Project CrayOn: Back to the future for a more
General-Purpose GPU?

Philip Machanick
Department of Computer Science
Rhodes University
Grahamstown, 6140, South Africa
p-machanick @ru.ac.za

Abstract—General purpose of use graphics processing units
(GPGPU) recapitulates many of the lessons of the early genera-
tions of supercomputers. To what extent have we learnt those
lessons, rather than repeating the mistakes? To answer that
question, I review why the Cray-1 design ushered in a succession
of successful supercomputer designs, while more exotic modes
of parallelism failed to gain traction. In the light of this review,
I propose that new packaging breakthroughs create an opening
for revisiting our approach to GPUs and hence GPGPU. If we do
not do so now, the GPU endpoint — when no GPU enhancement
will be perceptible to human senses — will in any case remove
the economic incentive to build ever-faster GPUs and hence the
economy of scale incentive for GPGPU. Anticipating this change
now makes sense when new 3D packaging options are opening up;
I propose one such option inspired by packaging of the Cray-1.

I. INTRODUCTION

Supercomputers and in general high-performance comput-
ing (HPC) designs evolved from faster versions of conven-
tional designs through vector processors to increasingly exotic
modes of parallelism. Eventually, options shook down to two:
shared-memory multiprocessors with conventional instruction
sets and vector machines. As each new wave of packaging
advance made it possible to move functionality to lower-cost
designs, some of these design choices were recapitulated.

The Cray-1 represents an interesting inflection point; while
not the first vector machine, it was the first to be commercially
successful. To some extent, it built on Seymour Cray’s prior
experience at Control Data and lessons from earlier vector
machines but a critical factor in its success is the fact that a
relatively large-scale semiconductor memory had just become
possible, displacing magnetic core memories made of discrete
components, and hence inherently hard to scale to large sizes
[1]. Many exotic modes of parallelism were explored in the
early supercomputer market; Cray relied on methods that are
now mainstream: pipelines, multiple issue and multiple CPUs,
with vectors the only significant instruction-level difference
from earlier Control Data designs [2].

Given that the Cray-1 was such a success, it is informative
to re-examine current assumptions and trends in the light of
why Cray was able to make such a big leap ahead. In today’s

The financial assistance of the South African National Research Foundation
(NRF) towards this research is hereby acknowledged. Opinions expressed and
conclusions arrived at, are those of the authors and are not necessarily to be
attributed to the NRF. NRF/CPRR Grant 98952.

market, the parts most similar to the weird and wonderful de-
signs from the early supercomputer era are graphics processor
units (GPUs). If major packaging changes are imminent, it is
useful to examine whether charging ahead with more of the
same is the best option.

Generally, reasons that more exotic modes of parallelism
failed have not changed. If an approach was hard to program
in a multi-million-dollar multi-chip design, it remained hard
to program when reduced to much less expensive hardware.
There is no Moore’s Law for programming skills. The only
thing that has changed is that in recent years, very aggressive,
complex modes of parallelism have found a mass market in
the form of GPUs and so general-purpose use of these parts
(GPGPU) has taken on a new life because there is a natural
mass market for GPUs. However, eventually, what I call the
GPU endpoint will arise: no improvement in GPUs will have
a noticeable effect on human perception. At that point, a faster
GPU will have no mass market and hence no clear justification
for use in HPC other than momentum.

I examine here whether there are design alternatives for
GPUs that could make for a more general-purpose GPU, i.e.,
one that was easier to program for a variety of workloads.
The benefit of such a design is that a part targeting high-end
computation without a natural mass market is difficult to bring
to scale. This idea is not entirely novel: Intel partially explored
this design space with the discontinued Larrabee project [3]].
However, Intel started from a base of a Pentium pipeline;
I argue here that a real back-to-basics look at what was
successful in the early supercomputer market will provide a
better starting point for a more general-purpose GPU. Designs
of the early-RISC era delivered more performance for like chip
area than CISC competitors. The RISC advantage decreases
with more aggressive designs: the complex front-end needed
for a CISC architecture becomes a proportionately smaller
overhead. This paper is part of a project called CrayOrﬂ that
reexamines the GPGPU concept starting from a platform more
amenable to general-purpose programming [4].

