsrcil, Rsrc2 Divide (unsigned)
Divide the contents of the two registers. divu treats is operands as unsigned values.
Leave the quotient in register 1o and the remainder in register hi. Note that if an operand
is negative, the remainder is unspecified by the MIPS architecture and depends on the
conventions of the machine on which SPIM is run.

div Rdest, Rsrcl, Src2 Divide (signed, with overflow) ¥
divu Rdest, Rsrcl, Src2 Divide (unsigned, without overflow) t
Put the quotient of the integers from register Rsrcl and Src2 into register Rdest. divu
treats is operands as unsigned values.

308 APPENDIX E. SPIM BACKGROUND

mul Rdest, Rsrcl, Src2 Multiply (without overflow)
mulo Rdest, Rsrcl, Src2 Multiply (with overflow) T
mulou Rdest, Rsrcl, Src2 Unsigned Multiply (with overflow)

Put the product of the integers from register Rsrc1 and Src2 into register Rdest.

mult Rsrcl, Rsrc2 Multiply
multu Rsrcl, Rsrc2 Unsigned Multiply
Multiply the contents of the two registers. Leave the low-order word of the product in
register 1o and the high-word in register hi.

neg Rdest, Rsrc Negate Value (with overflow) ¥
negu Rdest, Rsrc Negate Value (without overflow)
Put the negative of the integer from register Rsrc into register Rdest.

nor Rdest, Rsrcl, Src2 NOR
Put the logical NOR of the integers from register Rsrc1 and Src2 into register Rdest.

not Rdest, Rsrc NOT *
Put the bitwise logical negation of the integer from register Rsrc into register Rdest.

or Rdest, Rsrcl, Src2 OR
ori Rdest, Rsrcl, Imm OR Immediate
Put the logical OR of the integers from register Rsrcl and Src2 (or Imm) into register
Rdest.

rem Rdest, Rsrcl, Src2 Remainder '
remu Rdest, Rsrcl, Src2 Unsigned Remainder i
Put the remainder from dividing the integer in register Rsrc1 by the integer in Src2 into
register Rdest. Note that if an operand is negative, the remainder is unspecified by the
MIPS architecture and depends on the conventions of the machine on which SPIM is run.

rol Rdest, Rsrcl, Src2 Rotate Left ¥
ror Rdest, Rsrcl, Src2 Rotate Right ¥
Rotate the contents of register Rsrcl left (right) by the distance indicated by Src2 and
put the result in register Rdest.

sll Rdest, Rsrcl, Src2 Shift Left Logical
sllv Rdest, Rsrcl, Rsrc2 Shift Left Logical Variable
sra Rdest, Rsrcl, Src2 Shift Right Arithmetic
srav Rdest, Rsrcl, Rsrc2 Shift Right Arithmetic Variable
srl Rdest, Rsrcl, Src2 Shift Right Logical
srlv Rdest, Rsrcl, Rsrc2 Shift Right Logical Variable

Shift the contents of register Rsrc1l left (right) by the distance indicated by Src2 (Rsrc2)
and put the result in register Rdest.

Description of the MIPS R2000 309

sub Rdest, Rsrcl, Src2 Subtract (with overflow)
subu Rdest, Rsrcl, Src2 Subtract (without overflow)

Put the difference of the integers from register Rsrc1 and Src2 into register Rdest.

xor Rdest, Rsrcl, Src2 XOR
xori Rdest, Rsrcl, Imm XOR Immediate
Put the logical XOR of the integers from register Rsrcl and Src2 (or Imm) into register
Rdest.

E.2.5 Constant-Manipulating Instructions

1i Rdest, imm Load Immediate ¥

Move the immediate imm into register Rdest.

lui Rdest, imm Load Upper Immediate
Load the lower halfword of the immediate imm into the upper halfword of register Rdest.
The lower bits of the register are set to 0.

E.2.6 Comparison Instructions

In all instructions below, Src2 can either be a register or an immediate value (a 16 bit
integer).

seq Rdest, Rsrcl, Src2 Set EqualT
Set register Rdest to 1 if register Rsrcl equals Src2 and to be 0 otherwise.

sge Rdest, Rsrcl, Src2 Set Greater Than Equal t
sgeu Rdest, Rsrcl, Src2 Set Greater Than Equal Unsigned i
Set register Rdest to 1 if register Rsrc1 is greater than or equal to Src2 and to 0 otherwise.

sgt Rdest, Rsrcl, Src2 Set Greater Than T
sgtu Rdest, Rsrcl, Src2 Set Greater Than UnsignedT
Set register Rdest to 1 if register Rsrcl is greater than Src2 and to 0 otherwise.

sle Rdest, Rsrcl, Src2 Set Less Than Equal i
sleu Rdest, Rsrcl, Src2 Set Less Than Equal Unsigned t
Set register Rdest to 1 if register Rsrcl is less than or equal to Src2 and to O otherwise.

slt Rdest, Rsrcl, Src2 Set Less Than
slti Rdest, Rsrcl, Imm Set Less Than Immediate
sltu Rdest, Rsrcl, Src2 Set Less Than Unsigned
sltiu Rdest, Rsrcl, Imm Set Less Than Unsigned Immediate

Set register Rdest to 1 if register Rsrcl is less than Src2 (or Imm) and to O otherwise.

