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Abstract. Moore’s Law is usually interpreted as a prediction of how many tran-
sistors you can buy for the same money at some future date. It can also be inter-
preted as how long you need to wait until a given number of transistors falls 
below a target price. An example of this reverse-application of Moore’s Law is 
transitions such as the emergence of microprocessors competitive with traditional 
larger-scale computers and the emergence of smartphones. Since the late 1990s, 
it has become increasingly common for growth in transistors to equate to more 
CPUs (cores) per die. Recent designs have over 50-billion transistors and far 
more potential parallelism than can be supported by memory. I argue the case for 
a rebalancing of design goals with a much larger, faster on-chip memory and a 
CPU that is designed around this memory system. The proposal: a Cray-class 
vector CPU on a die with 1 Gibyte of static RAM, or Crayon (for Cray on a chip). 
The kind of organization classically used by Cray vector supercomputers is fea-
sible to achieve on a single chip. I argue that a design like this can use the avail-
able memory bandwidth, as opposed to over-CPU designs with a large number 
of cores and GPU threads that are memory limited and propose how such a design 
could be used. 

Keywords: supercomputer  vector architecture Moore's Law. 

1 Introduction 

The purpose of this paper is to predict a new technology inflection point, based on the 
same logic that could have been used to predict timing of when single-chip micropro-
cessors would challenge the dominance of the mainframe and when it became feasible 
to build a smartphone at an affordable price. The specific prediction is that a vector 
CPU along the lines of an early Cray design, with a substantial on-chip static RAM 
memory, will soon be possible. Making the prediction presages more detailed studies 
to explore the design space. 

Why is such a development a good idea? Memory access is a significant bottleneck 
in existing designs, so a design study reversing the trend of cramming more and more 
CPU power onto a chip is worth considering. Instead, the amount of CPU should be 
balanced with a significant-sized fast on-chip memory. 

This paper makes the case for such a design alternative, while leaving open details, 
which can only be established with a full design study including simulations. Such a 
design study will need suitable workloads and to consider variations such as the ratio 



of transistors used for RAM versus logic and implementation of a high-speed network 
to scale up to large-scale systems. 

Fig. 1 shows the general Moore’s Law trend [15], with a few major inflection points 
added. In 1992, IBM had the then biggest loss in US corporate history [23]. That coin-
cided with the rise of the “killer micro”: cheap microprocessors that could supplant the 
high-performance computing market for mainframes at a fraction of the price. Only a 
few years later, specialist supercomputer makers started filing for bankruptcy [37]. The 
second inflection point is mid-2007, when it was possible to buy enough hardware to 
run a Unix-class kernel and still have enough resources for a decent application layer, 
making smartphones possible (some preceded the iPhone, but the iPhone launch marks 
the turning point where smartphones started to become ubiquitous). The third inflection 
point is late 2021, when processors with more than 50-billion transistors on a die started 
to appear. 

What is the significance of these inflection points? 
The classic view of Moore’s Law is that it predicts how much more you can buy for 

the same money as a function of elapsed time, typically twice the transistors every 
eighteen months; repeated claims of the demise of this trend are another constant [44]. 
The transistor count trend line illustrated by the graphed examples hints at that. This is 
a useful metric, as it predicts how long a current purchase will last before it becomes 
obsolete. It also predicts how expensive a purchase is worth making now if you cannot 
use all its performance or expansion capacity immediately. If you spend down now, 
you may be able to do better next year. 

The inflection points hint at another trend line: instead of a constant-price line, a 
constant-functionality line predicts when a certain level of functionality will fall 
through a price point of interest. A killer micro became possible when a single-chip 

 
Fig. 1. Moore’s Law trend showing major inflection points. When IBM made their record 
loss, RISC designs such as MIPS R4000 were appearing and Intel’s Pentium was about to 
launch. The iPhone required a good enough ARM CPU. Apple M1 Max has 57-billion tran-
sistors. 
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Figure 4: how microprocessor figures of merits progress slowed down with single thread performance, clock 
speed, and number of logical cores, in relation with total power consumption. Still, Moore’s law related to the 
number of transistors per chipset is always valid. Source: Karl Rupp32. 

