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ABSTRACT 

The idea of changing cache attributes to suit an application 
has been explored for single programs. As the popularity 
of reconfigurable softcore systems grows and these 
systems increasingly use operating systems and run 
multiple applications, the possibility arises of dynamic 
cache switching to improve performance. This paper 
presents the new idea of dynamic cache switching in a 
preemptive soft-core system. Such switching optimises the 
cache structure on a context switch or transition between 
applications. A practical solution for implementing cache 
switching in a reconfigurable softcore system is presented. 
For the design of the switching algorithm, this paper 
explores the mismatch of cache optimisations between 
applications. Focusing on the optimisation only is not 
enough for evaluating cache switching, as not all the 
applications are optimised and also the overheads in cache 
switching may not justify the improvement. 

1. INTRODUCTION 

In recent work with embedded environments, operating 
systems are increasingly being used on FPGA-based 
softcore processors. While they still have a subset of 
applications that constitute the workload of interest, they 
must also cater for a multitude of secondary programs that 
may be run. This paper specifically addresses cache 
optimisations for the workload of interest running on a 
softcore CPU, with such optimisations happening at 
transitions between applications, such as context switches. 
 We propose a reconfigurable multi-cache architecture 
for a preemptive operating system, where caches are 
customised for a subset of applications on the system. The 
caches are changed on a context switch depending on the 
overhead of the cache switch and the performance 
difference when changing between the previous 
application's cache and the new one. 
 There are three related categories of previous work that 
only partially address the design issues involved with 
dynamic cache switching. 
 It has been shown that cache reconfiguration during the 
operation of a program can give substantial improvements 

in program performance [1-3]. This work has looked at 
changing the block size, associativity, cache size, cache 
line size and way prediction during the operation of 
individual programs. However, this previous work only 
considers single programs and does not consider how 
runtime cache optimisation might work under a preemptive 
operating system. A preemptive operating system can 
context switch to a task where the optimisations may prove 
a hindrance. Furthermore, the work presented in this paper 
looks at the optimisation differences between multiple 
optimised caches, instead of between a generic cache and 
an optimised cache. 
 Some related work in the area of task switching looks 
into cache-related preemptive delay [4-6]. This work has 
concentrated on the cost of flushing part or all of a cache 
when blocks of memory overwritten by a previous task 
need to be refetched. The focus is on calculating these 
costs to improve the efficiency of scheduling algorithms. 
None of this earlier work has explored the effect of cache 
optimisations in a preemptive system. 
 A different methodology to avoid the preemption 
problem is through a cache-aware operating system. This 
involves the operating system or program explicitly 
controlling things such as cache partitioning [7-9]. Some or 
all of the tasks are allocated a sub-portion of the cache so 
there are no cache conflicts from task switching. This 
approaches the problem from a partitioning perspective, 
and does not consider cache optimisations crossing 
application boundaries. 
 This paper briefly describes the overall system that is 
under development. It then focuses on the cache switching 
algorithm, where the issue of optimisation mismatch, the 
situation when applications are run on the customised 
caches of other applications, is explored. 

2. OVERVIEW OF WORK 

Dynamic cache switching is about changing cache 
behaviour during runtime to match the application that is 
currently active. It uses a generic cache controller and a 
number of specialised cache controllers specific to 
particular applications.  The generic cache controller is 
used with un-profiled applications or applications that do 



not load the cache heavily. The specialised pre-built cache 
controllers are switched in and out of operation in response 
to profiled applications that are linked to the specialised 
caches. 
 Optimisation of a subset of the applications, as used in 
dynamic cache switching, has not been seriously 
considered before. Previous work attempted to optimise 
the entire system, or provide an optimised generic memory 
system and cater for all the applications. This methodology 
is a response to the way embedded systems now straddle 
the boundary between a generic computing system and a 
custom computing system. 
 Unlike a generic computer, embedded systems with 
softcore processors usually have a set of known primary 
applications that run for the majority of the time. These 
applications are usually known at synthesis time which 
means customised caches can be built to cater for them. 
 There are three main things needed to achieve dynamic 
cache switching: a cache management system, suitable 
cache configurations to switch between, and analysis to 
decide which caches to switch between. These 
requirements are described below. 