310 APPENDIX E. SPIM BACKGROUND

sne Rdest, Rsrcl, Src2 Set Not Equal i
Set register Rdest to 1 if register Rsrcl is not equal to Src2 and to 0 otherwise.

E.2.7 Branch and Jump Instructions

In all instructions below, Src2 can either be a register or an immediate value (integer).
Branch instructions use a signed 16-bit offset field; hence they can jump 21 — 1
instructions (not bytes) forward or 2!° instructions backwards. The jump instruction
contains a 26 bit address field.

b label Branch instruction '
Unconditionally branch to the instruction at the label.

bczt label Branch Coprocessor z True
bczf label Branch Coprocessor 7 False
Conditionally branch to the instruction at the label if coprocessor z’s condition flag is true
(false).

beq Rsrcl, Src2, label Branch on Equal
Conditionally branch to the instruction at the label if the contents of register Rsrc1 equals
Src2.

beqz Rsrc, label Branch on Equal Zero
Conditionally branch to the instruction at the label if the contents of Rsrc equals 0.

bge Rsrcl, Src2, label Branch on Greater Than Equal
bgeu Rsrcl, Src2, label Branch on GTE Unsigned ¥
Conditionally branch to the instruction at the label if the contents of register Rsrc1 are
greater than or equal to Src2.

bgez Rsrc, label Branch on Greater Than Equal Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are greater than
or equal to 0.

bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
Conditionally branch to the instruction at the label if the contents of Rsrc are greater than
or equal to 0. Save the address of the next instruction in register 31.

bgt Rsrcl, Src2, label Branch on Greater Than '
bgtu Rsrcl, Src2, label Branch on Greater Than Unsigned ¥
Conditionally branch to the instruction at the label if the contents of register Rsrc1 are
greater than Src2.

bgtz Rsrc, label Branch on Greater Than Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are greater than
0.

Description of the MIPS R2000 311

ble Rsrcl, Src2, label Branch on Less Than Equal i
bleu Rsrcl, Src2, label Branch on LTE Unsigned i
Conditionally branch to the instruction at the label if the contents of register Rsrc1l are
less than or equal to Src2.

blez Rsrc, label Branch on Less Than Equal Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are less than or
equal to 0.

bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
bltzal Rsrc, label Branch on Less Than And Link

Conditionally branch to the instruction at the label if the contents of Rsrc are greater or
equal to O or less than 0, respectively. Save the address of the next instruction in register
31.

blt Rsrcl, Src2, label Branch on Less Than t
bltu Rsrcl, Src2, label Branch on Less Than UnsignedT
Conditionally branch to the instruction at the label if the contents of register Rsrc1l are
less than Src2.

bltz Rsrc, label Branch on Less Than Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are less than 0.

bne Rsrcl, Src2, label Branch on Not Equal
Conditionally branch to the instruction at the label if the contents of register Rsrc1l are
not equal to Src2.

bnez Rsrc, label Branch on Not Equal Zero i
Conditionally branch to the instruction at the label if the contents of Rsrc are not equal to
0.

j label Jump
Unconditionally jump to the instruction at the label.

jal label Jump and Link
jalr Rsrc Jump and Link Register
Unconditionally jump to the instruction at the label or whose address is in register Rsrc.
Save the address of the next instruction in register 31.

jr Rsrc Jump Register
Unconditionally jump to the instruction whose address is in register Rsrc; the SPIM
assembler is kind and translates a j instruction as a jr instruction if the operand is a
register.

312 APPENDIX E. SPIM BACKGROUND

E.2.8 Load Instructions

la Rdest, address Load Address *
Load computed address, not the contents of the location, into register Rdest.

1b Rdest, address Load Byte
lbu Rdest, address Load Unsigned Byte
Load the byte at address into register Rdest. The byte is sign-extended by the 1b, but not
the 1bu, instruction.

1d Rdest, address Load Double-Word *
Load the 64-bit quantity at address into registers Rdest and Rdest + 1.

1h Rdest, address Load Halfword
lhu Rdest, address Load Unsigned Halfword
Load the 16-bit quantity (halfword) at address into register Rdest. The halfword is sign-
extended by the 1h, but not the 1hu, instruction

lw Rdest, address Load Word
Load the 32-bit quantity (word) at address into register Rdest.

lwcz Rdest, address Load Word Coprocessor

Load the word at address into register Rdest of coprocessor z (0-3).