I review the history of supercomputers, then map this history
onto shifts in packaging that enable new niches to emerge.
From this, I propose an alternative view of GPU design with an

IThe CrayOn name is inspired by “Cray On a chip” but, for trademark
reasons, officially refers to another kind of graphics device, a crayon.



eye on programming models that have proved to be relatively
adaptable to general-purpose computation.

II. ORIGINS OF SUPERCOMPUTERS

In general, performing above the norm requires some way
of processing faster than a conventional design. These varia-
tions include more expensive memory, more instruction-level
parallelism (ILP) and various other modes of parallelism that
deviate from a conventional instruction set including variants
on single instruction multiple data stream (SIMD) of which
vectors are a specific case.

A. From Control Data to Cray-1

The Cray-1 was the first successful vector supercomputer
[5). Tts biggest single win over earlier vector designs was
relatively short start latencies for vector operations meaning
that the crossover point for vector operations to be faster than
scalar were as short as 2—4 elements [5]]. A particular feature
of the Cray-1 design was the use of static RAM [1]]; in order
to achieve reasonable density and minimal propagation delays,
Cray adopted their signature compact cylindrical layout [5].

B. Expansion to Weird and Wonderful

In the 1980s, there was extensive work on distributed-
memory multiprocessors, with a wide range of interconnection
strategies [6]]. Much of this work was characterised as mas-
sively parallel processing (MPP) — the idea was that exploiting
parallelism of the order of hundreds or even thousands re-
moved the need for exotic CPU technology. The most extreme
example of this type was the Connection Machine (CM). In
its original form, the CM-1, arithmetic used bit-serial ALU
operations and it relied on massive parallelism (16Ki—64Ki
nodes) to compensate for relatively slow operations [7].

The INMOS transputer (spelt without an initial capital, in
the supposition that it would become a common noun) was
specifically designed for this style of design with dedicated
high-speed serial links and even a similarly lowercased pro-
gramming language, occam, specialized to this purpose [S§].

One aspect of distributed-memory designs particularly with
relatively low-powered CPUs was the needed for a scalable
interconnect. CM-5 used a fat tree, with higher channel
capacity the higher a switch is in the tree. CM-5 could have
as few as 32 Sparc CPUs and a 64-wide vector unit (the initial
idea of numerous slow CPUs by then abandoned) and as many
as 65,536. [9]]. Hypercube-based interconnects were a popular
choice [10]. A reason for that is that other networks such
as trees of butterfly networks map to hypercubes [11]. One
hypercube machine of that era is nCUBE [12].

Orthogonal to the question of where memory sits is the
question of control — is a multiprocessor system MIMD, SIMD
or some other variant? CM attempted to straddle a boundary
by running the same code in parallel across all nodes with a
separate control network to coordinate the CPUs: it was using
conventional CPUs that each ran the same code with the effect
of SIMD [9]]. Another SIMD design is the ICL DAP [13]] and
a popular textbook of the era refers extensively to SIMD and
numerous designs that have not survived [14].

C. The VLIW excursion

Multiflow took supercomputers a different direction with
Very Long Instruction Word (VLIW). The idea: group mul-
tiple instructions into a single long word to increase ILP. In
Multiflow’s design, up to 28 simultaneous operations could be
encoded in a single wide instruction word that could control
every functional unit [15], [16], inspired by the concept of
horizontal microcode [[17].

VLIW relies on a compiler to find fine-grained parallelism
[15]. That is conceptually similar to a superscalar architecture
without dynamic dispatch, with the drawback of wasting code
space if some instruction words cannot be fully utilized [[18]].
Given that studies on limits of instruction-level parallelism
for static instruction scheduling under realistic assumptions,
around the time when Multiflow ceased operations in March
1990 [[19], showed fine-grained parallelism to be less than 10
in most workloads [18]], [20], it is questionable whether the
level of parallelism Multiflow aimed for was realistic.

D. Darwinian Selection

The critical question now is: which of these have survived?
And which of these could work as a the starting point of a new
wave of designs based on emerging design trade-offs? Large-
scale distributed-memory machines with exotic interconnects
are a thing of the past. “Transputer” is not a common noun.
VLIW still exists in the form of the Itanium range (IA-64),
though it has failed to establish a big market. Vector instruction
sets still exist in various forms though no one makes a vector
machine comparable to the original Cray line.