2.1. The Cache Management System 

 
Fig. 1.  The Cache Management System 

The most important thing about the architecture for 
implementing dynamic cache switching is that both 
application and kernel see a single contiguous memory, as 
with any normal cache. This is important as the designer 
does not want to adjust every application in their system, 
and would be unable to if source code is not available. 
 A cache manager hardware module listens on the 
memory bus for memory accesses to specific predefined 
memory locations outside of the main memory address 
space. Specifically it looks for a memory access from the 
kernel’s scheduler that lists the current process ID and for 
applications registering or deregistering the current process 
ID as one that may require a customised cache. 
 This approach means that applications that are to be 
optimised require a simple modification to perform a 

single memory write on startup and a single write when 
they end. The kernel is modified to perform a single write 
(specifying a process ID) on program startup or when 
context switching. Other applications are unchanged.  
 The cache manager will then be able to trigger off 
context switches or program start up. It will know 
whenever an application with a specialized cache is being 
run, and decide the appropriate action based on a lookup 
table calculated during compilation. This method also 
opens up the possibility of multiple caches for different 
parts of the same application, as the application can 
reregister itself to a different customised cache. 
Optimisation of applications without source code is 
possible if runtime profiling is implemented. However, this 
is outside the scope of this work. This system has been 
illustrated in Fig. 1.  

2.2. The Caches 

As mentioned earlier, previous work has looked at 
adjusting the block size, associativity, cache size, and way 
prediction of caches. While the implementation of dynamic 
cache switching could allow for more exotic cache 
variations, previous work has found significant 
performance variation when varying only these standard 
parameters. This work therefore will only consider 
variations in these standard cache attributes. 
 When implemented on a softcore system, dynamic 
cache switching makes better use of the limited resources 
available than previous work that attempts to optimise for 
every case. The resource problem became readily apparent 
when initial work was started on implementing the 
hardware of the custom caches. While it may look 
attractive to have the full range of cache adjustments 
available, this neglects the fact that memory needs to be 
put aside for implementing the cache tags of the worst case 
scenario. Furthermore, greater reconfigurability means 
more routing and multiplexers that can decrease the 
maximum clock speed of the softcore processor. This 
restriction in hardware resources makes implementing only 
a small number of cache controllers more desirable than 
allowing for the full range of options. 
 What this work does share with previous work is the 
idea of reusing the available memory resources between 
different caches. A side effect of this is the loss of data 
from flushing that occurs on a cache switch. It also means 
that the cache either needs to be write-through or have the 
overhead of flushing data back to the main memory 
whenever a cache switch occurs. 

2.3. Analysis for Determining Cache Switching 

Previous work focused on the improvement in relation to a 
generic cache. This work looks at the optimisation 
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differences between various customised caches as part of 
switching algorithm. 
 The performance loss from cache switching comes 
about from two main things: cache flushing of data that 
will later need to be refetched, and reconfiguration time of 
the cache changing to the new settings. This performance 
loss is shown by CR, CSP and CF in equation (1). Where 
CR and CF depend on the morphing techniques used 
during the cache switching and CSP is the time period 
these losses occur in. The calculations and methodology 
for finding CR and CF are beyond the scope of this paper. 
 The possible performance improvement comes from 
switching the cache to a new configuration when there is a 
context switch. This is illustrated by (ETP1-ETP2) in 
equation (1). Where ETP2 is the performance of the 
application when the cache is not switched, and is ETP1 the 
performance of the application when the cache is switched 
to the cache optimised for the application. 
 Equation (1) shows the possible improvement that can 
be gained from cache switching on a single context switch. 
This is not to be confused with the overall improvement. 
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ETP1 = Execution Time % of current cache: Percentage of clock cycles 
taken by the current cache to execute compared to the control cache. 

ETP2 = Execution Time % of new cache: Percentage of clock cycles 
taken by the new cache to execute compared to the control cache. 

CR = Cache Reconfiguration time: Clock cycles taken by hardware to 
reconfigure the cache settings. 

CF = Cache Flushing overhead: Number of clock cycles used refetching 
flushed data that otherwise would have stayed in the cache. 

CSP = Context Switching Period: Clock cycles from start of one context 
to the start of a new one. 