QUANTUM COMPUTING FIGURES OF MERIT 

Now, onto quantum computers and trying to respond to the post title with identifying whether some trends 
observed in quantum computing performance and engineering are similar to the trend known as “Moore's law” and 
could be projected in the future. 

One first challenge is to understand the origins of the power of quantum computing and its potential speedups. It 
is often attributed to some form of massive parallelism but it’s too classical an image to describe what is happening 
within a quantum computer which is highly analog in nature. Then, a quantum computer speedup is highly variable, 
dependent on the algorithm type, on where the data comes from, and how results are generated and retrieved from 
the quantum computer. Many quantum algorithms show a modest polynomial speedup while a few bring an 
exponential one. There is also some significant overhead to account for, with quantum error mitigation techniques 
used in noisy quantum computers (“NISQ” for noisy intermediate scale quantum)109 and quantum error correction 
codes in future fault-tolerant quantum computers (“FTQC”)33. Also, most quantum algorithms are hybrid and have a 
classical part. 

Our second challenge is that we're not dealing with a single technology like the integrated circuits of the 1960's 
and 1970's dominated by CMOS silicon-based transistors. There is a large variety of qubit technologies which are 
miles apart in physical aspects, operational and miniaturization challenges. Neutral atoms in vacuum are entirely 
different from superconducting and electron spin qubits, and photon-based qubits are also weird beasts, aka flying 
qubits, compared to the other types of qubits which are static in location. Contrarily to solid state qubits, photons 
don’t have much of a decoherence problem but are harder to generate, control and detect in a deterministic way. 
Even though it is still a fundamental research topic, flying electrons are also investigated as flying qubits or 
interconnect qubits to create connection between other spin and static qubits. 

Apple iPhone 
29 June 2007

Apple M1 Max 
October 2021

IBM record loss 
end 1992
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microprocessor with full functionality (integer, floating point and memory manager) 
could be made. A smartphone became possible when enough transistors could be 
bought, within the budget for a phone CPU, to run a good kernel and nontrivial graph-
ical applications. 

Gordon Bell predicts new classes of computer should emerge every 10 years [4] 
based on a similar analysis – though his categories differ as he does not consider devices 
like smartphones. 

In Table 1, I summarize terminology to aid the non-specialist. Though I prefer using 
binary prefixes for memory sizes as those accurately reflect the hardware, if I cite a 
source that uses decimal prefixes like M and G (e.g., in Section 2), I use their terms, 
even if they may be inaccurate. 

Table 1. Terminology. 

Term  Definition 
Ki kibi- binary prefix for 210 = 1024 
Mi mebi- binary prefix for 220 = 10242 
Gi gibi- binary prefix for 230 = 10243 
Ti tebi- binary prefix for 240 = 10244 
die  chip (as seen by hardware designers) 
core  CPU or GPU on a die; if more than one 
DRAM  dynamic random access memory 
  each bit is a capacitor and must be refreshed 
SRAM  static random access memory 
  each bit is made of transistors and is not re-

freshed 
ROM  read-only memory 
 bank  separately accessible unit of memory 
 ISA instruction-set 

architecture 
programmer-visible instructions and registers 

microcode  low level instructions used to implement ISA 
control store  ROM used to store microcode 
μ-ops micro-operations simplified instructions generated in hardware 
cache  fast SRAM memory close to CPU 
  fastest is L1, nearest CPU, then L2, etc. 
issue  instruction moves to execute pipeline stage 
multi-issue  more than one instruction can execute at once 
scalar  CPU that executes one instruction at a time 
superscalar  CPU with a multi-issue pipeline 
 

 



Having reached this point: should we not be looking for a new inflection point, based 
on delivering something previously impossible, now that over 50-billion transistors can 
be put on a die? In the remainder of this paper, I review the limitations of cramming 
CPU power onto a die, touch on trends in addition to Moore’s Law and look for histor-
ical designs that could better use so many transistors. I select one and outline why it is 
a good idea, and where it takes us next. I end with conclusions. 

