A Social Construction Approach to Computer Science Edanati

Philip Machanick
School of ITEE
University of Queensland
St Lucia, Qld 4068
Australia
philip@itee.uq.edu.au
phone +61-7-3365-2766; fax 3365-4999

Abstract

Computer science education research has mostly focusedgmitivce approaches to learning. Cognitive ap-
proaches to understanding learning do not account for @lptitenomena observed in teaching and learning. A
number of apparently successful educational approackepdier assessment, apprentice-based learning and ac-
tion learning have aspects which are not satisfactorilyampd by purely cognitive models. On the other hand,
these approaches are stratagems rather than comprehibesivies, in that they do not apply in all cases. Educa-
tion theories which explore learning beyond the cognitiendin such as social construction may provide addi-
tional insights into matters like teaching style, currigul design and assessment practices. This paper proposes
a start towards introducing social construction into cotapacience education, and proposes new directions for
research, curriculum development and educational peactic

1 Introduction

A student doing a project meets his advisor regularly, asgitmbing questions as to what to do next. The advisor
gives the student a low grade for turning in a thesis showmimpsight. The student is mortified: “I did everything
my advisor told me.” The advisor meanwhile thinks this is Warst student she’s seen in a long time, one who
could not do a thing without help.

A department of computer science and electrical engingetatides that an introductory course on profes-
sional practice done by engineers is similar enough to onedimputer science students that the two classes could
be merged. The two groups of students do not get on with edeh,@nd the experiment must be abandoned after
the first trial.

Students in a computer science degree do Business Schoitedebecause they look delightfully easy. They
barely make a passing grade, and don’t know what went wrortat\WWent wrong was they were focusing on the
technical aspects of questions, and missing the busing#s.an

What do all these examples (based on real situations) hasaimon?

They illustrate that a purely cognitive model of learningsggis important aspects of how knowledge is con-
structed. In the first case, the student doing the projectahasmplete misconception about the relationship
between the student and advisor. In the second, there wasirectdculture at that university of what it is to “be”
an Engineer, or what it is to “be” a Computer Scientist (nbtedapitals). Mix the two groups, and they can’t work
together. In the final example, the CS students have failedderstand what is important in the business courses.
They have focused on the domain of discourse with which theyamiliar — the technical — and missed what the
courses were really about: business practice.

To appear inComputer Science Education, 2007. A pointer to the finalipetl version with corrections will
appear later. See the journal web siet p: // www. t andf . co. uk/j ournal s/ titl es/08993408.
asp.

One of the issues raised in discussions leading up to Clar2001 (ACM and IEEE Computer Society,
2001) was the notion of how to produce graduates who cankilibe a computer scientist”. This discussion
was not taken further, but it could have led to exploring alemfoverlooked aspect of education. Education is
building the individual to hold some position in society —eawhere performance is often judged on a number
of dimensions other than pure cognitive skills. Commundeaskills, for example, are often seen as lacking in
technical professionals (Becker et al., 1997). A range akpiace skills, such as interpersonal skills, the ability t
relate technology to corporate strategy and an understgdigroup dynamics (Sawyer et al., 1998), for example,
are important in contextualizing technical skills.

To build on the opening anecdotes, asking how to produceugtad who can “think like a computer scientist”
is the wrong question. The right question is asking how talpoe graduates whare computer scientists.

This is not a subtle difference. The focus on the cognitivendin ignores a wide range of issues relating to
how knowledge is formed and applied, including commundagatsocial interaction and styles of work.

Much recent educational research has shifted tetiuéal constructioomodel, which places much more em-
phasis on the social construction of knowledge, and lessherindividual as a cognitive entity. While social
construction is not a new idea (Berger and Luckmann, 196645 relatively recently become a mainstream ap-
proach, and has not been explored much in computer sciencatih. This paper aims to provide a starting point
for introducing social construction into computer scieeciication: it outlines the theory, relates it to existing
non-cognitive approaches, and provides some exampldastrdte how the theory can be applied.

The remainder of this paper is structured as follows. Se@ioutlines models of education, including how
computer science educational research fits the more gemesabf education research. Section 4 offers a proposal
on how computer science educational research could be nobeselr to the mainstream, including both ideas on
how educational approaches could change, and how the gffi€dlcese ideas could be evaluated. In conclusion,
the paper summarises the key ideas presented and propoagdarward.

2 Models of Education

It is useful to place research in computer science educationntext with broader educational research. While
much research reported in the computer science educatéatiire is not reported as being within a specific
theoretical framework, recognized models are likely touefice work even where these models are not made
explicit. The aim in this section is to summarize recognizedhodologies in computer science education, identify
ideas which do not fit the common theory, and relate theseadethgies and ideas to trends in broader research
in education.

Constructivism is possibly the post popular theoreticgrapch in computer science education. It derives from
the theories of Piaget (Piaget, 1971), who saw learning eisrdgng in distinct stages, particularly as a child went
through stages of general understanding (Piaget, 1953).

The remainder of this section examines constructivism dhdrapproaches to computer science education,
then goes on to compare them with recent thinking in broadiecaional research.

2.1 Computer Science Education

Since constructivism is the most commonly cited approadoitoputer science education, a brief overview of the
approach is presented here, followed by a summary of CSEbappes which cannot be explained purely by a
cognitive theory.

From this start, it should be possible to relate gaps in C&Etjwe to advances in mainstream education theory.

2.1.1 Constructivism

Constructivism, derived from the psychological theorié®mget (Piaget, 1953, 1971), is a cognitive theory of
learning. It assumes that a learner has a mental model whagtommay not be in essentially the right form, and
may or may not be complete. Relatively easy learning occinasnwhe mental model is in essentially the right
form. Learning becomes harder when the mental model is resintable form — learning in this case essentially
amounts to garadigm shift- a change of world view (Kuhn, 1996).

