
DYNAMIC CACHE SWITCHING IN RECONFIGURABLE EMBEDDED SYSTEMS

John Shield, Peter Sutton, and Philip Machanick

School of Information Technology and Electrical Engineering
 The University of Queensland

 Brisbane Australia 4072
 email: xue@itee.uq.edu.au, p.sutton@itee.uq.edu.au, philip@itee.uq.edu.au

ABSTRACT

The idea of changing cache attributes to suit an application
has been explored for single programs. As the popularity
of reconfigurable softcore systems grows and these
systems increasingly use operating systems and run
multiple applications, the possibility arises of dynamic
cache switching to improve performance. This paper
presents the new idea of dynamic cache switching in a
preemptive soft-core system. Such switching optimises the
cache structure on a context switch or transition between
applications. A practical solution for implementing cache
switching in a reconfigurable softcore system is presented.
For the design of the switching algorithm, this paper
explores the mismatch of cache optimisations between
applications. Focusing on the optimisation only is not
enough for evaluating cache switching, as not all the
applications are optimised and also the overheads in cache
switching may not justify the improvement.

1. INTRODUCTION

In recent work with embedded environments, operating
systems are increasingly being used on FPGA-based
softcore processors. While they still have a subset of
applications that constitute the workload of interest, they
must also cater for a multitude of secondary programs that
may be run. This paper specifically addresses cache
optimisations for the workload of interest running on a
softcore CPU, with such optimisations happening at
transitions between applications, such as context switches.
 We propose a reconfigurable multi-cache architecture
for a preemptive operating system, where caches are
customised for a subset of applications on the system. The
caches are changed on a context switch depending on the
overhead of the cache switch and the performance
difference when changing between the previous
application's cache and the new one.
 There are three related categories of previous work that
only partially address the design issues involved with
dynamic cache switching.
 It has been shown that cache reconfiguration during the
operation of a program can give substantial improvements

in program performance [1-3]. This work has looked at
changing the block size, associativity, cache size, cache
line size and way prediction during the operation of
individual programs. However, this previous work only
considers single programs and does not consider how
runtime cache optimisation might work under a preemptive
operating system. A preemptive operating system can
context switch to a task where the optimisations may prove
a hindrance. Furthermore, the work presented in this paper
looks at the optimisation differences between multiple
optimised caches, instead of between a generic cache and
an optimised cache.
 Some related work in the area of task switching looks
into cache-related preemptive delay [4-6]. This work has
concentrated on the cost of flushing part or all of a cache
when blocks of memory overwritten by a previous task
need to be refetched. The focus is on calculating these
costs to improve the efficiency of scheduling algorithms.
None of this earlier work has explored the effect of cache
optimisations in a preemptive system.
 A different methodology to avoid the preemption
problem is through a cache-aware operating system. This
involves the operating system or program explicitly
controlling things such as cache partitioning [7-9]. Some or
all of the tasks are allocated a sub-portion of the cache so
there are no cache conflicts from task switching. This
approaches the problem from a partitioning perspective,
and does not consider cache optimisations crossing
application boundaries.
 This paper briefly describes the overall system that is
under development. It then focuses on the cache switching
algorithm, where the issue of optimisation mismatch, the
situation when applications are run on the customised
caches of other applications, is explored.

2. OVERVIEW OF WORK

Dynamic cache switching is about changing cache
behaviour during runtime to match the application that is
currently active. It uses a generic cache controller and a
number of specialised cache controllers specific to
particular applications. The generic cache controller is
used with un-profiled applications or applications that do

not load the cache heavily. The specialised pre-built cache
controllers are switched in and out of operation in response
to profiled applications that are linked to the specialised
caches.
 Optimisation of a subset of the applications, as used in
dynamic cache switching, has not been seriously
considered before. Previous work attempted to optimise
the entire system, or provide an optimised generic memory
system and cater for all the applications. This methodology
is a response to the way embedded systems now straddle
the boundary between a generic computing system and a
custom computing system.
 Unlike a generic computer, embedded systems with
softcore processors usually have a set of known primary
applications that run for the majority of the time. These
applications are usually known at synthesis time which
means customised caches can be built to cater for them.
 There are three main things needed to achieve dynamic
cache switching: a cache management system, suitable
cache configurations to switch between, and analysis to
decide which caches to switch between. These
requirements are described below.