There are two explanations for the demise of the various
more specialist designs. The first is that conventional CPUs
have become increasingly competitive and the second is that
the more exotic approaches tried in the past were too hard to
program. There is a plethora of literature about programming
these machines often with a single paper devoted to a single
algorithm or even a single kernel.

III. THE NEXT WAVE: SINGLE-CHIP DESIGNS
A. VLIW revisited

Bob Colwell, of the Multiflow design team, was at Intel
when Intel embarked on the IA-64 VLIW project. Colwell,
instead of working on IA-64, worked on the next-generation
Pentium, which was to lead to a series of successful designs
that in effect rescued Intel when IA-64 failed to deliver at the
level required to replace IA-32 as a mass-market part. Did
Colwell know something that Intel strategists didn’t?

IA-64 has 128 general-purpose and 128 floating-point reg-
isters and many instructions specify a predicate register. Three
41-bit instructions are packed into a 128-bit word; the remain-
ing 5 bits used to guide the hardware on available parallelism.
IA-64 also introduced speculative loads [21]]. The philosophy
follows on from Multiflow, if with a lower expectation of
statically-identifiable parallelism: the compiler is expected to
do more of the work than in other similar-era designs in
finding ILP, reducing hardware complexity at least at the level



of instruction scheduling. IA-64 was claimed to exemplify
“explicitly parallel instruction computing”, or EPIC [22].

For TA-64 to have succeeded, it needed to be competitive
where Multiflow wasn’t with other approaches to higher
ILP, particularly dynamic dispatch in multiple-issue pipelines.
While its 3-instruction bundle parallelism was relatively mod-
est, the requirement that the compiler identify the parallelism
flew in the face of evidence that it is difficult to statically
schedule particularly in the presence of branches. While
predicated instructions can help with small basic blocks, it
was brave of Intel to venture in where Multiflow had failed —
particularly as they had inherited Colwell who can reasonably
be supposed to have learnt a thing or two at Multiflow.

B. HLL Architectures Redux: Or Not?

High-Level Language (HLL) architectures provide some
insights into how ideas do not necessarily transfer across
technology eras. One of the first computers I used was a
Burroughs B5700. The Burroughs B5000 series was the first
of a range of successful HLL models. They featured a number
of innovations that worked well in their day. They used
variable-sized segments rather than pages as their unit of
virtual memory allocation, they used stack-based arithmetic
and had hardware support for arrays, which were implemented
as segments, with descriptors that made hardware bounds
checking possible. There was also hardware support for basic
data types with memory tags indicating types so a single
instruction could work for multiple data types [23]].

Two factors made it possible for all the design choices to
be effective. The BS000 appeared when core memories made
it possible to implement sophisticated operating systems and
programming languages without running out of memory. At
the same time, memories were not so large that it was a
reasonable trade-off to waste memory to gain speed. Secondly,
The B5000 design was a masterclass in hardware-software
co-design, with compiler, hardware and operating system
designed in close cooperation [24]. In a remarkable innovation
for its time, the machine did not even have an assembler; the
operating system was written in Balgol, a variant on Algol 60
designed to support systems programming [24].

Subsequent attempts at HLL architectures were only suc-
cessful in niches (e.g., LISP machines had a following [25])).

Exemplifying this failure is Intel’s iAPX 432. This was an
ambitious project to design a microprocessor with extensive
HLL support. Performance was generally poor [26], with
Intel’s own much more mundane 80286 an order of magnitude
faster [27]. The VAX, though less strongly HLL-oriented, had
a complex ISA that aimed to support compiler writers. While it
sold in reasonable volumes, its performance was uncompetitive
with comparable RISC designs [28]]. By the late VAX era, the
first advantage of HLL architectures — code compactness —
ceased to be a major factor. In one example, the complex VAX
CALL instruction can be replaced by a sequence of simpler
instructions with an runtime saving of 20% [29]. The second
Burroughs advantage, hardware-software co-design, is useful
with any variant on ISA design and is not enough to rescue

HLL architectures now that memory footprint is not the major
factor it was in earlier eras.

IV. BACK TO THE FUTURE

The point of this historical excursion is to search for nuggets
to rework for the current context. What major lessons can we
learn from the past? What are current constraints, and how do
they fit historical lessons? Where does that take us?

A. Key Lessons

An idea that is inherently bad is not improved by better
packaging. An idea that only worked because of packaging
constraints of a different era will not work now, unless design
trade-offs recapitulate the design constraints of that era.