The simpler kind of learning is often referred toassimilation new details are fitted into an existing model.
Learning which requires changes to the model is referred dtmeommodationAccommodation is generally seen
as occurring as a result of the model being found to be flanatdething does not fit (von Glasersfeld, 1995b).

the model the model

new fact

-

new fact

o

fits here in
existing
model

doesn't fit
existing model:
change mode

assimilation accommodation

Figure 1: Learning in ConstructivisnNew facts which fit the existing model are slotteddasimilation; those
which do not fit require changes to the modat¢ommodation

The essential idea is illustrated in Figure 1.

In computer science education, constructivism has becamaaeasingly popular model of teaching and
learning (Ben-Ari, 1998). One of the major influences in fagpularity is the advocacy of teaching programming
skills via Logo to young children using Piaget’s theorieaf€rt, 1993). Constructivism is an intuitively appealing
idea to computer scientists: we debug programs by stantorg & conceptual model of what the program is doing,
and test hypotheses based on this model. If the programasraut, the hypothesis is false. Sometimes, the model
is wrong — sometimes the model is right, but there is a bug jpléementation. Either way, we debgsgmething
when an inconsistency is found. It is appealing to computiensists to think of learning as following a similar
process. The learner’s internal model has a bug in it, angribeess of correcting this bug is not too dissimilar to
finding out why a program doesn’t work.

Relate this debugging idea to assimilation and accommadatif a learner’s existing model is essentially
right, the “bug” in understanding is a small error like an lo§f one error in designing a loop and can be fixed by
a small adjustment (assimilation). If the “bug” is at a degpere conceptual level — requiring accommodation —
it is more like an incorrect choice of algorithm or data stane, one that does not fit the problem. Programmers
generally debug at both levels so it is appealing for a coemadientist who thinks in such terms about teaching
programming to extrapolate this sort of logic to teachingrgthing.

As noted before, much literature on computer science eturcist not specific on the educational theory, but
the constructivism model is often assumed, or at least tiwgmhodels underly assumptions of how learning takes
place (Robins et al., 2003).

Purely cognitive models of learning are in wide use. For gxXanthe still widely used Bloom’s Taxonomy
(Bloom, 1956) is a pure cognitive model: it does not aim totaepmechanisms for knowledge creation outside
of the individual’s final understanding.

Constructivism is increasingly cited in computer scierah@oation papers as providing a conceptual framework
for the cognitive development of the learner (Schulte e26103). Approaches to learning based on the notion of
“debugging understanding” (Thomas et al., 2004) are com ot sSome have gone as far as to attempt to identify
students’ “mental models” as a starting point for undemitagiwhere they are going wrong (Gotschi et al., 2003).

Constructivism is a powerful tool for understanding teaghand learning but, given the fact that it does not
capture aspects of teaching and learning outside the degdiimain, it is worth exploring other options.

2.1.2 StratagemsWith Non-Cognitive Aspects

One idea which is reported to improve students’ ability talenstand what they are doing is to use test-driven
development with rapid feedback on code quality as a waydititite reflection on what they are doing (Edwards,
2004).

The notion of students as “apprentices” —working on partmicgect being run by an experienced practitioner,
for example (Kolling and Barnes, 2004) is one with a growioliipwing. The idea is that the “apprentice”, rather
than working on some artificially simplified problem, see®al problem, but gets to work on a small part of it,
possibly under supervision of an “expert”. The idea of anrapfice has been extended to essentially cognitive

tasks in the form of “cognitive apprenticeship”, which iatathe essential idea of learning by working with an
“expert” (Collins et al., 1989).

Related to these ideas is challenges to the traditional hafdengineering education. Traditionally, engi-
neering programs start from building a theoretical fouimaand only later move to application of the theory to
real problems. This traditional model has a lot of benefits,ib very artificial as compared, for example, to a
practitioner attempting to solve a problem in an area whevetheory applies.

The idea of learning by doing, with a “surprise” leading teeger understanding (Schon, 1995) has some
similarity to the “debugging understanding” idea of coustivists, but the difference is in seeing learning as being
most effective when not abstracted from real problems. &a has been taken up in a reform of the electrical
and computer engineering curricula at Carnegie Mellon ehsity (CMU): students are introduced to engineering
alongside basic sciences, so they can see what the scigrdes @irector et al., 1995).

Yet another idea which has developed a following is peersassent (Brookes and Indulska, 1996; Gehringer,
2001; Hubscher-Younger and Narayanan, 2003). This kireppfoach is not necessarily popular with students
(Rada et al., 1993), but even in cases where student asiaréenot positive, positive educational outcomes have
been observed (Machanick, 2005).

What do all of these ideas have in common?

They all move away from the notion of accumulating knowledgésolation from how it will be applied.
Test-driven development is an actual methodology usedeimehl world. Even when it is started early, is not an
artifice to encourage novice learning, but a good technidguielwapplies even after the learner’s understanding
has advanced. The “apprentice” idea again emphasisesdhiaerparticipation is in solving “real” problems, but
as a “peripheral” participant, with gradual evolution to amber of the community of “experts”. A “community”
means any group a student may aspire to identify with: psidesl software engineers, academics, project man-
agers, open source developers, etc. This kind of evolut@mn & beginner to an expert has been called “legitimate
peripheral participation” (LPP): the idea is that the begirs role is not some artificial exercise, but a step to-
wards integration with the expert community (Lave and Wen@91). Introducing engineering early to make the
science more “real” is again closer to expert practice. Apegxengineer may occasionally have to review some
detail of mathematics or physics while doing a complex desifis “learning” is in the context of solving an
engineering problem. Finally, peer assessment gives madeaomething closer to the “expert” view of the subject
(the “expert” could be an instructor, or a job supervison).dding peer assessment, the learner sees the work from
the expert’s perspective, not just that of the learner.

None of these ideas, however useful each may be, represgmsenal theory of education, but rather an
interesting stratagem which points to the need to find a meth is not purely cognitive. LPP or apprenticeship
models, while appealing, do not cover all learning situatie it is hard to conceptualise some learning situations
in this mould (Ben-Ari, 2004).

