

Abstract-Warehouse-scale computing supports cloud-
based services such as shared disk space, computation
services and social networks. Although warehouse-scale
computing is inexpensive per user, the cost to entry is
high, and the pressures to generate revenues to cover
costs leads service providers to pursue monetizing
services aggressively. In this paper, we explore some
ideas for removing the need for central servers by
exploiting peer-to-peer technologies.

Index Terms—distributed systems, cloud, peer-to-peer

I. INTRODUCTION
Large-scale services such as shared file systems (Google

Drive, Apple iCloud, Dropbox and Microsoft’s OneDrive)
and on-demand computation resources (such as Amazon’s
Elastic Compute Cloud, or EC2) have started to proliferate
with the generic “cloud” label. Such services build on
infrastructure originally created to support large-scale
services such as Google search, Amazon’s bookstore and
Facebook. Many of these large-scale services – Google’s
search, Facebook and Twitter to name a few – are free to
use, but have a commercial aspect in that their creators use
user traffic to generate revenue streams such as advertising.

Despite impressive gains in implementation of such
services [Mishra et al. 2010], they fall far short of the
promise of distributed computing. They lack a transparent
namespace – most such services still look more like
networked services with names that appear to relate to a
particular server, even if there is some virtualization behind
the scenes. Scalability is implemented by large-scale
resources in a small number of places, rather than by placing
resources near the users. Cost is not shared over the users,
except in the indirect sense that a large user base makes for
a more attractive target for advertisers. The last point also
points to one of the weaknesses of this sort of service from
the user point of view: if you are seen as the product, as was
famously said of Facebook [8], “your” service provider
constantly is under pressure to monetize you.

While some services inherently are salable – e.g.,
Amazon’s EC2 generates revenues directly [12] – providing
services that users do not expect to pay for should be based
on shared cost-sharing, rather than on free services paid for
by advertising. Otherwise, the temptation to monetize
invasion of privacy is too high.

In this paper, we explore the extent to which an existing
shared-cost model, peer-to-peer (P2P) file-sharing, can
adapt to a wider range of services. We start with specific
services, then generalize to wider possibilities.

The remainder of this paper is structured as follows.
Section II summarizes previous work, including approaches
to scalability and distributed computing, as well as P2P
technologies. Section III outlines how some simple services
can be implemented using P2P, including existing work and
our own ideas, and Section IV contains conclusions.

II. BACKGROUND
In this section we briefly review the relationship between

distributed computing and the cloud, which is a poor
approximation to the intent of distributed services, and the
broader concept of scalable services.

A. Distributed Computing and the Cloud
Distributed computing in its general form implies a

number of properties [14]:
• location-transparent naming – a name of an entity should

be related to its logical purpose or relationship to other
entities, not where it is situated

• locality-independent resources – whether a resource is
local, on a local network or in a more remote location is a
performance detail, and should not be an inherent
property of any resource

• decentralized scalable infrastructure – a system should be
able to work over a wide geographic region, which also
implies an appropriate level of security.
Cloud-based services violate basic properties of

distributed computing. To the user, it is clear that there is an
external server, and hence, a distinction between purely
local resources and cloud-based services. Names are
therefore not full location-transparent. Further, cloud
services require connection to a server (even if limited
offline activity may be allowed), making network
connection essential rather than a performance detail.
Scalability is achieved by concentrating resources in
warehouses of computers [3], rather than by distributing
resources widely.

B. Scalable Services
In general, how can services be scaled up? Some of the

scalability problem is in scaling up large-scale computation;
the general case is hard because some problems are not
partitionable [1]. Here we constrain ourselves to services
where computation is not large-scale; even so we have
problems of scaling up naming. Traditionally, name-scaling
has been a function of middleware [2]. We can however
isolate scalable naming as a single concept as, for example,
in distributed hash tables (DHT) [13, 9], which are widely
used in P2P systems (though some have argued that sharing

Preliminary Thoughts on Services without Servers
Philip Machanick and Kieran Hunt
Department of Computer Science
Rhodes University, Grahamstown

Tel: +27 46 603 8635, Fax: +27 46 603 7608
email: {p.machanick,kieran.hunt}@ru.ac.za

Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2014 469

in P2P systems is inherently scalable [5] without DHTs).
In general, scalable services should not depend on the

number of users to be viable and – even better – should
become more viable as the number of users increases.

