
Introducing Mutable Environments

Philip Machanick
School of ITEE, University of Queensland

Brisbane, Qld 4072, Australia
philip@itee.uq.edu.au

Abstract

Mutable environments are a proposed addition to object-
oriented languages, in which the environment in which a
method runs can be changed from the defaults specified in
its class. For this purpose, mutable methods are defined,
some of which are predefined and are invoked at specific
times. Others can be added by a programmer. A muta-
ble method can be overridden by one or more environment
objects, in whose scope a method runs. Mutable environ-
ments allow concerns for which aspect-oriented program-
ming was developed to be addressed in a relatively simple
framework, which is general enough to support wrappers
around methods and error handling. This paper presents
a first approximation to the idea, with some preliminary
evaluation.

1 Introduction

Mutable environments are a proposed extension of the
ideas of object-oriented programming to allow more gen-
eral alterations than derived classes to previously-defined
program components. Object-oriented programming,
though a paradigm with growing acceptance by compar-
ison with its early decades, has well-known weaknesses.
Reusing components, while a powerful concept and well-
supported in some languages, has not always met with suc-
cess in the real world, and there are reports of resistance to
reuse-based strategies in real projects [3]. There are long-
standing concerns that learning object-oriented concepts is
not as easy at it should be [1, 5, 6]. An inheritance hierar-
chy has also been identified as being unsuited to represent-
ing cross-cutting abstractions, such as error-handling and
synchronization.

Addressing these concerns requires that aspects of pro-
gramming which do not naturally fit an inheritance hier-
archy be decoupled from the hierarchy. To do so would
address the concern of cross-cutting abstractions being ill-
suited to a strict hierarchy; addressing the other concerns
is more difficult to evaluate. These concerns could, for ex-
ample, be a consequence of teaching technique [13]. How-
ever, allowing programming approaches outside the inher-
itance hierarchy could make for a more natural style in
some cases.

The issue of cross-cutting abstractions has been
addressed in aspect-oriented programming [10] and in

Timor’s bracket methods [8]. This paper argues for a
simpler mechanism for changing component behaviours,
called mutable environments, which makes the environ-
ment in which a method executes explicit and capable
of being changed. A class can have methods which are
defined to be mutable, and an environment enclosing a
method call may redefine an mutable methods used in
that method. A key difference from the Timor mechanism
is that the environment class need not be specifically de-
signed as such but the mutable class needs to be defined as
mutable. Timor does the opposite – the qualified type is
not defined in any special way, but the type which qualifies
it is specifically designed as such [9].

The mechanism is to initialize an object which has
the lifetime of one or more method invocations, the
Environment. The Environment is initialized like any
other object, but has methods specific to processing before
and after a method it encloses. Like any other object, it
can be replaced by another descended from it, with differ-
ent behaviours. Further, it can be copied, allowing a new
invocation to be initialized with a saved Environment. A
variation on the same idea can be used in error-handling.
Another kind of mutable environment, derived from class
ErrorHandler, replaces a mutable method catch in a
class. If the ErrorHandler environment defines a catch
method, it replaces the default method in the class.

This paper explores how this relatively simple addi-
tional feature – an environment which replaces a muta-
ble method – can support flexibility in design and change
of object-oriented programs. In the spirit of exploring a
new concept rather than inventing yet another language,
the concept is explored in the abstract (using a simple
object-oriented pseudocode), rather than as a construct
in a specific language. However, some ground rules are
assumed. Instance variables (member variables for the
C++ inclined) are always hidden inside a class, and inter-
faces and implementations are separate, allowing alterna-
tive implementations. Otherwise, assumptions are mini-
mized (e.g., whether there is or is not garbage collection
is not central to the model; whether errors are propagated
or cause a crash if not handled immediately is also not ex-
plored). Even the assumptions which have been made are
to simplify the examples, and are not central to the ideas of
the paper.

A specific design objective is to provide a mechanism
to implement cross-cutting abstractions which are orthog-

1

onal to a class hierarchy with as few changes from con-
ventional object-oriented languages as possible. The aim
is to achieve the goals of aspect-oriented programming as
simply as possible to facilitate ease of implementation, and
ease of learning the concepts.

The remainder of this paper is organized as follows.
Section 2 provides some background, including a survey
of similar ideas. Section 3 outlines the idea in more de-
tail, with illustrative examples, and Section 4 provides a
preliminary evaluation of the idea, with some thoughts on
implementation. Finally, conclusions wrap up the paper in
Section 5.