2 Limits of Over-CPU Designs 

It is useful to backtrack a bit to how we got to the current situation, where processor-
heavy designs increasingly dominate the industry. In 1996, Kunle Olukutan made the 
case for a single-chip multiprocessor, now commonly referred to as multicore, based 
on the observation that aggressive multi-issue pipelines have diminishing returns. 4 
CPUs able to issue two instructions per clock need about the same chip space as a single 
CPU able to issue 6 instructions per clock. Despite 3 times the peak throughput, the 
more aggressive design at best is 30% faster than the simpler design on a single thread 
or process and 4 simpler CPUs do better on multithreaded or multitasking workloads 
[30]. 

At the time Olukutan was making the case for a single-chip multiprocessor, one of 
the more aggressive designs available, the AMD-L6, had 88-million transistors and 
could issue 6 instructions – either real instructions, or micro-operations (μ-ops)1 derived 
from real instructions – in one clock cycle [16]. Apple’s M1 Max with 57-billion tran-
sistors has nearly 650 times as many. What are all these extra transistors used for? Some 
details have been made public [27] though Apple does not disclose as much as some. 
M1 Max has 10 regular CPUs, 32 GPUs and 16 NPUs (neural processing units, claimed 
to be capable of 11 trillion operations per second – though it is not clear if this is in the 
aggregate or per NPU). To make this all work without being totally memory-limited, 
Apple packages DRAM tightly with the CPU in a System in a Package (SiP) design. 
The 512-bit memory bus has four 16-bit 128-bit LPDDR5 channels. Cores are split into 
performance and efficiency; the former share a 12 MByte L2 cache and the latter a 4 
MB L2 cache. Performance cores each have 192 KB of instruction and 128KB of data 
cache, and efficiency cores respectively 128 KB and 64 KB. With 8 performance and 
2 efficiency cores, this adds up to nearly 3 MB of level 1 cache, for a total over all cores 
and levels of nearly 20 MB of cache. 

Not taking into account the cache-control logic, with 6 transistors per bit (the usual 
SRAM implementation [45] though other variations are possible), this amount of cache 
requires about 950-million transistors, or less than 2% of the total of 57-billion transis-
tors. 

A design with as much CPU on one die as Apple’s M1 Max is memory-constrained. 
Though Apple sells its designs with tightly-integrated DRAM, satisfying demand for 
so much processing is challenging. If all 58 processing units (10 CPUs, 32 GPUs, 16 

 
1 As a way of bridging the gap between complex instruction sets and RISC, some designers use 

μ-ops that break programmer-visible instructions into simpler operations; μ-ops are designed 
to be easier to pipeline than complex instructions [20]. 
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NPUs) try to access DRAM at once, that becomes a major bottleneck. Even with a high 
bandwidth bus, contention is likely to be an issue particularly as all units are unlikely 
to be in lockstep and accessing the same region of memory. It would be interesting to 
know how many memory transactions are required to be interleaved with 11-trillion 
(1.1×1013) NPU operations per second to sustain that rate with real-world computations. 
To add to that, for the conventional CPUs, though the L1 caches are a decent size, the 
L2 caches are not particularly large. 

During the original supercomputer era, it was well known that there could be a very 
big gap between peak and achievable throughput, as revealed by an attempt at stand-
ardising application-level benchmarks [10]. Having a massive theoretical peak through-
put that is not achievable has to be weighed against other uses of hardware resources 
that could be effectively utilised. 

