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ABSTRACT 

The effect of kernel operations on cache optimisations in a 
soft-core reconfigurable system is important for dynamic 
cache switching design. Considering kernel operations 
changes the subset of cache configurations that would be 
chosen for dynamic cache switching and also the decisions 
on when to cache switch.  The results show that kernel 
operations can skew the effectiveness of application driven 
cache optimisations up to 20% over the original execution 
time. This skew is shown by mapping the performance of 
the applications both with and without kernel operations. 
The majority of the kernel operations is due to trap events 
generated by system calls like memory allocation or file 
reading. A cache configuration analysis methodology for 
fast searching of the design space is also explained and was 
used to find relevant changes due to kernel interference. 

1. INTRODUCTION 

Dynamic cache switching [1] requires the performance 
difference between custom caches to be optimised as part of 
the switching algorithm. In dynamic cache switching, is it 
not enough to have an optimised cache that is better than 
the norm. The cache that is being switched to has to give a 
performance benefit over the currently active optimised 
cache. While significant work has been done on cache 
optimisations for applications [2-7], the optimisation 
difference (optimisation mismatch) between customised 
caches has not been explored.  
 The key difference from previous work in cache 
reconfigurability; is previous work was for general purpose 
processors, or was implemented on a softcore in a way best 
suited for general purpose usage. The implementations did 
not take into account that only a subset of applications are 
frequently run on an embedded system. 
 Dynamic cache switching means the reconfigurability 
can be specialised for the main applications of the system at 
synthesis time of the softcore processor. Instead of the full 
range of cache reconfigurations like in other systems, a 
subset is implemented. This specialisation of the cache 

reconfigurability means better usage of hardware resources, 
one of the main limiting factors on an embedded system. 
 Research into optimisation mismatch of customised 
caches is critical for synthesis tools deciding the subset of 
cache configurations to cater for on the embedded system. 
 Kernel effects on hardware cache optimisations are not 
present in previous research on cache reconfigurability  
[2-7], and there is no research on the effect of the kernel on 
the optimisation mismatch. These kernel effects are 
important in dynamic cache switching as the majority of the 
kernel operations are scattered throughout the process. The 
dispersion of kernel operations makes cache switching on 
every kernel event untenable. Instead kernel operations 
need to be considered as part of the application analysis.  
 It is obvious that the kernel will have an affect on cache 
optimisations. The question is whether the kernel operations 
could change the subset of cache configurations chosen and 
also the decisions on when to cache switch. These things 
are determined by optimisation mismatch analysis. 
 Methodology for determining optimisation mismatch 
and exploration of the effect of the kernel on optimisation 
mismatch are presented in the following sections. 

2. SUPPORT TOOLS FOR ANALYSIS 

The support tools consisted of a hardware test platform, a 
custom data gathering board, and a cache simulator. An 
overview of the support tools that were built for this 
research can be seen in Fig. 1. 

 
Fig. 1.  Hardware for capturing cache traces 
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 The test platform used a Xilinx ML401 board, running 
uClinux [8] on a MicroBlaze softcore processor [9]. A 
custom hardware module was built to measure the bus 
accesses on the board during runtime and transfer the data 
to a data gathering board. This is downloaded to the PC for 
analysis, where the data is filtered to remove memory 
latencies but preserve other latencies. 
 A simulator was built that adds the timing behaviour of 
the cache being explored. It returns the number of simulated 
clock cycles that data samples took to run with each cache. 
This is the execution time of a sample (of an application) 
when run on a cache. 
 The sample lengths vary in length so execution time for 
a result is first divided by the control cache's execution 
time, where the control cache was chosen with theoretically 
ideal cache settings. This gives a normalised execution 
time, an execution time percentage (ETP) relative to the 
control cache. To account for variances in the application 
and the operating system, multiple samples were taken so a 
mean ETP value is used with all the presented data although 
not explicitly mentioned. 
 ETP difference (∆ETP) is used to show a performance 
difference, either between two applications for the same 
cache, or one application between various caches. 
 At the moment the main performance metric for 
dynamic cache switching is execution time. It can be 
extended to consider energy at a later date. 