I reduce “inherently bad” to simple questions addressing us-
ability of ISA features and broad architectural design choices:

o Can we program it? That further breaks down to:

— Is is a fit to current programming languages?
— Does it fit a reasonable range of reasonably accessi-
ble algorithms?
— Does it avoid sticking points of past failed designs
like programmer-controlled specialist memory?
— Can a compiler generate good code for it without
major programmer intervention?
— Does it fit current operating system designs?
o Does it generalize beyond today’s design constraints?
— Does its advantage dissipate if the ground shifts?
— If we project sustainable trends over ten years does
it still work?
— Does it require coding changes as hardware im-
proves?
Can we program it? New programming languages are always
appearing but the bar to acceptance is far higher if a new
language is a prerequisite to using a new architecture. Cray-1
was a good fit to existing languages with modest programming
adjustments to achieve good results from vectorising. There
is no example I know of where an architecture requiring a
fundamental shift in programming language has succeeded.
The Connection Machine and other exotic modes of par-
allelism failed despite using conventional languages because
too few algorithms were a good fit to their programming
model. In general, architectures with a high ratio of commu-
nication to computation failed on scaling up to large numbers
of processors. Programmer-controlled specialist memory is a
similar issue. Overheads of copying have to be amortized by a
high enough amount of computation. While tricks like DMA
and double-buffering can hide the overheads of copying, they
impose a significant extra programming load and also may
require redesign if the relative sizes or speeds of memories
change, an issue we thought we solved with virtual memory. In
one example, a matrix multiply on the Cell Broadband Engine
with a 256kiB local memory for its vector units has over 8000
lines of assembly language [30]. In general this small local
store presented significant programming challenges, leading
to a flurry of papers on how best to program the device of
which I cite a small sample [[31]]—[33].



While programming experience with the Cell architecture
developed over time, in general this type of architecture
has turned out to be difficult to program without specialist
algorithms despite the emergence of toolkits like OpenCL [34].
If compilers could generate good code for designs like the
Cell (and for that matter, GPUs), there would be no need for
specialist toolkits and libraries like OpenCL and CUDA [35].

What of operating system support? The programming model
of the Cell and GPUs is a poor fit to the virtual memory view
of a single uniform address space. Here are a few examples of
the need for an architectural innovation to fit OS constraints
cleanly:

« my RAMpage idea of moving VM up a layer to replace
the lowest-level cache with the main memory, making
DRAM a paging device backed by a slower layer of
backing store [36]

« the core fusion idea of designing a CPU that could be
dynamically reconfigured as either a single aggressive
pipeline or multiple less aggressive cores [37]

« simultaneous multithreading (SMT) [38]], implemented by
Intel as Hyperthreading [39]

RAMpage looked good in simulations but implementing
it would have required an OS aware of the new memory
hierarchy and that did not happen. Core fusion would have
required an OS to be able to adjust dynamically to a different
number of CPUs with different capabilities and that too
did not eventuate. Finally, SMT is a counter-example, with
significant operating system work on benefiting from the
new feature [40]. In the case of SMT, the variation required
was not too onerous — since modern kernels general have
kernel-level thread support, adjusting for a different form of
threads was not a major change.

Does it generalize beyond today’s design constraints? The
HLL movement exemplifies over-specialization to constraints
of a given era: the early success of Burroughs was not repli-
cated by later designs. While some of that may be explained
by lesser hardware-software co-design, memory constraints
in which the Burroughs B5000 and successors operated no
longer applied to later designs. The RISC movement took off
largely because bigger memories made small memory footprint
a second-class concern outside niches like embedded systems.

Programmer-controlled memory hierarchy is another exam-
ple that ages poorly. As memories become cheaper, the algo-
rithmic and data structure constraints change and investments
in coding to a specific memory size are lost.

B. Current Constraints

A growing constraint on packaging is how much can be
fitted into a single die. Moore’s Law does not prevent wider
problems of scaling even when it is possible to continue
increasing the component count at the historical rate. There
are issues such as leakage current (a concern for more than 10
years [41]]) and limits to ILP that have led to moves like chip
multiprocessors [42]] (or multicore in commercial parlance).
Another factor is the memory wall [43]], an issue to some

AM | TSV =CPU mwrheat sink

Fig. 1. 3D die stacking with CPU and RAM in one package.

extent mitigated by large on-chip caches and the reduced rate
of clock speed increase in recent years.