1wl Rdest, address Load Word Left
lwr Rdest, address Load Word Right
Load the left (right) bytes from the word at the possibly-unaligned address into register
Rdest.

ulh Rdest, address Unaligned Load Halfword '
ulhu Rdest, address Unaligned Load Halfword Unsigned '
Load the 16-bit quantity (halfword) at the possibly-unaligned address into register Rdest.
The halfword is sign-extended by the ulh, but not the ulhu, instruction

ulw Rdest, address Unaligned Load Word *
Load the 32-bit quantity (word) at the possibly-unaligned address into register Rdest.

E.2.9 Store Instructions

sb Rsrc, address Store Byte
Store the low byte from register Rsrc at address.

sd Rsrc, address Store Double-Word t
Store the 64-bit quantity in registers Rsrc and Rsrc + 1 at address.

Description of the MIPS R2000 313

sh Rsrc, address Store Halfword
Store the low halfword from register Rsrc at address.

sw Rsrc, address Store Word

Store the word from register Rsrc at address.

swcz Rsrc, address Store Word Coprocessor

Store the word from register Rsrc of coprocessor z at address.

swl Rsrc, address Store Word Left
swr Rsrc, address Store Word Right
Store the left (right) bytes from register Rsrc at the possibly-unaligned address.

ush Rsrc, address Unaligned Store Halfword *
Store the low halfword from register Rsrc at the possibly-unaligned address.

usw Rsrc, address Unaligned Store Word *

Store the word from register Rsrc at the possibly-unaligned address.

E.2.10 Data Movement Instructions

move Rdest, Rsrc Move

Move the contents of Rsrc to Rdest.

The multiply and divide unit produces its result in two additional registers, HI and LO.
These instructions move values to and from these registers. The multiply, divide, and
remainder instructions described above are pseudoinstructions that make it appear as if
this unit operates on the general registers and detect error conditions such as divide by
zero or overflow.

mfhi Rdest Move From hi
mflo Rdest Move From lo
Move the contents of the hi (lo) register to register Rdest.

mthi Rdest Move To hi
mtlo Rdest Move To lo
Move the contents register Rdest to the hi (lo) register.

Coprocessors have their own register sets. These instructions move values between these
registers and the CPU’s registers.

mfcz Rdest, CPsrc Move From Coprocessor z

Move the contents of coprocessor z’s register CPsrc to CPU register Rdest.

314 APPENDIX E. SPIM BACKGROUND

mfcl.d Rdest, FRsrcl Move Double From Coprocessor 1 ¥
Move the contents of floating point registers FRsrcl and FRsrcl + 1 to CPU registers
Rdest and Rdest + 1.

mtcz Rsrc, CPdest Move To Coprocessor
Move the contents of CPU register Rsrc to coprocessor z’s register CPdest.

E.2.11 Floating Point Instructions

The MIPS has a floating point coprocessor (numbered 1) that operates on single precision
(32-bit) and double precision (64-bit) floating point numbers. This coprocessor has its
own registers, which are numbered $£0-$£31. Because these registers are only 32-
bits wide, two of them are required to hold doubles. To simplify matters, floating
point operations only use even-numbered registers—including instructions that operate
on single floats.

Values are moved in or out of these registers a word (32-bits) at a time by lwcl,
swcl, mtcl, and mfcl instructions described above or by the 1.s, 1.d, s.s, and s.d
pseudoinstructions described below. The flag set by floating point comparison operations
is read by the CPU with its bc1t and bc1f instructions.

In all instructions below, FRdest, FRsrcl, FRsrc2, and FRsrc are floating point
registers (e.g., $£2).

abs.d FRdest, FRsrc Floating Point Absolute Value Double
abs.s FRdest, FRsrc Floating Point Absolute Value Single
Compute the absolute value of the floating float double (single) in register FRsrc and put
it in register FRdest.

add.d FRdest, FRsrcl, FRsrc2 Floating Point Addition Double
add.s FRdest, FRsrcl, FRsrc2 Floating Point Addition Single
Compute the sum of the floating float doubles (singles) in registers FRsrc1 and FRsrc2
and put it in register FRdest.

c.eq.d FRsrcl, FRsrc2 Compare Equal Double
c.eq.s FRsrcl, FRsrc2 Compare Equal Single
Compare the floating point double in register FRsrc1 against the one in FRsrc2 and set
the floating point condition flag true if they are equal.

c.le.d FRsrcl, FRsrc2 Compare Less Than Equal Double
c.le.s FRsrcl, FRsrc2 Compare Less Than Equal Single
Compare the floating point double in register FRsrc1 against the one in FRsrc2 and set
the floating point condition flag true if the first is less than or equal to the second.

c.1t.d FRsrcl, FRsrc2 Compare Less Than Double
c.1lt.s FRsrcl, FRsrc2 Compare Less Than Single