213 Summary

Constructivism has developed a strong hold on thinking imoter science education, but it does not address non-
cognitive aspects of learning. Ideas like gradually drawarbeginner into a community of experts and learning
theory in conjunction with practice cannot be describedafyun cognitive terms.

Given that there are good ideas which do not fit the populamatmittonstructivism, it is worthwhile exploring
the space of educational theories which go beyond the degmibmain. That is not to say that constructivism
should be thrown out, but its limitations should be recogadis

2.2 Social Construction

Consider again the opening anecdotes — for example, thaginftto combine a computer science and an engi-
neering class. The two groups of students had completdigrdift perceptions of the course. The engineering
students gave it a reasonable rating on the post-courseysuviiile the computer science students rated it as be-
low average. There were persistent reports of the CS staidesling slighted at being grouped with engineers.
Conversely, engineering lecturers didn’t want CS studentiseir class. None of these objections appeared to be
grounded in any objective basis for criticising the coutlse lecturers, or the students.

This brings us back to the notion of what it mean®éa computer scientist (see Section 1).

What exactly does this mean?

One aspect is observing possibly unstated conventions.awerany conventions which are explicitly stated,
such as code layout, naming conventions, etc. However, somentions — such as drawing standard components

of a logic circuit in a standard layout — are usually pickedoymbserving what others do, rather than explicitly
taught. While in this case, conventions can be developestfoondary notatio(Petre, 1995) of this type, there are
other cases where writing down every detail is difficult, &atning proceeds best from experience — preferably
in interaction with more expert practitioners.

Where it comes to the practice of a discipline — the pracstgps to reach a solution — it is difficult to codify alll
steps, and to identify all strategies which every individuith a different learning style might employ. How many
computer science educators have encountered the stutlentpting to solve a programming problem staring at a
blank sheet of paper, with the question, “Where dtairt?”

Another issue is understanding how to interact with moréosenm more experienced people in the field. When
is it appropriate to ask for help? When are you expected tkwhings out for yourself? Expectations vary
according to the field. A novice medical practitioner, foample, would be foolish not to seek advice on a life-
threatening issue. A junior programmer who has forgottemraraon algorithm would do better to look it up than
to ask a manager.

Dealing with these questions leads us to an educationaithddch is achieving growing acceptance.

2.2.1 Situating Social Construction

Cognitive science-based approaches to education haveeeMsbm constructivism, which places the learner in
isolation, to social constructivism, which recognisesdbeial role of learning (Pear and Crone-Todd, 2002; Hund-
hausen, 2002). Social constructivism still ultimatelywseknowledge in cognitive terms, though it recognizes the
role of interaction with others in the learning process.

The social construction model goes further in placing th@ad@spect of learning at the centre. Instead of
focusing on the development of individuals’ cognitive misciéhe focus is on how the individual interacts with a
community in developing their understanding. ConfusinBbpert defines something quite different as “construc-
tionism”: learning by constructing an entity (Papert, 192onstructionism is a variant on social constructivism,
emphasizing learning by doing.

Advocates of the social construction model argue that coas¢ism in any form has too limited a definition
of knowledge — that it's constrained to defining knowledgendmt's represented in someone’s head, without
acknowledging the role of communication in defining knovgedGergen, 1995; Rowlands and Carson, 2001).

Much of the education literature on social constructiom&ctcessible to the non-specialist, unaccustomed with
the terminology of phenomenology. The basic idea, thougatiser simple:

The effect of a learning event depends on how you experience i

Phenomenology, among other things, argues that phenomedafined by how they are encountered (Husserl,
1971). There is evidence that learning is highly relatechiplace and context of encountering a new fact or
insight. Medieval illuminated manuscripts were designétth this concept in mind. Decorated initial letters of
words and other decoration of the printed page were desige@ills to the memory, because a reader of a book
might have use of it once in a lifetime. The graphical layduhe page was an aid to memorising the text (Clanchy,
1993). Encountering the text within a context of specificatation on the page is an example of a phenomenon
encountered in a particular context.

2.2.2 Social Construction in Practice

An example of the distinction social construction makesrfrther learning models is its view of the lecture. A
lecturer may go through a lengthy process of knowledge dergo- reading books, searching for other sources,
building on experience, etc. — then stand in front of a claskspeak authoritatively, without any evidence of the
preparation that went into the lecture. The class is notrgase effective insight into how to learn the material
for themselves, because they do not see the process theelestent through to acquire the knowledge (Gergen,
1995).

Figure 2 illustrates how a learner is gradually broughtetds the community of experts, by starting as an
outsider, and gradually becoming more adept. The learngéepscted as looking towards the “community” of
which they will ultimately form part. As new facts, methodgles, and so on, are encountered, the learner reflects
on them, and gradually builds a capacity to become one ofd¢kperts”.

How can the learner be more involved in knowledge creation,way which emphasizes the learning process,
understanding how to work from encountering knowledge titddmg ones own internal model, and gradually

phenomenon

()

/

context learning

Figure 2: The Social Construction moddlhe learner gradually becomes closer to the community ohttept,
through encountering phenomena, and building them int@ then model, througtreflection The cognitive
aspect, though still a component of learning, has to be seémei context in which it is developed.

The Project

Reflections/

Analysis Planning

action

Figure 3: Action Learning Cycle (Bunning, 2001).

moving from peripheral to full participation in the commtynof experts? Legitimate peripheral participation
(LPP) (Lave and Wenger, 1991) fits this model well, but whatotapproaches could apply where LPP does not
fit well?

A specific approach to implementing the social construatimalel is calledaction learning Action learning,
like LPP, is a stratagem which can potentially be appliediiwibther theories of education.

Action learning empasizes a cycle of starting from a desmettome (“project”), planning an approach to
solving the problem, applying the plan (“action”) and refileg on the outcome. If the problem s not yet solved, the
cycle is repeated (Bunning, 2001). Action learning fits catepscience education well, because many computer
science problems can be formulated in the style of a probtebetsolved, with the possibility of forming a plan
which can be tried out, and evaluated (“reflection”). Thestereflection is easy to leave out — or pay lip service to
— with programming problems, for example, because theréamatation to make random changes to the program
until it appears to behave correctly.