2 Background and Related Work

Languages have a variety of mechanisms to address
cross-cutting concerns such as synchronization and error-
handling. Some languages build these features in, while
others rely on library and (also popularly called applica-
tion programming interface – API) designers to provide the
features.

Java, for example, provides synchronization as a lan-
guage feature. In doing so, it provides a special feature,
rather than a general mechanism, which could be adapted
to other cross-cutting concerns. Further, Java’s virtual ma-
chine approach means that synchronization can in principle
be implemented efficiently for its platform once, though
implementation on a specific machine may still take work.
Still, building a mechanism into a language limits flexi-
bility, and places programmers at the mercy of developers
of the underlying virtual machine, which may not always
be efficient [2]. In C++, there is no standard for synchro-
nization. While many libraries exist, users are left with a
range of choices [15], which may not be mutually compat-
ible, creating problems with mixing libraries. Designers of
specific APIs need to define strategies of their own, which
run into the problem of the difficulty of fitting in constructs
which cut across the class hierarchy.

Against this background, Aspect-Oriented Program-
ming (AOP) attempts to provide mechanisms to implement
abstractions across a class hierarchy [10].Work in this field
has included pattern languages for defining crosscuts [7],
and exception-handling in aspect-oriented programming
[12].

An idea similar to that of this paper is context rela-
tions, a strategy for patching composite objects together.
Context relations are somewhat more complicated than the
mechanism defined here, and also emphasize composing a
new class out of a specific collection of classes [14]. The
approach used here is more flexibile in object composition,
which can be on a per-method basis (either in a class defi-
nition, or at method call).

An approach related to AOP is bracket methods in
qualified types in Timor [9, 8]. The approach in Timor
is one of qualifying types, which is a little more restrictive
than the approach developed here, which can encapsulate
a method call in a new environment at any call. Timor’s

mechanisms, while simpler than aspect-oriented program-
ming, are more complicated than those proposed here. Fur-
ther, the approach in Timor is to specify types (classes)
without indicating that they can be modified, whereas a
qualifying type (which plays the role of an environment
class here) has to be specifically defined as such. The ap-
proach here requires that the class being modified define
methods as mutable, whereas environment classes need not
have any special features. This approach seems more nat-
ural in terms of security – a class which is being modi-
fied needs to be defined to permit this explicitly. Even if
the class which modifies it was not designed originally for
this purpose, its abstraction secrets remain hidden because
the mutable class using it has to match its public interface.
Further, the mutable environments approach allows the op-
tion of using classes not designed initially as environment
classes in this role, which has the potential for increasing
design flexibility.

In languages with weaker type checking such as
Smalltalk, it is easier to implement orthogonal concepts
(e.g., exception handlers [4]), since type checking doesn’t
interfere with mixing components from different parts of
the class hierarchy.

In general, component-based approaches are inher-
ently fragile under evolutionary change, because they have
in them the implicit assumption that interfaces and be-
haviours can be precisely specified [11]. Mutable program-
ming has the potential for designing systems with evolu-
tion in mind – mutable methods can be used where change
is considered likely. Even where mutable methods are not
used in the initial design, change can be incorporated by
making methods mutable – a relatively simple design and
implementation change – and redefining them as needed.

Mutable environments are an attempt at rolling a vari-
ety of mechanisms into one relatively simple approach at
providing a layer of abstraction across the class hierarchy.
The intent is to arrive as close as possible to the flexibility
of a non-typed language, without giving up typing. If spe-
cial mechanisms in other languages can be implemented
with a minimal, general feature set, other, more general
options can be explored.

3 Essentials of Mutable Environ-
ments

In a conventional object model during a method invocation,
objects are conceptualized as in fig. 1(a). The idea intro-
duced here is to see an object as consisting of the object as
defined by its class (and any operations since creation) and
the environment of the current method call, with additional
constraints and behaviours as in fig. 1(b).

At first sight, fig. 1(b) would appear to simply be a
picture illustrating what happens in a conventional object-
oriented model. An object exists in an environment of
globally-defined names. However, the difference proposed
in the mutable environments model is that the environment
is constructed as an object, encapsulating the object which

parameter
local

object

(a) conventional view of data in an object

environment

parameter
local

object

(b) composite object including environment

Figure 1: Objects viewed conventionallly and as proposed
here.

called the method, introducing methods which can be de-
fined as part of the environment. Further, methods in a
class can be defined as mutable, meaning that they can be
overridden by an enclosing environment. A top-level class,
Object, is assumed, with a standard set of mutable meth-
ods corresponding to starting a new call, and terminating a
call.