These pressures add up to a more 3-dimensional view of
chip design.

One approach to going 3-dimensional is 3D die stacking,
which has the advantage that dissimilar technologies can
relatively easily be combined. For example, PicoServer was
a design study that combined a multicore CPU layer with
DRAM layers, using through-silicon vias (TSVs) to create a
package that eliminated off-chip latencies. Figure [I] illustrates
the general idea. The advantage of this form of die stacking is
that it can utilize standard technologies to build a very compact
system and the reduced latencies mean that the system can
run at lower clock speed for a given level of performance,
hence saving energy [44]. The drawback of this approach is
that heat dissipation limits the number of layers and potential
overall speed. Possibly for this reason, more recent work has
focused on building fast RAM by including a logic layer in
the 3D stack as in Hybrid Memory Cube (HMC), which stacks
DRAM on top of a logic layer designed to give faster access
to DRAM rather than including a CPU layer in the stack [45]].

C. Where Next?

Stacking as a model of going 3D assumes a planar universe
in which another dimension can only be introduced by adding
another layer; this is more like a 2.5-dimensional universe
than a 3D universe. While there are some genuinely 3D
technologies like 3D Xpoint nonvolatile RAM (NVRAM),
where the 3D structure plays a role in the memory design
[46] and there are moves to implement logic structures in 3
dimensions [47]], the simplest way of going 3D is to combine
dies. Is 2.5D really the best option?

Another alternative is to build a 3D structure out of dies
that utilizes all three dimensions more fully. I take inspiration
from Cray’s idea of organizing components around a cylinder
to minimize propagation delay. Consider Figure [I] and now
reconceptualise it as interconnected on a semicircular bus
instead of TSVs. The result is illustrated in Figure [2| Once
you have one module like this, a simple generalization is to
allow combination of such packages to build a larger system.
This packaging has several advantages:

e heat dissipation — the components are no longer packed
close together except near the interconnect and there is
space on the inside of the arc for heat dissipation

e reusable components — provide off-chip connections can
be brought to one edge of the die for this scenario, the
individual dies can be reused in other packaging

o scalable

— the number of components in one package can be
increased to the limit of removing heat



-CPU
-RAM

-10
bus

Fig. 2. Cray-1 Redux: 3D packing on an arc.

— neighbouring packages, with higher latency to ac-
cess, can be used to build a larger system

o generalizable — there is no reason to have a fixed ratio of
RAM to CPU; even the number of 10 layers could vary

The major requirement for this idea to work is manufacturing
the interconnect to sufficient accuracy to remove the need for
inter-chip buffering. That should not be more complex than die
stacking, where TSVs need to be placed with high accuracy —
and each die needs to be designed so that its nearest neighbour
has conductors in the required spot.

Once we have this idea, there is no reason that the individual
elements need be single-layer dies, provided the layering
does not compromise heat dissipation. For example, the RAM
components could be HMC for high density and low latency.

V. PUTTING IT ALL TOGETHER

New 3D options allow us to combine memory and com-
putation with a low-latency interconnect, closer to the Cray-1
universe than current packaging. What does that buy us? Can
we do a better (more general-purpose) GPU and if so, why is
the timing for that right now?

A. A better GPU

Returning to my starting point, would it make sense to
design a GPU that looked architecturally more like a Cray
1, with direct support for parallelism only in the form of
ILP and vectors? Any other parallelism mode added would
have to pass a test of being easy to use in general-purpose
code. The result: a much more appealing programming model
for general-purpose computation. That Intel’s Larrabee design
was uncompetitive with conventional GPUs does not mean it
is impossible to do better.

The changes versus Larrabee that I propose are:

o a simple RISC ISA — e.g., RISC-V is unencumbered and
is based on lessons from earlier RISC designs [48]]

e minimize arcane modes of parallelism — if you can’t
program it easily, find an easier alternative

o exploit advances in memory technology — HMC and faster
NVRAMs for storage make for fast overall design

e innovative 3D interconnection — my Cray-1-style layout
or any other that minimizes latencies while allowing heat
dissipation makes it easier to achieve a balanced design

o remember other software layers — an easy fit to existing
operating systems is the optimum choice in today’s world.