 

 The simulation tools that were built generate the 
number of clock cycles that cache traces (from a 
microblaze softcore) take to run on each cache. This is the 
sampled execution time of an application when run on a 
cache. 
 The cache traces obtained are of different lengths so the 
execution time results need to be normalised. A control 
cache was chosen with theoretically ideal cache settings: 
512Kbytes memory, 16 ways, block size of 1, and Pseudo-
LRU replacement policy. The execution time for a result is 
divided by the control cache's execution time. This gives a 
normalised execution time, an execution time percentage 
(ETP) relative to the control cache. 
 The ETP can be thought of as the normalised 
performance of a cache for a particular application. The 
ETP difference (∆ETP) is used to show a performance 
difference, either between two applications for the same 
cache, or one application between various caches. 
 The optimisation mismatch is used to describe a type 
of ∆ETP that shows how much performance loss there will 
be when a cache switch occurs and an application is run on 
a cache tailored for the previous application. This is the 
∆ETP of an application that is run on the two caches. 

 This optimisation mismatch tells the switching 
algorithm when it is worthwhile to switch to a new cache 
configuration. If the optimisation mismatch is lower than 
the overheads of cache switching given by CR, CF and 
CSP, then it is not worthwhile to perform a cache switch. 

3.  EXPERIMENTAL SETUP 

The experimental results concentrate on one aspect of the 
work, the cache optimisation mismatch. Finding the 
optimisation mismatch helps answer the question of when 
caches need to be switched. 
 Testbenches were run on a Xilinx ML401 board, 
running uClinux [10] on a MicroBlaze softcore processor 
[11]. A custom data gathering system was created on a 
separate board to record memory bus traces. The relevant 
data was stripped of its memory access delays and then 
was placed in a cache simulator which ran through the 
traces adding the memory timing for different caches. 
 The analysis in this paper focuses on data memory 
accesses. As the benchmarks have relatively small program 
sizes, there are not many instruction cache misses. 
 For these experiments execution time is the main 
consideration. However, the methodology can easily be 
converted to evaluate energy usage as each memory 
component is modelled in the simulator for the timing. 
 Variations of memory size, number of ways, block size, 
and replacement policy of the cache are considered in this 
experiment. The experiment used 80 samples of recorded 
memory access patterns to find the mean ETP for each 
application under various caches. To ensure that sampling 
variance is not overpowering the results, the margin of 
error for each mean ETP is calculated for a 95% degree of 
confidence and compared with the significance of the data. 
 The mean ETP can then be used as a measure of the 
performance of applications run under various caches. For 
all the results a mean ETP is used although not explicitly 
mentioned. 

4. RESULTS 

A number of benchmarks from the Mibench test suite [12] 
were ported to MicroBlaze. Automotive, network, security 
and telecomm were chosen as likely subsections of the test 
suite to be used in an embedded system. Analysis was 
performed in three parts, allowing for narrowing of the 
search space each time.  
 First, the amount of the possible optimisation mismatch 
was found for the search space. This showed which 
applications may need a custom cache. Second, the 
optimisation mismatch between applications was mapped 
over the search space. This shows trends in how 
applications differ in their reaction to changes in the cache. 
Finally, the optimisation mismatch that will occur with 
cache switching is shown. 



4.1. Optimisation Mismatch Possible for Applications 

Not all applications benefit significantly from cache 
optimisation. To find out which applications can benefit, 
the ETP of their various cache configurations were then 
compared with their optimal solution to see if there was 
any difference. This is comparing the ETP of an 
application between caches. 
 As seen in Table 1, the Djisktra, Blowfish and Rijndael 
testbenches had significant ETP performance changes over 
the cache variations chosen, so this paper will concentrate 
on the results for these applications. 
 The other testbenches failed to provide significant 
statistical difference in their performance when the cache 
attributes were varied. That only some of the applications 
show significant responses to cache variation fits with the 
theory that optimising everything is not necessary. 

Table 1.  Largest ETP Difference from Optimal in Testbenches 

Test Bench ∆ETP from optimal  Test Bench ∆ETP from optimal 
Djisktra 40.876%  ADPCM 4.139% 
Blowfish 18.343%  Bitcnts 2.490% 
Rijndael 14.603%  CRC 0.353% 
Basicmath 0.028%  FFT 0.248% 
SHA 0.217%  GSM 3.655% 