Description of the MIPS R2000 315

Compare the floating point double in register FRsrc1 against the one in FRsrc2 and set
the condition flag true if the first is less than the second.

cvt.d.s FRdest, FRsrc Convert Single to Double
cvt.d.w FRdest, FRsrc Convert Integer to Double
Convert the single precision floating point number or integer in register FRsrc to a double
precision number and put it in register FRdest.

cvt.s.d FRdest, FRsrc Convert Double to Single
cvt.s.w FRdest, FRsrc Convert Integer to Single
Convert the double precision floating point number or integer in register FRsrc to a single
precision number and put it in register FRdest.

cvt.w.d FRdest, FRsrc Convert Double to Integer
cvt.w.s FRdest, FRsrc Convert Single to Integer
Convert the double or single precision floating point number in register FRsrc to an
integer and put it in register FRdest.

div.d FRdest, FRsrcl, FRsrc2 Floating Point Divide Double
div.s FRdest, FRsrcl, FRsrc2 Floating Point Divide Single
Compute the quotient of the floating float doubles (singles) in registers FRsrcl and
FRsrc2 and put it in register FRdest.

1.d FRdest, address Load Floating Point Double T
1l.s FRdest, address Load Floating Point Single
Load the floating float double (single) at address into register FRdest.

mov.d FRdest, FRsrc Move Floating Point Double
mov.s FRdest, FRsrc Move Floating Point Single
Move the floating float double (single) from register FRsrc to register FRdest.

mul.d FRdest, FRsrcl, FRsrc2 Floating Point Multiply Double
mul.s FRdest, FRsrcl, FRsrc2 Floating Point Multiply Single
Compute the product of the floating float doubles (singles) in registers FRsrcl and
FRsrc2 and put it in register FRdest.

neg.d FRdest, FRsrc Negate Double
neg.s FRdest, FRsrc Negate Single
Negate the floating point double (single) in register FRsrc and put it in register FRdest.

s.d FRdest, address Store Floating Point Double i
s.s FRdest, address Store Floating Point Single *

Store the floating float double (single) in register FRdest at address.

sub.d FRdest, FRsrcl, FRsrc2 Floating Point Subtract Double
sub.s FRdest, FRsrcl, FRsrc2 Floating Point Subtract Single

316 APPENDIX E. SPIM BACKGROUND

Ox7fffffff

Stack Segment

Data Segment

0x10000000

Text Segment

0x400000

Reserved

Figure E.4: Layout of memory.

Compute the difference of the floating float doubles (singles) in registers FRsrcl and
FRsrc2 and put it in register FRdest.

E.2.12 Exception and Trap Instructions

rfe Restore From Exception

Restore the Status register.

syscall System Call
Register $v0 contains the number of the system call (see Table E.1) provided by SPIM.

break n Break

Cause exception n. Exception 1 is reserved for the debugger.

nop No operation
Do nothing.

Memory Usage 317

$fp ————n argument 6
argument 5
arguments 1-4 T
saved registers gldedrp:;zes

local variables

dynamic area

$sp —

Figure E.5: Layout of a stack frame. The frame pointer points just below the
last argument passed on the stack. The stack pointer points to the last word in
the frame.

E.3 Memory Usage

The organization of memory in MIPS systems is conventional. A program’s address space
is composed of three parts (see Figure E.4).

At the bottom of the user address space (0x400000) is the text segment, which holds
the instructions for a program.

Above the text segment is the data segment (starting at 0x10000000), which is divided
into two parts. The static data portion contains objects whose size and address are known
to the compiler and linker. Immediately above these objects is dynamic data. As a
program allocates space dynamically (i.e., by malloc), the sbrk system call moves the
top of the data segment up.

The program stack resides at the top of the address space (Ox7ffftfff). It grows down,
towards the data segment.

E.4 Calling Convention

The calling convention described in this section is the one used by gcc, not the native
MIPS compiler, which uses a more complex convention that is slightly faster.
Figure E.5 shows a diagram of a stack frame. A frame consists of the memory between

318 APPENDIX E. SPIM BACKGROUND

the frame pointer ($£p), which points to the word immediately after the last argument
passed on the stack, and the stack pointer ($sp), which points to the last word in the
frame. As typical of Unix systems, the stack grows down from higher memory addresses,
so the frame pointer is above stack pointer.

The following steps are necessary to effect a call:

1. Pass the arguments. By convention, the first four arguments are passed in registers
$a0-$a3 (though simpler compilers may choose to ignore this convention and pass
all arguments via the stack). The remaining arguments are pushed on the stack.

2. Save the caller-saved registers. This includes registers $t0-$t9, if they contain
live values at the call site.

3. Execute a jal instruction.
Within the called routine, the following steps are necessary:
1. Establish the stack frame by subtracting the frame size from the stack pointer.