2.1. The Cache Management System

Fig. 1. The Cache Management System

The most important thing about the architecture for
implementing dynamic cache switching is that both
application and kernel see a single contiguous memory, as
with any normal cache. This is important as the designer
does not want to adjust every application in their system,
and would be unable to if source code is not available.
 A cache manager hardware module listens on the
memory bus for memory accesses to specific predefined
memory locations outside of the main memory address
space. Specifically it looks for a memory access from the
kernel’s scheduler that lists the current process ID and for
applications registering or deregistering the current process
ID as one that may require a customised cache.
 This approach means that applications that are to be
optimised require a simple modification to perform a

single memory write on startup and a single write when
they end. The kernel is modified to perform a single write
(specifying a process ID) on program startup or when
context switching. Other applications are unchanged.
 The cache manager will then be able to trigger off
context switches or program start up. It will know
whenever an application with a specialized cache is being
run, and decide the appropriate action based on a lookup
table calculated during compilation. This method also
opens up the possibility of multiple caches for different
parts of the same application, as the application can
reregister itself to a different customised cache.
Optimisation of applications without source code is
possible if runtime profiling is implemented. However, this
is outside the scope of this work. This system has been
illustrated in Fig. 1.

2.2. The Caches

As mentioned earlier, previous work has looked at
adjusting the block size, associativity, cache size, and way
prediction of caches. While the implementation of dynamic
cache switching could allow for more exotic cache
variations, previous work has found significant
performance variation when varying only these standard
parameters. This work therefore will only consider
variations in these standard cache attributes.
 When implemented on a softcore system, dynamic
cache switching makes better use of the limited resources
available than previous work that attempts to optimise for
every case. The resource problem became readily apparent
when initial work was started on implementing the
hardware of the custom caches. While it may look
attractive to have the full range of cache adjustments
available, this neglects the fact that memory needs to be
put aside for implementing the cache tags of the worst case
scenario. Furthermore, greater reconfigurability means
more routing and multiplexers that can decrease the
maximum clock speed of the softcore processor. This
restriction in hardware resources makes implementing only
a small number of cache controllers more desirable than
allowing for the full range of options.
 What this work does share with previous work is the
idea of reusing the available memory resources between
different caches. A side effect of this is the loss of data
from flushing that occurs on a cache switch. It also means
that the cache either needs to be write-through or have the
overhead of flushing data back to the main memory
whenever a cache switch occurs.

2.3. Analysis for Determining Cache Switching

Previous work focused on the improvement in relation to a
generic cache. This work looks at the optimisation

 volatile unsigned int *writepidloc = 0xFFF00000;

 if (current->need_resched)
 goto need_resched_back;
 writepidloc = 0xFFF00000+(current->pid<<4);
 *(writepidloc) = 0;
 return;
 ...

Kernel
 Responds to
 Context Switch: 0xFFF?????
 Application Registering: 0xFFE?????
 Application Deregistering: 0xFFD?????

Cache Manager

No Change
Application

M
em

or
y

B
us

 ...
 int main(int argc, char *argv[]) {
 asm("sbi r20, r0, 0xFFE00001");
 ...
 asm("sbi r20, r0, 0xFFD00001");
 exit(0);
 ...

Application

Generic Cache

 Custom Cache

 Custom Cache

Memory System

differences between various customised caches as part of
switching algorithm.
 The performance loss from cache switching comes
about from two main things: cache flushing of data that
will later need to be refetched, and reconfiguration time of
the cache changing to the new settings. This performance
loss is shown by CR, CSP and CF in equation (1). Where
CR and CF depend on the morphing techniques used
during the cache switching and CSP is the time period
these losses occur in. The calculations and methodology
for finding CR and CF are beyond the scope of this paper.
 The possible performance improvement comes from
switching the cache to a new configuration when there is a
context switch. This is illustrated by (ETP1-ETP2) in
equation (1). Where ETP2 is the performance of the
application when the cache is not switched, and is ETP1 the
performance of the application when the cache is switched
to the cache optimised for the application.
 Equation (1) shows the possible improvement that can
be gained from cache switching on a single context switch.
This is not to be confused with the overall improvement.

() 10021 ×

 +−−=

CSP
CRCFETPETPtimprovemen (1)

ETP1 = Execution Time % of current cache: Percentage of clock cycles
taken by the current cache to execute compared to the control cache.

ETP2 = Execution Time % of new cache: Percentage of clock cycles
taken by the new cache to execute compared to the control cache.