Figure 3 illustrates the general idea.

Action learning is a good fit to the social construction mod€he feedback cycle emphasizes keeping the
learner’s experience in the loop. In attempting to learn estiing, the student tries to formulate a model, does
something, then thinks about what has happened. The enspbasi the student’s experience in encountering the
new concept. This experience can include working with a grouan “expert” (an academic or tutor).

Action learning in its simplest form appears to be quite Einto the notions of learning in constructivism, in
which the learner has to develop a mental model by a combimafi assimilation and accommodation — respec-
tively, fitting new information into a mental model, or adjng an existing mental model for information which
doesn't fit. In constructivism, a learner is seen as formipgdtheses to test existing mental models, a process
which gradually leads to refinement of the mental model (vtas&sfeld, 1995a).

However, the social construction model places more empluasthe learner’s environment. Phenomenology
looks at the relationship between the learner and phenothegaencounter (Ramsden, 1988). Thus, the action
learning cycle should not look only relate to cognition, blso aspects of learning such as developing the skill of
working in a group, or understanding what a user wants.

The value in being specific about using social constructiothat it provides a framework for generalising
from stratagems like LPP, and finding alternative stratagerere these do not apply. Further, understanding
these approaches in terms of the social construction madgs lus to pay attention to what the student is doing,
how they relate to others, how they work and how they comnatajcrather than focusing solely on cognitive
measures of their work.

3 Application to Computer Science

To take these ideas further, let us consider how the actiamileg model can be applied in computer science
education more generally, as a tool for applying the sociaktruction model.

A key issue is to ensure that students actuegiecton what they are doing. The importance of reflection
derives from the phenomenological underpinnings of théas@onstruction model: we understand subjective
experiences in terms of the context in which we encountenthiEhese subjective experiences, or “phenomena”,
become internalised by reflecting on them (Husserl, 1971).

It is a common experience of computer science instruct@asdfudents sit at the computer programming by
trial and error (Edwards, 2004): if the compiler reports alypem, hack at the code until the error isn’t reported.
If the program crashes, flail about changing the code urgibips crashing. Such attempts at “fixing the problem”
clearly do not involve much reflection. As related to Figuréh# students are starting out with some idea of the
project, going straight to action, and trying differentiacs until they achieve an apparently correct outcome. That
little learning has taken place may only later be apparehénthe students are required to take a test, or solve a
different problem requiring the same skills.

To make the discussion more concrete, let us consider a fewaohples. The first is designing software using
a class hierarchy, the next is teaching data structureslgadtams, and the last is teaching computer architecture.
These examples are chosen to illustrate areas which pliieeedit demands on teaching and learning. The first is
based on experience of teaching several classes, andtdrette examples illustrates some of the difficulties in
attempting to apply the principles of social constructiopiactice.

3.1 Programming with Classes

Many introductory texts are slow to introduce inheritarBe¢ker and Hirshfield, 1995; Kamin et al., 2002; Horton,
2002), most likely because it's seen to be a difficult concApproaches in which the empasis is on diving quickly
into standard libraries (Collions, 2005) — clearly the wéjeat-oriented programming was intended to be learnt
(Goldberg and Robson, 1983) — are less common.

The problem with teaching object-oriented programmindpaitt starting from inheritance and libraries is that
students develop a programming style at odds with the piyleg of object-oriented programming, and then are
expected to unlearn this non-reuse style of programming.i3$ue here is very much one of building a student up
to what an object-oriented developer does differently qmuwely a matter of developing particular knowledge (in
which case, it's less clear that the order of learning msitter

In terms of phenomenology, students have encounteredtadijiented programming in a particular form, and
that form becomes the one they learn.

What are the alternatives? Let's consider two options, tvihiave stimulated debate, but not led to a clear
outcome (a definite case that one is better than the other).

40.0% 40.0%

30.0%

30.0%

30.0%

20.0%

20.0%

20.0%

10.0% 10.0%

10.0%

C B C B Cc B

(a) 2002 (b) 2003 (c) 2004

Figure 4: Results compared across three yéldrs.2003 class had the quizzes.

One approach is to introduce object-oriented programmiamfday 1, as an approach in which standard
libraries are built upon (Machanick, 1998). However, thap@ach is difficult in a first course, as there is a conflict
between introducing basic syntax to build non-trivial exdas, and exploring the library. This approach worked
in Smalltalk-80 because the basic syntax was extremelylsirapd programming constructs such as iteration and
selection were built up out of library components (Goldbangl Robson, 1983). With languages like C++ and
Java, this approach is more difficult, and strategies likesstiing the language or using toy dialects defeat the
object of exposing students as early as possible to songettgal”.

Another approach is to start with a language with very sinsglgax and semantics but which allows sophisti-
cated concepts to be explored quickly. This is the philog@atopted in various Scheme-based texts (Abelson and
Sussman, 1996; Harvey and Wright, 1999). One can of cougsea@gainst starting with a language like Scheme
because (practically) no one uses it for real projects. Newavith the background of programming in any other
language, an object-oriented course can start immediafitiyexploring the class library, and leave issues like
iteration to picking up differences from previously-knolanguages.

The point here is not to enter into a language war, or to adearappose a specific order of learning concepts.
The pointis that learning something in an artificial way whitoes not expose the learner to “expert” thinking and
approaches can lead to an incorrect start, and a patternrfwioch is hard to break.

A social-construction approach to evaluating these adtidres could be a useful addition to previous debate
about which approach is “better” — and to opening up debatttoer alternatives.

3.2 Data Structures and Algorithms

In 2003, | attempted to apply social construction prinagptea single aspect of a Data Structures and Algorithms
course. After each weekly tutorial, students were requicetdike a short quiz, and mark each others’ attempts.
The notion was to force reflection, and put students in th&ipasof an “expert”.

