
1

Reconfigurable Memory for Reconfigurable Computing

Philip Machanick, Peter Sutton and Adam Postula
School of ITEE, The University of Queensland,

St Lucia Qld 4072 Australia
{philip, p.sutton, adam}@itee.uq.edu.au

Abstract
Significant problems have inhibited the wide adoption of
reconfigurable computing, including the difficulty of pro-
gramming them, and the difficulty of interfacing proces-
sor cores to external devices and memory. This paper
proposes a strategy for dealing with the external interface
problem, starting from a reconfigurable memory system
design. The memory system design is based on I/O prin-
ciples and could therefore become the basis for an I/O
interconnect.

Keywords: reconfigurable computing, FPGAs, memory
hierarchy, input-output

1. Introduction
Reconfigurable computers based on FPGAs have

shown great promise in accelerating many applications
beyond supercomputer speeds at a fraction of the cost. By
exploiting parallelism, reconfigurable computers (also
called configurable computers or custom computers) have
demonstrated superior performance for applications in the
areas of long integer arithmetic, cryptography, error cor-
rection, image analysis, stereo vision, video compression,
sound synthesis, neural networks, high-energy physics,
thermodynamics, biology and astronomy [5][16]. In some
cases the cost is 100 times less ($ per operation per sec-
ond) than using a supercomputer [16].

Reconfigurable computers, however, have not yet met
with commercial success. The main reason for this is ap-
plication specificity. Most reconfigurable computers have
an I/O and memory architecture specialised for acceler-
ating a particular algorithm. The architecture is usually
sub-optimal for other similar highly-parallelisable tasks
and down-right inefficient for significantly different al-
gorithms.

Reconfigurable computing remains an area of great
potential. The performance per cost advantage of recon-
figurable computers for many algorithms is unlikely to be
diminished. Even though microprocessor performance is
advancing rapidly over time, the same can be said for
FPGA performance. Both are implemented with leading-
edge fabrication processes and exhibit similar “Moore’s
law” trends in capacity and clock-speed.

Memory, however, is another issue. Since the mid-
1980s, while processor speed has been improving by 50-
100% per year, DRAM latency has only been improving
by 7% per year [9]. As FPGA capabilities improve, recon-
figurable computer performance will increasingly be lim-
ited by memory speed – a problem which has already
been a concern for some years with conventional com-
puters [11][20].

If a reconfigurable computer is to be competitive in
performance with a supercomputer, it needs to have a
memory subsystem capable of meeting similar require-
ments to that of a supercomputer. Given that the processor
can be reconfigured, the memory system also needs to be
reconfigurable to support different algorithm styles.

The design proposed here aims to make reconfigurable
computing architectures more general, by providing a
flexible, reconfigurable memory. While a reconfigurable
computer with the proposed memory system would still
not be general-purpose, it should be able to compute a
wide-variety of highly-parallelisable algorithms effi-
ciently.

The remainder of this paper is structured as follows.
Section 2 motivates the approach. Section 3 outlines de-
sign principles for a reconfigurable memory, while Sec-
tion 4 provides some detail of how those principles could
be put in practice. Section 5 concludes the paper with a
summary of the key ideas, and a proposal for future work.

2

2. Background
This section provides some background of the general

problem of DRAM performance and high-performance
solutions which have historically been adopted, as well as
some background of the reconfigurable computer area.

2.1 DRAM Issues
In general terms, the latency trend for DRAM is lead-

ing to a situation where performance improvement re-
quires close attention to memory organization.

Consequently, performance differentiation between
classes of computer is increasingly becoming a property
of DRAM and peripheral organization, rather than of
CPU design. If this trend persists, design features of high-
end supercomputers of the past, which had aggressive
DRAM and peripheral subsystems, may become more
mainstream.

This section examines problems with DRAM in a bit
more detail, and outlines some solutions, concluding with
some which, in the past, have been the province of high-
end supercomputers.