The remainder of this section outlines standard meth-
ods which would be part of any environment, and goes on
to outline a mechanism for overruling standard behaviours,
which can apply to situations other than environments. A
model of defining environments as classes which can be
separately created, copied and applied to a method is de-
tailed. Error handling is then outlined, followed by a sum-
mary.

3.1 Standard Environment Methods

An environment needs some minimal standard methods to
provide the behaviours normally associated with environ-
ment creation and destruction, as well as methods to sup-
port other useful standard behaviours. Further, it is useful
to have defaults, so the absence of a an explicit environ-
ment means that method invocation works as before.

Assume 3 top-level classes: Object, Environment
and ErrorHandler. Class Environment defines meth-
ods initial (a constructor), final (called on object
destruction – provided for compatibility with languages
with explicit memory deallocation), start (called before a
method it encloses starts execution), and exit (called after
a method it encloses returns). ErrorHandler has a con-
structor and finalizer which in many cases will be place-
holders, and defines one method for general use, catch.
Object also defines methods for start, exit and catch,
but defines them as mutable, meaning they can be re-
placed by environment methods. Defining a method as
mutable is done by adding a mutable keyword. For ex-
ample, in the top-level class definition – assuming a a
type Action which has values terminate, continue and
propagate:

class Object
initial (); // constructor
final () // called on object deallocation
// called when any method starts:
mutable start ();
mutable exit (Action kill, bool returnsVal,

Object returnThis);
// doesn’t return, invokes exit:
mutable catch (Error errorCondition);

endc;

The catch method, if called, by default returns con-
trol to the exit method rather than the place it was called.
It is possible to define a fine-grained error handler mech-
anism by overloading catch, and allowing multiple def-
initions for different parameters. In such a model, the
most accurate match would have to be found. For pur-
poses of developing the concepts, though, the class muta-
ble version of catch is only called if it is not defined in
an ErrorHandler environment (i.e., there is for practical
purposes only one version of catch in a given context).
An issue which needs to be dealt with is recoverable errors
– where the error handler may need to take some action,
but the overall effect is that the method returns. There is
no difficulty if the method doesn’t return a value but if it
does, it is necessary to have a way of returning the value.
The approach adopted here is to construct the Error object
as including a reference to the return value (as constructed
so far), with an instance variable indicating whether a re-
turn value is included. If the Error object was given such
a reference, the error handler would return it, otherwise it
would return without returning a value.

ErrorHandler needs to have a constructor taking a
reference to a result, which could be null if there is no
result to return (alternatively, it could have a second con-

structor with no parameters in a language supporting over-
loading).

An example using error handling (to jump ahead a bit
– the notation is defined in 3.2) to read to end of file in a
method which returns the values read in a container called
result could look like this:

in new ErrorHandler (result)
while (true)

result.add (system.in ());

The default methods of Environment take no param-
eters, except for exit, which takes parameters indicating
whether it has been called to kill the program and if not,
whether it should return a result and if so, where to find the
result. The constructor can be redefined in a derived class
as having parameters, but the other methods can’t have pa-
rameters redefined because they are not called explicitly.
By default, the methods do nothing, except. the default
catch (if ErrorHandler is not redefined) exits the pro-
gram. When an error is detected, an Error object is cre-
ated, and catch is called with a Error object as a parame-
ter. If the class where the error was detected has not defined
its own (non-mutable) catch method, and the environment
has a catch method, this method is called. Otherwise the
method is exited. Options for further propagating an error
in are not essential to the ideas here and are not explored
in this initial discussion of mutable environments. Varying
error handling is therefore a property of the specific class
of the Error object and the catch method either defined
in the class, or in the environment.

3.2 Definition of Environment Classes

Defining an environment as a class has potential benefits,
such as allowing an environment definition to be special-
ized, using inheritance. The approach explored here is one
of defining an environment class which extends the envi-
ronment of a method, much the way bracket methods do
in Timor. In the spirit of providing a basis for comparison
with Timor, examples used to build the ideas are similar to
the examples used to develop the ideas in Timor. However,
given the differences in the approach, the order of presen-
tation of concepts differs from the Timor description [9].