When the amount of computing power on a die is out of balance with reasonably 
achievable memory resources, I call this an “over-CPU” design. 

A major drawback of Apple’s approach to countering an over-CPU design by tightly 
integrating DRAM into the package is that it removes the option of memory upgrades. 
For a consumer computer, this is problematic as a buyer on a limited budget can stretch 
the usability of a machine by buying more DRAM, particularly as DRAM prices drop. 
Worse, it is not a sustainable strategy for future designs as the latency gain of this sort 
of packaging can only happen once; if the long-term trend of a growing speed gap be-
tween CPU and DRAM persists, an over-CPU strategy will see diminishing returns. 

The Apple M1 Max exemplifies the problem; it is not the only example. Recent 
NVIDIA GPU designs have 80-billion transistors, with 50 Mbytes of cache [13], ac-
counting for about 3% of the total transistors. 

3 Trends and Learning Curves 

There is a long history of changes in optimum instruction set architecture (ISA) being 
driven by memory technology. The ISA in broad terms is the programmer-visible in-
struction set, including instructions and registers. In very early systems with small 
memories, designs that led to compact code were optimal [12]. When a fast read-only 
memory (ROM) became an option, a control store containing microcode – code in a 
very low-level form that interpreted the ISA layer – became viable. Microcode liberated 
ISA designers from simplicity: as bigger control stores became possible, increasingly 
complex ISAs became feasible. 

As memory became cheaper and memory footprint of code became less of an issue, 
designs favouring a simplified hardware design without microcode and facilitating ag-
gressive pipelines – even if at the cost of needing more memory – became a more viable 
option. The Reduced Instruction Set Computer (RISC) [34] movement consequently 
arose. Also feeding into this was that semiconductor memories replaced magnetic core 
memories, so it was no longer possible to make a small control store that was many 
times faster than main memory and control store was no faster than a cache [33]. 

The RISC movement was to some extent inspired by Seymour Cray’s designs while 
at Control Data. The CDC 6600 is credited with being the first supercomputer as well 



as presaging RISC ISA principles [2]. Cray’s later designs when he started his own 
company exploited the invention of semiconductor memory to the full. Aside from add-
ing vector instructions and registers, the Cray-1 used what was then a large static RAM 
(SRAM) main memory, divided into 16 banks2 [41]. In the remainder of this paper, 
when I refer to a “Cray” architecture, I mean a classic vector design, not any later de-
signs that may have appeared under the Cray name. Cray in this sense has become a 
descriptive term rather than a name of a specific product. 

Moore’s Law is a specific example of a learning curve law: essentially a law of 
competition. If all competitors expect an increase of N% per year on some metric, they 
all aim for that. If they aim too high, they risk their new design being ready too late. If 
they aim too low, they risk losing market share to the leaders. 

In general terms, if C(q) is the metric of interest for making the qth item in a series 
of improvements and C(1) is the measure of the first, for the parameter of learning p, 
Equation 1 defines a learning curve [50]. 

 
 C(q)=C(1)−p (1) 

 
Moore’s Law is the most famous example but trends in dynamic RAM (DRAM) are 
equally important. While density drives speed of logic, in DRAM density mainly drives 
capacity. Consequently, there is a growing CPU-DRAM speed gap, long predicted to 
run into the memory wall, where CPU speed improvements will be masked by memory 
access delay [48]. Added to this, DRAM organization is becoming increasingly com-
plex, with timing of refresh yet another issue to take into account for minimum latency 
[5]. The memory wall was to some extent evaded by the shift to multi-core designs with 
lower clock speeds but the underlying problem is still there and an over-CPU design 
does not help with balancing DRAM latency with CPU speed. 

Across the industry there are other learning curves of interest such as improved 
power management, improved battery life and reduced network switching latency. 
However, for this paper, memory and CPU trends are sufficient to illustrate the point: 
an over-CPU design is not a good use of available transistors. 