2.1.1 Problems
There are two major performance bottlenecks in

DRAM use: latency and bandwidth.
The latency problems arise from the access cycle of

DRAM. A relatively slow row access strobe (RAS) ad-
dresses a row in a 2-dimensional DRAM array. Once a
row is selected, a relatively fast column access strobe
(CAS) cycle extracts a specific bit from the row. In addi-
tion, DRAM also needs periodic refresh cycles. DRAM,
then, is relatively slow if a completely random access is
required, because the entire row and column addressing
cycle is required (potentially compounded by waiting for
a refresh cycle).

The bandwidth problem arises out of a combination of
factors. DRAM, for cost reasons, is typically packaged
with a narrow word-width, with only a few bits available
on each cycle (historically, only 1, though wider DRAMs
are now common). Further, since DRAM is meant to be
high-capacity storage of variable size (allowing different
cost-benefit trade-offs), it must necessarily be imple-
mented off the processor chip, incurring off-chip delays
(another latency cost but also a limit on bandwidth).
Finally, conflicting demands on the DRAM system cause
design problems in trading latency with bandwidth. If a
high-performance peripheral (e.g., a fast disk subsystem)
performs best when streaming a large amount of data di-
rectly to or from DRAM, other parts of the system (e.g.,
the processor) could suffer a latency problem by being
forced to wait a long time for this large streaming event.

2.1.2 Solutions
The most obvious solution to the latency problem is to

access more than one column after the RAS cycle, to
amortize the investment in setting up a row for access.
Many variations on this idea have been designed. The
most recent are variations on synchronous DRAM
(SDRAM), in which the DRAM cycle time is syn-
chronized to the memory bus for improved performance
but, more significantly, a DRAM access combines multi-
ple column accesses with one row access [7].

Another variation is Rambus, which, like SDRAM, can
set up multiple column accesses after an initial row ac-
cess. In common with recent variations on SDRAM,
Rambus transfers data on both the rising and the falling
clock edge. Unlike conventional SDRAM, Rambus uses a
relatively narrow bus clocked at a high speed to achieve
an equivalent bandwidth. Rambus includes various other
enhancements, including an internal organization with the
effect of multiple banks of DRAM [6].

Rambus has some drawbacks. Adding complexity to
each chip exacts a price premium, which has made it un-
popular in the mass market. Further, its organization in-
creases latency as more DRAM chips are added because
the bus is in effect lengthened.

HyperTransport has some features in common with
Rambus. It is also based on a relatively narrow bus
clocked at a high speed, and has design features aimed at
reducing complexity of board-level design [1]. However,
HyperTransport is not specific to a given DRAM design –
it is a general-purpose interconnect –!and therefore offers
opportunities for more general design.

Multiple memory banks are a common design feature
in traditional high-end supercomputers, and the specific
layout of memory has been shown to be a significant issue
in achieving high performance [14]. A multibanked
DRAM has memory modules organized to be separately
addressable, so the latency of a specific RAS-CAS cycle
can be overlapped with a previous transfer. Provided there
are different sources of memory references, a multibanked
memory system can both hide latency and achieve high
bandwidth. A further refinement is to provide an inter-
connection network designed to minimize conflicts be-
tween requirements of multiple processors, as opposed to
a simple single bus between memory and the processing
module [15].

In systems with multiple memory banks, it is also im-
portant for applications to distribute data in memory in
such a way that contention is minimised when multiple
processors access multiple memory banks. Such a data
placement problem will also apply to the reconfigurable
memory system proposed here. However, it becomes
simpler when the memory subsystem can be reconfigured
to suit the algorithm. Some theoretical foundations for
optimisation of data placement and memory interconnect
for interleaved memory systems are available in [3].

3

2.2 Reconfigurable Computing Issues
Reconfigurable computing is a promising area, given

that exploitation of parallelism on an FPGA leads to the
potential of high speedups over a standard single-
processor algorithm. While there is a growing trend to-
wards supporting increasingly aggressive instruction-level
parallelism on conventional processors, an FPGA offers
the option of designing custom hardware to support appli-
cation-specific parallelism.

However, there are obstacles to the wide deployment
of reconfigurable computing, including the difficulty of
programming them, and the difficulty of interfacing them
to the outside world.