CR = Cache Reconfiguration time: Clock cycles taken by hardware to
reconfigure the cache settings.

CF = Cache Flushing overhead: Number of clock cycles used refetching
flushed data that otherwise would have stayed in the cache.

CSP = Context Switching Period: Clock cycles from start of one context
to the start of a new one.

 The simulation tools that were built generate the
number of clock cycles that cache traces (from a
microblaze softcore) take to run on each cache. This is the
sampled execution time of an application when run on a
cache.
 The cache traces obtained are of different lengths so the
execution time results need to be normalised. A control
cache was chosen with theoretically ideal cache settings:
512Kbytes memory, 16 ways, block size of 1, and Pseudo-
LRU replacement policy. The execution time for a result is
divided by the control cache's execution time. This gives a
normalised execution time, an execution time percentage
(ETP) relative to the control cache.
 The ETP can be thought of as the normalised
performance of a cache for a particular application. The
ETP difference (∆ETP) is used to show a performance
difference, either between two applications for the same
cache, or one application between various caches.
 The optimisation mismatch is used to describe a type
of ∆ETP that shows how much performance loss there will
be when a cache switch occurs and an application is run on
a cache tailored for the previous application. This is the
∆ETP of an application that is run on the two caches.

 This optimisation mismatch tells the switching
algorithm when it is worthwhile to switch to a new cache
configuration. If the optimisation mismatch is lower than
the overheads of cache switching given by CR, CF and
CSP, then it is not worthwhile to perform a cache switch.

3. EXPERIMENTAL SETUP

The experimental results concentrate on one aspect of the
work, the cache optimisation mismatch. Finding the
optimisation mismatch helps answer the question of when
caches need to be switched.
 Testbenches were run on a Xilinx ML401 board,
running uClinux [10] on a MicroBlaze softcore processor
[11]. A custom data gathering system was created on a
separate board to record memory bus traces. The relevant
data was stripped of its memory access delays and then
was placed in a cache simulator which ran through the
traces adding the memory timing for different caches.
 The analysis in this paper focuses on data memory
accesses. As the benchmarks have relatively small program
sizes, there are not many instruction cache misses.
 For these experiments execution time is the main
consideration. However, the methodology can easily be
converted to evaluate energy usage as each memory
component is modelled in the simulator for the timing.
 Variations of memory size, number of ways, block size,
and replacement policy of the cache are considered in this
experiment. The experiment used 80 samples of recorded
memory access patterns to find the mean ETP for each
application under various caches. To ensure that sampling
variance is not overpowering the results, the margin of
error for each mean ETP is calculated for a 95% degree of
confidence and compared with the significance of the data.
 The mean ETP can then be used as a measure of the
performance of applications run under various caches. For
all the results a mean ETP is used although not explicitly
mentioned.

4. RESULTS

A number of benchmarks from the Mibench test suite [12]
were ported to MicroBlaze. Automotive, network, security
and telecomm were chosen as likely subsections of the test
suite to be used in an embedded system. Analysis was
performed in three parts, allowing for narrowing of the
search space each time.
 First, the amount of the possible optimisation mismatch
was found for the search space. This showed which
applications may need a custom cache. Second, the
optimisation mismatch between applications was mapped
over the search space. This shows trends in how
applications differ in their reaction to changes in the cache.
Finally, the optimisation mismatch that will occur with
cache switching is shown.

4.1. Optimisation Mismatch Possible for Applications

Not all applications benefit significantly from cache
optimisation. To find out which applications can benefit,
the ETP of their various cache configurations were then
compared with their optimal solution to see if there was
any difference. This is comparing the ETP of an
application between caches.
 As seen in Table 1, the Djisktra, Blowfish and Rijndael
testbenches had significant ETP performance changes over
the cache variations chosen, so this paper will concentrate
on the results for these applications.
 The other testbenches failed to provide significant
statistical difference in their performance when the cache
attributes were varied. That only some of the applications
show significant responses to cache variation fits with the
theory that optimising everything is not necessary.