Another trend is the growing general-purpose use of GPUs (GPGPU). This approach 
is opportunistic: GPUs offer a lot of computational power and are relatively inexpen-
sive compared with a custom high-performance CPU. However, they are widely known 
to be difficult to program [11]. I have argued elsewhere that we will reach a GPU end-
point: a faster GPU will not be useful up to the point where human senses are saturated. 
Once that point is reached, speed enhancements of GPUs will only benefit general-
purpose use. I further argue that once this point is reached, a sub-optimal GPU that is 
easier to program for general-purpose use may be a better design trade off [25]. While 
Intel explored part of that design space with the abandoned Larabee project, that CPU 
was based on a modest pipeline with added graphics instructions, rather than a reason-
ably strong computation engine [43]. The better solution in my view is to start with a 
known high-performance ISA and, if necessary, extend it with graphics operations. 

 

 
2 Large, in its day, meant 64 Mibytes. 
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3.1 Other Related Work 

The RISC-V project provides open designs for a RISC architecture drawing on lessons 
of older designs, a starting point for developing new ideas unencumbered by licensing 
considerations [2]. There are various extensions of the basic RISC-V ISA, including 
vector instructions inspired by Cray designs [40]. 

A growing number of projects is building on the RISC-V vector architecture [21, 47, 
31, 36]. Allied to this is work on improved vector code generation in the LLVM com-
piler project specifically for the RISC-V vector ISA [1]3. 

It is therefore not a sticking point for a project to design a Cray-like vector CPU as 
the RISC-V free CPU project has already worked on that [31] – see key components of 
one design, RISC-V2, in Figure 2. RISC-V2 includes a 2-way superscalar pipeline with 
out of order execution, much the same as each single core in the original single-chip 
multiprocessor proposal. So the major work in the project is designing the memory 
system and the software layers. Another project has an even more complete RISC-V 
vector design [36] so it is increasingly becoming a matter of choosing the one closest 
to requirements as a starting point. 

 
3 The GCC toolchain is also available but LLVM generally has better performance [38]. 

 

Fig. 2. RISC-V2 Vector pipeline showing the major components. 

 



Where it comes to balancing CPU and on-chip memory, an idea that has been around 
for some time is processing in memory (PIM) [18], also sometimes called intelligent 
RAM (IRAM) [32]. 

Why has this idea not taken off? A clue is in the Terasys design [18], where relatively 
modest CPUs were incorporated into DRAM. DRAM and CPU logic are built with 
different processes and combining the two on one die involves design compromises, 
making it difficult to get the best possible DRAM or best possible CPU design on the 
same part. Consequently, recent work on PIM [28] has focused on tight packaging of 
DRAM dies with CPU dies (such as 3-dimensional stacking – see also Apple’s SiP 
packaging [27] referred to in Section 2), more complex DRAM organization that can 
mitigate off-chip delays and new alternatives to DRAM, none of which have yet be-
come available at scale. 

3.2 Putting it all together 

The overall proposal here is to combine free CPU work of the RISC-V project with the 
PIM idea. Taking advantage of the large number of transistors of recent designs (the 
“inflection point”), instead of implementing PIM using DRAM, and hence limiting the 
capability of the CPU, using SRAM allows an aggressive CPU. 

Unlike the trend of contemporary designs, the balance is shifted to more relatively 
high-speed memory on a die, rather than more CPU. 

4 A More balanced design option 

Given the potential for doing something different and new now that a die with more 
than 50-billion transistors is viable, should we be looking at more of the same, or look-
ing for a new idea? 

The answer, I propose, is reviving an old idea in a more efficiently packaged and 
hence lower-cost form. 

My idea is that a reasonable use of over 50-billion transistors is to use most of them 
for SRAM on a chip with a single processor close to the design of a Cray vector ma-
chine. 