This approach was not very popular with students (Machai@®@5). One comment on a survey illustrates the
reaction of the class:

Waste the time in tutorials=> Tutes rushed ... basically means you should learn at honméef
coming to tutorials=> Defeats the purpose. Marking is also pointless

Being forced to “learn at home™? Clearly this is not what &g do . .. but it is what a lecturer often has to
do when preparing a course in a new area.

Grade distributions from comparable classes over threesysra presented in Figure 4. At the University of
Queensland, a numeric grading scheme with A+ representédiad a low fail as a 1 is represented here as grades
of F through A+ (with F representing a grade of 1 or 2). What astrobvious about the distributions is that the
class in which quizzes were run had a distribution closeraional. A possible interpretation of the variation in
shape of the distributions is that the 2003 class forcedwadlents to work closer to their ability, rather than some
failing to do well because they did not keep up. However,ghgera limit to how much to read into these results
because different lecturers were involved each year, éiba material was similar.

Although students did not much like the quiz idea, it likegdrsome benefits, most notably making them better
prepared for tutorials (Machanick, 2005).

However, it would be worth reconsidering the strategy to ensakess unpopular. Although a non-cognitive
aspect is included in the approach — placing the studentseimdie of “experts” marking each other’s work, the
context was not sufficiently natural to appeal to studelitstrating the difficulty of finding suitable stratagems to
articulate the social construction approach.

3.3 BeingaComputer Architect

The last experience is of running a computer architectuteseowith the intent of exposing the class to what
it meant tobe a computer architect. The idea was that a student with a mea$® general computer science or
engineering background with some exposure to logic desigtdde drawn into a design project, and have to pick
up missed background through working on the project. Thesesowas structured around evaluating alternatives
to a new processor design. Lectures were a smaller fractitrea@ourse than usual (1 hour a week, out of a total
of up to 5 contact hours a week), with frequent reflection kseavhere students were expected to think about
what they had just been told, and to attempt to apply their krmswledge. The project required that the students
choose from a list of vaguely specified topics, and narrowr ttteice down to something which would advance
the big-picture goals of the overall project.

As with any real industry or research project, students hadraber of checkpoints and design reviews, in
which they were subjected to interviews, or had to give preg@sns. They also had to write a paper, and to review
each others’ work. Each of these points in the project wanuhéd to provide an opportunity for reflection, in
keeping with the action learning approach to social cocsin.

The biggest problem with this course was that students didesbready at the start to choose which project
to work on, and had difficulty deciding where to start. As agsemuence (the course was an elective so they had
the choice to drop it), about two thirds of the class droppeccburse. Those who stuck with it generally did well.
Only one student who did not persist with all phases of thgeptdailed overall.

A general observation is that the project forced studertigiaation to a degree not possible in a course based
more strongly on lectures. The difficulty students had wiltigg started on the project reflected too big a jump
from being outside the circle of the adept to taking resgilitsi for using their knowledge.

In the next run of the course, students will be given morestéasce in making an initial choice of project,
and part of the grading scheme will reflect their ability tareoto grips with defining what they have to do in the
project.

34 Summary

The social construction model offers some challenges teerttional wisdom about education. It requires that we
re-evaluate the role of lectures. It requires that we thinggeéneral about how studergacountenew knowledge.

It does not necessarily invalidate any previous approadhes does provide a framework within which to reflect

on what we do, and to try to think through how to improve ourrapph. It provides a basis for rethinking why

some approaches work, while others do not. Most signifigaittprovides a framework for understanding how

non-cognitive aspects of education could be tackled.

The discussion presented here on how we could rethink ouoapp to teaching object-oriented program-
ming indicates some of the potential for using social cartsion to stimulate debate. The alternative approaches
outlined — finding ways of learning class libraries first iniafnoductory course, versus starting with another pro-
gramming model before going object-oriented — are not newitls useful to have a new conceptual framework
in which to evaluate these ideas.

As the data structures and algorithms example illustrdteding a suitable stratagem depends on the nature
of the material and the approach which seems natural to stsidBeer review can work well in some situations,
but if it is seen as an artifice, it is not only likely to be rdgt by the students, but also fails to meet one of the
objectives of the social construction approach: introdgdéinowledge in a context where students can participate
meaningfully in developing their understanding.

The computer architecture course illustrates more ratliaasformation of a course to fit the social construc-
tion approach. The success of the new approach will be theadutf future evaluation, once teething problems
have been eliminated.

4 A Proposal

Reforming curriculum in terms of a social construction aggmh requires clarity on how teaching and learning
needs to change. For this reason, more emphasis is plachi ipaper on changing education strategy rather
than on curriculum reform. However, it is still useful to gigome consideration to how curriculum design could
change.

Changes to how course material is delivered are reasonatjyte propose in the abstract, but experience will
be required to develop a range of practical approachestéméxhe stratagems already identified in this paper.

The biggest challenge is in defining new research directamshe style of measurement has to change if the
focus is moved from cognitive approaches.

The remainder of this section takes up these issues.

41 Curriculum Reform

A social-construction model suggests that the basis fomenige delivery be challenged at a more fundamental
level than the traditional approach of tinkering with cartteSocial construction (and, to a lesser extent, construc-
tivism), challenges the transmission model of learningt lbarners are passive recipients of knowledge. Further,
the notion of a learner gradually moving from peripheraludt participation implies a stronger emphasis on what
kind of person a learner aims to be — not merely an emphastseokniowledge they need to pick up.

The follow-up to Curricula 2001, Curricula 2005, attempisdefine a broad range of disciplines includ-
ing hardware engineering, computer science, informatimtesns and information technology as regions of a
2-dimensional space, with a vertical axis labelled fromdiagare up through various software layers to organisa-
tional issues and information systems, and a horizontal eaiying from theory to application deployment and
configuration (ACM et al., 2005). The problem with charaisieg knowledge in this way is that it does not take
into account very different styles of work in different fisldAn engineer installing a computer system will tend to
take a very different approach to a technician if somethdilg,ffor example. Providing both groups with the same
educational experience for overlaps in content may faiinate opening anecdote, where CS and engineering
students didn’t mix.