Table 1. Largest ETP Difference from Optimal in Testbenches

Test Bench ∆ETP from optimal Test Bench ∆ETP from optimal
Djisktra 40.876% ADPCM 4.139%
Blowfish 18.343% Bitcnts 2.490%
Rijndael 14.603% CRC 0.353%
Basicmath 0.028% FFT 0.248%
SHA 0.217% GSM 3.655%

4.2. Comparison Between Applications

The ETP of each cache was compared between
applications. This gives an idea of cache trends between
applications, increasing or decreasing a particular attribute
will either increase or decrease the difference in
performance between the applications.
 Finding the exact optimisation mismatch between
applications is an extra dimension when searching the
design space. This mismatch is therefore analysed only
after the design space has been narrowed.
 Comparisons are shown between the testbenches
Blowfish and Djisktra, and Rijndael and Blowfish. The
Rijndael and Djisktra comparison was sufficiently similar
to the results of the Blowfish and Djisktra testbenches that
the analysis would be repetitive. Other comparisons did not
have enough significance in the ETP difference (∆ETP).
The replacement policies used were Pseudo-LRU and
random, however these generated only a maximum of
0.5% difference so these comparisons are not shown here.
 The graphs in this section show the ∆ETP between two
applications for the same cache. Each data point represents
a cache with various settings and shows the difference in
their performance from optimal (∆ETP) between the two
applications for that cache.
 The data points for all the possible cache configurations
are shown in the graphs. They are arranged along the X
axis by only two of their attributes; the attribute labelled in
the axis and the attribute in the legend. Multiple data points
for each X are due to variations in the other attributes.

4.2.1. Comparison Between Blowfish and Djisktra

While Blowfish and Djisktra showed similar attributes
when considered individually, when the results were
overlaid there was a difference in how they behaved.

Fig. 2. Blowfish/Djisktra comparison of Ways and Cache Memory

 Fig. 2 graphs the variation of ETP for Blowfish
compared to Djisktra. Each data point corresponds to a
cache, with varying attributes, that was simulated. The data
points are graphed by memory size along the X axis and
further clustered by number of ways around each memory
size location. The Y axis maps the difference of the first
mentioned application Blowfish, to the second application
Djisktra. Djisktra showed less tolerance for small cache
sizes than Blowfish. Also a higher number of ways
improved Djisktra around 8KB of memory, while playing
no significant role when Blowfish is considered.

Fig. 3. Blowfish/Djisktra comparison of Block Size and Cache Memory

 In Fig. 3 the data points are grouped by memory and
block size. Blowfish compared to Djisktra handled larger
block sizes better when the memory was low, while
Djisktra had a performance improvement with larger block
sizes when the memory sizes were larger.
 The data shows that when designing a cache for one
application, attributes that are not important for that case
can play a significant role in how another application
responds. Looking at the data for each application
individually (not shown here), Djisktra overshadows
Blowfish in its sensitivity to the cache attributes such that
Blowfish would work reasonably well under a cache that
was created for Djisktra. It highlights that sometimes
switching from a cache optimised for one application to a
cache that is optimised to another may not be necessary.

Blowfish ∆ETP to Djisktra

Cache Memory Size (KBytes)

∆E
TP

 b
et

w
ee

n
C

ac
he

 s
 (%

)

-20%

-15%

-10%

-5%

0%

5%

8 32 2 128 512

16
8
4
2
1

Ways

Blowfish ∆ETP to Djisktra

-25%

-20%

-15%

-10%

-5%

0%

5%

82 128

∆E
TP

 b
et

w
ee

n
C

ac
he

 s
 (%

)

1
2
4
8
16
32
64

Block
Size

(bytes)

Cache Memory Size (KBytes)
51232

Fig. 4. Blowfish/Djisktra comparison of Cache Memory and ETP

 Fig. 4 remaps the results so the ETP of Blowfish can be
directly compared with Djisktra. This shows whether the
revealed trends with the performances have some
correlation between applications or are independent. The
previous graphs only showed the difference between the
applications.
 The dotted line is a line of exact correlation between
the two programs. Deviation from the dotted line means
that there is a cache trend that is stronger for one
application than the other. In this case the cache trends are
all stronger for Djisktra, reflecting how Djisktra
overshadows Blowfish in the cache trends.
 The vertical “line” of points in Fig. 4 shows that at
cache memory size 8KB (and to a lesser degree 32KB),
Djisktra exhibits significant differences in performance
while this trend is not present with Blowfish. This
confirms the earlier conclusion that certain cache settings
can impact one application but play no role in another.
 For a cache memory size of 2KB, the diagonal “line” of
data points shows how Blowfish and Djisktra trends
correspond to a degree. When the trends correspond it
means that the optimal cache for Blowfish and Djisktra
may overlap for those settings.