Despite the benefits of designing a complete system from
scratch using hardware-software co-design, the practical
reality is that it is far easier to build on existing compilers,
tools and operating systems

B. The GPU endpoint

GPUs have a large captive market in which the sole require-
ment for acceptance once hardware interfacing is taken care
of is designing new drivers for all platforms of interest. That
gives GPU designers latitude to break the rules. Unfortunately,
that also means that GPUs need not be designed to be as easy
to program as general-purpose parts. My central thesis is that
this need not be the case — the approach I outline here could
lead to a GPU that is in fact good for more general algorithms,
rather than a part that justifies considerable pain to use because
it’s there and relatively inexpensive.

Beyond the GPU endpoint, a more powerful GPU is a
waste and engineering ever-more powerful GPUs purely as
computation engines will no longer have the support of a mass-
market application. Such parts will not gain from economy of
scale while still being hard to program.

C. Decision Point

We can wait for the GPU endpoint. After that, modes
of parallelism less optimal for graphics will become more
defensible in a GPU. If a GPU can render way faster than
human perception, who cares if it runs 10% slower as the price
for a more general programming model? Or we can start now,
and reconceptualize the GPU so it is a more tractable general-
purpose compute engine.

I prefer the latter choice as it is more sustainable; we
already know from previous generations of supercomputer
what computational modes are applicable to the widest range
of problems. Why hurt ourselves by constraining the solution
space to modes that work best for graphics pipelines?

You could argue that this is all an unnecessary as there is
nothing to constrain architects from designing more general
HPC architectures. Intel has taken that view in abandoning
the Larrabee experiment in favour of the Xeon Phi which, in a
recent version, has 72 cores, each with two vector units. It also
supports two types of DRAM, much like a GPU in which there
is specialist high-speed RAM, and it has memory features to
support vector instructions [49]]. Xeon Phi is a step closer to
my vision for an alternative GPU [4]] except that it still uses the
old Intel ISA as its base, which limits performance scalability
of non-vector computation. Intel has abandoned the idea of
marketing such a part as a GPU, so that also eliminates the
advantage of a mass market to build economy of scale.

GPGPU is not a bad idea. As long as there is a mass market
for GPUs, why not use them for other purposes? A mass
market for a part that is also useful for HPC has very appealing
economics versus a part that is only good for a low-volume
market like HPC. That being the case, I argue for designing a
GPU starting from a more general-purpose design.

Why now? Because GPUs will continue to evolve for long
enough to matter and because the packaging trends I outline in
this paper create the opportunity re-evaluate design trade-offs.



[1]

[2]

[3

=

[4]
[5]
[6]
[7]

[8

[9]

[10]

[11]
[12]

[13

[tr?

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

REFERENCES

E. Normand, J. L. Wert, H. Quinn, T. D. Fairbanks, S. Michalak,
G. Grider, P. Iwanchuk, J. Morrison, S. Wender, and S. Johnson, “First
record of single-event upset on ground, Cray-1 computer at Los Alamos
in 1976,” IEEE Transactions on Nuclear Science, vol. 57, no. 6, pp.
3114-3120, 2010.

R. L. Sites, “An analysis of the Cray-1 computer,” in Proc. 5th Annual
Symposium on Computer Architecture, 1978, pp. 101-106.

L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin et al., “Larrabee: a many-
core x86 architecture for visual computing,” in Proc. SIGGRAPH 08,
2008.

P. Machanick, “How general-purpose can a GPU be?” South African
Computer Journal, no. 57, pp. 113-117, 2015.

R. M. Russell, “The CRAY-1 computer system,” Communications of the
ACM, vol. 21, no. 1, pp. 63-72, 1978.

R. A. Finkel and M. H. Solomon, “Processor interconnection strategies,”
IEEE Transactions on Computers, no. 5, pp. 360-371, 1980.

L. W. Tucker and G. G. Robertson, “Architecture and applications of
the Connection Machine,” Computer, vol. 21, no. 8, pp. 26-38, August
1988.

C. Whitby-Strevens, “The transputer,” in Proc. 12th Annual International
Symposium on Computer Architecture, 1985, pp. 292-300.

C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman,
M. N. Ganmukhi, J. V. Hill, D. Hillis, B. C. Kuszmaul, M. A. St Pierre,
D. S. Wells et al., “The network architecture of the connection machine
CM-5.” in Proc. fourth annual ACM symposium on Parallel algorithms
and architectures, 1992, pp. 272-285.