The remainder of this section provides some back-
ground on reconfigurable computing, starting with more
details of the problems identified here, followed by some
solutions, leading to the problem we plan to address.

2.2.1 Reconfigurable Computing Problems
There are several obstacles to wider deployment of re-

configurable computing, including the difficulty of devel-
oping specific solutions because of software limitations,
and the difficulty of designing custom interconnects for
multiprocessor configurations, and for memory and I/O.
These problems result in difficult translation from an al-
gorithm to an implementation, and disappointing overall
system performance (sometimes no better than a conven-
tional computer), despite the algorithm core on an FPGA
being thousands of times faster than a software imple-
mentation [2].

Reconfigurable computing presents particular challen-
ges in that different algorithms implemented in program-
mable logic may have different memory access require-
ments. For example, an implementation of an FPGA-
based special-purpose computer to simulate sintering (an
example of using Monte Carlo simulations of physical
systems) has used a multibanked memory [13].

In general, a memory bank organization which suits
one class of algorithm may not suit another. The ideal
case would be to reimplement the organization from
scratch for each algorithm with a significantly different
pattern of memory usage. A reconfigurable memory sub-
system provides this opportunity without having to build
a new system.

Reconfigurable computers can also be difficult to pro-
gram, because a great deal more hardware knowledge is
required to implement a highly optimised algorithm on a
reconfigurable computer than is the case for a conven-
tional computer.

2.2.2 Existing Reconfigurable Computing Solutions
Existing designs have either had suboptimal memory

subsystems, or have been designed for a specific problem,

which was of sufficient interest to justify the expense of a
custom memory system design.

The OneChip-98 design, for example, incorporates a
fixed memory interface into a reconfigurable logic design,
which reduces the memory bottleneck experienced in
other reconfigurable computer designs [10], but does not
address the need for a reconfigurable memory design. It
has been demonstrated that flexibility can be obtained at
the cost of performance, on an on-chip memory system
[19], but this work has not been extended to off-chip
memories.

One answer to the objection that reconfigurable com-
puters are hard to program is that the time taken is
roughly equivalent to that for highly tuning a similar al-
gorithm on a supercomputer [16]. Work on operating
systems for reconfigurable-computing [17][18] will also
improve programmability in the future (probably at the
cost of performance).

2.2.3 Problem Addressed in this Work
Programmability of reconfigurable computers will not

be specifically addressed in this work – only the intercon-
nect problem is considered, with specific focus on re-
quirements for memory. The intent, however, is that our
design should be sufficiently general to support future
work on I/O.

3. Design Principles
Our starting point is the fact that DRAM access is in-

creasingly becoming similar to I/O in that the time for
setting up a DRAM operation is a significant bottleneck –
even if subsequent transfers can happen at high speed. A
significant aspect of the design is a reconfigurable inter-
connect, which will support a range of different topolo-
gies for connecting RAM and processor modules.

The approach proposed here aims to make recon-
figurable computing architectures more generally applic-
able. It is our hypothesis that a reconfigurable computer
with a reconfigurable memory interconnect, designed on
principles of a high-end I/O subsystem, will be applicable
to a wider variety of highly-parallelisable algorithms than
any existing custom design, without significant perform-
ance degradation, as compared with a custom design for a
specific algorithm. A consequence of proving this hy-
pothesis in our future work will be to provide a basis for a
design not only of a reconfigurable memory system, but
also an I/O system, though evaluation of the design as an
I/O system is reserved for follow-on projects.

The remainder of this section examines some ideas
which form the basis for our design principles, followed
by the strategy we are adopted to put the principles into
practice. The section ends with a summary of the key
ideas.

4

3.1 Basis for Design
Trends in available circuitry on a single FPGA device

suggest that requirements for fast random-access memory
will increasingly be met on-chip. Accordingly, a memory
hierarchy in which a large but not necessarily low latency
memory can complement fast on-chip memory is looking
increasingly useful. Given the growing amount of logic
on a single device, the emphasis in external (off-chip)
interconnect design is increasingly switching from high-
speed interconnection at the logic level to interfacing to
large memories or the outside world.