Why SRAM and not DRAM? 
While DRAM has many modes to improve speed of access [14], it cannot achieve 

the same flexibility and overall speed as SRAM. Part of the speed difference arises from 
the different electronics. SRAM uses transistors to store bits. DRAM stores a bit using 
a capacitor, which needs to be refreshed. Switching time is inherently slower than a 
transistor. Another issue is that the fabrication technology is different, making it harder 
to include logic and DRAM on one chip, while SRAM uses the same logic as a CPU. 

Such a design would be far simpler than a typical over-CPU architecture. Multiple 
banks of SRAM on one chip would not require complex logic. A single vector CPU 
with out of order execution of scalar instructions would be similar to the Cray-1. With 
a large amount of on-chip SRAM, the CPU would not be memory-limited. 
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Why Cray? Cray’s designs were very competitive in their day, though expensive to 
build as they used a large number of discrete components and needed very efficient 
packaging to minimise communication latencies, hence the very compact design par-
ticularly of the early models [3]. Vector compilers became very efficient and some of 
the ideas like multiple banks of SRAM are not particularly difficult to implement on a 
single chip. 

How much SRAM? 
A die with over 50-billion transistors could support 1 Gibyte of SRAM with space 

left over for a CPU. With 6 transistors per bit, 1 Gibyte of SRAM requires 51.5-billion 
transistors. This is about 90% of the transistor count on an M1 Max die, leaving nearly 
10% of a similar-sized die for CPU logic. However, the exact amount of SRAM that 
would be optimal would depend on how fast it could be accessed. That is a function of 
wiring delay as well as switching speed. Both of these factors improve as feature size 
reduces. Apple’s M1 Max is built with a 5nm process and 4nm processes are already 
available4. 

A reasonable design goal is for SRAM to be accessible in 2 clock cycles. This means 
that any memory access can be handled in two pipeline stages. A multi-banked SRAM 
can accommodate a mix of different access types, including vector access and instruc-
tion fetches. If 2-cycle access is not feasible, caches will still be needed for scalar op-
erations and instructions, but vector accesses could access the SRAM directly. 

To give some idea of speed, a commodity SRAM from Renases (one of the larger 
manufacturers of commodity SRAM) is available with a 6 ns clock cycle time and can 
set up a read or write including the address in one cycle and transfer data in the next 
cycle. It can also deliver data in burst mode, with up to 4 accesses for one addressing 
operation [39]. This kind of SRAM is only available in relatively small units, up to a 
few mebibytes, since the cost per bit is so much higher than DRAM. However, in this 
proposal, chip space that would otherwise be used for logic will instead be used for 
SRAM, so provided the result is at least as good as an over-CPU design with the same 
number of transistors, a big SRAM is not an extra cost. 

Exactly how fast an SRAM memory is depends on how it is organized. Relatively 
large caches on recent Intel (64 MiB) and AMD (512 MiB) server-class CPUs for ex-
ample have a read latency of about 20ns in the L3 cache [46], but the L3 cache has a 
more complex access protocol than an ordinary memory, particularly as it is part of a 
multiprocessor design. What we can be sure about however is that the proposed on-chip 
SRAM will be faster than an off-chip DRAM. 

Using multiple banks that can be addressed and accessed in a pipelined fashion or 
simultaneously can increase the effective speed, and an on-chip SRAM will not incur 
off-chip delays. On-chip SRAM could also be potentially accessed with multiple modes 
of accessing banks, allowing e.g. streaming for vector loads, while also doing scalar 
loads out of other banks. 

 
4  Characterising a process by nanometers is not strictly accurate as processes vary: transistors 

per mm2 is proposed as an alternative [9] though that does not capture the fact that some dies 
may have a larger ratio of interconnect to logic. 