The most importantissue for curriculum reform raised by3beial Construction theory is that we should look
beyond content as defining curriculum, but consider alsaidnein which students encounter new knowledge as
part of the curriculum.

4.2 Educational Strategy

It should be made clear at this point that doing “real” thisgsuld be distinguished from a “real-world” focus.
In an academic institution, developing intellectual rigqareparing students for a research career and estalgishin
principles which may rarely apply but which could becomelthse for future discoveries are important compo-
nents of the learning experience.

Some of these aspects of higher education may appear to ln¢erémmm what is done in the workplace, but
are important parts of preparation for professional pcacti

However, making apparently useless aspects of educataif oy showing how expert practitioners work can
help to make students value skills like abstraction, reimgpinom first principles and combining knowledge from
multiple sources. These relatively “academic” skills mayapply in routine work, but add value to a qualification
from a good tertiary institution, as opposed to a trade ¢&iich as learning how to use or maintain a particular
piece of software).

The big challenge in an environment of limited resources ishiange the way the teacher and learner interact.
Ideally a lecture should be an exchange of ideas, with theidecplaying the role of the expert, and the class
the novices or apprentices, attempting to join the worldrafledge construction. In practice, with large classes
and highly diverse student populations, this sort of diats very difficult to achieve. However, a new insight
into the nature of the task can help alter emphasis and adtadw we approach the problem. For example, in a
lecture, explaining how the knowledge which went into thetdee was acquired is a step towards breaking down
the notion of the lecturer as an unassailable authority @gr1995). Using peer assessment in a way which
emphasises learning to become an “expert” is another exarndging students directly to grade each other’s work
can result in negative response, e.g., because the stuttamtsaccept another student’s judgment as “expert”
enough. One approach which can change that perceptionhis friading is itself assessed. For example, in an
advanced computer architecture course, an approach | ls@eewith some success is to have students write a
paper in imitation of the style of submitting a paper to a jair

e initial draft — submit an initial draft which is not assessed but which sspd to other members of the class
for review (the lecturer also writes a review)

o refereeing- review papers of other members of the class (the qualitgfefeeing is assessed by the lecturer)

10

o final draft— based on reviews, write a final version for assessment

The value in this approach is that the students get to seedHeafiothers in the role of an “expert” — a referee
judging someone else’s work. Their initial draft is assddsgother members of the class but solely for feedback
(or formative assessment (Brown et al., 1997)). The revievegss allows for reflection at two levels: looking
at someone else’s work as a way of understanding strengthaeaknesses in general of related kinds of work,
and thinking about feedback from reviewers of their own papa exercise of this kind relates well to the action
learning cycle of Figure 3.

More broadly, whenever designing or evaluating an educati@pproach, it is worth looking for the following
issues:

e how knowledge is encountereds it artificial, or a bland presentation of facts — or is itdeaeal by relating
to a problem or motivating example?

¢ reflection— are learners encouraged by the nature of the exercise éotrefi what they are doing, or can
they get away with trial and error, copying out a likely s@uat or some other unthinking solution strategy?

e engagement with knowledge communrityow can students be made to become active participantarim-le
ing?

Sometimesitis hard to make these principles apply in ppacttratagems like action learning, peer assessment
and apprentice-like approaches give pointers to what isiples but other approaches are needed where these do

not apply.

4.3 Research Directions

Some existing approaches to computer science educateadglffit the social construction model, even if they
are not explicitly designed as such. Accordingly, appreadike peer assessment, problem-based learning and
apprentice-based schemes would be interesting to resagsesocial construction approaches. Questions worth
asking include:

e Has reflection taken place? If so, how effective was it? If hotv can it be made more effective?
e Have students participated in knowledge construction? Ewthis be measured or made more effective?

¢ Is the way students encounter knowledge a reasonable refl@ttfuture learning experiences? If not, how
can this experience be made more authentic?

e Has the educational experience changed the nature of tergtsiwork? Has it exposed them to what it
means tdoewhatever kind of professional their program aims to develblpw do their new skills apply to
their future work?

In the case where a situation does not clearly fit a populataggem, it is necessary to consider how the theory
could apply. In some cases, this may be more difficult thaersthEven in case of a class of 500 students where
the sole resource available is lecture sessions, somenatégi can involve the class more, though it would be
more profitable to focus initial efforts on smaller clasdab, sessions, tutorials, or other contexts where smaller
numbers are involved.

One of the biggest challenges is how to make students more deairners. Starting early with problem-
focused introductory courses, in which real problems casdbeed from the start, is one option. An apprentice
model (working on a small aspect of a big problem) or usingeg@mming language which allows rapid progres-
sion to real problems is another example. Measuring thetafémess of these strategies provides some interesting
challenges. Again, examining the effect not only on modiiedrses but across other courses would be interesting.

Another important consideration is that changing teachind learning styles requires changes to assessment
models. Assessment drives student behavior (Gibbs, 1888)an assessment approach which still focuses on
measuring cognitive outcomes will undermine an attemptatding non-cognitive aspects in teaching and learn-
ing. For example, if ability to work in a team is important, emdirect measure like a poor grade for a badly
executed team project may be less useful than a more dirgessament of ability to work in a team. Finding new
measures of student performance would be a useful direfctiarew research in CSE.

11

There are two levels at which it could be interesting to meastanges resulting from adopting a social-
construction approach. The first is direct measurement ofatbnal outcomes in any altered course, and the
second is broader measurement of whether student appsotactearning have altered. For example, if a course
encourages reflection, it would be interesting to see if céfla becomes a habit. One strategy for encouraging
reflection is to have students keep a reflective diary (Fekisaé, 2000). If this is done in one course, do students
continue the practice in another? Would enforcing use oécéfle diaries for a few courses lead ultimately to
other improvements in student behaviour like thinking tlglo programming problems, rather than trial-and-error
coding?