4.2. Comparison Between Applications 

The ETP of each cache was compared between 
applications. This gives an idea of cache trends between 
applications, increasing or decreasing a particular attribute 
will either increase or decrease the difference in 
performance between the applications. 
 Finding the exact optimisation mismatch between 
applications is an extra dimension when searching the 
design space. This mismatch is therefore analysed only 
after the design space has been narrowed. 
 Comparisons are shown between the testbenches 
Blowfish and Djisktra, and Rijndael and Blowfish. The 
Rijndael and Djisktra comparison was sufficiently similar 
to the results of the Blowfish and Djisktra testbenches that 
the analysis would be repetitive. Other comparisons did not 
have enough significance in the ETP difference (∆ETP). 
The replacement policies used were Pseudo-LRU and 
random, however these generated only a maximum of 
0.5% difference so these comparisons are not shown here. 
 The graphs in this section show the ∆ETP between two 
applications for the same cache. Each data point represents 
a cache with various settings and shows the difference in 
their performance from optimal (∆ETP) between the two 
applications for that cache.  
 The data points for all the possible cache configurations 
are shown in the graphs. They are arranged along the X 
axis by only two of their attributes; the attribute labelled in 
the axis and the attribute in the legend. Multiple data points 
for each X are due to variations in the other attributes. 

4.2.1. Comparison Between Blowfish and Djisktra 

While Blowfish and Djisktra showed similar attributes 
when considered individually, when the results were 
overlaid there was a difference in how they behaved. 

 
Fig. 2.  Blowfish/Djisktra comparison of Ways and Cache Memory 

 Fig. 2 graphs the variation of ETP for Blowfish 
compared to Djisktra. Each data point corresponds to a 
cache, with varying attributes, that was simulated. The data 
points are graphed by memory size along the X axis and 
further clustered by number of ways around each memory 
size location. The Y axis maps the difference of the first 
mentioned application Blowfish, to the second application 
Djisktra. Djisktra showed less tolerance for small cache 
sizes than Blowfish. Also a higher number of ways 
improved Djisktra around 8KB of memory, while playing 
no significant role when Blowfish is considered. 

 
Fig. 3.  Blowfish/Djisktra comparison of Block Size and Cache Memory 

 In Fig. 3 the data points are grouped by memory and 
block size. Blowfish compared to Djisktra handled larger 
block sizes better when the memory was low, while 
Djisktra had a performance improvement with larger block 
sizes when the memory sizes were larger. 
 The data shows that when designing a cache for one 
application, attributes that are not important for that case 
can play a significant role in how another application 
responds. Looking at the data for each application 
individually (not shown here), Djisktra overshadows 
Blowfish in its sensitivity to the cache attributes such that 
Blowfish would work reasonably well under a cache that 
was created for Djisktra. It highlights that sometimes 
switching from a cache optimised for one application to a 
cache that is optimised to another may not be necessary.  
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Fig. 4.  Blowfish/Djisktra comparison of Cache Memory and ETP 

 Fig. 4 remaps the results so the ETP of Blowfish can be 
directly compared with Djisktra. This shows whether the 
revealed trends with the performances have some 
correlation between applications or are independent. The 
previous graphs only showed the difference between the 
applications.  
 The dotted line is a line of exact correlation between 
the two programs. Deviation from the dotted line means 
that there is a cache trend that is stronger for one 
application than the other. In this case the cache trends are 
all stronger for Djisktra, reflecting how Djisktra 
overshadows Blowfish in the cache trends. 
 The vertical “line” of points in Fig. 4 shows that at 
cache memory size 8KB (and to a lesser degree 32KB), 
Djisktra exhibits significant differences in performance 
while this trend is not present with Blowfish. This 
confirms the earlier conclusion that certain cache settings 
can impact one application but play no role in another. 
 For a cache memory size of 2KB, the diagonal “line” of 
data points shows how Blowfish and Djisktra trends 
correspond to a degree. When the trends correspond it 
means that the optimal cache for Blowfish and Djisktra 
may overlap for those settings. 

4.2.2. Comparison between Rijndael and Blowfish 

 
Fig. 5.  Rijndael/Blowfish comparison Block Size and Memory Size 

In Fig. 5 increased block size gives an improvement for 
Rijndael over Blowfish at 2KB of cache memory. While 
this trend reverses at 8KB of cache with block size giving 
an improvement for Blowfish over Rijndael instead. 
 Looking at the dotted line in Fig. 6 and considering the 
cache trends, the cache trends are stronger for the Rijndael 
at 2KB while they are stronger in the Blowfish at 8KB. 