If there are 16 banks as in the Cray-1, each bank in a 1 Gibyte SRAM would be 64 
Mibytes. Making the conservative assumption that a 6ns cycle time is the best achiev-
able with an SRAM of this size, overlapping bank accesses would result in an average 
access time of !"!=0.375ns, corresponding to a clock rate of 2.67GHz. From here on, 
assume memory cycles are 6ns and CPU cycles are 0.375ns. The effect of 16 banks is 
to allow up to 16 memory operations to occur in parallel, resulting in those 16 memory 
accesses completing in 2 memory cycles instead of 64. If access to 16 banks is pipe-
lined, the first access will take 2 memory cycles totalling 12ns or 32 CPU cycles but 
each thereafter can occur on the next CPU cycle. I use 16 here for illustrative purposes; 
with an on-chip SRAM there is no reason not to have a higher number of banks. 

Separately addressed banks have other benefits. Interference between code and data 
movements can be reduced, and a mix of different types of data movement including 
vector and scalar loads and stores can be accommodated. 

Using either the pipelined or simultaneous access – or both – would not be difficult 
to design with SRAM and CPU on a single die. Design of the memory controller logic 
could be tightly integrated with the CPU and memory. While DRAM may include many 
modes that appear to fit the requirements of diverse forms of access including streaming 
and even internal bank structure, it is difficult to achieve the theoretically available 
performance in practice [14]. 

Putting it all together, I propose a Cray-style RISC plus vector CPU with a sizeable 
(e.g., 1 Gibyte) SRAM memory on the same chip, called Crayon (for Cray on a chip). 

It should be possible to implement all the logic required for the CPU in 100-million 
transistors (noting the aggressive AMD design mentioned in Section 2 had less than 
that but lacked a vector unit). If that is the case, logic would be about 0.2% of the 
transistors and SRAM 99.8%. 

Fig. 3 Illustrates how die usage differs in an over-CPU design like M1 Max, in which 
about 2% of the transistors are used for caches, vs. a Crayon design, where the CPU is 

  
(a) Mostly CPU (b) Mostly SRAM 

Fig. 3. Comparison of die area used in an over-CPU design like M1 Max vs. Crayon. Layout 
is conceptual, to illustrate differences in allocation of transistors. 

cache

CPU

CPU

SRAM
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less than 1% of die area with most of the rest used to for SRAM. The illustrations are 
not meant to be floor plans: in a design like M1 Max, CPUs and caches are not grouped 
as a single entity. They are however drawn approximately to scale to illustrate the dif-
ference in design focus. 

4.1 Uses 

It is useful to consider possible uses of a CPU with a large included SRAM. A proper 
detailed study of performance is justifiable if there are clear cases where it could be a 
good idea. 

 
Design variations. One Crayon on its own would have a substantial memory but one 
that is far smaller than a typical standalone computer. A more powerful system could 
be built in various ways. If more processing was needed, more than one CPU plus 
SRAM Crayon chip could be used. If more memory was needed, external DRAM could 
be added as another level of memory – possibly as a fast paging device [26]. Since any 
external DRAM would not be accessed as often as with an over-CPU design, off-chip 
delays would not be as big a bottleneck. 

Closely-coupled Crayon parts forming a multiprocessor node could packaged much 
like a typical stick of DRAM. For example, 16 such units would contain 16 Gibytes of 
SRAM and would make for a powerful personal computer. Such nodes could be clus-
tered to form a large-scale system – for example, 1024 Crayons could be configured 
using 64 such nodes, totalling 1 Tibyte of SRAM and 1024 vector CPUs. Such combi-
nations with a fast interconnect could be seen as a non-uniform memory (NUMA) de-
sign [22], or use a distributed memory or distributed shared memory [29] architecture. 

Some of these ideas would need operating system work, like treating DRAM as a 
paging device, or implementing distributed shared memory. In the simplest case, each 
Crayon device could function independently as part of a network of devices or on its 
own for an application that did not need more memory. Each node would be a Crayon 
chip, power supply and network interface. 