4.2.2. Comparison between Rijndael and Blowfish

Fig. 5. Rijndael/Blowfish comparison Block Size and Memory Size

In Fig. 5 increased block size gives an improvement for
Rijndael over Blowfish at 2KB of cache memory. While
this trend reverses at 8KB of cache with block size giving
an improvement for Blowfish over Rijndael instead.
 Looking at the dotted line in Fig. 6 and considering the
cache trends, the cache trends are stronger for the Rijndael
at 2KB while they are stronger in the Blowfish at 8KB.

Fig. 6. Rijndael/Blowfish comparison of Cache Memory and ETP

 This difference in which application has the stronger
behaviour is important, as it shows that one application
does not overshadow the other all the time. This differing
behaviour suggests that there is optimisation mismatch that
is beneficial for cache switching. Unfortunately this
difference is not relevant in the next section as the
assumption is made that cache memory size is fixed.

4.3. Valid Optimisation Differences

The graphs of the ∆ETP in the previous sections show
differences in the cache trends and allow for the different
dimensions in cache configuration to be explored quickly.
They do not show whether the configuration points would
actually be used in a real situation. Optimisation
mismatch, ∆ETP between the current cache configuration
and its optimal cache configuration can be found if the
cache is configured for another application. It can also be
found when a cache that tries to optimise between multiple
applications is used.
 In a reconfigurable embedded system the available fast
memory that can be used by the cache is a limiting factor.
Cache sizes are therefore considered a fixed factor in this
analysis and only 8KB and 2KB cache sizes were studied.

Table 2. Worst Case Optimisation Mismatch

Djisktra Blowfish Rijndael
Cache Size

8KB
Cache Size

2KB
Cache Size

8KB
Cache Size

2KB
Cache Size

8KB
Cache Size

2KB
22.676% 31.389% 0.919% 14.253% 4.048% 11.290%

 Table 2 shows the worst case mismatch that can occur.
This is how much the ETP can stray from its optimal
(lowest) value when varying cache attributes other than the
memory size. This is useful for giving perspective to
mismatches discussed later. Looking at the percentages of
mismatch shows how great an effect the mismatch will
have on the application performance. Comparing it to the
maximum mismatch shows the magnitude of the
optimisation conflict between the two applications.
 Table 3 shows mismatch when the cache is optimised
for only one of the applications. This is the most relevant
situation when cache switching occurs. For the majority of
cases when one of the programs is optimised, the cache
works reasonably well for the other applications.

95% 100% 105% 110% 120%

100%

110%

120%

130%

140%

150%

160%

170%

115%
Blowfish ETP (%)

D
jis

kt
ra

 E
TP

 (%
)

512KB
128KB
32KB
8KB
2KB

Cache
Memory

Blowfish ETP comparison to Djisktra

99%

100%

101%

102%

103%

104%

99% 100% 101% 102% 103% 104%

512KB
128KB
32KB
8KB
2KB

Cache
Memory

Rijndael ETP (%)

B
lo

w
fis

h
ET

P
(%

)

Rijndael ETP Difference to Blowfish

Cache Memory Size (KBytes)

-4%
-3%
-2%
-1%
0%
1%

2%

3%
Rijndael ∆ETP to Blowfish

∆E
TP

 b
et

w
ee

n
C

ac
he

 s
 (%

)

8 32 2 128 512

1
2
4
8
16
32
64

Block
Size

Table 3. Mismatch when Optimised for One Application

Optimised for
Djisktra

Optimised for
Blowfish

Optimised for
Rijndael

8KB
16 Way

16 Blocks

2KB
2 Way

1 Blocks

8KB
1 Way

64 Blocks

2KB
16 Way
4 Blocks

8KB
16 Way

16 Blocks

2KB
16 Ways
4 Blocks

Djisktra NA NA 12.771% 0.799% 0.000% 0.799%
Blowfish 0.032% 0.148% NA NA 0.032% 0.000%
Rijndael 0.000% 0.038% 0.436% 0.000% NA NA
 However, the optimal Blowfish configuration at 8KB
memory size turned out to be a bad configuration for
Djisktra, resulting in a 12.8% execution time increase from
the optimal Djisktra solution. This shows a significant
conflict of cache trends as the worst possible setting shown
in Table 2 is 22.7%.