As compared with a conventional computer system, we
envisage a similar kind of memory hierarchy, with fastest
components near the processor and larger, slower compo-
nents further from the processor. The slower components
will take longer to set up a memory operation (higher
latency), but should be able to transfer data quickly (high
bandwidth), to take maximum advantage of device char-
acteristics (DRAM takes time to set up but can transfer
quickly once it has started). The difference from com-
modity computers is that, as with supercomputers, a range
of different styles of memory access needs to be sup-
ported.

The flexible interconnect has to allow for variations in
how demand for bandwidth arises from the style of com-
putation. In some cases, memory may be required in a
single stream or burst at a given time, at a given transfer
rate. In other cases, given the highly parallel nature of
programmable logic devices, multiple streams may be
required.

3.2 Strategy
The approach advocated here is to borrow architectural

ideas from high-end I/O designs, such as the IBM 3990
storage subsystem. The 3990 subsystem was designed to
minimize latency, while supporting a wide variety and
quantity of devices, with a high aggregate bandwidth.
This design has survived across decades of improvement
in device speed and interconnect technology [8]. One les-
son which can be learnt from experience with the 3990 is
that providing a variety of alternative paths and devices
will in many cases beat having a single higher-speed de-
vice with a single higher-speed path, if contention is a
factor [12].

It is an interesting question how similar memory and
I/O access can be in reconfigurable computing. Our view
is that the same or very similar interconnect fabric can be
used for both. The utility of this approach is that similar
designs and components can be reused for different parts
of the system, potentially saving both cost and design
time. It is also an important goal to use off-the-shelf tech-
nology as far as possible, if this can be done without sig-
nificantly compromising performance, thereby maintain-
ing the cost advantage of reconfigurable computing.

The memory interconnect design we advocate should
accommodate a range of alternative interconnect strat-
egies for DRAM, allowing the reorganization of the to-
pology when the reconfigurable computer is repro-
grammed. We plan to evaluate the approach by compar-
ing its performance against a simulation of a hard-wired
multi-module memory scheme, with a topology idealised
to each computation.

3.3 Summary
Our approach is one of seeing large-scale memory re-

quirements increasingly taking the form of I/O in the
sense that bandwidth goals are likely to be easier to
achieve than bandwidth goals. Nonetheless, it is useful to
base our key ideas on an I/O architecture which was de-
signed to minimize latency.

4. Application of the Principles
In this section, the ideas previously described are

fleshed out. The general principle of organizing a recon-
figurable memory system seems obviously useful, but the
details of how to design it require some work. For exam-
ple, issues which require clarification include the kind of
reconfiguration supported, the extent to which trading
latency for bandwidth is reasonable and whether recon-
figuration should be static (changed only as the FPGA
component is reprogrammed) or dynamic (changed during
a computation). With a statically reconfigurable intercon-
nect, we envisage that there would be a limited number of
alternative routes which could be selected dynamically,
whereas a dynamically reconfigurable interconnect would
be able to set up routes on the fly.

Once the design principles are clarified, it is useful to
consider what technologies could fit the goal of using off-
the-shelf technologies and designs as far as possible.
Finally, some examples are useful to consider as a basis
for making the principles concrete.

The remainder of this section examines these issues in
turn.

4.1 Kind of Reconfiguration
Given the flexibility inherent in reconfigurable com-

puting, the question arises of a reconfigurable memory
system: “How reconfigurable?”

Some algorithms, for example, may require efficient
bit-level addressing. Others may work with vectors of
128-bit floating point, yet others with unlimited-precision
integer arithmetic.

The basis for our design is addressing the need for a
large memory, and we are assuming the need for a fast
memory will be addressed by memory either on the
FPGA or closer to the FPGA than the memory we are
designing. Accordingly, we argue that a model like I/O is

5

more appropriate than a model supporting arbitrary ad-
dressing.

Our view, therefore, is that the memory architecture
we are designing should provide for a variety of alterna-
tive access patterns, much in the way that a high-end
database server would have to support a wide range of
different approaches to accessing its disk subsystem.
However, our view is that the addressing mechanism
should be geared towards large-scale access (streaming,
or at least fetching a non-trivial word size in parallel from
more than one memory module), because the latency of
going off-chip, compounded with the relatively high
latency of the DRAM access cycle, favours viewing
DRAM in this way.