An environment needs to define the standard methods
given in 3.1, if any of these need to be modified. As an
example, consider a synchronized environment, using a
simple lock to protect access. This environment needs to
encapsulate a lock variable (identifying which lock it cor-
responds to). It needs to acquire the lock on entry to the
method in its environment, and release the lock on exit.
Since the lock can potentially be held by more then one
object, acquiring and releasing the lock are best done in
the start and exit methods. Initializing and deallocating
the lock (assuming no garbage collection, in the presence
of deallocation would disappear) would be done respec-
tively in the initial and final methods. Overall, the
class could look like this (assuming a notation in which
interfaces and implementations are separate):

class interface Synchronized

extends Environment
initial ();
start ();
exit (Action kill, bool returnsVal,

Object returnThis);
final ();

endc;
class implementation Synchronized

initial ();
lockvalue = Lock.new ();

endm;
start ()

lockvalue.acquire ();
endm;
exit (Action kill, bool returnsVal,

Object returnThis)
lockvalue.release ();
parent (kill, returnsVal, returnThis);

endm;
final ()

lockvalue.deallocate ();
endm;
data

Lock lockvalue;
endc;

Use of such a class could take various forms. In the
interests of exploring the design space, three alternatives
are proposed here: ad hoc patching of calls, defining a spe-
cific behaviour as part of a class and defining a specific be-
haviour as part of creating a new implementation of a class.
The first two approaches are explored in detail; the last is
dependent on having a language in which implementations
are separate, so it is discussed in less detail.

In all cases, the effect while a method is in progress is
as illustrated in fig. 2. While the method is executing, it
is in a composite object (fig. 2(c)), composed by merging
the method’s class (fig 2(a)) with the environment (2(b)).
In the composite class, the mutable methods in the origi-
nal class may sometimes (not always) be replaced by the
environment, and the environment may introduce its own
methods and data. However, since the environment is not
(in general) known to the mutable class when it is defined,
any new methods or data it introduces are for its internal
use.

In all examples in this paper, only instance methods
are shown as mutable, but the principle can apply to class
methods, as long as they are class methods in both the mu-
table and the environment classes. Nothing is said about
public and private methods in the examples. An important
principle is that using a class as an environment should not
expose its hidden features. However, there is no reason
that a mutable class should not define mutable methods as
private, even though they use public methods in an envi-
ronment class.

The remainder of this subsection presents detail of
patching calls and adding environments to classes.

methods

mutable methods

data

(a) mutable class

methods

data

(b) environment class

methods

data

(c) merged class

Figure 2: The effect of running a method in an environ-
ment.

Ad hoc patching of calls

To wrap a call in an environment, the notation proposed
here is to precede the call by the keyword in, followed
by the object containing the environment, and finally the
call. In the simplest case, an object of the environment
class is created directly as part of the call, and is discarded
afterwards. It need not be given a name, but appears as
creation of a new instance of an environment class. This
notation has already been seen in the example of an error

handler in 3.1.
The semantics of attaching an environment in this way

to a method call are that the environment is initialized, pa-
rameters to the method are evaluated and bound, the start
method of the environment is called, local variables are
evaluated and bound, the method body is executed, local
variables are unbound and deallocated, the exit method
of the environment is called and finally, the final method
of the environment is called. In the event of an error, the
exit call would be invoked earlier; details are presented
later.

Implementing a synchronized version of an abstract
method invocation now becomes very simple, as in this ex-
ample:

in new Synchronized ()
object.method (parameter);

This example needs further work, because we have no
way of having another call use the same lock, which is a
motivation to move on to the mechanism for saving and
reusing an environment. In a situation where only one lock
was needed, the lock variable could be a class variable in
the Synchronized class. However, for generality, it would
be preferable to allow more than one lock variable. Since
the environment object is anonymous and no reference to it
is available, a language without garbage collection would
have to deallocate it on exit from the method.

That introduces the next mechanism: initializing a
variable of an Environment class, and enclosing the de-
fault environment in this object (as opposed to the previous
example, where an anonymous object enclosed the default
environment). Let’s create an object of the Synchronized
environment class, and demonstrate the notation for run-
ning a method in that environment:

Environment locked = new Synchronized ();
in locked

object.method (parameter);

If anyone else needs to use the same lock, they need to
do a similar method call to that in this last example, except
now the first line would fall away since the environment
object already exists. If another lock is needed, creating
a new instance is done as in the first line of the example.
In a language without garbage collection, the environment
object would be explicitly deallocated, in the same way as
any other object.