A big challenge in general when introducing a change is stugleceptance if no one else is making the change.
If for example all courses involved some aspect of peer assEd, the issue of students finding it strange would be
avoided. Any measurement of the effect of changes theréfmseo take into account the possibility that students
are prejudiced against change.

5 Conclusion

This paper has examined the need for new models in computarceceducation, starting from the fact that
there are non-cognitive aspects to education, which araddressed by the most popular theory, constructivism.
Further, a variety of stratagems exist, which have been shovhave some success, despite going outside the
purely cognitive domain.

The social construction model has been proposed as having sseful properties for learning computer
science concepts, as well as being a good fit to existing ngnitive approaches.

The remainder of this section summarizes key ideas fromalperp proposes a way ahead and wraps up with
overall conclusions.

51 Key ldeas

The key idea of phenomenology as it applies to social coaistruof knowledge is that learning depends on how
something new is encountered. An important aspect of thialsoanstruction model is a combination of shared
experience and reflection. The model therefore does notremel&dge as strictly existing inside a person’s head,
but existing as a consequence of interaction with a communit

Action learning is one approach to implementing the soaalstruction model, in which a cycle of planning,
implementing and reflecting is emphasized. This approaehgeod fit to much learning in computer science,
especially programming-related courses.

Much of this aligns to ideas already found to work in compgience education (such as apprentice-like
learning), so the challenge is to extend the benefits of titeses to areas where they are not as obvious a fit.

5.2 Way Ahead

An obvious starting point is to re-evaluate existing syée in terms of the social construction model, starting
from ideas most similar in concept. A good next step woulddbexamine ideas which work and ideas which do
not, to try to gain some insights into whether promoting theia construction model will increase the number of
approaches which work.

If this initial investigation shows promise, the next stag¢o pursue broader changes in curriculum and ed-
ucational strategy, based on social-construction thopkin important part of such change is rethinking student
assessment, in line with an increased focus on non-cogisipects of education.

This paper has outlined some areas in which this process teuhpplied; the challenge to computer science
educators is to take these ideas forward to new areas. Itdwmilan interesting start to re-open debate about
how best to teach programming: whether to start with objeigthted concepts or introduce them later, or other
alternatives such as are outlined in Curricula 2001 (ACM Ii&teE Computer Society, 2001).

5.3 Concluding Thoughts

The social construction model is gaining acceptance in thader educational community. Despite having origi-
nated in the 1960s — with its roots in phenomenology goindk bathe early part of the twentieth century — it is
not well known among computer science educators.

12

Given that there are problems in computer science educatiich have not been solved using previous ap-
proaches, it is worth exploring a new avenue. Social coostmuis a growing movement among educators, which
does not necessarily mean it applies in all areas. Howeveppiears to be a good fit at least to some areas of
computer science education, and therefore worth furthgloeation.

Acknowledgments

I would like to thank Gloria Dall’Alba and Jennifer Vadebam®ur for introducing me to and clarifying the ideas
behind current theories of education.

References

Abelson, H. and Sussman, G. J. (1996}ructure and Interpretation of Computer ProgranidIT Press, Cam-
bridge, MA, 2nd edition.

ACM and IEEE Computer Society (2003omputing Curricula 2001 Computer Scien&&M/IEEE-CS.ht t p:
[I ww. conput er. or g/ educati on/ cc2001/final /i ndex. htm

ACM, IEEE Computer Society, and Association for Informati®ystems (2005) Computing Curricula 2005:
The Overview RepartACM/IEEE-CS/AIS, draft edition.ht t p: / / www. acm or g/ educati on/ Draft _
5- 23- 051. pdf.

Becker, J. D., Insley, R. G., and Endres, M. L. (1997). Comication skills of technical professionals: a report
for schools of business administratiddlGCPR Computer PersonnéiB(2):3-19.

Ben-Ari, M. (1998). Constructivism in computer science egtion. InProc. twenty-ninth SIGCSE Tech. Symp. on
Computer Science Educatigmages 257-261, Atlanta, Georgia, United States.

Ben-Ari, M. (2004). Situated learning in computer sciende@tion.Computer Science Educatiatv(2):85-100.

Berger, P. L. and Luckmann, T. (196@)he social construction of reality: a treatise in the soowy of knowledge
Doubleday, New York.

Bloom, B. S., editor (1956)Taxonomy of Educational Objectives: Book 1 Cognitive Domiabngman, London.

Brookes, W. and Indulska, J. (1996). Teaching internetditg to a large and diverse audience.Plioc. second
Australasian Conf. on Computer Science Educatayges 7—15, The Univ. of Melbourne, Australia.

Brown, G., Bull, J., and Pendlebury, M. (1997Assessing Student Learning in Higher Educatidtoutledge,
London.

Bunning, C. (2001). Turning experience into learning. laffét, L. and Gale, J., editorAction learning at work
Gower, Aldershot, Hampshire.

Clanchy, M. (1993)From memory to written record, England 1066-13®Tackwell, Oxford, 2nd edition.

Collins, A., Brown, J. S., and Newman, S. E. (1989). Cogaitapprenticeship: Teaching the crafts of read-
ing, writing and mathematics. In Resnick, L. B., ediidnowing, Learning, and Instructiorpages 452—494.
Erlbaum, Hillsdale, NJ.

Collions, W. J. (2005)Data Structures and the Java Collections FramewdvicGraw Hill, Boston, 2nd edition.
Decker, R. and Hirshfield, S. (1995)he Object ConcepPWS, Boston.

Director, S., Khosla, P., Rohrer, R., and Rutenbar, R. (L9B®engineering the curriculum: design and analysis
of a new undergraduate electrical and computer enginedeggee at Carnegie Mellon Universityroc. of the
IEEE, 83(9):1246 —1269.

Edwards, S. H. (2004). Using software testing to move sttgdgam trial-and-error to reflection-in-action. In
Proc. 35th SIGCSE Tech. Symp. on Computer Science Edugasiges 26—30, Norfolk, Virginia, USA.