4.2 Trading Latency for Bandwidth
Given then that we see bandwidth goals as more easily

achievable than latency goals, does that mean we advo-
cate the pursuit of latency over bandwidth in the design?
No. The approach we advocate, again inspired by the
IBM 3990 disk subsystem, is to minimize latency wher-
ever we can by the structure of the design. Latency inher-
ent in the devices cannot be wished away, but latency
caused by contention for shared resources can be designed
away.

The approach we advocate is to design a network al-
lowing alternative paths for competing requests which do
not require the same resources. As opposed to a shared
bus, this approach should minimize delays caused by
contending for the interconnect.

Clearly, we cannot hope to achieve the latency which
would result from a fast SRAM integrated into the FPGA,
or tightly coupled to the FPGA (e.g., in a multi-chip mod-
ule). However, the kind of design we propose would be
more general than such a design, and would save redesign
time for each new configuration of a reconfigurable com-
puter.

Given that we would like to pursue low latency where
possible, our design should include the option to route
directly between processor or memory modules.

4.3 Static versus Dynamic Reconfiguration
Since we are talking of a network, the question arises

as to whether routing is static or dynamic, in the sense of

whether it is set up at programming time, or can change as
a program runs.

Purely in terms of design principles, it is clear that dy-
namic routing should be the goal, since memory access
patterns cannot always be the same across a run of all
applications of interest.

Our goal, therefore, is to design a network with high-
speed switches which would make it viable to do dynamic
routing. However, in the short term, we plan on experi-
menting with statically routed networks. “Static” in this
sense means that there will be a limited set of routes
which can be selected at run time, not that there will be a
single route set at run time.

4.4 Implementation Options
One of the big selling points of reconfigurable com-

puting is its potential for supercomputer-like performance
at modest cost, so designing a reconfigurable memory
system based on low-cost off-the-shelf components is an
important goal. The emerging high speed solutions for the
interconnect fabric such as Arapahoe, Rapid I/O and Hy-
perTransport differ widely not only in the technical speci-
fications but also in their support by commercially avail-
able components. The HyperTransport point-to-point
interconnect design [1], supporting bandwidths of up to
12.8 Gbytes per second, has been widely endorsed by
industry. HyperTransport includes switching, tunnelling
and emulation of older standards such as PCI. It has the
advantage of having been adopted for mass-market PC
designs from AMD, as well as by at least two different
FPGA suppliers (Xilinx and Altera).

Such a reconfigurable memory system should include
capabilities of organizing memory into banks, and routing
conflicting requests on non-conflicting paths through a
network. A simple network-like topology is illustrated in
Figure 1. In this design, each processing module would
have a fast local memory, and would access a larger
DRAM comprised of independent modules as a fast I/O
device. The connection between processing modules and
their local memory could be a common standard bus like
that used for double-data rate (DDR) DRAM or SDRAM.
On the FPGA chip, there would be faster local memory,
forming the kind of hierarchy usual in conventional CPU-
based designs.

6

HyperTransport is a potential implementation frame-
work for the planned reconfigurable memory architecture,
because it has the required flexibility in design, and is
aimed at relatively low-cost implementation, with rela-
tively low board-level design cost.

4.5 Putting it all Together: Examples
Figure 1 suggests a general topology without suggest-

ing how it may be used. An interconnect with fast
switches could support dynamic reconfiguration. How-
ever, here we will only consider static reconfiguration.
We will use the layout of Figure 1 to suggest alternative
interconnect strategies.

Routes are given as a set of <Xny>, where X (capital
letter) represents the memory module, n (number) the
switch and y (lowercase letter) the processor. A proces-
sor-to-processor route would be given as y1ny2. We as-
sume that any route is bi-directional (i.e., there is no dif-
ference between <Xny> and <ynX>).