2.1. Mapping Multi-Dimensional Cache Behaviour 

Current work on cache optimisations concentrates on 
algorithms for cache optimisations, which cannot easily be 
applied to new research in analysis. 
 This problem led to a methodology for graphing 
multiple dimensions of cache attributes as a fast way for 
narrowing down the design space. For the cache behaviour 
of an application, four dimensions of cache attributes were 
considered in this experiment. These were Memory Size, 
Ways, Block Size, and Replacement Policy. 
 Graphing only one cache attribute at a time is 
problematic as the results are usually different depending 
on what the other cache attributes are set to. This is because 
the behaviour of each dimension of cache attribute is 
usually not independent. Instead results need to be 
organised in a way that can easily show application based 
cache behaviour modified by multiple attributes. This is 
useful for design work as a single optimal solution neglects 
data which is not explicitly placed in the algorithm, things a 
designer will often need to consider. 
 A straight forward graph everything approach does not 
work well. As shown in Fig. 2 the individual graphs for 
ways (a) are combined to create the scatter graph in (c). 
This makes it difficult to analyse attributes as it is not 
obvious what attribute the trends in the graph belong to. 

 
Fig. 2.  Mapping Multi-Dimensional Cache Behaviour 

 In (c) the trends in memory size and block size confuse 
what is happening with the ways. This variance caused by 
other cache attributes can overwhelm the changes of 
interest for the attribute being studied. 
 To fix this, what is needed is the variation of the single 
cache attribute with how it interacts with the other cache 
settings, but without the unrelated differences caused by the 
other cache settings. 
 As shown in (b) and (d), this is done by subtracting each 
data point from the control value (of the attribute being 
graphed) for the same cache settings. This removes the Y 
axis offset of the original single dimension graph and leaves 
only changes that relate directly to the attribute of interest. 
 To further order the data, the data points are organised 
by two attributes on the X axis. Multiple graphs are made 
with the data reorganised along the X axis by the main 
attribute of interest and a second attribute. This helps to 
show how varying one cache attribute can affect how 
another cache attribute behaves. 
 The result is one set of data points tailored for each of 
the cache attributes, with multiple graphs used to redisplay 
those data points in different ways to highlight relationships 
between multiple cache attributes. 
 The analysis system used UNIX shell scripts to generate 
mean ETP difference (∆ETP) tables from the simulator 
results. These tables were then pasted into an Excel 
template that generated the various scatter graphs.  
 Finding how cache configuration affects the application 
is simply a matter of looking through the graphs for 
correlation of the data points. It will clearly show trends 
that depend on single and multiple cache attributes. When 
the data is zero there no correlation with the attributes. 
 This is used for finding points of interest in the design 
space or seeing overall trends in optimisation for various 
cache settings. It is part of the methodology used for 
analysing the kernel effects. Examples of graphs generated 
by this technique are shown used in previous work [1]. 
Future work intends to integrate this methodology with the 
cost of hardware overheads and possibly energy usage. 

0% 

4% 

8% 

100% 

120% 

140% 

100%

120%

140%

a) Graphing ways with other 
cache attributes fixed.

c) Combined graph for ways 
under many cache settings.

 

Graph of cache ways 
(64 Blocks, 8k, LRU) 

0% 

4% 

8% 

Graph of cache ways 
(64 Blocks, 8k, LRU) 

b) Y offset for control attribute 
(value for 16 ways) is subtracted.

Graph of all combinations organised 
by memory size and ways 

Graphing Memory Size 
and Ways 

Combine Graphs 

Combine Graphs 

d) Combined graph with data 
tailored for viewing way trends.

Remove 
Y offset 



3. KERNEL IMPACT ON CACHE OPTIMISATION 

Kernel operations occur on context switch, trap events 
(software interrupts) and IRQs (hardware interrupts). 
Context switching occurred when other processes were run 
instead of the application. Trap events occurred when the 
application calls the kernel to deal with hardware resources. 
While hardware interrupts were mostly generated by timers. 
 There are two direct sources of impact on cache 
optimisations when considering the kernel. First, the cache 
may flush part of the cached data when the kernel uses the 
same cache locations. Second, the kernel itself is using the 
cache for what it is doing and so optimisations will affect 
how fast the kernel runs. 
 Indirectly, the kernel also impacts on optimisations with 
context switches, where it is likely that a large portion of 
the cached data will be overwritten by another process and 
that data will need to be refetched. 
 The main question to be answered is whether kernel 
effects would change the optimisation mismatch analysis 
such that the subset of cache configurations chosen and the 
decisions on when to cache switch are also changed. This is 
the case when the good solutions of an application with 
kernel considered are different from the good solutions 
without the kernel considered. 