Fig. 7. Mismatch with Djisktra and Blowfish at 8KB Cache Size

 In Fig. 7 the mismatched optimisation between Djisktra
and Blowfish testbenches can be seen for various block
sizes. Blowfish runs better with a large block size while
Djisktra works better with smaller blocks.
 The high optimisation possible with these few
testbenches shows that dynamic cache switching is more
useful when there are a number of applications that are to
be optimised. The greater variance found with more
applications will make it less likely that one application
will have a much higher magnitude of optimisation
mismatch compared with the others and more likely that
there will be significant mismatches between applications.

5. CONTRIBUTIONS AND FUTURE WORK

This paper contributes three main things.
 First, it has explained how dynamic cache switching is
particularly suitable for a preemptive softcore system.
There are tangible performance benefits gained from
having custom caches, but a framework that optimises for
the entire system would be unsuitable. By contrast,
previous work covers global approaches that optimise
everything in either a generic or very specific way.
 Second, it shows a novel and practical way to
implement cache switching with minimal changes required
in software.
 Finally, it explores the concept of cache mismatch, an
improved way to measure performance improvement in

dynamic cache switching. Previous work measures
improvement in relation to a generic cache.
 In future work, the effect of the hardware overheads
involved in cache switching will be considered. This
combined with the research into optimisation mismatch
will be used to generate the cache switching algorithm.

6. REFERENCES

[1] Gordon-Ross, A., Vahid, F., Dutt, N., "Automatic tuning of
two-level caches to embedded applications," in Proc.
Design, Automation and Test in Europe Conference and
Exhibition, , vol. 1, pp. 208-213, 16-20 Feb. 2004.

[2] Chuanjun Zhang, Vahid, F., Lysecky, R., "A self-tuning
cache architecture for embedded systems," in Proc. Design,
Automation and Test in Europe Conference and Exhibition,
vol. 1, pp. 142- 147, 16-20 Feb. 2004.

[3] Hu, J. S., Kandemir, M., Vijaykrishnan, N., Irwin, M. J.,
Saputra, H., and Zhang, W., “Compiler-directed cache
polymorphism,” SIGPLAN Not. Vol. 37,, pp. 165-174. 2002.

[4] Stärner, J. and Asplund, L., “Measuring the cache
interference cost in preemptive real-time systems,” in Proc.
ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools For Embedded Systems, pp. 146-154,
11-13 Jun. 2004.

[5] Chang-Gun Lee, Kwangpo Lee, Joosun Hahn, etc.
"Bounding cache-related preemption delay for real-time
systems," IEEE Trans. Software Engineering, vol. 27, no. 9,
pp. 805-826, Sep 2001.

[6] Staschulat, J., Schliecker, S., Ernst, R., "Scheduling analysis
of real-time systems with precise modeling of cache related
preemption delay," in Proc. Euromicro 17th Real-Time
Systems, pp. 41- 48, 6-8 July 2005.

[7] Y. Li and W. Wolf, “Hardware/software co-synthesis with
memory hierarchies,” IEEE Trans. Computer-Aided Design,
vol. 18, pp. 1405–1417, Oct. 1999.

[8] Liedtke, J., Hartig, H., Hohmuth, M., "OS-controlled cache
predictability for real-time systems," in Proc. IEEE 3rd
IEEE Real-Time Technology and Applications Symposium,
pp. 213-224, 9-11 Jun 1997.

[9] Mueller, F., “Compiler support for software-based cache
partitioning,” in Proc. ACM SIGPLAN Workshop on
Languages, Compilers, & Amp; Tools For Real-Time
Systems, pp. 125-133. 1995.

[10] Xilinx, “MicroBlaze Processor Reference Guide”, UG081
(v6.0), June 2006.

[11] uClinux, http://www.uclinux.org/, January 2007.

[12] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.
Mudge and R. B. Brown, “MiBench: A Free, Commercially
Representative Embedded Benchmark Suite,” in Proc. IEEE
4th IEEE International Workshop on Workload
Characterization, Dec. 2001.

Comparing Mismatch from Optimal with 8K Cache

0.00%
0.05%
0.10%
0.15%
0.20%
0.25%
0.30%
0.35%

0% 5% 10% 15% 20% 25%
Djisktra Mismatch (%)

B
lo

w
fis

h
M

is
m

at
ch

 (%
) 1

2
4
8
16
32
64

Block
Size

(bytes)