13

Fekete, A., Kay, J., Kingston, J., and Wimalaratne, K. (900Bupporting reflection in introductory computer
science. InProc. thirty-first SIGCSE Tech. Symp. on Computer Sciencedibn pages 144-148, Austin,
Texas, United States.

Gehringer, E. F. (2001). Electronic peer review and peedigtpin computer-science courses. Rroc. thirty
second SIGCSE Tech. Symp. on Computer Science Edygstges 139-143, Charlotte, North Carolina, United
States.

Gergen, K. J. (1995). Social construction and theeducaljmocess. In Steffe, L. and Gale, J., edit@enstruc-
tivism in Educationpages 17-39. Lawrence Erlbaum Associates, Hillsdale, NJ.

Gibbs, G. (1999). Using assessment strategically to chdregeray students learn. In Brown, S. and Glasner, A.,
editors,Assessment Matters in Higher Educatipages 41-53. Society for Research into Higher Educatidn an
Open University Press, Buckingham, UK.

Goldberg, A. and Robson, D. (1983pmalltalk-80: The Language and its Implementatigkddison-Wesley,
Reading, MA.

Gotschi, T., Sanders, 1., and Galpin, V. (2003). Mental els@f recursion. IfProc. 34th SIGCSE Tech. Symp. on
Computer Science Educatigmages 346—350, Reno, Navada, USA.

Harvey, B. and Wright, M. (1999)Simply Scheme: Introducing Computer SciendéT Press, Cambridge, MA,
2nd edition.

Horton, I. (2002) Beginning Java 2Wrox, Birmingham.

Hubscher-Younger, T. and Narayanan, N. (2003). Consweiand collaborative learning of algorithms. Pmoc.
SIGCSE Tech. Symp. on Computer Science Educgizmges 6—10.

Hundhausen, C. D. (2002). Integrating algorithm visuaigratechnology into an undergraduate algorithms
course: ethnographic studies of a social constructivist@gch.Computers & Educatior39(3):237-260.

Husserl, E. (1971). “Phenomenology,” Edmund Husserlilarfor theEncyclopaedia Brittanic1927): revised
translation by Richard E Palmed. British Society for Phenomenolggi77-90.

Kamin, S. N., Mickunas, M. D., and Reingold, E. M. (2003n Introduction to Computer Science Using Java
McGraw Hill, Boston.

Kdlling, M. and Barnes, D. J. (2004). Enhancing apprentiased learning of Java. Proc. 35th SIGCSE Tech.
Symp. on Computer Science Educatipages 286—290, Norfolk, Virginia, USA.

Kuhn, T. S., editor (1996).The Structure of Scientific Revolutiongniversity of Chicago Press, Chicago, 3rd
edition.

Lave, J. and Wenger, E. (1991). Legitimate peripheral gigdtion in communities of practice. [8ituated
Learning: Legitimate Peripheral Participatigpages 89—117. Cambridge University Press, Cambridge.

Machanick, P. (1998). The abstraction-first approach ta dbstraction and algorithm€omputers & Education
31(2):135-150.

Machanick, P. (2005). Peer assessment for action learrfidgta structures and algorithms. Rioc. 7th Aus-
tralasian Computer Education Conf. (ACE200pages 73—82, Newcastle, Australia.

Papert, S. (1991). Situating constructionismClanstructionismpages 1-12. Ablex, Norwood, NJ.
Papert, S. (1993Mindstorms Basic Books, New York, 2nd edition.

Pear, J. J. and Crone-Todd, D. E. (2002). A social consttist@pproach to computer-mediated instruction.
Computers & Educatior88(1-3):221-231.

Petre, M. (1995). Why looking isn’t always seeing: readigrskills and graphical programminG@ommun. ACM
38(6):33-44.

14

Piaget, J. (1953)The origin of intelligence in the childRoutledge, London.
Piaget, J. (1971)Psychology and epistemolaggrossman, New York.

Rada, R., Ramsey, P., and Michailidis, A. (1993). Educaiiperspectives in collaborative hypermediaPhoc.
1993 ACM Conf. on Computer scienpages 304-309, Indianapoalis.

Ramsden, P. (1988). Studying learning: Improving teachingRamsden, P., editormproving Learning: New
Perspectivespages 13—-31. Kogan Page, London.

Robins, A., Rountree, J., and Rountree, N. (2003). Learanmtteaching programming: A review and discussion.
Computer Science Educatioh3(2):137-172.

Rowlands, S. and Carson, R. (2001). The contradictionsicdnstructivist discours@hilosophy of Mathematics
Education J.14.ht t p: / / www. ex. ac. uk/ ~PEr nest/ ponmel4/r ow ands. pdf.

Sawyer, S., Eschenfelder, K. R., Diekema, A., and McClureR q1998). Coporate IT skill needs: a case study
of BigCo. SIGCPR Computer Personnéb(2):27-41.

Schon, D. (1995). The new scholarship requires a new epidtey. Change 27(6):27-34.

Schulte, C., Magenheim, J., Niere, J., and Schafer, W.3R00hinking in objects and their collaboration: Intro-
ducing object-oriented technolog@omputer Science Educatioh3(4):269-288.

Thomas, L., Ratcliffe, M., and Thomasson, B. (2004). Sddiifg with object diagrams in first year programming
classes: some unexpected resultsPiac. 35th SIGCSE Tech. Symp. on Computer Science Educptigas
250-254, Norfolk, Virginia, USA.

von Glasersfeld, E. (1995a). Constructivist approachdoling. In Steffe, L. and Gale, J., edito@nnstructivism
in Education pages 3—-15. Lawrence Erlbaum Associates, Hillsdale, NJ.

von Glasersfeld, E. (1995b). Sensory experience, ab&tra@nd teaching. In Steffe, L. and Gale, J., editors,
Constructivism in Educatiqmpages 369—383. Lawrence Erlbaum Associates, Hillsdale, N

15

