Experience of Applying Bloom’s Taxonomy in Three Courses
Philip Machanick
Department of Computer Science, University of the Witwatersrand
2050 Wits, South Africa
philip@cs.wits.ac.za

Abstract

A commonly accepted taxonomy of cognitive skills, Bloom’s Taxonomy, puts analysds/nthesisnear the
top, with straightforwarcknowledgeand comprehension at thHeottom. Typical ComputeBcience curriculum
discussion, though, usually focuses on which concepts to teach when, not on how to rank coteagtmor
methods for level of difficulty in terms of cognitivakills. This paperpresentexperiences oépplying these
ideas to teaching three very different Computer Science courses. These experienceshsiiggkstgBloom’s
Taxonomy into account in course design is worthwhile.

1. Introduction

It is commonly accepted that the hierarchy of cognitive skills—as defined in Bloom’s Taxonomy—has analggigthesis
near the topand straightforward knowledgand comprehension at theottom [Bloom 1956]. In previous work [t¢hanick
199&], | have presented a proposal to restructure the Comfuatence curriculumdrawing on earliework on abstraction-

first learning [Machanick 1998, to propose a curriculum which starts from lower-order cognitive skills, while working up to
higher-order skills in later years.

This paperpresentexperiencewvith using theidea of ordering material according torequiredcognitive skills within
particular courses. Experiences with three couasepresentedThe firstcourse is a HigheDiploma coursePataand Data
Structures. Theecond is a third-yeamourse, Algorithmsand Artificial Intelligence. Finally, experiencesvith an Honours
course, Computer Architecture, are presented.

The findings here are mostly anecdotal, and are intended as a first attempt at evaluating experience with tidedmafader
applying Bloom’s Taxonomy to curriculum design. On the whole,etteriences arpositive, but a significant amount of
work remains to be done to evaluate the idea properly.

The paper starts by considering some background, and goes on to describe each of the three courses in terms of what
set out to achieve. Some findings are then presented, and in conclusion, the value of the approach is summarized.

2. Background
Since the last major revision of the ACM/IEEE curriculappeared inl991 [ACM 1991],perhapst’'s time there was a
major review of our underlying assumptions. Curriculum '91 focused on defmiogledgeunits (KUs) at a relativelyfine-
grainedlevel, so it left a lot ofscope for curriculum experimentation. Therrent curriculumstandardsprocessunderway
under joint ACM and IEEE sponsorship aims to produce Curriculum 2001, with minor additions to Curriculum '91, and a s
of standard curricula, for those unwilling to devise their own from KUs.

Against this historicalpproach tocurriculum design, it is useful teeconsidemhethersimply deciding what content
should be taught when is sufficielixperience inthe real worldillustrates that computesoftware remains aroblemarea,
and some have questioned whether a more “engineering”-like approach to Computer Science edueatiedBsber 1997].
Before such major upheavals in content are contemplated however, it iscasitiering whether a reform wur model of
what is “difficult”, “introductory”, and so on is necessary. Accordingly, this paper’s starting point is to consider howsBloom’
Taxonomy applies in the design of courses.

While earlier work [Machanick199&)] has addressedhe question of cognitivakills globally, in terms ofoverall
curriculum for a degree, the approach in this paper is to question the currabed@opment process atdiferentlevel: are
we exercising the right cognitive skills within one course?

To fill in some detail, Bloom’s Taxonomy [Bloom 1956] is widely recognized in school education as a basgeiiog
material. Straighfactual knowledgeeomesbeforecomprehension. Application &howledgecomes next. Finallyanalysis
and synthesis (words which have a specific meaning in Bloom’s work) are the most advanced cognitive skills.

In previous work [Machanick 1988 Bloom’s Taxonomy has been proposed as a basis for overall curriculum design, for
the degree as avhole. In that model, with some input from other previous worlalbstraction-first learning [Ethanick
1998&], a 3-year curriculum would be structured as follows:

Year 1

. use and measurement of applicatiedgiow user interfaces and virtual machine concept; know major components of a
computer; know functionality of a range of programs; know how user requirements are specified; know the purpose an
use of user-level documentation; given a complexity result, measure a program'’s speed in a lab, and verify that a grap
of run time matches the predicted speed

. introduction to programming tootsknow the difference between source code, compiled code and libraries; know the
steps in the program construction process; know the purpose of programming environments including editors, compile
and linkers; know the need for error checking and debugging; know the how correctness of software is specified and
verified