Adding Environments to Classes

This kind of ad hoc patching could be useful in many cases.
However, it may sometimes be better to patch a method
once, at the place it’s defined, rather than everywhere it’s
called. For example, if a class is defined in which a specific
method, inherited from a parent class, now needs to run in
a new environment consistently, it would be useful to be
able to specify an environment in the class definition.

First, let’s look at defining an environment as part of a
class, then look at defining one as part of a specific imple-
mentation.

Assuming the existing Syncrhonized environment
class, let us define a Buffer class, which implements
bounded-buffer readers and writers. In the class interface,
we do not specify a variable to contain the lock so that
the implementation can be kept general1: it can either use
a variable or a class name, resulting in the two different
cases previously explored. The implementation in this ex-
ample introduces a variable, to allow the reader and writer
in the same buffer to share a lock unique to their buffer.
Note that we have not specified a constructor for the envi-
ronment in the class interface, yet, in the implementation,
there is a a separate definition of the constructor for the en-
vironment. We will see in the next example why this is a
useful notation.

class interface SynchBuffer extends Buffer
// constructor for object of this class
initial ();
in Synchronized Object read ();
in Synchronized write (Object newData);

endc;
class implementation SynchBuffer

initial ()
parent ();

endm;
// constructor for environment
in Synchronized lock initial ()

lock = new Synchronized ();
endm;
// final method deallocates environment
// if no garbage collection:
final ()

deallocate lock;
endm
in lock Object read ()

return parent ();
endm;
in lock write (Object newData)

parent (newData);
endm;

endc;

Note that an instance variable for the environment is
implicitly declared in the constructor for the environment.
If more than one named environment is used (for different
methods) there would be a constructor of the relevant envi-
ronment class for each new named environment. The key-
word “parent” is used to invoke the parent class method of
the same name. A derived class of SynchBuffer can rede-
fine its environment class by one derived from the original,
or leave it unchanged. It can also add a new environment
class, which is used as specified in any derived methods.

If we (for some reason which would make sense with
a different example) wanted a new lock for each call, the
notation in the implementation would change to

class implementation SynchBuffer
in new Syncronized () Object read ()

1This example illustrates the value of separating class definitions and
implementations, but this is a point worth debating further outside the
context of this paper.

return parent ();
endm;
in new Syncronized () write (Object newData)

parent (newData);
endm;

The implicitly declared instance variable for the lock
and its initialization in a constructor would no longer be
needed. As with ad hoc method patching, in this case, the
anonymous objects would be implicitly deallocated after
each call.

In the last two examples, the read and write methods
don’t define anything new: they invoke the parent method,
but in now an environment where a lock variable is defined.

Let us now consider redefining a class using inheri-
tance, and changing the environment type. That brings us
to an explanation of why the environment constructor is
separate from the ordinary constructor.

This class, if redefined using inheritance, would re-
tain the Synchronized environments. However, a derived
class could replace the initial method by one which cre-
ates a different environment type. The problem with this
approach is that calling parent to invoke the parent class
constructor would result in the creation of a lock of type
Synchronized. This is exactly the kind of problem which
dealing with cross-cutting concerns is meant to avoid. In-
stead, whenever a derived class is created, any associated
environment class may also be replaced by another (not
necessarily derived) class, as illustrated in this example:

class interface CountSynchBuffer
extends SynchBuffer

// constructor for object of this class
initial (int count);
in Semaphored Object read ();
in Semaphored write (Object newData);

endc;

class implementation SynchBuffer
initial (int count)

maxProcs = count;
parent ();

endm;
// read, write now controlled by a
// semaphore -- otherwise same
in Semaphored s initial ()

s = new Semaphored (maxProcs);
endm;
in s Object read ()

return parent ();
endm;
in s write (Object newData)

parent (newData);
endm;
data

int maxProcs;
endc;

In this example, possibly more than one concurrent
reader and writer is permitted, so a semaphore is used in-
stead of a lock. It should now be clear why initializing the

environment or environments is split off from the class’s
constructor. We cannot rely on the initialization in the
SynchBuffer class, because a semaphore needs to have an
initial value for its counter. Note also that although the en-
vironment (or environments) defines an (implicit) instance
variable, it is not part of the class in the sense that a derived
class can replace it by something complete different.