J. P. Hayes, T. Mudge, Q. F. Stout, S. Colley, and J. Palmer, “A
microprocessor-based hypercube supercomputer,” IEEE Micro, vol. 6,
no. 5, pp. 6-17, 1986.

O. A. McBryan, “An overview of message passing environments,”
Parallel Computing, vol. 20, no. 4, pp. 417-444, 1994.

M. M. Waldrop, “Hypercube breaks a programming barrier,” Science,
vol. 240, no. 4850, pp. 286-287, 1988.

D. Parkinson and J. Litt, Massively parallel computing with the DAP.
MIT Press, 1990.

R. W. Hockney and C. R. Jesshope, Parallel Computers 2: architecture,
programming and algorithms. CRC Press, 1988.

R. P. Colwell, R. P. Nix, J. J. O’Donnell, D. B. Papworth, and P. K.
Rodman, “A VLIW architecture for a trace scheduling compiler,” IEEE
Transactions on computers, vol. 37, no. 8, pp. 967-979, 1988.

R. P. Colwell, W. E. Hall, C. S. Joshi, D. B. Papworth, P. K. Rodman,
and J. E. Tornes, “Architecture and implementation of a VLIW super-
computer,” in Proc. 1990 ACM/IEEE conference on Supercomputing.
IEEE Computer Society Press, 1990, pp. 910-919.

S. Stritter and N. Tredennick, “Microprogrammed implementation of
a single chip microprocessor,” in Proc. 11th Annual Workshop on
Microprogramming, ser. MICRO 11. Piscataway, NJ, USA: IEEE
Press, 1978, pp. 8-16. [Online]. Available: http://dl.acm.org/citation.
cfm?1d=800132.804299

N. P. Jouppi and D. W. Wall, “Available instruction-level parallelism for
superscalar and superpipelined machines,” in Proc. Third International
Conference on Architectural Support for Programming Languages and
Operating Systems, 1989, pp. 272-282.

E. Fisher, Multiflow Computer: A Start-up Odyssey.
Independent Publishing Platform, 2013.

D. W. Wall, “Limits of instruction-level parallelism,” in Proc. Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 1991, pp. 176-188.

J. Huck, D. Morris, J. Ross, A. Knies, H. Mulder, and R. Zahir,
“Introducing the IA-64 architecture,” IEEE Micro, vol. 20, no. 5, pp.
12-23, 2000.

L. Gwennap, “Intel, HP make EPIC disclosure,” Microprocessor report,
vol. 11, no. 14, pp. 1-9, 1997.

A. J. W. Mayer, “The architecture of the Burroughs B5000: 20 years
later and still ahead of the times?” SIGARCH Comput. Archit. News,
vol. 10, no. 4, pp. 3-10, Jun. 1982.

W. Lonergan and P. King, “Design of the B5000 system,” Datamation,
vol. 7, no. 5, pp. 28-32, 1961.

D. A. Moon, “Architecture of the Symbolics 3600,” in Proc. 12th Annual
International Symposium on Computer Architecture, 1985, pp. 76-83.

CreateSpace

[26]

[27]

(28]

[29]

(30]

(31]

[32]

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]

P. M. Hansen, M. A. Linton, R. N. Mayo, M. Murphy, and D. A.
Patterson, “A performance evaluation of the Intel iAPX 432 ACM
SIGARCH Computer Architecture News, vol. 10, no. 4, pp. 17-26, 1982.
D. A. Patterson, “A performance evaluation of the Intel 80286, ACM
SIGARCH Computer Architecture News, vol. 10, no. 5, pp. 16-18, 1982.
D. Bhandarkar and D. W. Clark, “Performance from architecture:
Comparing a RISC and a CISC with similar hardware organization,”
in Proc. Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, 1991, pp. 310-319.
D. A. Patterson, “Reduced instruction set computers,” Communications
of the ACM, vol. 28, no. 1, pp. 8-21, 1985.

D. Hackenberg, “Fast matrix multiplication on Cell (SMP) systems,”
2007, last accessed: 28 December 2017. [Online]. Available: http:
/Iwww.tu-dresden.de/zih/cell/matmul

J. Kurzak, W. Alvaro, and J. Dongarra, “Optimizing matrix multipli-
cation for a short-vector SIMD architecture—CELL processor,” Parallel
Computing, vol. 35, no. 3, pp. 138-150, 2009.