. basic network and operating systerknow the purpose of the operating system and networks; know the aspects of the
virtual machine which the network and operating system provide; know virtual machines in more detail than before;
know major operating system and networking concepts: processes, scheduling, resource management, memory
hierarchy, protection, routing, the internet and internet-based tools

. basic computer organizatierknow the major components making up a computer; know the difference between
machine code/assembly language and high-level languages; know the major microarchitecture components (registers,
pipeline, buses, cache, main memory); know the role of I/O devices; know why the lower levels of the virtual machine
are usually hidden

Year 2

. basic program constructiengiven a library, understand its interfaces and use its components to add to a given program
given an algorithm, construct a procedure or function to implement it; add a new function or procedure into an existing
program and show that it works as specified; given a complexity result for an algorithm, prove it is correct; given two
alternative algorithms, compare the known complexity results, and determine both theoretically and experimentally
which is the better; given the specification of a data structure, use the data structure (implemented in a class library) ir
program

. formal languages and databaseanderstand Turing machines, finite automata and pushdown automata; prove simple
results for each model; construct simple programs in Turing machines, and simple recognizers in the other two (using
supplied tools); understand the value of relations as a data representation; given unnormalized relations, perform
normalization; understand the application of these concepts to databases; understand the general value and applicabili
these formal approaches

. advanced network and operating systeimplement simple examples of concurrency, given algorithms and interfaces to
system calls; understand algorithms to implement queuing; understand issues in implementation of concurrency
primitives and how they are used (locks, semaphores, critical regions, race conditions); understand resource managem
policies and algorithms including paging and scheduling; understand layered network models; understand major policy
issues in networks including routing, congestion control, switches, routers and media

. computer organizatier-understand how logic circuits are building blocks of the major components; understand how to
simplify logic and combine elements to create circuits; understand how design affects performance and how performanc
is measured; understand how assembly-language programs are written; relate assembly language on one hand to higt
level languages and on the other to the hardware; understand how I/O devices interface to the hardware

Year 3

. advanced programming and software architectutenderstand the architecture of an existing library or application and
extend it; design a new relatively simple architecture (library or application): mainly project-oriented

. compiler and DB projects-use principles of formal language to implement small projects, to understand how compiler
construction tools work (not only for parts of a compiler); do a database project; report on the value of the formal
methods in these areas

. network and operating system projeeisplement software using operating system calls, including use of pipes or
other higher-level models of inter-application communication, multithreaded applications, use of low-level networking
protocols such as UDP to implement higher-level protocols; simulation

. advanced architecture-design principles including instruction set architecture, performance impact of variations in
design, overall system design, hardware-software interactions; code generation and assembly language

In this paper, the concepaésetaken further tosuggest how Bloom’s Taxononganapply to teaching methodologyithin
one course. The examples presented here are taken from a conventional cuviteiathe higher-level structurdoes not
follow the above outline.

The approach, in essence, isctwverthe factual content of thecourse quickly, inroughly half of the lectures, then go
back over the material in tutorial and assignment mode.idHzeis toexercise lower-levetognitive skills first, inlectures:
there islittle evidencethat lectures in anycase are an effective mode tfaching. Higher-level cognitivekills are then
exercised by workinghrough examples (comprehensioahdsolving problems (analysis). Synthesis ifigher-levelskill
than is demanded in any of these courses: in Bloom’s model, it is a skill required in research and advanced courses.

3. The Three Courses

3.1 Introduction
The courses used as examples here have fresented in998 and 1999, using arapproactbased orBloom’s Taxonomy.
The courses are at different levels, to illustrate how the concepts apply to students of different levels of preparedness.

The first course dealt with is a coursalled DataandData Structure¢DDS). Thiscourse wasomething of a stopgap
course. My department runs a Higher Diploma in Computer Science, which is open to studedegregkbut without any
(or not much) Computer Science. The Higher Diplomaasnposed ofundergraduateourses—most of thendergraduate
curriculum, over a single year—taken at the same time as the camespesented to undergradueti@sses, which results in
some ordering problems. The DDS course, as presented in 1999, was designed as a catch-up course, to prepatakstudents
on second-year material early in the year. It should probably tey/@more descriptivename, but using an existing name
saved us from having to implement a rule change (DDS is the name of one of our first-year courses).

The second course dealt with in this paper is AlgoritamdArtificial Intelligence (AAl), athird-year coursevhich has
run for several years, though 1999 was the first year that | presented the course. This was a relatively conventional algoritl
course, with some search techniques from Al thrown in.