4. RESULTS 

Some benchmarks from the Mibench test suite [10] were 
ported to MicroBlaze and run on the uClinux. Automotive, 
network, security and telecomm were chosen as likely 
subsections of the test suite to be used in an embedded 
system.  
 Only the data bus is analysed as the benchmarks were 
small and an instruction cache wouldn't be heavily utilised. 
Direct sources of kernel operations will be covered, but not 
analysis of inter-application interference patterns. 

4.1. Initial Analysis 

 
Fig. 3.  Processing Time of Kernel Compared to Application 

The breakdown of execution time for an application and the 
kernel operations that occur without a scheduled context 

switch is shown in Fig. 3. Background kernel processes that 
are called by the process scheduler are not included in the 
data as these are handled like another application. 
 There is a high variability in the impact of the kernel on 
applications, seen in Fig. 3. Mainly this was due to trap 
events that are used whenever the application uses kernel 
level resources. The scheduler operations, which make up 
the interrupts, have a minimal impact under 3% of the 
processing time when an application is being run. 
 Only the applications that have significant kernel 
operations are relevant for further analysis; Djisktra, 
Blowfish, Rijndael, SHA, ADPCM, and CRC. Using the 
methodology for mapping cache optimisations described in 
section 2.1, the design space was further narrowed down to 
memory sizes of 2KB and 8KB. These memory sizes were 
the only ones that were significantly impacted by changes 
in the cache settings. 

4.2. Finding the Penalty when Disregarding Kernel 

 
Fig. 4. Djisktra 8k Cache, Percentage from optimal ETP 

 
Fig. 5. CRC 2k Cache, Percentage from optimal ETP 

The results were graphed for the relevant applications under 
8KB and 2KB memory sizes as seen in examples Fig. 4 and 
Fig. 5. The graphs show the ∆ETP penalty (from the 
optimal solution) for the various cache settings and also 
show how adding the kernel operations change the penalty. 
In many cases there is significant penalty with settings that 
previously had little to no penalty. However, this does not 
take into account the likelihood of a configuration being 
used.  
 To decide which cache configurations could realistically 
be chosen when the kernel is not considered. An 
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assumption was made that any configuration within 5% 
∆ETP, from the optimal value, might be used in a design 
for dynamic cache switching.   
 This cache selection tolerance factor is a realistic trade 
off tolerance in dynamic cache switching. Hardware 
overheads may make it desirable for two applications to use 
the same custom cache if they both run fairly well on it. Or 
a slight reduction in performance can be made to reduce 
hardware resource usage. As it is a trade off tolerance, 
changes smaller than the maximum trade off still matter. 
 With this assumption, kernel operations will have an 
impact on the subset of caches chosen and the cache switch 
decision; if the configurations meet the 5% tolerance (when 
kernel is not considered), but are significantly worse when 
the kernel is considered.  
 The additional execution time incurred by the kernel can 
add 42% (Djisktra at 8KB) over the normal execution time 
when considering all cases. Narrowing the possibilities 
down to a 5% cache selection tolerance, the Djisktra had an 
additional 20% execution time, when kernel operations 
were not considered. 

 
Fig. 6. Comparing Kernel Penalty with Kernel Processing Time 

 The amount of execution penalty that could be expected 
from ignoring kernel operations is shown against the 
amount of kernel processing time in Fig. 6. The penalty 
involved, depended on how different the cache behaviour of 
the application is compared to the kernel and how much the 
kernel overwrites the cache data. Analysis of the Djisktra 
program revealed that its trap events were generated by 
memory allocation kernel functions being called. While 
with the CRC and Blowfish the trap events were due to file 
reading. 

5. CONCLUSIONS 

Kernel effects were found to change the optimisation 
mismatch analysis and consequently change the subset of 
cache configurations that are chosen and also the decisions 
on when to cache switch. This happens when application-
directed cache optimisations are affected by kernel 
operations. Kernel operations had impact of 20% additional 
execution time in one case while almost no impact at all 

some other cases. Analysis of the program code showed 
that significant kernel operations in programs is mainly due 
to trap events generated by system calls like memory 
allocation or file reading. 
 An analysis method for discovering application related 
cache behaviour was also introduced, which allows 
multiple dimensions of cache attributes to be graphed. This 
was used as part of the research and was found to be a good 
way to narrow down the design space in cache 
configuration exploration. 
 Future work that stems from the kernel analysis includes 
tools that will identify which applications will call a large 
number of kernel functions, and also whether they will 
incur high cache penalties from doing so. 
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