 
Fig. 6.  Rijndael/Blowfish comparison of Cache Memory and ETP 

 This difference in which application has the stronger 
behaviour is important, as it shows that one application 
does not overshadow the other all the time. This differing 
behaviour suggests that there is optimisation mismatch that 
is beneficial for cache switching. Unfortunately this 
difference is not relevant in the next section as the 
assumption is made that cache memory size is fixed. 

4.3. Valid Optimisation Differences 

The graphs of the ∆ETP in the previous sections show 
differences in the cache trends and allow for the different 
dimensions in cache configuration to be explored quickly.  
They do not show whether the configuration points would 
actually be used in a real situation. Optimisation 
mismatch, ∆ETP between the current cache configuration 
and its optimal cache configuration can be found if the 
cache is configured for another application. It can also be 
found when a cache that tries to optimise between multiple 
applications is used.  
 In a reconfigurable embedded system the available fast 
memory that can be used by the cache is a limiting factor. 
Cache sizes are therefore considered a fixed factor in this 
analysis and only 8KB and 2KB cache sizes were studied. 

Table 2.  Worst Case Optimisation Mismatch 

Djisktra  Blowfish Rijndael 
Cache Size 

8KB 
Cache Size 

2KB 
Cache Size 

8KB 
Cache Size 

2KB 
Cache Size 

8KB 
Cache Size 

2KB 
22.676% 31.389% 0.919% 14.253% 4.048% 11.290% 

 Table 2 shows the worst case mismatch that can occur. 
This is how much the ETP can stray from its optimal 
(lowest) value when varying cache attributes other than the 
memory size. This is useful for giving perspective to 
mismatches discussed later. Looking at the percentages of 
mismatch shows how great an effect the mismatch will 
have on the application performance. Comparing it to the 
maximum mismatch shows the magnitude of the 
optimisation conflict between the two applications. 
 Table 3 shows mismatch when the cache is optimised 
for only one of the applications. This is the most relevant 
situation when cache switching occurs. For the majority of 
cases when one of the programs is optimised, the cache 
works reasonably well for the other applications. 
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Table 3.  Mismatch when Optimised for One Application 

Optimised for 
Djisktra 

Optimised for 
Blowfish 

Optimised for 
Rijndael 

 

8KB 
16 Way 

16 Blocks 

2KB 
2 Way 

1 Blocks 

8KB 
1 Way 

64 Blocks 

2KB 
16 Way 
4 Blocks 

8KB 
16 Way 

16 Blocks 

2KB 
16 Ways 
4 Blocks 

Djisktra NA NA 12.771% 0.799% 0.000% 0.799% 
Blowfish 0.032% 0.148% NA NA 0.032% 0.000% 
Rijndael 0.000% 0.038% 0.436% 0.000% NA NA 
 However, the optimal Blowfish configuration at 8KB 
memory size turned out to be a bad configuration for 
Djisktra, resulting in a 12.8% execution time increase from 
the optimal Djisktra solution. This shows a significant 
conflict of cache trends as the worst possible setting shown 
in Table 2 is 22.7%. 

 
Fig. 7.  Mismatch with Djisktra and Blowfish at 8KB Cache Size 

 In Fig. 7 the mismatched optimisation between Djisktra 
and Blowfish testbenches can be seen for various block 
sizes. Blowfish runs better with a large block size while 
Djisktra works better with smaller blocks.  
 The high optimisation possible with these few 
testbenches shows that dynamic cache switching is more 
useful when there are a number of applications that are to 
be optimised. The greater variance found with more 
applications will make it less likely that one application 
will have a much higher magnitude of optimisation 
mismatch compared with the others and more likely that 
there will be significant mismatches between applications. 

5. CONTRIBUTIONS AND FUTURE WORK 

This paper contributes three main things.  
 First, it has explained how dynamic cache switching is 
particularly suitable for a preemptive softcore system. 
There are tangible performance benefits gained from 
having custom caches, but a framework that optimises for 
the entire system would be unsuitable. By contrast, 
previous work covers global approaches that optimise 
everything in either a generic or very specific way. 
 Second, it shows a novel and practical way to 
implement cache switching with minimal changes required 
in software. 
 Finally, it explores the concept of cache mismatch, an 
improved way to measure performance improvement in 

dynamic cache switching. Previous work measures 
improvement in relation to a generic cache. 
 In future work, the effect of the hardware overheads 
involved in cache switching will be considered. This 
combined with the research into optimisation mismatch 
will be used to generate the cache switching algorithm. 
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