J. Kurzak and J. Dongarra, “QR factorization for the Cell Broadband
Engine,” Scientific Programming, vol. 17, no. 1-2, pp. 31-42, 20009.
M. Gschwind, “The cell broadband engine: exploiting multiple levels of
parallelism in a chip multiprocessor,” International Journal of Parallel
Programming, vol. 35, no. 3, pp. 233-262, 2007.

S. Rul, H. Vandierendonck, J. D’Haene, and K. De Bosschere,
“An experimental study on performance portability of OpenCL
kernels,” in 2010 Symposium on Application Accelerators in High
Performance Computing (SAAHPC’10), 2010. [Online]. Available:
https://biblio.ugent.be/publication/1016024

NVIDIA, “NVIDIA Cuda C programming guide,” 2015, last accessed:
28 December 2017. [Online]. Available: http://docs.nvidia.com/cuda/
pdf/CUDA_C_Programming_Guide.pdf|

P. Machanick, P. Salverda, and L. Pompe, “Hardware-software trade-offs
in a Direct Rambus implementation of the RAMpage memory hierar-
chy,” in Proc. 8th Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS VIII), 1998, pp. 105-114.
E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez, “Core Fusion:
Accommodating software diversity in chip multiprocessors,” in Proc.
34th Annual International Symposium on Computer Architecture, 2007,
pp. 186-197.

D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous mul-
tithreading: Maximizing on-chip parallelism,” in Proc. 22nd Annual
International Symposium on Computer Architecture, 1995, pp. 392—403.
D. Koufaty and D. T. Marr, “Hyperthreading technology in the Netburst
microarchitecture,” IEEE Micro, vol. 23, no. 2, pp. 56-65, 2003.

J. R. Bulpin and I. A. Pratt, “Multiprogramming performance of the
Pentium 4 with Hyper-Threading,” in Second Annual Workshop on
Duplicating, Deconstruction and Debunking, 2004, pp. 53-62.

N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J.
Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law
meets static power,” computer, vol. 36, no. 12, pp. 68-75, 2003.

K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang,
“The case for a single-chip multiprocessor,” in Proc. Seventh Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, 1996, pp. 2-11.

W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications
of the obvious,” ACM SIGARCH Computer Architecture News, vol. 23,
no. 1, pp. 20-24, 1995.

T. Kgil, A. Saidi, N. Binkert, S. Reinhardt, K. Flautner, and T. Mudge,
“PicoServer: Using 3D stacking technology to build energy efficient
servers,” J. Emerg. Technol. Comput. Syst., vol. 4, no. 4, pp. 16:1-16:34,
Nov. 2008.

R. Courtland, “Memory in the third dimension,” IEEE Spectrum, vol. 51,
no. 1, pp. 60-61, January 2014.

K. Bourzac, “Has Intel created a universal memory technology?[news],”
IEEE Spectrum, vol. 54, no. 5, pp. 9-10, 2017.

J. Cartwright, “Intel enters the third dimension,” Nature News, 2011.
K. Asanovi¢ and D. A. Patterson, “Instruction sets should be free:
The case for RISC-V,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2014-146, 2014, last accessed: 28
December 2017. [Online]. Available: https://www2.eecs.berkeley.edu/
Pubs/TechRpts/2014/EECS-2014-146.pdf

A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y.-C. Liu, “Knights landing: Second-
generation Intel Xeon Phi product,” IEEE Micro, vol. 36, no. 2, pp.
34-46, 2016.


http://dl.acm.org/citation.cfm?id=800132.804299
http://dl.acm.org/citation.cfm?id=800132.804299
http://www.tu-dresden.de/zih/cell/matmul
http://www.tu-dresden.de/zih/cell/matmul
https://biblio.ugent.be/publication/1016024
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.pdf

	Introduction
	Origins of Supercomputers
	From Control Data to Cray-1
	Expansion to Weird and Wonderful
	The VLIW excursion
	Darwinian Selection

	The next wave: single-chip designs
	VLIW revisited
	HLL Architectures Redux: Or Not?

	Back to the future
	Key Lessons
	Current Constraints
	Where Next?

	Putting it all together
	A better GPU
	The GPU endpoint
	Decision Point

	References