The final one is an Honours Computirchitecturecourse, which | haveresentedor a number of years. Onlthis
course can reasonably be compared with previous versions of the same course.

The remainder of this section provides more detail of each course, and how Bloom’s Taxonomy was applied in present
the material.

3.2 Data and Data Structures
The DDS course has already been described previously [Machanick 1999]. This section presents an update on previous res

The course was designed as a bridging course, to bring students up to the level of beingaddeiith a second-year
course, Data Abstraction and Algorithms (DAA). DAAvered databstractionpbject-orientecconcepts, algorithm analysis
and datastructure analysis. To makkings difficult, DAA usedC++. The Higher Diploma DDSourse wasdesigned to
familiarize studentsvith object-orientecconcepts, libraries, working to an ABhd the generalrole of data structures and
algorithms in Computer Science.

DDS was a necessary addition because the structure of the Higher Diploma was changed for 1999. Previofisdy, some
year courses and DAA were presented to the class separately frandérgraduatéectures, sqrerequisitesubjectscould be
presented first. For 1999, the decision was taken to move the Higher Diploma class, as far as possible, to the same lectur
the undergraduate classes, and DDS wasttihe coursededicated tahe Higher Diploma programme. To matteéngs more
difficult, the DAA course was started early in the year, in the fifth week (after a short second-year database course).

DDS therefore presented a number of challenges. In addition, it was necessary to covegraloiddést, becausesome
of the studentéiad noprior exposure to computers. Consequentlguick overview ofoperatingsystems, networks and
programming languages was necessary. The group of students was highly mixed, from barely able to cope to able to kee,
with the lecturer (if not get ahead).

Given the challenges of the course, it seemed worthwhile trying to do something outodfitlaey tomake thecourse
work.

The style of presentation of the course was to present factual content for thierdiesiveeks irfast-pacedectures, with
an increasing emphasis as the course progressed to tutorials, laboratories and classwork.

year nunier at end | passed failed % passed
1995 11 6 5 55
1996 27 20 7 75
1997 16 13 3 81
1998 17 13 4 76
1999 21 18 3 86

Table 1. Statistics on HDipCS Success

The course can be considered to be a success because it reptaced lassdemandingapproachwithout losing alarge
fraction of the class.
Table 1 contains a summary of outcomes for several years of the Higher Diploma.

3.3 Algorithms and Artificial Intelligence
The Algorithmsand Artificial Intelligence (AAI) coursehasbeenrunning for a number ofearsbut | hadnot presented it
before 1999, so experiences here are not directly comparable to previous years.

The approach in this course again was to present material relatively factually first, then go dealkvith the material
at a higher level of cognitive skill. Unlike for the DDS course, a text jBadssard andBratley 1996] had previouslybeen
prescribed for this course, and was used again in 1999. One of the piteetatsrshad complainedabout this bookand it
turned out to be a problem again.

The approach used was to present theoretical aspects of the course relatively factually, come back to do theorem-pro
techniques, then apply the techniques to algorithms. This ordering is consistent with the Blaxonamy-derivedstrategy.
Results were reasonable, but the weakness of the book was exposed by this approaclapBemsatiabs ardescribed in the
book, but not used to any degree of significance later for algorithms. As a result, it became difficult t@aidicttend later
parts of thecoursetogether. For example, the boakroducesthe technique of generalizeédduction without explaining it
clearly. Consequently, | spent more time than | should have on explaining this concept,fimuythat it wasn'tneeded for
anything later.

Although the differences in lecturers’ approaches makes it difficult to compare the course acrossagaegardhat any
difference inoutcomebetweenthe twoyears is difficult toassesdecause oproblems with the text book-Hdowever, the
course did not appear to be worse than would be expected, given these problems. So at least it is possibbetioat the
approach used was not harmful.

I will be running AAI again this year and this tinaeoundwill havethe benefit of hindsight imlecidingwhich parts of
the prescribed book to use.

3.4 Computer Architecture

The Honours Computer Architecture course basnrun by the saméecturersince 1993, using tweuccessive editions of
the same book [Hennessy and Patterson 1990, 1996].

The course was run for the first time using the Bloom’s Taxonomy approach in 1999.

Since resultsare most comparable across coursesthis instance, it is instructive toomparethe coursewith its
immediate predecessor in 1998.