2. Save the callee-saved registers in the frame. Register $£p is always saved. Register
$ra needs to be saved if the routine itself makes calls. Any of the registers $s0-$s7
that are used by the callee need to be saved.

3. Establish the frame pointer by adding the stack frame size - 4 to the address in $sp.

Finally, to return from a call, a function places the returned value into $vO and
executes the following steps:

1. Restore any callee-saved registers that were saved upon entry (including the frame
pointer $£p).

2. Pop the stack frame by adding the frame size to $sp.

3. Return by jumping to the address in register $ra.

E.5 Input and Output

In addition to simulating the basic operation of the CPU and operating system, SPIM
also simulates a memory-mapped terminal connected to the machine. When a program
is “running”, SPIM connects its own terminal that appears as a separate console window.
The program can read characters that you type while the processor is running. Similarly, if
SPIM executes instructions to write characters to the terminal, the characters will appear
on SPIM’s console window. To use memory-mapped 10, the Enable Memory-Mapped 10
setting must be enabled in QtSPIM’s options.

Input and Output 319

Unused 1 1

Receiver Control
(Oxffff0000)

Interrupt Ready
Enable

Unused 8
Receiver Data
(0xFfff0004)

Received Byte

Unused 1 1

Transmitter Control
(0xFfff0008)

Interrupt Ready
Enable

Unused 8

Transmitter Data
(0x{fff000c)

Transmitted Byte

Figure E.6: The terminal is controlled by four device registers, each of which
appears as a special memory location at the given address. Only a few bits of
the registers are actually used: the others always read as zeroes and are ignored
on writes.

The terminal device consists of two independent units: a receiver and a transmitter.
The receiver unit reads characters from the keyboard as they are typed. The transmitter
unit writes characters to the terminal’s display. The two units are completely independent.
This means, for example, that characters typed at the keyboard are not automatically
“echoed” on the display. Instead, the processor must get an input character from the
receiver and re-transmit it to echo it.

The processor accesses the terminal using four memory-mapped device registers, as
shown in Figure E.6. “Memory-mapped” means that each register appears as a special
memory location. The Receiver Control Register is at location 0xffff0000; only two of
its bits are actually used. Bit O is called “ready”: if it is one it means that a character
has arrived from the keyboard but has not yet been read from the receiver data register.
The ready bit is read-only: attempts to write it are ignored. The ready bit changes
automatically from zero to one when a character is typed at the keyboard, and it changes
automatically from one to zero when the character is read from the receiver data register.

Bit one of the Receiver Control Register is “interrupt enable”. This bit may be both
read and written by the processor. The interrupt enable is initially zero. If it is set to one
by the processor, an interrupt is requested by the terminal on level zero (bit 8 of Status and
Cause registers) whenever the ready bit is one. For the interrupt actually to be received by

320 APPENDIX E. SPIM BACKGROUND

the processor, interrupts must be enabled in the status register of the system coprocessor
(see Section E.2).

Other bits of the Receiver Control Register are unused: they always read as zeroes
and are ignored in writes.

The second terminal device register is the Receiver Data Register (at address
0xffff0004). The low-order eight bits of this register contain the last character typed
on the keyboard, and all the other bits contain zeroes. This register is read-only and only
changes value when a new character is typed on the keyboard. Reading the Receiver Data
Register causes the ready bit in the Receiver Control Register to be reset to zero.

The third terminal device register is the Transmitter Control Register (at address
0xffff0008). Only the low-order two bits of this register are used, and they behave much
like the corresponding bits of the Receiver Control Register. Bit 0 is called “ready” and
is read-only. If it is one it means the transmitter is ready to accept a new character for
output. If it is zero it means the transmitter is still busy outputting the previous character
given to it. Bit one is “interrupt enable”; it is readable and writable. If it is set to one, then
an interrupt will be requested on level one (bit 9 of Status and Cause registers) whenever
the ready bit is one.

The final device register is the Transmitter Data Register (at address Oxffff000c).
When it is written, the low-order eight bits are taken as an ASCII character to output to the
display. When the Transmitter Data Register is written, the ready bit in the Transmitter
Control Register will be reset to zero. The bit will stay zero until enough time has
elapsed to transmit the character to the terminal; then the ready bit will be set back to
one again. The Transmitter Data Register should only be written when the ready bit of
the Transmitter Control Register is one; if the transmitter isn’t ready then writes to the
Transmitter Data Register are ignored (the write appears to succeed but the character will
not be output).

In real computers it takes time to send characters over the serial lines that connect
terminals to computers. These time lags are simulated by SPIM. For example, after the
transmitter starts transmitting a character, the transmitter’s ready bit will become zero for
a while. SPIM measures this time in instructions executed, not in real clock time. This
means that the transmitter will not become ready again until the processor has executed
a certain number of instructions. If you stop the machine and look at the ready bit using
SPIM, it will not change. However, if you let the machine run then the bit will eventually
change back to one.