III. SIMPLE P2P-BASED SHARED SERVICES
A number of services layered on P2P already exist. For

example, Skype voice over IP (VoIP) is layered on a
proprietary P2P protocol [4]. BASS is a scalable video on
demand service based on Bittorrent [6].

More recently, the Bittorrent Sync application
programming interface (BTS API) has been released1,
allowing applications to be layered on top of the Bittorrent
Sync service [7], which provides secure P2P file sharing.
Applications that use the BTS API include Vole2, a twitter-
like service that shares the underlying files using BTS rather
than a central server, and SyncNet3, which implements a
web server by distributing the files across clients.

These services indicate the general possibility of breaking
dependence on central servers.

Our work builds on these foundations. We are
investigating the extent to which you can completely break
away from networked services and implement true
distributed services based on P2P protocols. Our starting
point is implementing a twitter-like service on top of the
BTS API, using Java for portability – thereby eliminating
the web browser. We will follow with a service more like
Facebook, then look into how services like email can be
made to work in a purely distributed fashion [10].

Implementation of a twitter-like application built on the
BTS API should be very simple. Users wanting to share
updates exchange their encryption keys (these could be
mapped to usernames or handles) to allow other users to
request and download their updates. A simple GUI sets such
a program apart from traditional, web-based applications.
Otherwise, BitTorrent Sync handles most of the operation.

IV. CONCLUSIONS
Distributed computing is a powerful idea that has

somehow got lost in a network-centric world. Warehouse-
scale computing uses distributed computing concepts
internally, including highly scalable distributed file systems,
yet the interface presented to the user uses network-like
names, even if the actual resource named may be disguised.

The proposal presented here is to implement true
distributed services without servers, based on P2P
technology. The extent to which such services can be
implemented is part of our investigation; if we can
implement a significant range of such services, we can
reduce the need for central resources, and hence the pressure
to monetize services even when it is inappropriate to do so.

Further, if these ideas work, not only can they scale very
well, but they have a very low barrier to entry.

ACKNOWLEDGEMENTS

This work was undertaken in the Distributed Multimedia CoE at Rhodes`
University, with financial support from Telkom SA, Tellabs, Genband,

1 http://www.bittorrent.com/sync/developers/api
2 http://vole.cc/
3 http://jack.minardi.org/software/syncnet-a-decentralized-web-browser/

Easttel, Bright Ideas 39, THRIP and NRF SA (TP13070820716). The
authors acknowledge that opinions, findings and conclusions or
recommendations expressed here are those of the author(s) and that none of
the above mentioned sponsors accept liability whatsoever in this regard.

REFERENCES

1. G.M. Amdahl. “Validity of the single processor approach to
achieving large scale computing capabilities”, Proc. Spring
joint computer conference, AFIPS ’67, 1967 pp. 483–485.

2. G. Ballintijn, M van Steen and AS Tanenbaum. “Scalable
naming in global middleware” Proc. 13th Int’l Conf. on
Parallel and Distributed Computing Systems, 1999 pp. 624-
631.

3. L.A. Barroso and U. Hölzle. “The datacenter as a computer: An
introduction to the design of warehouse-scale machines”,
Synthesis lectures on computer architecture, 2009.
doi:10.2200/S00193ED1V01Y200905CAC006

4. S.A. Baset and H. Schulzrinne. "An analysis of the Skype peer-
to-peer internet telephony protocol." arXiv preprint
cs/0412017, 2004.

5. Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S.
Shenker. “Making gnutella-like P2P systems scalable.” Proc.
2003 conference on Applications, technologies, architectures,
and protocols for computer communications, 2003, pp. 407-
418.

6. C. Dana, D. Li, D. Harrison and C.-N. Chuah. “BASS:
BitTorrent assisted streaming system for video-on-demand.”
IEEE 7th Workshop on Multimedia Signal Processing, 2005
pp. 1-4.

7. J. Farina, M. Scanlon, and M. Kechadi. “BitTorrent Sync: First
Impressions and Digital Forensic Implications.” Digital
Investigation vol. 11, pp S77-S86, 2014

8. N. Friesen. “Education and the social Web: Connective learning
and the commercial imperative.” First Monday vol. 15, no. 12,
2010.

9. D. Korzun and A. Gurtov. “Survey on hierarchical routing
schemes in ‘flat’ distributed hash tables.” Peer-to-Peer
Networking and Applications vol. 4 no 4, pp 346–375, 2011.

10. P. Machanick. "A distributed systems approach to secure
Internet mail." Computers & Security vol. 24 no. 6 pp 492–499
2005.

11. A.K. Mishra, J.L. Hellerstein, W. Cirne, and C.R. Das. 2010.
“Towards characterizing cloud backend workloads: insights
from Google compute clusters”, SIGMETRICS Perform. Eval.
Rev. vol. 37, no. 4, pp 34-41, March 2010.

12. Y. Sangho, A. Andrzejak, and D. Kondo. “Monetary Cost-
Aware Checkpointing and Migration on Amazon Cloud Spot
Instances”, IEEE Transactions on Services Computing, vol. 5,
no. 4, pp 512,524, Fourth Quarter 2012.

13. D. Tam, R. Azimi and H.-A. Jacobsen. “Building content-
based publish/subscribe systems with distributed hash tables”,
in Databases, Information Systems, and Peer-to-Peer
Computing. Springer Berlin Heidelberg, 2004, pp 138-152.

14. A.S. Tanenbaum and M. van Steen. Distributed Systems:
Principles and Paradigms. Upper Saddle River, NJ: Prentice
Hall, 2002.

Philip Machanick received his PhD degree in 1996 from the
University of Cape Town. His research interests include distributed
computing, computer science education and bioinformatics.

Kieran Hunt received his undergraduate degree from Rhodes
University in 2013 and is presently studying towards his Honours
degree at the same institution. His research interests include
distributed computing.

Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2014 470

	SATNAC 2014 Proceedings_frontsection_USB_edition
	Binder2_papers
	Binder1_full
	1_AccessNetworks_starter_Page
	2_26_Final_Paper
	3_97_Final_Paper
	3_975_Blank_Page
	4_22_Final_Paper
	4_225_Blank_Page
	5_50_Final_Paper
	6_102_Final_Paper
	6_1025_Blank_Page
	7_67_Final_Paper
	8_34_Final_Paper
	8_345_Blank_Page
	9_68_Final_Paper
	10_55_Final_Paper
	I. introduction
	II. Related work
	III. Architecture in Theory and Practice
	A. Description of the architecture and the business case
	B. Description of the network in the field