In 1998, lectures were run in conventional style over 6 weeks. The course was run at the samartotieraklonours
course, as well as the Honours research report. After lectures ended, a week was available to finish assigrimeprepare
for examinations. In 1999, the course was run over a similar period, but with very different use of time (for detail af, content
see Appendix):

» week 1—Chapters 1-3 of the notes (covering Chapters 1-4 of the prescribed book)
* week 2—Chapter 4 of the notes (covering Chapter 5 of the prescribed book)

» week 3—Chapter 5 of the notes (covering Chapters 6 and 7 of the prescribed book)
» week 4—Chapter 6 of the notes (covering Chapters 7 and 8 of the prescribed book)

In 1998, assignmentsere in the form of extension of tutorial examples, involving issues like timingipéline
execution under varying conditions. There was not sufficient timentterstandsophisticatedools to dohands-onwork like
simulations. In 1999there wagime to learn touse Simplescalar, a sophisticataghitecturesimulator. Two assignments

year nunber in |classwork |Classwork |exam exam std. |overall overall standard
class average % |std. dev average % |dev average % |deviation

1998 8 69.7% 8.6 59.7% 14.0 63.0% 10.8

1999 17 73.4% 8.2 67.4% 11.0 69.4% 9.2

Table 2. Statistics on Honours Computer Architecture Outcomes

were doneusing Simplescalar. The first assignment wagxplore thedesign space famemory hierarchy, thesecond, to
measure aspects of instruction-level parallelism.

Other than thechange oforder andthe adoption of more sophisticated assignmentsl989, the courseswere
substantially similar: both used the same book and the same lecture notes.

Table 2 summarizes outcomes of the 1998 and 1999 versions of the Computer Architecture course.

4. Findings
Results in the DDS and AAI coursage harder toevaluatethan those of the Honouschitecturecourse because there are
too many variables as compared with other runs of similar courses.

DDS was new in1999, andwas run by daifferent lecturer in2000, andtherearetoo manydifferences inhis style of
presentation tawomparethe courses directlyrurther, the DAAcourse towhich DDS wasdesigned to interface nlonger
existed in 2000, making it difficult to compare outcomes (in terms of preparation for the following cblomseyer, as can
be seen from Table 1, the Higher Diploma class did better overall than in previousdgspitethe non-optimalrdering of
topics.

AAl in its 1999 guiseneededmprovement in thehoice ofcontent(because oproblemsencountered irthe prescribed
book). I am running it again in the second half of 2000, and it will be interestisgetdf it can beun significantly better,
with better results than “conventional” runs of the course.

The Honours Computer Architecture course allows for some comparison inaf82899, eventhoughthereare some
significant differences across the two years: the 1998 class was smadldradsome verygood students iiit. Nonetheless,
the course was given by the same lecturer in both years, and covered the same ground. The 1999 experiment was suppc
the revisedapproach, because much more ambitious style of assignment was possie,the class generally did
well—despite the fact that the differences in the two groups of students argue for the 1998 class doing better.

As can be seen in Table 2, 1998, theaveragedor classwork (assignmenghdtests),for the examinationand the
overall average were lower than in 1999. It is also of interest to noatdardleviationswere higher in 1998. Not only
did the class do better in the 1999 course, but with less deviation from the average.

There are two downsides in general to the Bloom’s Taxonomy-based appinaemntsare uncomfortable at the start of
the course because it is going so fast, and preparation has to be geared to the fgsceilal both reasons, thepproach
is probably best not tried by an inexperienced lecturer, who cannot maintain the confidence of thad#asp upwith the
required rate of preparation. On the positive side, lectures are over sooner, leaving more time to think up creativeiglasswor
the later stages of a course presented in this style.

5. Conclusions

Results from the DDSnd AAI coursessuggest that the Bloom'$axonomy-based approaetorks at least as well as
conventional approaches. The DDS case is slightly stronger, as the AAI course had problems rejatidgige of the text
book, whichcould haveobscuredany advantage othe new approach. ThBDS course canonly be comparedagainst
relatively ambitious goalsand not againstanother version of the same coursed so isnot an entirelysatisfactory
experiment. Unfortunatelychanges inour undergraduatecurriculum preclude further experimentatiorwith this specific
course.

The Honours Computehrchitecture course providdke strongestasefor the Bloom’sTaxonomy-derivedmethod. In
1999, despite having a larger and weaker class, more sophisticated assignments wang teneyerall results of thelass
were better.