Index

<, 225-227, see also shell: redirect
>, see also shell: redirect

|, see shell: pipe

*/, see C: comments

/*, see C: comments

//, see C: comments

absolute address, see address
adder, see full adder, half adder
address
absolute, 169
relative, 169
aligned data, see MIPS
Amdahl’s Law, see exercise, speedup formula
and, 25, see also logic symbol, truth table
arithmetic shift, see shift

array, 130-136, see also C, exercise: C array

size
indexing, 135-136, 138
offset, 138
pointer, 129, 205, 241-245
ASCIIZ, see string
assignment, see also C

base conversion, 2628, 33, see also exercise
fraction, 33
integer, 26, 27

bash, see shell: script

bias, see negatives: floating point

binary tree, see tree

bitsort, see sorting, exercise

boolean, 20, 21, see also logic

branch delay slot, 101, 177

break, 139, see also template

array, 205
create, 243
size, 242
assignment, 205-207
cast, 239
comments, 263
function, see also exit, free, malloc
formats, 236
fprintf, 237, 238
fscanf, 237
isdigit, 263
isspace, 263
printf, 235
scanf, 232
header
ctype.h, 263
stdbnool.h, 266
stdio.h, 195
stdlib.h, 249, 266
string.h, 268
header
stdbool.h, 223
stdlib.h, 242
string, 205

C files

321

executable, 195

header, 194, 210
preprocessor guards, 251-252
system, 195
user, 195

library, 194

object, 194

322

source, 194
cache, see memory hierarchy
call stack, see stack: function call, stack frame
call tree, see exercise,function call
cast, see C
cat, see shell
code segment, see segment: text
complexity class, 173
compound statement, see statement
conditional, see expression
continue, 140, see also template
ctype.h, see C: header

data segment, see segment

data structure, see offset: data structure

De Morgan’s Laws, 23, see also truth table
exercise321

debugger, 169

declaration, 196, see also definition, exercise

definition, 196, see also declaration, exercise

delayed branch, 101, 177

directory listing, see shell, exercise

dispatch table, 139, 162, see also exercise, jump
table

switch, 140

double, 32, see also registers: conventions

dynamic instruction count, see instruction count,
exercise

dynamic linking, see linker, dynamic

dynamic memory allocation, 144—145, see also
malloc, free, exercise

end of file, see EOF
energy efficiency, 186
EOF, 238
excess, see negatives: floating point
exclusive or, see xor
executable, see C files
exercise
Amdahl’s Law, 188, 189
base conversion, 47
bitsort, 284
C array size, 247
C paramater passing, 245-247
call tree, 122

INDEX

De Morgan’s Laws, 47
declaration, 212
definition, 212
directory listing, 228
dispatch table, 170
dynamic instruction count, 18, 170
dynamic memory allocation, 170171
expression, 213
fibonacci, 122
floating point, 47, 78
full adder, 47
globals, 121
GPGPU, 188
GPU, 189
interrupt vector, 189
jal, 120
logic circuit, 47
Makefile, 283
man, 229
mergesort, 282
objects, 171
operator, 213
overflow detection, 48, 76
permissions, 228
pipelines, 188
precedence, 213
pseudoinstruction, 76
gsort, 284
recursion, 122
register conventions, 48
shell, 228-230
sort, 229
stack frame, 122
static instruction count, 170
strlen, 169
switch, 78
system path, 228, 229
tree, 282, 283
truth table, 47
which, 229
exit
C, 266
MIPS, 83, 101
expression, 194, 202, see also exercise

INDEX

conditional, 202
operator, 203
precedence, 203

fibonacci, see recursion: MIPS, exercise
file IO, see fprintf, fscanf
file read, see read file
floating point, 29, 166, see also double, negat-
ives, registers: conventions, exercise
example, 74
IEEE standard, 31
example, 32
sizes, 32
formats, see C: function
$£p, see function call: frame pointer, registers:
conventions
fprintf, see C: function
frame pointer, see function call
free, 144-150, 242-245, 249, see also dy-
namic memory allocation
FreeBSD, 215
fscanf, see C: function
full adder, 36, 38, see also exercise, logic
circuit, truth table
function call, 80-83, see also stack frame
call tree, 82—-116
frame pointer, 102-105, 108, 109, 112,
119
interior, 82
jal, 84, 86-88, 99-102, 104
jalr, 84
leaf, 83
parameters, 79, 82, 88, 89, 91, 102, 104—
107, 110-112, 114, 118, 119
return, 84, 85, 105
main, 101, 107
return address, 84, 86-88, 91, 99-105,
107, 118, 119
root, 82
stack pointer, 100, 102—105, 108-110, 112
function pointer, 249-250
type, 276