There is considerable work on speeding up network connectivity because of the 
memory-speed bottleneck in over-CPU designs [35, 17, 24]. Since their problem is 
harder than Crayon’s, there is no need for special innovation in interconnects to imple-
ment a Crayon design. 

 
Use cases. One type of use case is for read-once data streams. A single device of this 
kind with a network interface could process a stream of data that has to be discarded 
once processed and pass on the results either to another device or to storage. 

Square Kilometer Array (SKA) [6] is an example – data produced when it is working 
at scale will be too large to store and the faster it is processed, the more can be extracted 
before the data must be discarded. A network of Crayon devices could fill this need. A 
Cray-style CPU would be well-suited to the sort of computations needed like Fast Fou-
rier Transforms and deconvolution [42]. Astronomy applications use GPUs; speedups 
over conventional CPUs are typically a small fraction of the available parallelism [7, 



8]. This points to a need to balance memory and CPU so it would be worth exploring 
more such applications as workloads of interest for a Crayon design. 

Another example is a malware scanner or a firewall. Data passing through needs to 
be checked quickly and passed on if no problem is detected. The throughput character-
istics of a Crayon device would support such a use. The need for wire-speed firewalls 
is extending to new applications like automotive [49] – so a relatively low cost device 
capable of processing complex rules in real time could have a large market. For embed-
ded applications, a variant with a smaller SRAM would fit a lower cost and lower en-
ergy requirement. 

Many high-performance computing applications were implemented successfully on 
vector computers, and there is ongoing research into achieving good speedup on such 
architectures, with good speedups reported for most of the SPECfp2006 benchmark 
suite [19]. 

In general, any application that is reasonably partionable and for which vectorizable 
code can be written could fit a network of Crayon devices. The big advantage over 
traditional large-scale supercomputers is that the design is scalable. The advantage over 
commodity CPUs is that a vector design with a high-speed memory is a proven archi-
tecture for high-performance computing. 

5 Conclusions 

The basic principles for designing a Crayon device are relatively straightforward. The 
Cray-1 and successors contain a range of useful ideas that would be much easier to 
implement on a single chip. While 1 Gibyte is big compared with RAM on early Cray 
machines, it is not big by current standards. Nonetheless a Crayon design could be a 
good starting point for scaling up to large-scale systems. A system with 1024 Cray-
class CPUs and 1 Tibyte of SRAM is a substantial computational resource. If this is a 
good idea, why did the original Cray vector line die out? It had no mass market. If the 
next big design didn’t sell, the company risked bankruptcy. If the proposed Crayon part 
had sufficient applications, this problem would fall away. 

Compared with the original Cray designs, Crayon is a scalable building block and 
does not require complex manufacturing to build a whole system. A node for a highly 
partionable computation can be as simple as a Crayon chip, a network interface, and a 
simple power supply. 

Another important detail is power consumption; there is no reason in principle that 
a Crayon should not be competitive with an over-CPU design. SRAM can wake up fast 
from low-power modes for example, so the entire memory need not be running on full 
power at once. 

What I present here is a starting point for re-evaluating the trend towards cramming 
more and more CPU onto each chip. There are many other ways the vast number of 
transistors available on a die could be used. However, this project focuses on the detail 
of a Crayon design to evaluate how far it can be taken. Issues to consider include how 
fast on-chip SRAM can reasonably be accessed, whether caches are still needed or 
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whether a multi-banked cache obviate that, and details of the instruction set design and 
how they interact with the memory system. 

Getting all the details right of course is nontrivial. The operating system will need to 
understand the memory hierarchy (that depends how it is designed, e.g., a DRAM layer 
functioning as a paging device, or distributed shared memory would require more work 
than a standalone node or a NUMA architecture). Provided that the RISC-V vector ar-
chitecture is used, compilers will not be a problem. Overall, compared with the original 
Cray vector machine project, implementing Crayon should be relatively easy. 

Future work includes a more detailed design, performance studies and more details 
analysis of potential use cases. 
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