For 2000, the Honours Computer Architecture course is being run again along the same lines, but with the lectures ai
even faster pac&he aim is toconcludethe lectures irthree weekstatherthan four,and tospendthe secondhalf of the
course entirely on tutorials, assignments and tests. A similar approalahngdfor the third-yearAAl course inthe second
half of 2000.

Overall, the approach seems worth taking further, and trying with other courses. The pdeblifirad in Section 4, of
the approach being difficult fanexperiencedecturers, is also worth investigating. Perhapesoiirse materialvere suitably
organized (particularly text books written in a suitable style), the approach would become more accessible.

Acknowledgments
Scott Hazelhurst and lan Sanders proofread the paper.

References

[ACM 1991] A Summary of the ACM/IEEE-CS Joint Curriculum Task Force Re@woitnputing Curricula 1991,Comm.
ACM, vol. 34 no. 6 June 1991, pp 68-84.

[Baber 1997] Robert L. Baber. CS Education and an Engineering Approach to Software DevelBmueatlings of th@7th
Southern African Computer Lecturer’s Association Confergihtilelerness.

[Bloom 1956] Benjamin S Bloonfed.). Taxonomy ofEducational Objectives: Book 1 Cognitiv®omain Longman,
London, 1956.

[Brassard and Bratle¥996] G Brassard and Bratley. Fundamentals ofAlgorithmics Prentice Hall EnglewoodCliffs, NJ,
1996.

[Hennessyand Patterson 1990] JL Hennesagd DA PattersonComputerArchitecture: A Quantitative ApproactMorgan
Kaufman, San Mateo, 1990.

[Hennessyand Patterson 1996] JL Hennesaypd DA Patterson.ComputerArchitecture: A Quantitative Approact2nd
edition), Morgan Kaufman, San Francisco, 1996.

[Machanick 1998] P Machanick. The Abstraction-Firégtpproach to DataAbstraction and Algorithms, Computers &
Education vol. 31 no. 2, September 1998, pp. 135-150.

[Machanick 199B] The Skills Hierarchy and Curriculur®roc. SAICSIT '98Gordon's Bay, South Africa, NovembE®98,
pp 54-62

[Machanick 1999] Teaching ProgrammiBgckwardsProc Southern African Computerecturers’ AssociationConference
Golden Gate, June 1999, pp 69-73

Appendix: Computer Architecture Contents
Chapter 1 Introduction

Major Concepts

Latency vs. Bandwidth

What Computer Architecture Is
The Quantitative Approach
How Performance is Measured
Components of the Course
The Prescribed Book

Structure of the Notes

Further Reading

Chapter 2 Performance Measurement and Quantification
Why Performance is Important
Issues which Impact on Performance
Change over Time: Learning Curves and Paradigm Shifts
Learning Curves
Paradigm Shifts
Relationship Between Learning Curves and Paradigm Shifts
- Exponential
Merced (EPIC, 1A-64)
Why Paradigm Shifts Fail
Measuring and Reporting Performance
Important Principles
Quantitative Principles of Design
Examples: Memory Hierarchy and CPU Speed Trends

Chapter 3 Instruction Set Architecture and Implementation
* Introduction

Instruction Set Principles: RISC vs. CISC
broad classification

Challenges for Pipeline Designers

Causes of Pipeline Stalls

Non-Uniform Instructions

Techniques for Instruction-Level Parallelism
Limits on Instruction-Level Parallelism
Trends: Learning Curves and Paradigm Shifts
Further Reading

Chapter 4 Memory-Hierarchy Design

Introduction

Hit and Miss

Caches

Main Memory

Trends: Learning Curves and Paradigm Shifts
Alternative Schemes

Introduction

Direct Rambus

RAMpage

Further Reading

Chapter 5 Storage Systems and Networks

Introduction

The Internal Interconnect: Buses

I/0 Performance Measures

RAID

Operating System Issues for I/O and Networks
A Simple Network

The Interconnect: Media and Switches
Practical Issues for Networks

Bandwidth vs. Latency

Trends: Learning Curves and Paradigm Shifts
Alternative Schemes

Introduction

Scalable Architecture for Video on Demand
Disk Delay Lines for Scalable Transaction-Based Systems
Further Reading

Chapter 6 Interconnects and Multiprocessor Systems

Introduction

Types of Multiprocessor

Workload Types

Shared-Memory Multiprocessors (Usually SMP)
Distributed Shared-Memory (DSM)
Synchronization and Memory Consistency
Crosscutting Issues

Trends: Learning Curves and Paradigm Shifts
Alternative Schemes

Further Reading

Exercises