gates, see and, or, not, universal gate, xor

323

general-purpose computing on graphics pro-
cessing units (GPGPU), 13, 179, 180

global pointer, 146

global pointer ($gp), 93, 98, 168

globals, 93, 146, 197, see also offset: globals,
global pointer

$gp, see global pointer

GPGPU, see exercise, general-purpose comput-
ing on graphics processing units

GPU, see exercise, graphics processing unit

graphics processing unit (GPU), 13, 35, 179,
180, 187, 190

half adder, 35, see also logic circuit, truth table

header, see C files

heap, 145, 241, 243, see also dynamic memory
allocation

HI register, see MIPS

if, see template
ifndef preprocessor guards, see C files: header
#include, 195
inheritance, see methods
inorder traversal, see tree
input and output, 184
instruction count, see also exercise
dynamic, 8, 175
static, 8
instruction formats, 50
immediate, 51
1,51
R, 50
interior function, see function call
interrupt vector, 185, see also exercise, jump
table
10, see input and output
isdigit, see C: function
isspace, see C: function

jal, see exercise, function call

jalr, see function call

jump table, 139, see also dispatch table
jump target address, 84

leaf function, see function call
less, see shell

324

library, see C files
linked list, 143, 149, 150
linker, 81, 93, 102, 168, 211
dynamic, 169
static, 169
Linux, 215
LO register, see MIPS
load address, see pseudoinstruction
load immediate, see pseudoinstruction
local variables, 95, 97, 101, 102, 104-113, 197
locality
spatial, 181
temporal, 181
logic
circuit
full adder, 37
half adder, 36
not, 21
identities, 23
notation, 22
symbol
and, 25
nand, 25
or, 25
xor, 25
logic circuit, see also exercise
logical shift, see shift
loops, see also template
1s, see shell

Mac OS X, 215
macro, see preprocessor
main
C, 193, 196, 208
command line, 267
parameters, 209, 267-269
MIPS, 40, 42, 44, 83, 86, 208
main return, see function call: return
make, 270-275
Makefile, see make, exercise
makefile, see make
malloc, 144-150, 242-245, 249, see also dy-
namic memory allocation
man, see shell, exercise
manual page, see man

INDEX

memory hierarchy
cache, 181-182
paging device, 182
memory timing, see time formula
mergesort, see sorting, exercise
methods, 161-165
inheritance, 162
method table, 166
parameters, 167
MIPS
address
absolute, 54
offsets, 59
relative, 54
aligned data, 63
branch offset, 45
HI register, 65
LO register, 65
load address, 55
multiply, 64
registers, 53
stack pointer, 59
unsigned operations, 61, 62, 64
multicore, 178
multiply, see MIPS, MIPS: HI, LO

nand, 25, see also logic symbol, truth table,
universal gate
negatives
floating point, 31
bias, 31
excess, 31
one’s complement, 29
signed magnitude, 29, 31
two’s complement, 28
overflow detection, 30
nor, see universal gate
number representation, see floating point, neg-
atives

object file, see C files

objects, 160-168, see also exercise

offset, 84, see also stack: function call, array
data structure, 108, 154
globals, 93, 97

INDEX

stack, 80, 81, 103, 108-110, 119
one’s complement, see negatives
operator, see expression, exercise
or, 25, see also logic symbol, truth table
output, see input and output
overflow detection, see negatives: two’s com-
plement, exercise

paging device, see memory hierarchy

parameters, see exercise: C parameter passing,
function call, main, methods, prepro-
cessor, stack frame

path, 216, see shell, exercise: system path

permissions, see shell, exercise

pipe, see shell

pipelines, 173178, see also exercise

stall, 177
pointer, 129, 154, see also function pointer,
array

precedence, see expression, exercise
preprocessor, 195-196, 252
macro, 195, 251
parameters, 279, 281
SWAP, 279-280
preprocessor guards, see C files: header
printf, 193, see C: function
pseudoinstruction, 9, 45, 46, see also exercise
load address, 56
load immediate, 42
pwd, see shell, working directory

gsort, see sorting: quicksort, exercise
quicksort, see gsort, sorting

$ra, see function call: return address, registers:
conventions
random, 281
read file, 261-267
recursion, see also exercise
MIPS
fibonacci, 114-120
red-black tree, see tree
redirect, see shell
registers, 39
conventions, see also exercise

325

double, 53, 75, 290

floating point, 290

integer, 45, 290

spill, 94, 96, 97, 101-108, 112, 114, 118,
119, see also function call

relative address, see address
return, see function call
return address, see function call
return from main, see function call: return
root function, see function call

scanf, see C: function
script, see shell
segment, 39
data, 39
text, 39
semantics, 199
shell, see also exercise
directory listing, 216-218
less, 227
1s,216-218, 225
man, 228
path, 224
permissions, 217-218
pipe, 225, 236
pwd, 216, 218
redirect, 225, 236
script, 215
bash, 216221, 223-228
sort, 225
cat, 226
tail, 226
which, 224
shift
arithmetic, 65, 67, 281
logical, 51, 65, 281
sign extending, 29, 61, 65, 281
signed magnitude, see negatives: floating point
Solaris, 215
sort, see shell, exercise
sorting
bitsort, 277-279
time complexity, 277
mergesort, 257-261, 275
quicksort, 258