If the switch required for a new route is busy, the re-
quest is queued at that switch. However, any switch
which is not busy can be changed without waiting for
queued requests at other switches to complete, provided
that the new route does not conflict with and existing in-
complete activity.

We illustrate two scenarios to demonstrate the issues
we need to address.

4.5.1 Fixed Access Pattern
In our first example, the algorithm requires mainly

nearest-neighbour interactions, with occasional exchanges
of data. In this scenario, a viable strategy would be to split
the workload between the processors, and to split the

memory accordingly. A simple route such as {<A1a>,
<B2b>, <C3c>} would suffice for the main computation.
However, information exchanges between processors
would also be required. These could be routed through the
memory or through the switches. Clearly, given the
latency introduced by memory, routing through the
switches would be the better option.

To allow routes for all combinations, the interproces-
sor routes could look like this:

1. {<a1b>,<b2c>,<c3a>}

2. {<a1c>,<b2a>,<c3b>}

These routes allow a reasonable balance between a small
number of dynamic choices and limited options for con-
tention (e.g., processor a and b can communicate using
interprocessor route 1, while processor c can be connected
to its memory module 3 without contention).

Examples of applications of this kind include wind
tunnel simulations [4] and sintering [13].

4.5.2 Varied Access Pattern
In our second example, we assume that it is not pos-

sible to partition memory between processors as cleanly
as in the first example.

For such a scenario, we would like to have a range of
different routes between processors and memory. For
example, consider the following routes:

1. {<A1a>,<B1b>,<C3c>}

2. {<A1b>,<B2c>,<C3a>}

3. {<A1c>,<B2a>,<C3b>}

By switching between these three alternatives, it becomes
possible for any memory module to be connected to any
processor module. However, the route alternatives limit
the combinations possible at one time. For example, if
processor a were connected to memory module B (using
route 3), the routes would have to be changed if processor
b needed to be connected to memory module A (which
requires route 2).

4.5.3 Summary
The examples illustrate that a limited number of routes

could cover a variety of cases, at least with a small-scale
design. Our approach of supporting a limited number of
statically designed routes selectable at run time will be
sufficient for our initial prototype studies.

We will work through more examples before finalizing
design details such as the number of routes available to
set up, and how runtime selection will work.

DRAM
modulesfast switchesprocessing

modules
fast

memory

a

b

c

A

B

C

1

2

3

Figure 1. A possible combination of processing
and memory modules. The interconnect should pro-
vide more than one option for routing from a DRAM
module to a processing module. The illustrated design
shows switches, which could be used to reconfigure
the topology. Processing modules will have a fast
local memory, which may or may not be on-chip.

7

5. Conclusions
The design principles we have outlined here provide a

basis for designing a reconfigurable memory system for
reconfigurable computers.

We believe that such a memory system will provide an
important addition to the toolkit of reconfigurable com-
puter designers. We aim that our design should prove to
be sufficiently flexible, perform well enough to justify its
use over a more specialized design and be low enough in
cost to be of wide applicability.

By basing our design principles on key ideas from a
successful I/O subsystem, we are of the view that we will
be able to meet the key design goals.

To take our ideas forward, we plan to implement a
prototype system with up to 4 FPGAs and a simple, stati-
cally reconfigurable interconnect. Based on this work,
which will include simulation studies to predict future
outcomes, we plan on extending the evaluation of the
design to a larger project.

To evaluate the design, we aim to implement at least
two applications of sufficiently different memory re-
quirements to demonstrate generality. Such generality
will provide clear advantages for other implementers of
reconfigurable computing.

References
[1] AMD (2002). HyperTransport Technology: Simplifying

System Design Available from
http://www.hypertransport.org/docs/26635A_HT_System_
Design.pdf.

[2] Bergmann, N. W. and Dawood (2001), A. S. Adaptive
interfacing with reconfigurable computers. In Proc. 6th
Australasian Conf. on Computer systems architecture,
pages 11–18, Queensland, Australia. IEEE Computer Soci-
ety Press.

[3] Chen, S. and Postula (2000), A. Synthesis of Custom
Interleaved Memory Systems. IEEE Transactions on VLSI
Systems, 8(1): 74-83.