	IV. Material and Methods
	A. Theoretical and practical background
	B. Optimisation methodology

	V. Results from Traffic Generation
	A. Modifying SlotTime
	B. Considering the number of hops

	VI. Discussion Of The Optimisation Results
	VII. Conclusion
	Acknowledgements
	References

	11_114_Final_Paper
	11_1145_2XBlank_Page
	12_49_Final_Paper
	12_495_Blank_Page
	13_10_Final_Paper
	13_105_Blank_Page
	14_86_Final_Paper
	15_ConvergedServices_starter_Page
	16_99_Final_Paper
	17_98_Final_Paper
	18_37_Final_Paper
	19_92_Final_Paper
	19_925_Blank_Page
	20_28_Final_Paper
	21_107_Final_Paper
	22_31_Final_Paper
	23_41_Final_Paper
	24_111_Final_Paper
	25_Core Networks_starter_Page
	26_2_Final_Paper
	27_82_Final_Paper
	28_4_Final_Paper
	29_51_Final_Paper
	29_515_Blank_Page
	30_52_Final_Paper
	31_Internet_starter_Page
	32_63_Final_Paper
	33_89_Final_Paper
	34_71_Final_Paper
	35_15_Final_Paper
	36_85_Final_Paper
	37_20_Final_Paper
	I. introduction
	II. The ODL Context at UNISA for Assignments
	III. Current Online Submission Challenges
	IV. Research Methodology
	V. Results and Discussion
	VI. Conclusions
	VII. References

	37_255_Blank_Page
	38_72_Final_Paper
	39_61_Final_Paper
	I. Introduction and Background
	II. Related work
	III. Mobile Health Application
	A. Light weight
	B. Intermittent Internet connectivity
	C. Blood pressure, heart rate and glucose measurements
	D. Feedback to health worker and the subject of care
	E. Historical preview

	IV. Application Description
	A. Functional description
	B. Technical Description

	V. Mobile health application Evaluation
	VI. Conclusion and Future Work
	VII. Acknowledgements
	VIII. References

	39_615_Blank_Page
	40_3_Final_Paper
	41_93_Final_Paper
	42_121_Final_Paper
	43_110_Final_Paper
	44_62_Final_Paper
	45_LimitedRange_starter_Page
	46_91_Final_Paper
	47_45_Final_Paper
	48_73_Final_Paper
	49_48_Final_Paper
	50_79_Final_Paper
	50_795_Blank_Page
	51_7_Final_Paper
	52_75_Final_Paper
	53_17_Final_Paper
	54_119_Final_Paper
	55_16_Final_Paper
	56_118_Final_Paper
	57_124_Final_Paper
	57_1245_Blank_Page
	58_9_Final_Paper
	59_57_Final_Paper
	60_43_Final_Paper
	60_435_Blank_Page
	61_11_Final_Paper
	62_Management_starter_Page
	63_44_Final_Paper
	64_38_Final_Paper
	65_76_Final_Paper
	66_40_Final_Paper
	67_35_Final_Paper
	68_100_Final_Paper
	69_Standards_starter_Page
	70_1_Final_Paper
	71_66_Final_Paper
	72_84_Final_Paper
	73_19_Final Paper
	74_83_Final_Paper
	75_24_Final_Paper
	76_12_Final_Paper
	77_33_Final_Paper
	77_335_Blank_Page
	78_14_Final_Paper
	I. introduction
	II. Direct and Diffused Beam Radiation
	III. Research Methodology
	IV. Practical Setup Shading
	V. Practical Setup PV System
	VI. Results and Discussion
	VII. Conclusions
	VIII. References

	78_145_Blank_Page

	Binder2_WIP
	1_WIP-AccessNetworks_starter_Page
	2_172_Final_Paper
	3_185_Final_Paper
	4_139_Final_Paper
	5_WIP-ConvergedServices_starter_Page
	6_150_Final_Paper
	7_175_Final_Paper
	8_132_Final_Paper
	9_167_Final_Paper
	10_134_Final_Paper
	11_WIP-CoreNetworks_starter_Page
	12_163_Final_Paper
	13_WIP-DC-Cloud_starter_Page
	14_149_Final_Paper
	15_WIP-Internet_starter_Page
	16_164_Final_Paper
	17_131_Final_Paper
	18_184_Final_Paper
	19_144_Final_Paper
	20_WIP-LimitedRange_starter_Page
	21_143_Final_Paper
	22_127_Final_Paper
	23_135_Final_Paper
	24_178_Final_Paper
	25_WIP-Management_starter_Page
	26_177_Final_Paper
	27_WIP-Standards_starter_Page
	28_182_Final_Paper