3.3 Error Handling

Error handling introduces one new mechanism: terminat-
ing a method early. An error handler may either return a
valid value (though terminating the current method and its
environment) and allow execution to continue, or terminate
the program (further options for propagation are possible
but not explored). Early termination is achieved by calling
exit in the error handler, in one of four forms:

• kill – first parameter terminate, indicating the pro-
gram should terminate; if the final parameter is non-
null, it contains information on the error

• propagate – first parameter propagate, indicating the
method should terminate and call catch in the envi-
ronment where it was called; the return value may be
set as in the next two cases

• return value – first parameter continue, second pa-
rameter true, last parameter a reference to an object
to return

• return but no return value – first parameter continue,
second parameter false, last parameter ignored; re-
turn from the method without returning a value

In the first case, the program is terminated. Normally,
a class will not define exit itself, since exit isn’t called
explicitly, and its behaviour includes a nonstandard oper-
ation (early termination). If a class does define exit, it
should always call parent as its last step.

An error is signalled by calling catch with a parame-
ter which is conventionally of a class derived from Error
(though there is no reason in principle not to use another
class, as long as the environment could handle it). If the
environment has no catch method defined for the class of
the parameter, the class is checked for a suitable catch
method. If none is found, the program is terminated. An
error handler can elect either to complete the method which
invoked it by returning, having the effect of exiting from
the method, or terminating the program. In the former
case, the exit method of the environment (if defined, oth-
erwise, of the class) is called.

As currently conceived, at most one error and one or-
dinary environment may be used. Nested environments are
an idea worth considering, e.g., to allow multiple error han-
dlers to be installed, but introduce more complexity than is
useful for a an initial exploration of an idea.

3.4 Summary

The examples presented here have not explored all possible
variations. However, they do give a general idea of the pos-
sibilities. Adding another dimension of abstraction across
the inheritance hierarchy has been illustrated in a number
of forms, with flexibility to implement environments in a
number of ways. Cross-cutting concerns such as synchro-
nization can be added orthogonally to the class hierarchy
and can either be specialized in tandem with or indepen-
dently of the class hierarchy.

4 Preliminary Evaluation

This section provides a preliminary evaluation of the idea
of mutable environments, based on the examples previ-
ously explored. Ad hoc extension, class-based extension
and error handling are relatively simple mechanisms in
terms of the limited extra notation required. A few new
keywords are needed: mutable and in. A notation is
needed to separate out environment constructors in a class,
and a mechanism for early termination of a method is re-
quired for error handling.

This level of simplicity does not necessarily imply
simplicity in use, or simplicity of implementation.

Simplicity in use is difficult to evaluate without an im-
plementation capable of developing a wide range of exam-
ples. The examples provided here are not complex, but do
not in themselves illustrate generality or applicability, as
they represent a limited range of cases.

Although multiple environments are not a feature of
the initial design, some consideration is given to how they
could be added.

Since evaluation of applicability and usability of the
approach requires an implementation, the remainder of
this section examines general implementation issues, then
issues for class extension and ad hoc extension. In all
cases, implementation issues are explored by consider-
ing the kind of simple extensions of an existing language
which could be achieved with a preprocessor, as a minimal
standard for evaluating implementability. Finally, issues
identified in this section are summarized.

4.1 General implementation issues

In languages with a top-level class (commonly called
Object), a new class, EnvObject, could be derived from
Object. All classes not explicitly derived from a class
would be modified to be derived from EnvObject, and any
which were explicitly derived from Object modified to be
derived from the new class. In languages without a top-
level class, a new top-level class could be defined, and all
classes not derived from another class be modified to be
derived from this class. This new class would define de-
faults for standard mutable methods.

It would also be necessary to define a default envi-
ronment class, from which others would be derived, and
a default error handler class, as well as a default for class

Error.
All methods would be redefined to include an addi-

tional pair of parameters representing the optional environ-
ment and error handler (if multiple environments were per-
mitted, a list of environments could be used). The methods
would be patched to check if the environments existed (not
null). Calls to the environment start and exit would
have to be patched in, to be executed if the test for the pare-
maters succeeded. Calls without any explicit environment
would have null added as the additional parameters.