[4] Cheriton, D.R., Goosen, H.A., Holbrook, H. and Machan-
ick, P. (1993) Restructuring a Parallel Simulation to Im-
prove Cache Behavior in a Shared-Memory Multiproces-
sor: The Value of Distributed Synchronization, Proc. 7th
Workshop on Parallel and Distributed Simulation, May
1993, pages 159–162, San Diego, CA.

[5] Compton, K. and Hauck, S (2002). Reconfigurable com-
puting: a survey of systems and software. ACM Computing
Surveys, 34(2): 171–210.

[6] Crisp, R. (1997) Direct Rambus technology: The new main
memory standard. IEEE Micro, 17(6): 18–28.

[7] Cuppu, V., Jacob, B., Davis, B., and Mudge, T. (1999)
Performance comparison of contemporary DRAM archi-

tectures. In Proc. 26th Annual Int. Symp. on Computer Ar-
chitecture, pages 222–233, Atlanta, Georgia.

[8] Grossman, C.!P. (1992) Role of the DASD storage control
in an Enterprise Systems Connection environment, IBM
Systems Journal, 31(1): 123–146. Available from
http://www.research.ibm.com/journal/sj/311/ibmsj3101M.p
df.

[9] Hennessy, J. and Patterson, D. (2002) Computer Architec-
ture: A Quantitative Approach. Morgan Kauffmann, San
Francisco, CA, 3rd edition.

[10] Jacob, J. A. and Chow, P. (1999) Memory interfacing and
instruction specification for reconfigurable processors. In
Proc. 1999 ACM/SIGDA 7th Int. Symp. on Field Pro-
grammable Gate Arrays, pages 145–154, Monterey, Cali-
fornia, United States. ACM Press.

[11] Johnson, E. (1995) Graffiti on the memory wall. Computer
Architecture News, 23(4): 7–8.

[12] Ng, S., Lang, D. and Selinger, R. (1988) Trade-offs be-
tween devices and paths in achieving disk interleaving,
Proc. 15th Annual Int.Symp.on Computer Architecture,
pages 196–201, Honolulu, Hawaii.

[13] Postula, A., Abramson, D., and Logothetis, P. (1996) The
design of a specialised processor for the simulation of sin-
tering. In Proc. 22nd Euromicro Conf., Prague, Czech Re-
public.

[14] Seznec, A. and Lenfant, J. (1993) Odd memory systems
may be quite interesting. In Proc. 20th Annual Int. Symp.
on Computer Architecture, pages 341–350, San Diego,
California, United States.

[15] Shing, H. and Ni, L. M. (1991) A conflict-free memory
design for multiprocessors. In Proc. 1991 ACM/IEEE Conf.
on Supercomputing, pages 46–55, Albuquerque, New
Mexico, United States.

[16] Vuillemin, J.E., Bertin, P., Roncin, D., Shand, M., Touati,
H., and Boucard, P. (1996) Programmable Active Mem-
ories: Reconfigurable Systems Come of Age. IEEE Trans-
actions on VLSI Systems, 4(1): 56-69.

[17] Wigley, G. and Kearney, D. (2001) The first real operating
system for reconfigurable computers. In Proc. 6th Austral-
asian Conf. on Computer Systems Architecture, pages
130–137, Queensland, Australia. IEEE Computer Society
Press.

[18] Wigley, G. and Kearney, D. (2002) The management of
applications for reconfigurable computing using an oper-
ating system. In Proc. 7th Asia-Pacific Computer Systems
Architecture Conf., pages 73–81, Monash University, Mel-
bourne. Avail. from
http://www.jrpit.flinders.edu.au/confpapers/CRPITV6Wigl
ey.pdf.

[19] Wilton, S. J. E., Rose, J. and Vranesic, Z. G. (1999) The
Memory/Logic Interface in FPGA's with Large Embedded
Memory Arrays, IEEE Trans. on VLSI Systems,
7(1):80–91.

[20] Wulf, W. and McKee, S. (1995) Hitting the memory wall:
Implications of the obvious. Computer Architecture News,
23(1): 20–24.