326

gsort, 275-277
time complexity, 257
source file, see C files
$sp, see function call: stack pointer, registers:
conventions
space complexity, 173
spatial locality, see locality
speedup formula, 174, see also exercise
Amdahl’s Law, 179, 180, 185
spill, see function call, registers
SPIM
basics, 40
floating point, 34
integer registers, 52
launch, 40, 41
main, 40, 42
Reinitialize and load file, 44
stack, 80
downwards, 99, 108, 109
function call, 80, 81
offsets, 80, 81, see also offset: stack
stack frame, 102—111, 118, 120, see also func-
tion call, local variables
caller, 104
parameters, 79, 82, 88, 89, 91, 102, 104—
107, 110-112, 114, 118, 119
stack pointer, see function
statement, 194
compound, 197
syntax diagram, 201
static globals, 251
static instruction count, see instruction count,
exercise
static linking, see linker, static
stdbool.h, see C: header
stderr, see UNIX: files
stdin, see UNIX: files
stdio.h, see C: header
stdlib.h, see C: header
stdout, see UNIX: files
string, 130, see also C, exercise, strlen
ASCIIZ, 86, 268
string.h, see C: header
strlen, 268, see also exercise

INDEX

struct, 143, 248-249, see also structured types

structured types, 143, 150-160, 248-250, see
also struct

SWAP macro, see preprocessor

switch, 138-143, see also dispatch table, tem-
plate, exercise

syntax, 199

system header, see C files

system path, see shell: path, exercise

tail, see shell
template, ii, 49
break, 140
continue, 140
general
function call, 112
if, 96
loops, 96
simple
function call, 106
if, 71
loops, 69
switch, 140
temporal locality, see locality
text segment, see segment
time complexity, 173, see also tree, sorting
time formula
memory, 183
tree, see also exercise
binary, 253-257
inorder traversal, 256
red-black, 256
time complexity, 256
truth table
and, 22
De Morgan’s Laws, 24
full adder, 37
half adder, 35
nand, 21
or, 22
xor, 24
two’s complement, see negatives
type conversion, see C: cast

universal gate, 21, 25

INDEX

UNIX, 192, 211, 215
files
stderr, 225, 236, 237
stdin, 224, 236, 239
stdout, 225, 236, 237

warehouse-scale computing, 188
which, see shell, exercise
working directory, 216

xor, 25, see also logic symbol, truth table

327

	Preface
	List of Figures
	List of Tables
	Definitions
	From the Machine…
	Introduction
	Some Basics
	Machine Language versus High-Level Language
	Code Translation
	Machine Instruction Sets
	The Machine
	Practicalities
	Further Reading
	Exercises

	Numbers and the Machine
	Logic
	Numbers
	Numbers and Logic
	The Machine
	Exercises

	Assembly by Example
	Instructions and their Formats
	Memory access
	ALU operations
	Control
	Floating Point
	Exercises

	Memory and Functions
	Calling functions
	Global Variables
	Local Variables and the Call Stack
	Bigger Parameters
	Recursion
	Exercises

	Data Structures
	Machine-Level Data
	Arrays
	Dynamic Data
	Structured types
	Objects
	Putting it all Together
	Exercises

	Performance
	More at once
	Memory Hierarchy and Performance
	Input and Output
	Energy and mobility
	Wrap-up
	Exercises

	…to C
	Structure of a C Program
	Minimal C Program
	Program Files
	Program File Contents
	Major Constructs
	Main Program Parameters
	Multifile Programs
	Further Reading
	Exercises

	The UNIX Command Line
	Command Line
	Programming
	More Complex Commands
	Summary
	Further Reading
	Exercises

	Simple C Examples
	Simple functions and IO
	More IO
	Bigger Examples
	Exercises

	More Interesting Problems
	More Types
	More on C File Layout
	Examples
	Putting a program together
	More complex examples
	Summary
	Exercises

	References
	ASCII Character Set
	MIPS Register Conventions
	SPIM System Calls
	SPIM Call Stack
	SPIM Background
	SPIM
	Simulation of a Virtual Machine
	SPIM Interface
	Surprising Features
	Assembler Syntax
	System Calls

	Description of the MIPS R2000
	CPU Registers
	Byte Order
	Addressing Modes
	Arithmetic and Logical Instructions
	Constant-Manipulating Instructions
	Comparison Instructions
	Branch and Jump Instructions
	Load Instructions
	Store Instructions
	Data Movement Instructions
	Floating Point Instructions
	Exception and Trap Instructions

	Memory Usage
	Calling Convention
	Input and Output

	Index