4.2 Ad hoc extension

Ad hoc extension can be implemented by using the extra
environment parameters directly. A call such as

in new Synchronized ()
object.method (parameter);

which has an environment but not an error handler en-
vironment would be implemented as

object.method (parameter,
new Synchronized (), null);

An error handler environment would replace the null
final parameter. If multiple environments were imple-
mented, adding each to a list would replace the addition
of a fixed number of extra parameters.

4.3 Class extension

Patching classes requires changes in method implementa-
tions, as well as the changes already outlined for the inter-
faces. Each method call is one similar to that used in ad
hoc extension, except the environment would be patched
in from that defined in the class. For example, to imple-
ment the read method in the SynchBuffer implementa-
tion using an object called lock – illustrating changes al-
ways made and changes specific this example:

Object read (Environment env, ErrorHandler err)
env = lock; // for class-defined environment
if (env != null) // always patch in

env.start (); // always patch in
Object result = parent (); // always change
// always patch in next 2 lines
if (env != null)

env.exit (continue, true, result);
// exit call actually patched here
// to avoid complications of how to
// return a value 1 layer
// of call away
return result; // always add

endm;

A practical issue in constructing a call is that the en-
vironment’s instance variable is defined in the class and
hence is not visible in the rest of the program. To work
around this problem, each class would have to define an
additional version of each method without the extra param-
eters, which called the rewritten version using the class-
defined environment.

Note that this example says nothing about error han-
dling. Error handling results in a specific call to a version
of catch with a suitable parameter. While, logically, the fi-
nal return is done in exit, the same effect can be achieved
by placing a return after every call of exit.

Handling errors is somewhat more complex, and some
additional detail needs to be worked through – but some as-
pects are dependent on the language on top of which these
changes are layered. For example, in a language with ex-
ceptions, the error-handling mechanism could be patched
in to exception handlers. Since the error handler environ-
ment is passed to all methods, they could follow the same
logic as this example – check if the handler was non-null,
and if so, use it. If not, call catch on the current class.

The most complicated issues relate to returning prema-
turely. Current languages do not in general have a mech-
anism allowing a called method to terminate its caller, ex-
cept via exceptions. Forcing a return value to be returned
from one level of call deeper than the method where the
type of return is defined is also not a feature of common
languages.

4.4 Evaluation Summary

Some of the simpler cases can be handled with relatively
minor transformations to a standard object-oriented lan-
guage. A preprocessor could be used to prototype these
changes without designing a whole new language. Full
implementation of the ideas requires some refinement of
the design, to simplify details. However, the relatively me-
chanical changes identified so far make the possibility of
implementation realistic.

Nothing considered in this section requires features
unusual in a typical object-oriented language. Approaches
to adding error handling would be more diverse: languages
with support for exception handling, for example, would
provide a different basis for implementing error handling
to those without. Without exception handling, it would be
necessary to patch in the kind of logic programmers dread
creating manually to check for errors after every method
returned. However, this patching should still be relatively
mechanical.

Adding these features onto an existing language is
a simple test-of-concept approach to evaluating imple-
mentability. Designing a whole new language is not es-
sential to developing the idea further – an extension of ex-
isting languages would be less work. However, should the
ideas prove viable after more detailed investigation, it may
be worth investigating how to implement a language taking
these ideas forward without unnecessary features of some
other underlying language.

5 Conclusions

The idea of mutable environments has promise, but needs
further exploration. The variations explored in this paper
meet the major objectives of allowing cross-cutting con-
cerns to be addressed orthogonally to the class hierarchy,

while allowing specialization of the resulting abstractions.
These specializations can either follow the class hierarchy
or their own, independent hierarchy.

The ideas developed here are comparable to aspect-
oriented programming and Timor bracket methods, but
provide an alternative approach. Whether this alternative
approach will be simpler in practice requires further ex-
ploration. However, given the interest in aspect-oriented
programming and the fact that the design space is not fully
explored, it is worth examining alternative ideas with sim-
ilar objectives.

While many similar ideas exist, the approach here has
been to simplify mechanisms down as far as possible. This
simplification has two goals: simplifying implementation,
and simplifying usage. Both of these goals require further
work to evaluate fully. While some aspects of implemen-
tation, as outlined here, appear straightforward (if simple
alterations to a typical existing language is a guide), some
details, including error handling, require further analysis.

Simplicity in use is difficult to evaluate without a
complete language. Consequently, it will be important in
follow-up work to fill gaps in the design outlined here, and
to evaluate the concepts across a wide range of examples.

A test of the value of an idea is whether it leads in di-
rections other than the original motivating examples. Fu-
ture work on mutable environments will evaluate possible
unexpected consequences. For example, an aspect of mu-
table environments which has not been explored is the fact
that a class used as an environment need not be designed
as such. This creates the possibility to include any class
as a building block in another class design, with all the
flexibility of the approach defined here. For example, a
class defining dates could be used as an environment class,
rather than embedding it in the class as an instance method.
The value in this approach is that the abstraction which
this date class defines can be limited by only defining a
subset of its methods as mutable methods in the mutable
class. A different class using the same methods, but hav-
ing other functionality (or efficiencies), could replace the
original date class. By limiting exposure to a class’s public
interface, mutable environments have the potential to make
designs more flexible, and less dependent on inessential
details of components.

Overall, mutable environments appear to have promise
as an extension of the abstraction mechanisms offered by
object-oriented programming.

References

[1] Ken Auer. Smalltalk training: As innovative as the
environment. Comm. ACM, 38(10):115–117, Octo-
ber 1995.

[2] David F. Bacon, Ravi Konuru, Chet Murthy, and
Mauricio Serrano. Thin locks: featherweight syn-
chronization for java. In Proc. ACM SIGPLAN 1998
conference on Programming language design and

implementation, pages 258–268, Montreal, Quebec,
Canada, 1998. ACM Press.

[3] William Berg, Marshall Cline, and Mike Girou.
Lessons learned from the OS/400 OO project. Comm.
ACM, 38(10):54–64, October 1995.

[4] Christophe Dony. Exception handling and object-
oriented programming: towards a synthesis. In
Proceedings of the European conference on object-
oriented programming on Object-oriented program-
ming systems, languages, and applications, pages
322–330, Ottawa, Canada, 1990. ACM Press.

[5] Mohamed E Fayad and Wei-Tek Tsai. Object-
oriented experiences. Comm. ACM, 38(10):51–53,
October 1995.

[6] Frakes and Fox. Sixteen questions about software
reuse. Comm. ACM, 38(6):75–87,112, June 1995.

[7] Kris Gybels and Johan Brichau. Arranging language
features for more robust pattern-based crosscuts. In
Proc. 2nd Int. Conf. on Aspect-oriented software de-
velopment, pages 60–69. ACM Press, 2003.

[8] J. L. Keedy, K. Espenlaub, G. Menger, and C. Hein-
lein. Qualifying types with bracket methods in Timor.
Journal of Object Technology, January/February
2004. to appear.

[9] J. L. Keedy, G. Menger, C. Heinlein, and
F. Henskens. Qualifying types illustrated by syn-
chronisation examples. In M. Aksit, M. Mezini,
and R. Unland, editors, Objects, Components, Ar-
chitectures, Services and Applications for a Net-
worked World, International Conference NetObject-
Days, NODe 2002, volume LNCS 2591, pages 330–
344, Erfurt, Germany, 2003. Springer.

[10] Gregor Kiczales, John Lamping, Anurag Menhd-
hekar, Chris Maeda, Cristina Lopes, Jean-Marc Lo-
ingtier, and John Irwin. Aspect-oriented program-
ming. In Proc. European Conference on Object-
Oriented Programming, pages 220–242, Jyväskylä,
Finland, 1997.

[11] M. M. Lehman and J. F. Ramil. Evolution in soft-
ware and related areas. In Proc. 4th Int. workshop on
Principles of software evolution, pages 1–16, Vienna,
Austria, 2002. ACM Press.

[12] Martin Lippert and Cristina Videira Lopes. A study
on exception detecton and handling using aspect-
oriented programming. In Proceedings of the 22nd
international conference on Software engineering,
pages 418–427, Limerick, Ireland, 2000. ACM Press.

[13] Philip Machanick. The abstraction-first approach to
data abstraction and algorithms. Computers & Edu-
cation, 31(2):135–150, September 1998.

[14] Linda M. Seiter, Jens Palsberg, and Karl J. Lieber-
herr. Evolution of object behavior using context re-
lations. In Proc. 4th ACM SIGSOFT Symp. on the
Foundations of Software Engineering, pages 46–57,
1996.

[15] K. Watsen and M. Zyda. Bamboo – a portable system
for dynamically extensible, real-time, networked, vir-
tual environments. In Proc. IEEE Virtual Reality
Annual International Symposium (VRAIS’98), pages
252–260, Atlanta, Georgia, March 1998.

